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Introduction



Evidence Algorithm

V.M. Glushkov � 1966 � Institute of Cybernetics � Kiev, Ukraine

Task: assistance to a working mathematician

Form: mathematical text processing, proof veri�cation

Research:

� formal languages for mathematical text's presentation

� deductive routines which determine what is �evident�

� information environment, a library of mathematical knowledge

� interactive proof search

Principles:

� closeness to a natural language

� closeness to a natural reasoning

Developed:

� languages of formal theories

� goal-driven sequent calculi

� ...

Result: System for Automated Deduction (SAD) � 1978, 2003
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Formalisation style

� Type theory (higher order logic) vs. Set theory (�rst order logic)

� Imperative proofs (series of tactics) vs. Declarative proofs (�textbook� style)

� Large proof steps (strong prover) vs. Elementary proof steps (proof checker)

System components

� Formal language for mathematical text presentation � ForTheL

must be close to the natural language of mathematical publications

� Combinatorial inference search procedure � Otter, SPASS, E, Moses

completes proof steps in the text; is independent from the rest of the system,

but can bene�t from �naturally mathematical� speci�cs of submitted tasks:

weak typing (sorts), de�nition handling, symbol orderings

� Reinforcing deductive techniques in human style � �reasoner�

split, �lter, simplify, unfold de�nitions, apply lemmas, try di�erent ways:

faciliate the prover's duty as much as possible



Formal Theory Language



Formal Mathematical Text (Tarski-Knaster Theorem)

Definition DefCLat. A complete lattice is a set S such that

every subset of S has an infimum in S and a supremum in S.

Definition DefIso. f is monotone iff for all x,y << Dom f

x <= y => f(x) <= f(y).

Theorem Tarski.

Let U be a complete lattice and f be an monotone function on U.

The set of fixed points of f is a complete lattice.

Proof.

Let S be the set of fixed points of f and T be a subset of S.

Let us show that T has a supremum in S.

Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.

Take an infimum p of P in U.

f(p) is a lower bound of P in U and an upper bound of T in U.

Hence p is a fixed point of f and a supremum of T in S.

end.

Let us show that T has an infimum in S.

Take Q = { x << U | f(x) >= x and x is a lower bound of T in U }.

Take a supremum q of Q in U.

f(q) is an upper bound of Q in U and a lower bound of T in U.

Hence q is a fixed point of f and an infimum of T in S.

end.

qed.



Tarski-Knaster Theorem (Mizar proof)

theorem

FixPoints f is complete

proof

set F = FixPoints f;

set cF = the carrier of F;

set cL = the carrier of L;

A1: cF = {x where x is Element of L:

x is_a_fixpoint_of f} by Th39;

let X be set;

set Y = X /\ cF;

A2: Y c= X & Y c= cF by XBOOLE_1:17;

set s = "\/"(Y, L);

Y is_less_than f.s proof

let q be Element of cL; assume

A3: q in Y;

then q [= s by LATTICE3:38;

then A4: f.q [= f.s by QUANTAL1:def 12;

reconsider q' = q as Element of L;

q' is_a_fixpoint_of f by A2,A3,Th41;

hence q [= f.s by A4,Def1;

end;

then A5: s [= f.s by LATTICE3:def 21;

then consider O such that

A6: Card O <=` Card cL & (f, O)+.s

is_a_fixpoint_of f by Th33;

reconsider p' = (f, O)+.s as Element of L;

reconsider p = p' as Element of cF by A6,Th41;

reconsider p'' = p as Element of F;

take p;

thus X is_less_than p proof

let q be Element of cF; assume

A7: q in X;

reconsider q' = q as Element of F;

q in cF & cF c= cL by Th40;

then reconsider qL' = q as Element of L;

q in Y by A7,XBOOLE_0:def 3;

then A8: qL' [= s by LATTICE3:38;

s [= p' by A5,Th25;

then qL' [= p' by A8,LATTICES:25;

then q' [= p'' by Th42;

hence q [= p;

end;

let r be Element of cF such that

A9: X is_less_than r;

r in the carrier of F;

then consider r' being Element of L such that

A10: r' = r & r' is_a_fixpoint_of f by A1;

reconsider r'' = r as Element of F;

Y is_less_than r' proof

let q be Element of cL; assume

A11: q in Y;

then reconsider q'' = q as Element of F by A2;

reconsider q' = q as Element of L;

q'' [= r'' by A2,A9,A11,LATTICE3:def 17;

then q' [= r' by A10,Th42;

hence q [= r';

end;

then s [= r' by LATTICE3:def 21;

then p' [= r' by A5,A10,Th37;

then p'' [= r'' by A10,Th42;

hence p [= r;

end;



Tarski-Knaster Theorem (simpli�ed, Isar proof)

theorem KnasterTarski: "mono f ==> EX a::`a set. f a = a"

proof

let ?H = "{u. f u <= u}"

let ?a = "Inter ?H"

assume mono: "mono f"

show "f ?a = ?a"

proof -

{

fix x

assume H: "x : ?H"

hence "?a <= x" by (rule Inter_lower)

with mono have "f ?a <= f x" ..

also from H have "... <= x" ..

finally have "f ?a <= x" .

