http://nevidal.org.ua

Mathematical texts in SAD

Anatoly Anisimov, Alexander Lyaletski,
Andrei Paskevich, and Konstantin Verchinine

Kiev National University - Université Paris 12

Plan of the talk

- Introduction
- Formal Theory Language (ForTheL)
- Calculus of Text Correctness
- System for Automated Deduction (SAD)
- Conclusion

Introduction

Evidence Algorithm

$$
\text { V.M. Glushkov - } 1966 \text { - Institute of Cybernetics - Kiev, Ukraine }
$$

Task: assistance to a working mathematician
Form: mathematical text processing, proof verification
Research:

- formal languages for mathematical text's presentation
- deductive routines which determine what is «evident»
- information environment, a library of mathematical knowledge
- interactive proof search

Principles:

- closeness to a natural language
- closeness to a natural reasoning

Developed:

- languages of formal theories
- goal-driven sequent calculi
- ...

Result: System for Automated Deduction (SAD) - 1978, 2003

Formalisation style

- Type theory (higher order logic) vs. Set theory (first order logic)
- Imperative proofs (series of tactics) vs. Declarative proofs (《textbook» style)
- Large proof steps (strong prover) vs. Elementary proof steps (proof checker)

Formalisation style

- Type theory (higher order logic) vs. Set theory (first order logic)
- Imperative proofs (series of tactics) vs. Declarative proofs (《textbook» style)
- Large proof steps (strong prover) vs. Elementary proof steps (proof checker)

System components

- Formal language for mathematical text presentation - ForTheL must be close to the natural language of mathematical publications

Formalisation style

- Type theory (higher order logic) vs. Set theory (first order logic)
- Imperative proofs (series of tactics) vs. Declarative proofs («textbook» style)
- Large proof steps (strong prover) vs. Elementary proof steps (proof checker)

System components

- Formal language for mathematical text presentation - ForTheL must be close to the natural language of mathematical publications
- Combinatorial inference search procedure - Otter, SPASS, E, Moses completes proof steps in the text; is independent from the rest of the system, but can benefit from «naturally mathematical» specifics of submitted tasks: weak typing (sorts), definition handling, symbol orderings

Formalisation style

- Type theory (higher order logic) vs. Set theory (first order logic)
- Imperative proofs (series of tactics) vs. Declarative proofs («textbook» style)
- Large proof steps (strong prover) vs. Elementary proof steps (proof checker)

System components

- Formal language for mathematical text presentation - ForTheL must be close to the natural language of mathematical publications
- Combinatorial inference search procedure - Otter, SPASS, E, Moses completes proof steps in the text; is independent from the rest of the system, but can benefit from «naturally mathematical» specifics of submitted tasks: weak typing (sorts), definition handling, symbol orderings
- Reinforcing deductive techniques in human style - «reasoner»
split, filter, simplify, unfold definitions, apply lemmas, try different ways: faciliate the prover's duty as much as possible

Formal Theory Language

Formal Mathematical Text (Tarski-Knaster Theorem)

```
Definition DefCLat. A complete lattice is a set S such that
every subset of S has an infimum in S and a supremum in S
Definition DefIso. f is monotone iff for all x,y << Dom f
    x <= y => f(x) <= f(y).
Theorem Tarski.
Let \(U\) be a complete lattice and \(f\) be an monotone function on \(U\).
    The set of fixed points of f is a complete lattice.
Proof.
    Let S be the set of fixed points of f and T be a subset of S.
    Let us show that T has a supremum in S.
            Take P = { x << U | f(x) <= x and x is an upper bound of T in U }.
            Take an infimum p of P in U.
            f(p) is a lower bound of P in U and an upper bound of T in U.
            Hence p is a fixed point of f and a supremum of T in S.
    end.
    Let us show that T has an infimum in S.
            Take Q = { x << U | f(x) >= x and x is a lower bound of T in U }.
            Take a supremum q of Q in U.
            f(q) is an upper bound of Q in U and a lower bound of T in U.
            Hence q is a fixed point of f and an infimum of T in S.
    end.
qed.
```


Tarski-Knaster Theorem (Mizar proof)

theorem
FixPoints f is complete
proof
set $F=$ FixPoints f;
set $c F=$ the carrier of F;
set $c L=$ the carrier of L;
A1: $c F=\{x$ where x is Element of L :
x is_a_fixpoint_of f\} by Th39;
let X be set;
set $Y=X / \backslash c F ;$
A2: $Y c=X \& Y c=c F$ by XBOOLE_1:17; set $s=" \backslash / "(Y, L)$;

Y is_less_than f.s proof
let q be Element of $c L$; assume
A3: q in Y;
then q [= s by LATTICE3:38;
then A4: f.q [= f.s by QUANTAL1:def 12;
reconsider $q^{\prime}=q$ as Element of L;
q' is_a_fixpoint_of f by A2,A3,Th41;
hence q [= f.s by A4, Def1;
end;
then A5: s [= f.s by LATTICE3:def 21;
then consider 0 such that
A6: Card $0<=$ ' Card cL \& (f, 0)+.s

> is_a_fixpoint_of f by Th33;
reconsider $p^{\prime}=(f, 0)+. s$ as Element of L;
reconsider $p=p$ ' as Element of $c F$ by $A 6, T h 41$;
reconsider $p^{\prime},=p$ as Element of F;
take p;
thus X is_less_than p proof
let q be Element of $c F$; assume
A7: q in X;
reconsider $q^{\prime}=q$ as Element of F;
q in cF \& $\mathrm{cF} \mathrm{c}=\mathrm{cL}$ by $\operatorname{Th} 40$;
then reconsider $q L^{\prime}=q$ as Element of L;
q in Y by A7,XBOOLE_0:def 3;
then A8: qL' [= s by LATTICE3:38;
s [= p' by A5,Th25;
then qL' [= p' by A8,LATTICES:25;
then q^{\prime} [= p', by Th42;
hence q [= p;
end;
let r be Element of $c F$ such that
A9: X is_less_than r;
r in the carrier of F;
then consider r ' being Element of L such that
A10: r' = r \& r' is_a_fixpoint_of f by A1;
reconsider $r{ }^{\prime}$, $=r$ as Element of F;
Y is_less_than r' proof
let q be Element of $c L$; assume
A11: q in Y;
then reconsider q^{\prime} ' $=q$ as Element of F by $A 2$;
reconsider q' = q as Element of L ;
q^{\prime} ' [= r', by A2,A9,A11,LATTICE3: def 17;
then q' [= r' by A10,Th42;
hence q [= r^{\prime};
end;
then s [= r' by LATTICE3:def 21;
then p^{\prime} [= r' by A5,A10,Th37;
then p^{\prime}, $[=r, '$ by A10, Th42;
hence p [= r;
end;

