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Informal intuitionistic semantics: a sentence is true if it has a

verification. If A and B are sentences, then

a verification of A&B is a text containing a verification of A and

a verification of B;

a verification of A ∨B is a text containing a verification of A or

a verification of B and indicating what of them is verified;

a verification of A → B is a text describing a general effective

operation for obtaining a verification of B from every verification

of A;

a verification of ¬A is a verification of the sentence A → ⊥, where

⊥ is a certainly absurd sentence having no verification.



If A(x) is a predicate with a parameter x over a domain M given

in appropriate way, then

• a verification of ∀xA(x) is a text describing a general effective

operation which allows to obtain a verification of A(m) for

every given m ∈ M ;

• a verification of sentence ∃xA(x) is a text indicating a con-

crete m ∈ M and containing a verification of the sentence

A(m).



Intuitionistic propositional calculus

A propositional formula A(p1, . . . , pn) is called intuitionistically
valid if it is a scheme of intuitionistically true sentences. The
first axiomatization of intuitionistic propositional logic was pro-
posed by Kolmogorov in 1925. Other more wide axiom systems
of intuitionistic logic were proposed by Glivenko, Heyting, and
Gentzen. They are all equivalent: the same formulas are de-
ducible from each of them. Intuitionistic propositional calculus
is denoted by IPC.

The problem of completeness of the calculus IPC can not be
stated in a precise mathematical form because intuitionistic se-
mantics is very informal. It can be made more precise if we de-
fine in a mathematical mode two key notions used in the above
description of the informal semantics, namely the notions of a
verification and a general effective operation.



Kleene’s recursive realizability

In 1945 S. C. Kleene proposed a variant of intuitionistic seman-

tics based on interpreting general effective operations as algo-

rithms. He introduced the notion of recursive realizability for

the first-order arithmetic sentences. The main idea of Kleene

was to consider natural numbers as the codes of verifications

and partial recursive functions as effective operations. Partial

recursive functions are coded by natural numbers by means of

the Gödel enumeration. The unary function whose index is e

will be denoted by {e}. A code of a verification of a sentence is

called a realization of the sentence.

The relation e rΦ (a natural number e realizes a closed arithmetic

formula Φ) is defined inductively.



If Φ is an atomic sentence t1 = t2, then e rΦ ­ [e = 0 and Φ is

true].

e r (Φ&Ψ) ­ [e = 2a · 3b and a rΦ, b rΨ].

e r (Φ ∨Ψ) ­ [e = 20 · 3a and a rΦ or e = 21 · 3b and b rΨ].

e r (Φ → Ψ) ­ [for any a, if a rΦ, then {e}(a) rΨ].

e r¬Φ ­ [e r (Φ → 0 = 1)].

e r∀xΦ(x) ­ [{e}(n) rΦ(n) for every n].

e r∃xΦ(x) ­ [e = 2n · 3a and a rΦ(n)].



A propositional formula A(p1, . . . , pn) is

1. weakly realizable if every its closed arithmetic instance is
realizable;

2. irrefutable if every its arithmetic instance is realizable;

3. effectively realizable if there exists an algorithm for finding a
realization of any closed arithmetic instance;

4. uniformly realizable if there exists a natural number realizing
every closed arithmetic instance.

Problem: Are the notions 2, 3, and 4 equivalent?



The corresponding notions of realizability for predicate formulas
are defined in a natural way.

• There exists a weakly realizable predicate formula which is
not irrefutable.

• There exists an irrefutable predicate formula which is not
effectively realizable.

• There exists an effectively realizable predicate formula which
is not uniformly realizable.

• The set of realizable (in any sense) predicate formulas is not
arithmetical.



Consider a language L obtained by adding an unary predicate

symbol T to the language of arithmetic. We generalize the no-

tion of realizability to this extended language by letting e rT (n) iff

e rΦn, where Φn is an arithmetic sentence with the Gödel num-

ber n. It is proved that there are uniformly realizable predicate

formulas which are refutable in the language L. Thus the con-

cept of a realizable predicate formula depends on the language

in which we formulate the predicates admissible for interpreting

predicate variables.

Constructive meaning of a sentence can be identified with the

set of (the Gödel numbers of) the objects verifying this sentence.

Thus we come to the idea of interpreting propositional variables

as arbitrary sets of naturals, the logical operations being defined

according to recursive realizability:



• A&B ® {2a · 3b|a ∈ A, b ∈ B};

• A ∨B ® {20 · 3a|a ∈ A} ∪ {21 · 3b|b ∈ b};

• A → B ® {x|∀a(a ∈ A ⇒ {x}(a) ∈ B)};

• ¬A ® A → ∅.