}

hence ge: "f ?a <= ?a" by (rule Inter_greatest)

{

also presume "... <= f ?a"

finally (order_antisym) show ?thesis .

}

from mono ge have "f (f ?a) <= f ?a" ..

hence "f ?a : ?H" ..

thus "?a <= f ?a" by (rule Inter_lower)

qed

qed



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that for all a,b,c

such that a -R*> b,c there exists d such that b,c -R*> d.

Assume that a -R+> b,c.

Take u such that a -R> u -R*> b.

Take v such that a -R> v -R*> c.

Take w such that u,v -R*> w.

Take a normal form d of w in R.

b -R*> d. Indeed take x such that b,d -R*> x.

c -R*> d. Indeed take y such that c,d -R*> y.

end.

qed.
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Formal Mathematical Text

What is it: structured collection of propositions:

Theorem.

proof.

proof.

end.

qed.

Lemma.

Definition.
preliminariesassumptions, conjectures, de�nitions, proof cases...

Semantics: translation into �rst-order language

Logical correctness:

� every assertion follows from its predecessors

Ontological correctness:

� every signature symbol is given a domain

� every occurrence of a symbol is well-de�ned

Translation:

every term x has a normal form in R

−→ ∀x (x ε Term ⊃ ∃ z(z ε NormalFormOfIn(x, R)))

any locally confluent terminating rewriting system is confluent

−→ ∀R ((R ε RewrSystem ∧ isTerminating(R) ∧ isLocallyConfluent(R)) ⊃ isConfluent(R))

some subgroup of every group is abelian

−→ ∀G (G ε Group ⊃ ∃H (H ε SubgroupOf(G) ⊃ isAbelian(H)))



Text Correctness



Formal Mathematical Text
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Calculus of Text Correctness

Γ ` G

Γ .G

(Γ I F )∗ Γ, (posit F ) .> ∆

Γ .> (posit F ), ∆

Γ I F ~x = DVΓ(F ) Γ ` ∀~x (F ⊃ G′) ⊃ G Γ, (assume F ) .G′ ∆

Γ .G (assume ΘG(F )), ∆

Γ I F DVΓ(F ) = ∅ Γ .F Λ Γ ` (F ∧G′) ⊃ G Γ, (affirm F [Λ]) .G′ ∆

Γ .G (affirm ΘG(F ) [Λ]), ∆

Γ I F ~x = DVΓ(F ) Γ .∃~x F Λ Γ ` ∃~x (F ∧G′) ⊃ G Γ, (select F [Λ]) .G′ ∆

Γ .G (select ΘG(F ) [Λ]), ∆

Γ I F DVΓ(F ) = ∅ Γ, (assume F ) .G Λ Γ, (case (F ⊃ G) [Λ]) .G∨F ∆

Γ .G (case (F ⊃ T) [Λ]), ∆

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

Γ .> Λ Γ, (theorem |Λ| [Λ]) .> ∆

Γ .> (theorem |Λ| [Λ]), ∆

Γ .> Λ Γ, (axiom |Λ| [Λ]) .> ∆

Γ .> (axiom |Λ| [Λ]), ∆

Γ .> Λ Γ, (defn |Λ| [Λ]) .> ∆

Γ .> (defn |Λ| [Λ]), ∆

Γ .> Λ Γ, (sign |Λ| [Λ]) .> ∆

Γ .> (sign |Λ| [Λ]), ∆



Calculus of Text Correctness

Section: (T F [Λ]) � (kind, formula image, body/proof)
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Axiom:
Γ ` G

Γ .G
� when no proof is given, deduce the current thesis

Rules for assumptions and a�rmations:

Γ I F ~x = DVΓ(F ) Γ ` ∀~x (F ⊃ G′) ⊃ G Γ, (assume F ) .G′ ∆

Γ .G (assume ΘG(F )), ∆

Γ I F DVΓ(F ) = ∅ Γ .F Λ Γ ` (F ∧G′) ⊃ G Γ, (affirm F [Λ]) .G′ ∆

Γ .G (affirm ΘG(F ) [Λ]), ∆

� Γ I F � F is ontologically correct in view of Γ

� DVΓ(F ) � variables declared by the considered sentence



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system. ←− DV = {R}
Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating. ←− DV = {R}
Let us demonstrate by induction that for all a,b,c

such that a -R*> b,c there exists d such that b,c -R*> d.