Tarski-Knaster Theorem (simplified, Isar proof)

```
theorem KnasterTarski: "mono f ==> EX a::`a set. f a = a"
proof
    let ?H = "{u. f u <= u}"
    let ?a = "Inter ?H"
    assume mono: "mono f"
    show "f ?a = ?a"
    proof -
        {
            fix x
            assume H: "x : ?H"
            hence "?a <= x" by (rule Inter_lower)
            with mono have "f ?a <= f x" ..
            also from H have "... <= x" ..
            finally have "f ?a <= x" .
        }
        hence ge: "f ?a <= ?a" by (rule Inter_greatest)
        {
            also presume "... <= f ?a"
            finally (order_antisym) show ?thesis .
        }
        from mono ge have "f (f ?a) <= f ?a" ..
        hence "f ?a : ?H" ..
        thus "?a <= f ?a" by (rule Inter_lower)
    qed
qed
```


Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof.
    Let R be locally confluent and terminating.
    Let us demonstrate by induction that for all a,b,c
        such that a -R*> b,c there exists d such that b,c -R*> d.
            Assume that a -R+> b,c.
            Take u such that a -R> u -R*> b.
            Take v such that a -R> v -R*> c.
            Take w such that u,v -R*> w.
            Take a normal form d of w in R.
            b -R*> d. Indeed take x such that b,d -R*> x.
            c -R*> d. Indeed take y such that c,d -R*> y.
    end.
qed.
```


Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Semantics: translation into first-order language

Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Semantics: translation into first-order language
Logical correctness:

- every assertion follows from its predecessors

Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Semantics: translation into first-order language
Logical correctness:

- every assertion follows from its predecessors

Ontological correctness:

- every signature symbol is given a domain

Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Semantics: translation into first-order language
Logical correctness:

- every assertion follows from its predecessors

Ontological correctness:

- every signature symbol is given a domain
- every occurrence of a symbol is well-defined

Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Semantics: translation into first-order language
Logical correctness:

- every assertion follows from its predecessors

Ontological correctness:

- every signature symbol is given a domain
- every occurrence of a symbol is well-defined

Translation:

```
Definition.
__ preliminaries__
Lemma.
Theorem.
proof.
```



```
qed.
```

every term x has a normal form in R
$\longrightarrow \forall x(x \varepsilon$ Term $\supset \exists z(z \varepsilon$ NormalFormOfIn $(x, R)))$
any locally confluent terminating rewriting system is confluent
$\longrightarrow \forall R((R \varepsilon$ RewrSystem \wedge isTerminating $(R) \wedge$ isLocallyConfluent $(R)) \supset$ isConfluent $(R))$
some subgroup of every group is abelian
$\longrightarrow \forall G(G \varepsilon G r o u p ~ \supset \exists H(H \varepsilon \operatorname{SubgroupOf}(G) \supset \operatorname{isAbelian}(H)))$

Text Correctness

Formal Mathematical Text

What is it: structured collection of propositions: assumptions, conjectures, definitions, proof cases...

Semantics: translation into first-order language
Logical correctness:

- every assertion follows from its predecessors

Ontological correctness:

- every signature symbol is given a domain
- every occurrence of a symbol is well-defined

Calculus of Text Correctness

$$
\begin{aligned}
& \frac{\Gamma \vdash G}{\Gamma \triangleright_{G}} \quad \frac{(\Gamma \triangleright F)^{*} \quad \Gamma,(\text { posit } F) \triangleright_{T} \Delta}{\Gamma \triangleright_{T}(\text { posit } F), \Delta} \\
& \begin{array}{c}
\Gamma \triangleright F \quad \vec{x}=\mathcal{D} \mathcal{V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G \quad \Gamma,(\text { assume } F) \triangleright_{G^{\prime}} \Delta \\
\Gamma \triangleright_{G}\left(\text { assume } \Theta_{G}(F)\right), \Delta
\end{array} \\
& \frac{\Gamma \triangleright F \quad \mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing}{} \quad \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G \quad \Gamma,(\text { affirm } F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
& \begin{array}{cccc}
\Gamma \triangleright F \quad \vec{x}=\mathcal{D} \mathcal{V}_{\Gamma}(F) \quad \Gamma \triangleright_{\exists \vec{z} F} \Lambda \quad \Gamma \vdash \exists \vec{x}\left(F \wedge G^{\prime}\right) \supset G & \Gamma \text {, (select } F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
\Gamma \triangleright_{G}\left(\text { select } \Theta_{G}(F)[\Lambda]\right), \Delta
\end{array} \\
& \frac{\Gamma \triangleright F \quad \mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing \quad \Gamma,(\operatorname{assume} F) \triangleright_{G} \Lambda \quad \Gamma,(\operatorname{case}(F \supset G)[\Lambda]) \triangleright_{G \vee F} \Delta}{\Gamma \triangleright_{G}(\operatorname{case}(F \supset \mathfrak{T})[\Lambda]), \Delta} \\
& \frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta \\
& \frac{\Gamma \triangleright_{T} \Lambda \quad \Gamma,(\text { theorem }|\Lambda|[\Lambda]) \triangleright_{T} \Delta}{\Gamma \triangleright_{T}(\text { theorem }|\Lambda|[\Lambda]), \Delta} \quad \frac{\Gamma \triangleright_{T} \Lambda \quad \Gamma,(\text { axiom }|\Lambda|[\Lambda]) \triangleright_{T} \Delta}{\Gamma \triangleright_{T}(\text { axiom }|\Lambda|[\Lambda]), \Delta} \\
& \frac{\Gamma \triangleright_{T} \Lambda \quad \Gamma,(\operatorname{defn}|\Lambda|[\Lambda]) \triangleright_{T} \Delta}{\Gamma \triangleright_{T}(\operatorname{defn}|\Lambda|[\Lambda]), \Delta} \quad \frac{\Gamma \triangleright_{\top} \Lambda \quad \Gamma,(\operatorname{sign}|\Lambda|[\Lambda]) \triangleright_{T} \Delta}{\Gamma \triangleright_{T}(\operatorname{sign}|\Lambda|[\Lambda]), \Delta}
\end{aligned}
$$

Calculus of Text Correctness

Section: $(\mathrm{T} F[\Lambda])-$ (kind, formula image, body/proof)

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof.
    Let R be locally confluent and terminating.
    Let us demonstrate by induction that for all a,b,c
        such that a -R*> b,c there exists d such that b,c -R*> d.
        Assume that a -R+> b,c.
        Take u such that a -R> u -R*> b.
        Take v such that a -R> v -R*> c.
        Take w such that u,v -R*> w.
        Take a normal form d of w in R.
        b -R*> d. Indeed take x such that b,d -R*> x.
        c -R*> d. Indeed take y such that c,d -R*> y.
    end.
qed.
```


Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .

Lemma TermNF. Let R be a terminating rewriting system. Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman
Any locally confluent terminating rewriting system is confluent.

- affirmation

Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that for all a, b, c
such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.
Assume that $a-R+>b, c$.
Take u such that $a-R>u-R *>b$.
Take v such that $\mathrm{a}-\mathrm{R}>\mathrm{v}-\mathrm{R} *>\mathrm{c}$.
Take w such that u,v -R*> w.
Take a normal form d of w in R.
$\mathrm{b}-\mathrm{R} *>\mathrm{d}$. Indeed take x such that $\mathrm{b}, \mathrm{d}-\mathrm{R} *>\mathrm{x}$.
c -R*> d. Indeed take y such that $c, d-R *>y$.
end.
qed.

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R, S, T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .

Lemma TermNF. Let R be a terminating rewriting system. Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman
$\forall R((R \varepsilon \operatorname{RewrSystem} \wedge$ isTerminating $(R) \wedge$ isLocallyConfluent $(R)) \supset \operatorname{isConfluent}(R))$-affirmation
Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that for all a, b, c
such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.
Assume that $a-R+>b, c$.
Take u such that a -R> u -R*> b.
Take v such that $\mathrm{a}-\mathrm{R}>\mathrm{v}-\mathrm{R} *>\mathrm{c}$.
Take w such that u,v -R*> w.
Take a normal form d of w in R.
$\mathrm{b}-\mathrm{R} *>\mathrm{d}$. Indeed take x such that $\mathrm{b}, \mathrm{d}-\mathrm{R} *>\mathrm{x}$.
c -R*> d. Indeed take y such that $c, d-R *>y$.
end.
qed.

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R, S, T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .
Lemma TermNF. Let R be a terminating rewriting system. Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
$\forall R((R \varepsilon \operatorname{RewrSystem} \wedge$ isTerminating $(R) \wedge$ isLocallyConfluent $(R)) \supset$ isConfluent $(R))$-affirmation
Proof.
Let R be locally confluent and terminating. proof
Let us demonstrate by induction that for all a, b, c
such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.
Assume that $a-R+>b, c$.
Take u such that $a-R>u-R *>b$.
Take v such that $\mathrm{a}-\mathrm{R}>\mathrm{v}-\mathrm{R} *>\mathrm{c}$.
Take w such that $u, v-R *>$ w.
Take a normal form d of w in R.
b -R*> d. Indeed take x such that $\mathrm{b}, \mathrm{d}-\mathrm{R} *>\mathrm{x}$.
c $-R *>d$. Indeed take y such that $c, d-R *>y$.
end.
qed.

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let $\mathrm{R}, \mathrm{S}, \mathrm{T}$ denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .
Lemma TermNF. Let R be a terminating rewriting system. Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
$\forall R((R \varepsilon \operatorname{RewrSystem} \wedge$ isTerminating $(R) \wedge \operatorname{isLocallyConfluent}(R)) \supset \operatorname{isConfluent}(R))$ - affirmation
Proof.

```
Let R be locally confluent and terminating. proof
Let us demonstrate by induction that for all a,b,c
    such that a -R*> b,c there exists d such that b,c -R*> d.
            Assume that a -R+> b,c.
            Take u such that a -R> u -R*> b.
            Take v such that a -R> v -R*> c.
            Take w such that u,v -R*> w.
            Take a normal form d of w in R.
            b->R}d\mathrm{ . Indeed take x such that b,d -R*> x. - affirmation
            c -R*> d. Indeed take y such that c,d -R*> y.
end.
```

qed.

Calculus of Text Correctness

Section: (T $F[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ verify text Δ and prove thesis G in view of Γ

Formal Mathematical Text (Newman's Lemma)

```
    Let a,b,c,d,u,v,w,x,y,z denote terms.
    Let R,S,T denote rewriting systems.
    Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
    Lemma TermNF. Let R be a terminating rewriting system.
            Every term x has a normal form in R.
    Proof by induction. Obvious.
    Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
    Proof
    Let R be locally confluent and terminating.
\longrightarrow ~ L e t ~ u s ~ d e m o n s t r a t e ~ b y ~ i n d u c t i o n ~ t h a t ~ f o r ~ a l l ~ a , b , c
        such that a -R*> b,c there exists d such that b,c -R*> d.
        Assume that a -R+> b,c.
        Take u such that a -R> u -R*> b.
        Take v such that a -R> v -R*> c.
        Take w such that u,v -R*> w.
        Take a normal form d of w in R.
        b -R*> d. Indeed take x such that b,d -R*> x.
        c -R*> d. Indeed take y such that c,d -R*> y.
    end.
qed.
```


Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R, S, T denote rewriting systems.

Definition NFRDef.	A normal form of x in R is a term y	Γ
	such that $x-R *>y$ and y has no reducts in R.	

```
Lemma TermNF. Let R be a terminating rewriting system.
```

 Every term \(x\) has a normal form in \(R\).
 Proof by induction. Obvious.