A k-place generalized predicate is a function defined on Nk whose

values are sentences (sets of naturals), i.e., a function of type

Nk → 2N. Analogs of irrefutable and uniformly realizable pred-

icate formulas are defined in a natural way. They are called

absolutely irrefutable and absolutely uniformly realizable.



Theorem 1 A closed predicate formula is absolutely irrefutable

if and only if it is absolutely uniformly realizable.

Absolutely irrefutable (absolutely uniformly realizable) predicate

formulas are called absolutely realizable.

Thus in the context of the absolute realizability the problem of

coincidence of various notions of realizability for propositional

formulas is solved positively.

Problem: Is every irrefutable propositional formula absolutely

realizable?



Let P be the set of one-place generalized predicates, P, Q ∈ P.

Define P ≤ Q iff there exists a two-place general recursive func-

tion f such that

∀n, x (x ∈ P (n) ⇔ f(n, x) ∈ Q(n)).

≤ is a preorder. Let ∼ be an equivalence induced by ≤. Then

P/ ∼ is a Heyting algebra. This algebra is an exact model of the

propositional logic of the absolute realizability.

Problem: Is there an arithmetic Heyting algebra ∀-equivalent to

the algebra P/ ∼?



F. L. Varpakhovskii introduced two additional propositional con-

nectives called strong implication and conditional disjunction.

Strong implication is denoted by Φ ⇒ Ψ.

If θ is a list of arithmetic formulas Φ1, . . . ,Φm, θi (i = 1, . . . , n) are

its sublists Φi,1, . . . ,Φi,mi
, and Ψ1, . . . ,Ψn are arithmetic formu-

las, then (θ(θ1Ψ1∇ . . .∇θnΨn)) is called conditional disjunction

of the formulas Ψ1, . . . ,Ψn with the conditions θ, θ1, . . . , θn.

The notion of recursive realizability is generalized to the new

connectives in the following way.

e r (Φ ⇒ Ψ) iff for any a such that a rΦ the value {e}(a) is defined

and for any a, if {e}(a) is defined, then {e}(a) rΨ.



Let Φ1, . . . ,Φm,Ψ1, . . . ,Ψn be closed formulas. Then e r
(
θ

(
∇n

i=1θiΨi

))

iff

1) e is of the form
n∏

i=0
π

ei
i (πi is the ith prime number, π0 = 2),

2) for any sequence ā = a1, . . . , am there exists i ∈ {1, . . . , n} such

that if aj rΦj for any j = 1, . . . , m, then {e0}(ā) = i and the value

{ei}(ai,1, . . . , ai,mi
) is defined,

3) for any i ∈ {1, . . . , n} and any ā = a1, . . . , am, if ai,j rΦi,j for

any j = 1, . . . , mi, and the value {ei}(ai,1, . . . , ai,mi
) is defined,

then

{ei}(ai,1, . . . , ai,mi
) rΨi.



The notion of an uniformly realizable propositional formula in the

extended language is defined in an obvious way. Varpakhovskii

proposed a propositional calculus in the extended language and

proved that any deducible formula is uniformly realizable. More-

over, all the known realizable propositional formulas are de-

ducible. Varpakhovskii observes that his calculus gives an uni-

form formalization of the principles used in the proving realiz-

ability of propositional formulas. The problem of completeness

of Varpakhovskii’s calculus is still open.



For an axiomatic theory T let PL(T) be the set of propositional

formulas such that all their arithmetic instances are deducible

in T. Let S be HA with additional axioms Φ ≡ ∃x x rΦ for any

arithmetic formula Φ and the Markov Principle

MP: ∀x(Φ(x) ∨ ¬Φ(x))&¬¬∃xΦ(x) → ∃xΦ(x).

It was proved that all the known realizable propositional formulas

are in the logic PL(S).



Extended Church’s Thesis is the scheme

ECT: ∀x(Ψ(x) → ∃yΦ(x, y)) →

→ ∃e∀x(Ψ(x) → ∃y({e}(x) = y &Φ(x, y))),

where Ψ(x) is an almost negative formula.

The system S is equivalent to the system of “Russian” construc-

tivism HA+MP+ECT.

A. Visser called this system Markov’s Arithmetic and denotes it

by MA. Thus any known realizable propositional formula is in the

logic PL(MA).

Theorem 2 Every propositional formula deducible in the Varpakhovskii

calculus is in the logic PL(MA).