Assume that a -R+> b,c. ←− DV = {a, b, c}
Take u such that a -R> u -R*> b. ←− DV = {u}
Take v such that a -R> v -R*> c. ←− DV = {v}
Take w such that u,v -R*> w. ←− DV = {w}
Take a normal form d of w in R. ←− DV = {d}
b -R*> d. Indeed take x such that b,d -R*> x. ←− DV = {x}
c -R*> d. Indeed take y such that c,d -R*> y. ←− DV = {y}

end.

qed.
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Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating. ←− DV = {R}
Let us demonstrate by induction that for all a,b,c

such that a -R*> b,c there exists d such that b,c -R*> d.

Assume that a -R+> b,c. ←− DV = {a, b, c}
Take u such that a -R> u -R*> b. ←− DV = {u}
Take v such that a -R> v -R*> c. ←− DV = {v}
Take w such that u,v -R*> w. ←− DV = {w}
Take a normal form d of w in R. ←− DV = {d}
b -R*> d. Indeed take x such that b,d -R*> x. ←− DV = {x}
c -R*> d. Indeed take y such that c,d -R*> y. ←− DV = {y}

end.

qed.



Calculus of Text Correctness

Section: (T F [Λ]) � (kind, formula image, body/proof)

Sequent: Γ .G ∆ � verify text ∆ and prove thesis G in view of Γ

Axiom:
Γ ` G

Γ .G
� when no proof is given, deduce the current thesis

Rules for assumptions and a�rmations:

Γ I F ~x = DVΓ(F ) Γ ` ∀~x (F ⊃ G′) ⊃ G Γ, (assume F ) .G′ ∆

Γ .G (assume ΘG(F )), ∆

Γ I F DVΓ(F ) = ∅ Γ .F Λ Γ ` (F ∧G′) ⊃ G Γ, (affirm F [Λ]) .G′ ∆

Γ .G (affirm ΘG(F ) [Λ]), ∆

� Γ I F � F is ontologically correct in view of Γ

� DVΓ(F ) � variables declared by the considered sentence

� Γ .F Λ � verify the proof Λ and prove the statement F
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Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that for all a,b,c a�rmation

such that a -R*> b,c there exists d such that b,c -R*> d.

Assume that a -R+> b,c.

Take u such that a -R> u -R*> b.

Take v such that a -R> v -R*> c.

Take w such that u,v -R*> w.

Take a normal form d of w in R.

b -R*> d. Indeed take x such that b,d -R*> x.

c -R*> d. Indeed take y such that c,d -R*> y.

end.

qed.
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Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that for all a,b,c

such that a -R*> b,c there exists d such that b,c -R*> d.

Assume that a -R+> b,c. Λ
Take u such that a -R> u -R*> b.

Take v such that a -R> v -R*> c.

Take w such that u,v -R*> w.

Take a normal form d of w in R.

b -R*> d. Indeed take x such that b,d -R*> x.

c -R*> d. Indeed take y such that c,d -R*> y.

end.

qed.
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Section: (T F [Λ]) � (kind, formula image, body/proof)

Sequent: Γ .G ∆ � verify text ∆ and prove thesis G in view of Γ

Axiom:
Γ ` G

Γ .G
� when no proof is given, deduce the current thesis

Rules for assumptions and a�rmations:

Γ I F ~x = DVΓ(F ) Γ ` ∀~x (F ⊃ G′) ⊃ G Γ, (assume F ) .G′ ∆

Γ .G (assume ΘG(F )), ∆

Γ I F DVΓ(F ) = ∅ Γ .F Λ Γ ` (F ∧G′) ⊃ G Γ, (affirm F [Λ]) .G′ ∆

Γ .G (affirm ΘG(F ) [Λ]), ∆

� Γ I F � F is ontologically correct in view of Γ

� DVΓ(F ) � variables declared by the considered sentence

� Γ .F Λ � verify the proof Λ and prove the statement F

� ∀~x (F ⊃ G′) ⊃ G, (F ∧G′) ⊃ G � thesis reduction
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Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

qed.



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof. −→ G = ∀R ((R ε RewrSystem ∧ isTerminating(R) ∧ isLocallyConfluent(R)) ⊃ isConfluent(R))

qed.