Lemma Newman
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating.
\longrightarrow Let us demonstrate by induction that for all a, b, c such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.

Assume that $a-R+>b, c$.
Take u such that $a-R>u-R *>b$.
Take v such that a $-\mathrm{R}>\mathrm{v}-\mathrm{R} *>\mathrm{c}$.
Take w such that $u, v-R *>$ w.
Take a normal form d of w in R.
$b-R *>d$. Indeed take x such that $b, d-R *>x$.
c -R*> d. Indeed take y such that $c, d-R *>y$.
end.
qed.

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that for all a,b,c
    such that a -R*> b,c there exists d such that b,c -R*> d.
            Assume that a -R+> b,c.
            Take u such that a -R> u -R*> b.
            Take v such that a -R> v -R*> c.
            Take w such that u,v -R*> w.
            Take a normal form d of w in R.
            b -R*> d. Indeed take x such that b,d -R*> x.
            c -R*> d. Indeed take y such that c,d -R*> y.
            end.
qed.
```


Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof.
    Let R be locally confluent and terminating. }\quad\longrightarrow\quadG=\operatorname{isConfluent}(R
    Let us demonstrate by induction that for all a,b,c
        such that a -R*> b,c there exists d such that b,c -R*> d.
        Assume that a -R+> b,c.
        Take u such that a -R> u -R*> b.
        Take v such that a -R> v -R*> c.
        Take w such that u,v -R*> w.
        Take a normal form d of w in R.
        b -R*> d. Indeed take x such that b,d -R*> x.
        c -R*> d. Indeed take y such that c,d -R*> y.
    end.
qed.
```


Calculus of Text Correctness

Section: (T $F[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}-$ when no proof is given, deduce the current thesis

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof.
    Let R be locally confluent and terminating. }\quad\longrightarrow\quadG=\operatorname{isConfluent}(R
```

qed.

Calculus of Text Correctness

Section: (T $F[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{aligned}
& \begin{array}{l}
\Gamma \triangleright F \quad \vec{x}=\mathcal{D V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G \quad \Gamma,(\text { assume } F) \triangleright_{G^{\prime}} \Delta \\
\hline \Gamma \triangleright_{G}\left(\text { assume } \Theta_{G}(F)\right), \Delta
\end{array} \\
& \begin{array}{llll}
\Gamma \bullet F \quad \mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing & \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G & \Gamma,(\operatorname{affirm} F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
& \Gamma \triangleright_{G}\left(\operatorname{affirm} \Theta_{G}(F)[\Lambda]\right), \Delta
\end{array}
\end{aligned}
$$

Calculus of Text Correctness

Section: (T $F[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{aligned}
& \frac{\Gamma \triangleright F \quad \vec{x}=\mathcal{D V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G \quad \Gamma,(\text { assume } F) \triangleright_{G^{\prime}} \Delta}{\Gamma \triangleright_{G}\left(\text { assume } \Theta_{G}(F)\right), \Delta} \\
& \begin{array}{llll}
\Gamma \bullet F \quad \mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing & \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G & \Gamma,(\operatorname{affirm} F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
& \Gamma \triangleright_{G}\left(\operatorname{affirm} \Theta_{G}(F)[\Lambda]\right), \Delta
\end{array}
\end{aligned}
$$

$-\Gamma \triangleright F-F$ is ontologically correct in view of Γ

Calculus of Text Correctness

Section: (T $F[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{gathered}
\frac{\Gamma \triangleright F \quad \vec{x}=\mathcal{D} \mathcal{V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G}{} \begin{array}{c}
\Gamma \triangleright_{G} \quad\left(\operatorname{assume} \Theta_{G}(F)\right), \Delta \\
\frac{\Gamma \triangleright F \quad(\text { assume } F) \triangleright_{G^{\prime}} \Delta}{} \\
\frac{\mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing \quad \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G}{} \quad \Gamma,(\operatorname{affirm} F[\Lambda]) \triangleright_{G^{\prime}} \Delta
\end{array}
\end{gathered}
$$

$-\Gamma \triangleright F-F$ is ontologically correct in view of Γ

- $\mathcal{D} \mathcal{V}_{\Gamma}(F)$ - variables declared by the considered sentence

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $x-R *>y$ and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system. $\longleftarrow \mathcal{D} \mathcal{V}=\{R\}$
Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating. $\longleftarrow \mathcal{D V}=\{R\}$
Let us demonstrate by induction that for all a, b, c such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.
Assume that $\mathrm{a}-\mathrm{R}+>\mathrm{b}, \mathrm{c} . \quad \longleftarrow \mathcal{D} \mathcal{V}=\{a, b, c\}$

Take u such that $a-R>u-R *>b . \quad \longleftarrow \mathcal{D V}=\{u\}$
Take v such that a -R> v-R*>c. $\longleftarrow \mathcal{D V}=\{v\}$
Take w such that $u, v-\mathrm{R} *>\mathrm{w} . \quad \longleftarrow \mathcal{D} \mathcal{V}=\{w\}$
Take a normal form d of w in R. $\quad \mathcal{D V}=\{d\}$
$\mathrm{b}-\mathrm{R} *>\mathrm{d}$. Indeed take x such that $\mathrm{b}, \mathrm{d}-\mathrm{R} *>\mathrm{x} . \quad \longleftarrow \mathcal{D} \mathcal{V}=\{x\}$
c $-\mathrm{R} *>\mathrm{d}$. Indeed take y such that $\mathrm{c}, \mathrm{d}-\mathrm{R} *>\mathrm{y} . \quad \longleftarrow \mathcal{D} \mathcal{V}=\{y\}$
end.
qed.

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R, S, T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .

```
Lemma TermNF. Let R be a terminating rewriting system. }\longleftarrow~\mathcal{DV}={R
    Every term x has a normal form in R.
Proof by induction. Obvious.
```

Lemma Newman.
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating. $\longleftarrow \mathcal{D V}=\{R\}$
Let us demonstrate by induction that for all a, b, c
such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.
Assume that a -R+> b,c. $\longleftarrow \mathcal{D V}=\{a, b, c\}$
Take u such that $a-R>u-R *>b . \quad \longleftarrow \mathcal{D V}=\{u\}$
Take v such that $a-R>v-R *>c . \quad \longleftarrow \mathcal{D V}=\{v\}$
Take w such that $u, v-R *>$ w. $\quad \mathcal{D} \mathcal{V}=\{w\}$
Take a normal form d of w in R . $\quad \longleftarrow \quad \mathcal{D V}=\{d\}$
$\mathrm{b}-\mathrm{R} *>\mathrm{d}$. Indeed take x such that $\mathrm{b}, \mathrm{d}-\mathrm{R} *>\mathrm{x} . \quad \longleftarrow \quad \mathcal{D} \mathcal{V}=\{x\}$
c $-\mathrm{R} *>\mathrm{d}$. Indeed take y such that $\mathrm{c}, \mathrm{d}-\mathrm{R} *>\mathrm{y} . \quad \longleftarrow \quad \mathcal{D} \mathcal{V}=\{y\}$
end.
qed.

Calculus of Text Correctness

Section: (T $F[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ - verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{gathered}
\frac{\Gamma \triangleright F \quad \vec{x}=\mathcal{D} \mathcal{V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G}{} \begin{array}{c}
\Gamma \triangleright_{G}\left(\operatorname{assume} \Theta_{G}(F)\right), \Delta \\
\frac{\Gamma \triangleright F \quad(\text { assume } F) \triangleright_{G^{\prime}} \Delta}{} \\
\frac{\mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing \quad}{} \quad \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G
\end{array} \quad \Gamma,(\operatorname{affirm} F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
\Gamma \triangleright_{G}\left(\operatorname{affirm} \Theta_{G}(F)[\Lambda]\right), \Delta
\end{gathered}
$$

$-\Gamma \triangleright F-F$ is ontologically correct in view of Γ

- $\mathcal{D} \mathcal{V}_{\Gamma}(F)$ - variables declared by the considered sentence
- $\Gamma \triangleright_{F} \Lambda$ - verify the proof Λ and prove the statement F

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R, S, T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .
Lemma TermNF. Let R be a terminating rewriting system. Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that for all a,b,c affirmation
such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.
Assume that $a-R+>b, c$.
Take u such that $a-R>u-R *>b$.
Take v such that $\mathrm{a}-\mathrm{R}>\mathrm{v}-\mathrm{R} *>\mathrm{c}$.
Take w such that u,v -R*> w.
Take a normal form d of w in R.
b -R*> d. Indeed take x such that $\mathrm{b}, \mathrm{d}-\mathrm{R} *>\mathrm{x}$.
c $-R *>d$. Indeed take y such that $c, d-R *>y$.
end.
qed.

Formal Mathematical Text (Newman's Lemma)

Let $a, b, c, d, u, v, w, x, y, z$ denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .
Lemma TermNF. Let R be a terminating rewriting system. Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that for all a, b, c such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.

```
Assume that a -R+> b,c.
```

Take u such that $a-R>u-R *>b$.
Take v such that $a-R>v-R *>c$.
Take w such that u,v -R*> w.
Take a normal form d of w in R.
$b-R *>d$. Indeed take x such that $b, d-R *>x$.
c -R*> d. Indeed take y such that $c, d-R *>y$.
end.
qed.

Calculus of Text Correctness

Section: (T F $[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ - verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{gathered}
\frac{\Gamma \triangleright F \quad \vec{x}=\mathcal{D} \mathcal{V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G}{} \begin{array}{c}
\Gamma \triangleright_{G}\left(\text { assume } \Theta_{G}(F)\right), \Delta \\
\frac{\Gamma \triangleright F \quad(\text { assume } F) \triangleright_{G^{\prime}} \Delta}{} \\
\\
\Gamma \quad \mathcal{D V}_{\Gamma}(F)=\varnothing \quad \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G
\end{array} \quad \Gamma,(\operatorname{affirm} F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
\Gamma \triangleright_{G}\left(\operatorname{affirm} \Theta_{G}(F)[\Lambda]\right), \Delta
\end{gathered}
$$

$-\Gamma \triangleright F-F$ is ontologically correct in view of Γ

- $\mathcal{D} \mathcal{V}_{\Gamma}(F)$ - variables declared by the considered sentence
- $\Gamma \triangleright_{F} \Lambda$ - verify the proof Λ and prove the statement F
- $\forall \vec{x}\left(F \supset G^{\prime}\right) \supset G, \quad\left(F \wedge G^{\prime}\right) \supset G$ - thesis reduction

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof.
```

qed.

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof . \longrightarrowG= 
```

qed.

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof . \longrightarrowG G \forallR((R\varepsilonRewrSystem ^ isTerminating (R)^ isLocallyConfluent (R)) \supset isConfluent (R))
    Let R be locally confluent and terminating.
```

qed.