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof. −→ G = ∀R ((R ε RewrSystem ∧ isTerminating(R) ∧ isLocallyConfluent(R)) ⊃ isConfluent(R))

Let R be locally confluent and terminating.

qed.



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof. −→ G = ∀R ((R ε RewrSystem ∧ isTerminating(R) ∧ isLocallyConfluent(R)) ⊃ isConfluent(R))

Let R be locally confluent and terminating. −→ G′ = isConfluent(R)

qed.



Calculus of Text Correctness

Section: (T F [Λ]) � (kind, formula image, body/proof)

Sequent: Γ .G ∆ � verify text ∆ and prove thesis G in view of Γ

Axiom:
Γ ` G

Γ .G
� when no proof is given, deduce the current thesis

Rules for assumptions and a�rmations:

Γ I F ~x = DVΓ(F ) Γ ` ∀~x (F ⊃ G′) ⊃ G Γ, (assume F ) .G′ ∆

Γ .G (assume ΘG(F )), ∆

Γ I F DVΓ(F ) = ∅ Γ .F Λ Γ ` (F ∧G′) ⊃ G Γ, (affirm F [Λ]) .G′ ∆

Γ .G (affirm ΘG(F ) [Λ]), ∆

� Γ I F � F is ontologically correct in view of Γ

� DVΓ(F ) � variables declared by the considered sentence

� Γ .F Λ � verify the proof Λ and prove the statement F

� ∀~x (F ⊃ G′) ⊃ G, (F ∧G′) ⊃ G � thesis reduction

� Γ, A .G′ ∆ � new thesis is G′, verify the rest of the proof
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Section: (T F [Λ]) � (kind, formula image, body/proof)

Sequent: Γ .G ∆ � verify text ∆ and prove thesis G in view of Γ

Axiom:
Γ ` G

Γ .G
� when no proof is given, deduce the current thesis

Rules for assumptions and a�rmations:

Γ I F ~x = DVΓ(F ) Γ ` ∀~x (F ⊃ G′) ⊃ G Γ, (assume F ) .G′ ∆

Γ .G (assume ΘG(F )), ∆

Γ I F DVΓ(F ) = ∅ Γ .F Λ Γ ` (F ∧G′) ⊃ G Γ, (affirm F [Λ]) .G′ ∆

Γ .G (affirm ΘG(F ) [Λ]), ∆

� Γ I F � F is ontologically correct in view of Γ

� DVΓ(F ) � variables declared by the considered sentence

� Γ .F Λ � verify the proof Λ and prove the statement F

� ∀~x (F ⊃ G′) ⊃ G, (F ∧G′) ⊃ G � thesis reduction

� Γ, A .G′ ∆ � new thesis is G′, verify the rest of the proof

� ΘG(F ) � replace occurrences of G in F with thesis



Calculus of Text Correctness

Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆
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Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))
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Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Example:

original thesis G :

For all natural numbers n,m,p

if p is prime and p | n * m then p | n or p | m.
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Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆
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� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))
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Example:

original thesis G :

for all natural numbers n,m,p

if p is prime and p | n * m then p | n or p | m



Calculus of Text Correctness

Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Example:

original thesis G :

for all natural numbers n1,m1,p1

if p1 is prime and p1 | n1 * m1 then p1 | n1 or p1 | m1



Calculus of Text Correctness

Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Example:

induction hypothesis IH≺n+m+p(G) :

for all natural numbers n1,m1,p1

if ((n1 + m1) + p1) -<- ((n + m) + p) then

if p1 is prime and p1 | n1 * m1 then p1 | n1 or p1 | m1



Calculus of Text Correctness

Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Example:

induction thesis IT≺n+m+p(G) :

For all natural numbers n,m,p if

for all natural numbers n1,m1,p1

if ((n1 + m1) + p1) -<- ((n + m) + p) then

if p1 is prime and p1 | n1 * m1 then p1 | n1 or p1 | m1

then if p is prime and p | n * m then p | n or p | m.
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Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Thesis reduction:

Let us show that L (a lattice) is complete. −→ L is complete
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Let S be a subset of L. −→ S has a supremum and an in�mum in L
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Induction handling rules:
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Thesis reduction:

Let us show that L (a lattice) is complete. −→ L is complete

Let S be a subset of L. −→ S has a supremum and an in�mum in L

S has a supremum in L. −→ S has an in�mum in L
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Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆
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� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Thesis reduction:

Let us show that L (a lattice) is complete. −→ L is complete

Let S be a subset of L. −→ S has a supremum and an in�mum in L

S has a supremum in L. −→ S has an in�mum in L

S has an in�mum in L. −→ >
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Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Thesis reduction:

Let us show that L (a lattice) is complete. −→ L is complete

Let S be a subset of L. −→ S has a supremum and an in�mum in L

S has a supremum in L. −→ S has an in�mum in L

S has an in�mum in L. −→ >

Soundness:
C̀TC

Γ .G ∆ ⇒ ∀(IT≺t (G) ⊃ G), Γ ` G



Calculus of Text Correctness

Induction handling rules:

Γ .IT≺t (G) ∆

Γ .G ∆

DVΓ,Λ(IH≺t (G)) = ∅ Γ .IT≺t (G) Λ, (assume IH≺t (G)), ∆

Γ .G Λ, ∆

� original thesis: G = ∀~x (H ⊃ F )

� induction thesis: IT≺t (G) = ∀~x (H ⊃ (IH≺t (G) ⊃ F ))

� induction hypothesis: IH≺t (G) = ∀~x′ (H ′ ⊃ ((t′ ≺ t) ⊃ F ′))

Thesis reduction:

Let us show that L (a lattice) is complete. −→ L is complete

Let S be a subset of L. −→ S has a supremum and an in�mum in L

S has a supremum in L. −→ S has an in�mum in L

S has an in�mum in L. −→ >

Soundness:
C̀TC

Γ .G ∆ ⇒ ∀(IT≺t (G) ⊃ G), Γ ` G

Interpretation: proofs are redundant



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that for all a,b,c

such that a -R*> b,c there exists d such that b,c -R*> d.

Assume that a -R+> b,c.

Take u such that a -R> u -R*> b.

Take v such that a -R> v -R*> c.

Take w such that u,v -R*> w.

Take a normal form d of w in R.

b -R*> d. Indeed take x such that b,d -R*> x.

c -R*> d. Indeed take y such that c,d -R*> y.

end.

qed.



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.

Proof.

Let R be locally confluent and terminating.

Let us demonstrate by induction that for all a,b,c

such that a -R*> b,c there exists d such that b,c -R*> d.

Obvious.

qed.



Formal Mathematical Text (Newman's Lemma)

Let a,b,c,d,u,v,w,x,y,z denote terms.

Let R,S,T denote rewriting systems.

Definition NFRDef. A normal form of x in R is a term y

such that x -R*> y and y has no reducts in R.

Lemma TermNF. Let R be a terminating rewriting system.

Every term x has a normal form in R.

Proof by induction. Obvious.

Lemma Newman.

Any locally confluent terminating rewriting system is confluent.



System for Automated Deduction



System for Automated Deduction

fortified
sentence

text
ForTheL

Moses Vampire

E Prover

SPASS

Otter

parser

proof task

evidence collector

ontological check

simplify

prove

unfold

filter

sentence

verification manager

proof task
reasoner

SAD
ForTheLFOL

TPTP

prover

sequent
split

� manager: decompose input text into separate proof tasks

� reasoner: big steps of reasoning, heuristic proof methods

� prover: inference search in a sound and complete calculus



Reasoner capabilities

� Evidence generation (81% vs. 75% of succeeded goals):

evidence � a literal local property of a term occurrence

mostly useful for type information: ∃x (x ∈ R∗ ∧ . . .
1 1∈R

x x∈R∗ 1
x∈R

. . .)



Reasoner capabilities

� Evidence generation (81% vs. 75% of succeeded goals):

evidence � a literal local property of a term occurrence

mostly useful for type information: ∃x (x ∈ R∗ ∧ . . .
1 1∈R

x x∈R∗ 1
x∈R

. . .)

� Filtering: reduce unneeded premises (by default, de�nitions) to �simple rules�:
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� Goal splitting: Γ ` (F ⊃ (G ∧H)) −→ Γ, F ` G and Γ, F, G ` H

� Simpli�cation: replace redundant (≡ locally true) literals with >

� De�nition expansion (81% vs. 28% of succeeded goals):

� destructive � expansion formula replaces the unfolded occurrence

� conservative � expansion formula is added alongside (more �exible)

� expansion strategies: according to the de�nition hierarchy,

by �weight� of an occurrence, expand every occurrence in sight
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Conclusion

System for Automated Deduction:

• rich natural-like language concise

• special reasoning methods ⇒ easy-to-read-and-produce

• powerful inference search engine formalizations

Formalized and veri�ed:

� Ramsey's In�nite and Finite theorems

� Properties of a re�nement relation on program speci�cations

� Cauchy-Bouniakowsky-Schwarz inequality

� For any prime p,
√

p /∈ Q
� Chinese remainders theorem and Bezout's identity in rings

� Tarski-Knaster �xed point theorem

� Newman's lemma on rewriting systems con�uence



Thanks!