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof . \longrightarrowG G |R((R\varepsilonRewrSystem ^ isTerminating (R)^ isLocallyConfluent (R)) \supset isConfluent (R))
    Let R be locally confluent and terminating. }\quad\longrightarrow\quad\mp@subsup{G}{}{\prime}=\mathrm{ isConfluent (R)
```

qed.

Calculus of Text Correctness

Section: (T F $[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ - verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{aligned}
& \begin{array}{l}
\Gamma \triangleright F \quad \vec{x}=\mathcal{D V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G \quad \Gamma,(\text { assume } F) \triangleright_{G^{\prime}} \Delta \\
\hline \Gamma \triangleright_{G}\left(\text { assume } \Theta_{G}(F)\right), \Delta
\end{array} \\
& \begin{array}{llll}
\Gamma \bullet F \quad \mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing & \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G & \Gamma,(\text { affirm } F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
& \Gamma \triangleright_{G}\left(\operatorname{affirm} \Theta_{G}(F)[\Lambda]\right), \Delta
\end{array}
\end{aligned}
$$

$-\Gamma \triangleright F-F$ is ontologically correct in view of Γ

- $\mathcal{D} \mathcal{V}_{\Gamma}(F)$ - variables declared by the considered sentence
- $\Gamma \triangleright_{F} \Lambda$ - verify the proof Λ and prove the statement F
- $\forall \vec{x}\left(F \supset G^{\prime}\right) \supset G, \quad\left(F \wedge G^{\prime}\right) \supset G$ - thesis reduction
$-\Gamma, \mathbb{A} \triangleright_{G^{\prime}} \Delta-$ new thesis is G^{\prime}, verify the rest of the proof

Calculus of Text Correctness

Section: (T F $[\Lambda]$) - (kind, formula image, body/proof)
Sequent: $\Gamma \triangleright_{G} \Delta$ - verify text Δ and prove thesis G in view of Γ
Axiom: $\frac{\Gamma \vdash G}{\Gamma \triangleright_{G}}$ - when no proof is given, deduce the current thesis
Rules for assumptions and affirmations:

$$
\begin{aligned}
& \begin{array}{l}
\Gamma \triangleright F \quad \vec{x}=\mathcal{D V}_{\Gamma}(F) \quad \Gamma \vdash \forall \vec{x}\left(F \supset G^{\prime}\right) \supset G \quad \Gamma,(\text { assume } F) \triangleright_{G^{\prime}} \Delta \\
\hline \Gamma \triangleright_{G}\left(\text { assume } \Theta_{G}(F)\right), \Delta
\end{array} \\
& \begin{array}{llll}
\Gamma \bullet F \quad \mathcal{D} \mathcal{V}_{\Gamma}(F)=\varnothing & \Gamma \triangleright_{F} \Lambda \quad \Gamma \vdash\left(F \wedge G^{\prime}\right) \supset G & \Gamma,(\text { affirm } F[\Lambda]) \triangleright_{G^{\prime}} \Delta \\
& \Gamma \triangleright_{G}\left(\operatorname{affirm} \Theta_{G}(F)[\Lambda]\right), \Delta
\end{array}
\end{aligned}
$$

$-\Gamma \triangleright F-F$ is ontologically correct in view of Γ

- $\mathcal{D} \mathcal{V}_{\Gamma}(F)$ - variables declared by the considered sentence
- $\Gamma \triangleright_{F} \Lambda$ - verify the proof Λ and prove the statement F
- $\forall \vec{x}\left(F \supset G^{\prime}\right) \supset G, \quad\left(F \wedge G^{\prime}\right) \supset G$ - thesis reduction
- $\Gamma, \mathbb{A} \triangleright_{G^{\prime}} \Delta$ - new thesis is G^{\prime}, verify the rest of the proof
- $\Theta_{G}(F)$ - replace occurrences of G in F with thesis

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta}
$$

$$
\frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta}{\Gamma \triangleright_{G} \Lambda, \Delta}
$$

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}}^{\downarrow}(G), ~ \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta .
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction thesis:
- induction hypothesis:

Calculus of Text Correctness

Induction handling rules:

$$
\begin{array}{ll}
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} & \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\operatorname{assume} \mathrm{IH}_{t}^{\prec}(G)\right), \Delta \\
- \text { original thesis: } & G=\forall \vec{x}(H \supset F) \\
- \text { induction thesis: } & \mathrm{IT}_{t}^{\prec}(G)=\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
- \text { induction hypothesis: } & \mathrm{IH}_{t}^{\prec}(G)=\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{array}
$$

Example:
original thesis G :

```
For all natural numbers n,m,p
if p is prime and p | n * m then p | n or p | m.
```


Calculus of Text Correctness

Induction handling rules:

$$
\begin{array}{ll}
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} & \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta \\
- \text { original thesis: } & G \triangleright_{G} \Lambda, \Delta \\
- \text { induction thesis: } & \mathrm{IT}_{t}^{\prec}(G)=\forall \vec{x}(H \supset F) \\
- \text { induction hypothesis: } & \mathrm{IH}_{t}^{\prec}(G)=\forall \vec{x}^{\prime}\left(H \supset\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prec}\right)\right)\right.
\end{array}
$$

Example:
original thesis G :

```
for all natural numbers n,m,p
if p is prime and p | n * m then p | n or p | m
```


Calculus of Text Correctness

Induction handling rules:

$$
\begin{array}{ll}
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} & \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta \\
- \text { original thesis: } & G \triangleright_{G} \Lambda, \Delta \\
- \text { induction thesis: } & \mathrm{IT}_{t}^{\prec}(G)=\forall \vec{x}(H \supset F) \\
- \text { induction hypothesis: } & \mathrm{IH}_{t}^{\prec}(G)=\forall \vec{x}^{\prime}\left(H \supset\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prec}\right)\right)\right.
\end{array}
$$

Example:
original thesis G :

```
for all natural numbers n1,m1,p1
if p1 is prime and p1 | n1 * m1 then p1 | n1 or p1 | m1
```


Calculus of Text Correctness

Induction handling rules:

$$
\begin{array}{ll}
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} & \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta \\
- & \Gamma \triangleright_{G} \Lambda, \Delta \\
- \text { original thesis: } & G=\forall \vec{x}(H \supset F) \\
- \text { induction thesis: } & \mathrm{IT}_{t}^{\prec}(G)=\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
- \text { induction hypothesis: } & \mathrm{IH}_{t}^{\prec}(G)=\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{array}
$$

Example:
induction hypothesis $\mathrm{IH}_{n+m+p}^{\prec}(G)$:

```
for all natural numbers n1,m1,p1
    if ((n1 + m1) + p1) -<- ((n + m) + p) then
if p1 is prime and p1 | n1 * m1 then p1 | n1 or p1 | m1
```


Calculus of Text Correctness

Induction handling rules:

$$
\begin{array}{ll}
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta \\
\text { - original thesis: } & \Gamma \triangleright_{G} \Lambda, \Delta \\
\text { - induction thesis: } & G=\forall \vec{x}(H \supset F) \\
- \text { induction hypothesis: } & \mathrm{IH}_{t}^{\prec}(G)=\forall \vec{x}(H)=\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{array}
$$

Example:
induction thesis $\mathrm{IT}_{n+m+p}^{\prec}(G)$:
For all natural numbers n, m, p if
for all natural numbers n1, m1, p1 if $((n 1+m 1)+p 1)-<-((n+m)+p)$ then
if p 1 is prime and $\mathrm{p} 1 \mid \mathrm{n} 1 * \mathrm{~m} 1$ then $\mathrm{p} 1 \mid \mathrm{n} 1$ or $\mathrm{p} 1 \mid \mathrm{m} 1$ then if p is prime and $\mathrm{p} \mid \mathrm{n} * \mathrm{~m}$ then $\mathrm{p} \mid \mathrm{n}$ or $\mathrm{p} \mid \mathrm{m}$.

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction thesis:
- induction hypothesis:

Thesis reduction:
Let us show that L (a lattice) is complete. $\longrightarrow L$ is complete

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta}
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction thesis:
- induction hypothesis:

Thesis reduction:
Let us show that L (a lattice) is complete. $\longrightarrow L$ is complete
Let S be a subset of L.
$\longrightarrow S$ has a supremum and an infimum in L

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta}
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction thesis:
- induction hypothesis:

Thesis reduction:
Let us show that L (a lattice) is complete. $\longrightarrow L$ is complete
Let S be a subset of L.
$\longrightarrow S$ has a supremum and an infimum in L
S has a supremum in L.
$\longrightarrow \quad S$ has an infimum in L

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta}
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction thesis:
- induction hypothesis:

Thesis reduction:
Let us show that L (a lattice) is complete. $\longrightarrow L$ is complete
Let S be a subset of L.
S has a supremum in L.
$\longrightarrow S$ has a supremum and an infimum in L
$\longrightarrow \quad S$ has an infimum in L
S has an infimum in L.
$\longrightarrow \quad \top$

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Lambda,\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta}
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction thesis:
- induction hypothesis:

Thesis reduction:

$$
\begin{array}{ll}
\text { Let us show that } L \text { (a lattice) is complete. } & \longrightarrow L \text { is complete } \\
\begin{array}{ll}
\text { Let } S \text { be a subset of } L . & \longrightarrow S \text { has a supremum and an infimum in } L \\
S \text { has a supremum in } L . & \longrightarrow S \text { has an infimum in } L \\
S \text { has an infimum in } L . & \longrightarrow \top
\end{array} .
\end{array}
$$

Soundness:

$$
\vdash_{\mathrm{CTC}} \Gamma \triangleright_{G} \Delta \quad \Rightarrow \quad \forall\left(\mathrm{IT}_{\mathbf{t}}^{\prec}(\mathbf{G}) \supset \mathbf{G}\right), \Gamma \vdash G
$$

Calculus of Text Correctness

Induction handling rules:

$$
\frac{\Gamma \triangleright_{\mathrm{IT}_{t}^{\prec}(G)} \Delta}{\Gamma \triangleright_{G} \Delta} \quad \frac{\mathcal{D} \mathcal{V}_{\Gamma, \Lambda}\left(\mathrm{IH}_{t}^{\prec}(G)\right)=\varnothing}{} \quad \Gamma \triangleright_{\mathrm{IT}}^{\prec}(G),\left(\text { assume } \mathrm{IH}_{t}^{\prec}(G)\right), \Delta .
$$

- original thesis:

$$
\begin{aligned}
G & =\forall \vec{x}(H \supset F) \\
\mathrm{IT}_{t}^{\prec}(G) & =\forall \vec{x}\left(H \supset\left(\mathrm{IH}_{t}^{\prec}(G) \supset F\right)\right) \\
\mathrm{IH}_{t}^{\prec}(G) & =\forall \vec{x}^{\prime}\left(H^{\prime} \supset\left(\left(t^{\prime} \prec t\right) \supset F^{\prime}\right)\right)
\end{aligned}
$$

- induction hypothesis:

Thesis reduction:

> Let us show that L (a lattice) is complete. $\longrightarrow L$ is complete
> Let S be a subset of L.
> $\longrightarrow S$ has a supremum and an infimum in L
> S has a supremum in $L . \quad \longrightarrow S$ has an infimum in L
> S has an infimum in L.
> $\longrightarrow \quad \top$

Soundness:

$$
\vdash_{\mathrm{CTC}} \Gamma \triangleright_{G} \Delta \quad \Rightarrow \quad \forall\left(\mathrm{IT}_{\mathbf{t}}^{\prec}(\mathbf{G}) \supset \mathbf{G}\right), \Gamma \vdash G
$$

Interpretation: proofs are redundant

Formal Mathematical Text (Newman's Lemma)

```
Let a,b,c,d,u,v,w,x,y,z denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
    such that x -R*> y and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
    Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman.
    Any locally confluent terminating rewriting system is confluent.
Proof.
    Let R be locally confluent and terminating.
    Let us demonstrate by induction that for all a,b,c
        such that a -R*> b,c there exists d such that b,c -R*> d.
        Assume that a -R+> b,c.
        Take u such that a -R> u -R*> b.
        Take v such that a -R> v -R*> c.
        Take w such that u,v -R*> w.
        Take a normal form d of w in R.
        b -R*> d. Indeed take x such that b,d -R*> x.
        c -R*> d. Indeed take y such that c,d -R*> y.
    end.
qed.
```


Formal Mathematical Text (Newman's Lemma)

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $\mathrm{x}-\mathrm{R} *>\mathrm{y}$ and y has no reducts in R .
Lemma TermNF. Let R be a terminating rewriting system.
Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman
Any locally confluent terminating rewriting system is confluent.
Proof.
Let R be locally confluent and terminating.
Let us demonstrate by induction that for all a, b, c such that $a-R *>b, c$ there exists d such that $b, c-R *>d$.

Obvious.
qed.

Formal Mathematical Text (Newman's Lemma)

Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ denote terms.
Let R,S,T denote rewriting systems.
Definition NFRDef. A normal form of x in R is a term y
such that $x-R *>y$ and y has no reducts in R.
Lemma TermNF. Let R be a terminating rewriting system.
Every term x has a normal form in R.
Proof by induction. Obvious.
Lemma Newman
Any locally confluent terminating rewriting system is confluent.

System for Automated Deduction

System for Automated Deduction

- manager: decompose input text into separate proof tasks
- reasoner: big steps of reasoning, heuristic proof methods
- prover: inference search in a sound and complete calculus

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals): evidence - a literal local property of a term occurrence mostly useful for type information: $\quad \exists x\left(\left.x \in \mathbb{R}^{*} \wedge \ldots\right|_{1 \in \mathbb{R}} x_{x \in \mathbb{R}^{*}} \frac{1}{\bar{x}} \in \mathbb{R} ..\right)$

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals):
evidence - a literal local property of a term occurrence mostly useful for type information: $\exists x\left(\left.x \in \mathbb{R}^{*} \wedge \ldots\right|_{1 \in \mathbb{R}} x_{x \in \mathbb{R}^{*}} \frac{1}{x} \in \mathbb{R} \ldots\right)$
- Filtering: reduce unneeded premises (by default, definitions) to «simple rules»:
definition of a subgroup \longrightarrow a subgroup of a group is a group
definition of a set union \longrightarrow the union of two sets is a set

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals): evidence - a literal local property of a term occurrence mostly useful for type information: $\exists x\left(\left.x \in \mathbb{R}^{*} \wedge \ldots\right|_{1 \in \mathbb{R}} x_{x \in \mathbb{R}^{*}} \frac{x_{\bar{x}} \in \mathbb{R}}{} \ldots\right)$
- Filtering: reduce unneeded premises (by default, definitions) to «simple rules»:
definition of a subgroup \longrightarrow a subgroup of a group is a group
definition of a set union \longrightarrow the union of two sets is a set
- Goal splitting: $\quad \Gamma \vdash(F \supset(G \wedge H)) \quad \longrightarrow \quad \Gamma, F \vdash G$ and $\Gamma, F, G \vdash H$

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals): evidence - a literal local property of a term occurrence mostly useful for type information: $\quad \exists x\left(\left.x \in \mathbb{R}^{*} \wedge \ldots\right|_{1 \in \mathbb{R}} x_{x \in \mathbb{R}^{*}} \frac{1}{\bar{x} \in \mathbb{R}} \ldots\right)$
- Filtering: reduce unneeded premises (by default, definitions) to «simple rules»:
definition of a subgroup \longrightarrow a subgroup of a group is a group
definition of a set union \longrightarrow the union of two sets is a set
- Goal splitting: $\quad \Gamma \vdash(F \supset(G \wedge H)) \quad \longrightarrow \quad \Gamma, F \vdash G$ and $\Gamma, F, G \vdash H$
- Simplification: replace redundant (\equiv locally true) literals with \top

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals):
evidence - a literal local property of a term occurrence mostly useful for type information: $\exists x\left(\left.x \in \mathbb{R}^{*} \wedge \ldots\right|_{1_{1 \in \mathbb{R}}} ^{x_{x \in \mathbb{R}^{*}}} \frac{1}{x} \in \mathbb{R} \ldots\right)$
- Filtering: reduce unneeded premises (by default, definitions) to «simple rules»:
definition of a subgroup \longrightarrow a subgroup of a group is a group
definition of a set union \longrightarrow the union of two sets is a set
- Goal splitting: $\quad \Gamma \vdash(F \supset(G \wedge H)) \quad \longrightarrow \quad \Gamma, F \vdash G$ and $\Gamma, F, G \vdash H$
- Simplification: replace redundant (\equiv locally true) literals with \top
- Definition expansion (81% vs. 28% of succeeded goals):

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals):
evidence - a literal local property of a term occurrence mostly useful for type information: $\exists x\left(x \in \mathbb{R}^{*} \wedge \ldots \overline{1}_{1 \in \mathbb{R}} x_{x \in \mathbb{R}^{*}} \frac{1}{\bar{x}} \in \mathbb{R} \ldots\right)$
- Filtering: reduce unneeded premises (by default, definitions) to «simple rules»:
definition of a subgroup \longrightarrow a subgroup of a group is a group
definition of a set union \longrightarrow the union of two sets is a set
- Goal splitting: $\quad \Gamma \vdash(F \supset(G \wedge H)) \quad \longrightarrow \quad \Gamma, F \vdash G$ and $\Gamma, F, G \vdash H$
- Simplification: replace redundant (\equiv locally true) literals with \top
- Definition expansion (81% vs. 28% of succeeded goals):
- destructive - expansion formula replaces the unfolded occurrence
- conservative - expansion formula is added alongside (more flexible)

Reasoner capabilities

- Evidence generation (81% vs. 75% of succeeded goals):
evidence - a literal local property of a term occurrence mostly useful for type information: $\exists x\left(\left.x \in \mathbb{R}^{*} \wedge \ldots\right|_{1 \in \mathbb{R}} x_{x \in \mathbb{R}^{*}} \frac{1}{\bar{x}} \in \mathbb{R} \ldots\right)$
- Filtering: reduce unneeded premises (by default, definitions) to «simple rules»:
definition of a subgroup \longrightarrow a subgroup of a group is a group
definition of a set union \longrightarrow the union of two sets is a set
- Goal splitting: $\quad \Gamma \vdash(F \supset(G \wedge H)) \quad \longrightarrow \quad \Gamma, F \vdash G$ and $\Gamma, F, G \vdash H$
- Simplification: replace redundant (\equiv locally true) literals with \top
- Definition expansion (81% vs. 28% of succeeded goals):
- destructive - expansion formula replaces the unfolded occurrence
- conservative - expansion formula is added alongside (more flexible)
- expansion strategies: according to the definition hierarchy, by «weight» of an occurrence, expand every occurrence in sight

Conclusion

Conclusion

System for Automated Deduction:

- rich natural-like language
- special reasoning methods
- powerful inference search engine

$$
\begin{gathered}
\\
\Rightarrow \quad \text { concise } \\
\\
\\
\text { easy-to-read-and-produce } \\
\text { formalizations }
\end{gathered}
$$

Formalized and verified:

- Ramsey's Infinite and Finite theorems
- Properties of a refinement relation on program specifications
- Cauchy-Bouniakowsky-Schwarz inequality
- For any prime $p, \sqrt{p} \notin \mathbb{Q}$
- Chinese remainders theorem and Bezout's identity in rings
- Tarski-Knaster fixed point theorem
- Newman's lemma on rewriting systems confluence

Thanks!

