
Verifying L specifications of reactive algorithms against temporal properties
not expressible in the language L.

Anatoly Chebotarev
ancheb@gmail.com

One of the most important problems related to the development of reactive algorithms is to

guarantee the correctness of the algorithm specification. This can be achieved only by formal

verification of the desired properties of the algorithm. The verification consists in showing that the

model of the algorithm to be verified satisfies correctness properties of its behavior. In order to be

able to perform verification, one needs a formal model of the algorithm and a language for the

formulation of properties. As a model of the algorithm, we consider its specification in quite simple

logical language L [1]. Simplicity of this language enables to efficiently synthesize imperative

representation of the algorithm from its declarative specification. Checking such specification for

satisfiability plays an important role in the design process, so a rather high efficiency of a

satisfiability checking algorithm is required. Efficient methods for checking L formulas for

satisfiability has been developed [1], [2] and implemented in the corresponding tools. To formulate

properties to be proved we use the General Reaction (1) class of LTL formulas [3]. Although the

properties specified in this language are not expressible in the language L, we proposed an approach

that reduces proving such properties to satisfiability checking L formulas with available tools for

handling L specifications.

The language for specification of reactive algorithms.

The specification language L is a fragment of a first-order logic with monadic predicates

interpreting over the set of integers Z (discrete time domain). A specification in the language L is of

the form ∀tF(t), where F(t) is a formula constructed by means of logical connectives from atomic

formulas (atoms) of the form p(t + k), where p is a monadic predicate symbol, t is a variable ranging

over Z, and k is an integer constant called the rank of the atom. Define the depth of a formula F(t)

to be the difference between the maximal and minimal ranks of the atoms occurring in F(t). Since

F(t) is interpreted over the set of integers the equivalence ∀tF(t) ⇔ ∀tF(t + k), where F(t + k)

denotes the formula obtained from F(t) by adding k to the ranks of all its atoms, holds for any

integer k. Hence, we may assume that the maximal rank of atoms occurring in any formula is equal

to 0.

In defining the semantics of specification languages they are viewed as formalisms for

describing sets of infinite words. Let Σ be a finite alphabet, Z the set of integers, and let N+ = {z ∈

Z | z > 0}. Mappings u: Z → Σ and l: N+ → Σ are called respectively a bi-infinite word (indicated as

… u(–2)u(–1)u(0)u(1)u(2) …) and an ω-word (indicated as l(1)l(2) …) over the alphabet Σ. The set

of all bi-infinite words over Σ is denoted by ΣZ. A segment u(τ)u(τ+1) … u(τ+k) of a bi-infinite

word u is denoted by u(τ, τ+k) and a bi-infinite word which is an infinite repetition of a nonempty

word r, i.e. r⋅r⋅r …, is denoted by rZ.

The interpretation domain of the language L is Z, and only predicate symbols are

uninterpreted. Thus an interpretation of the formula ∀tF(t) is a collection of monadic predicates

corresponding to all predicate symbols in Ω, i.e., q-tuple <π1, π2, …, πq> of predicates. Each such

predicate πi we can regard as a bi-infinite word over the alphabet {0, 1}. A collection of q such

predicates may be viewed as a bi-infinite word over the alphabet Σ = {0, 1}q. We will not

distinguish between interpretations and bi-infinite words over Σ and will speak of the truth value of

the formula F(t) at the position τ (τ ∈ Z) in the bi-infinite word u, to mean the evaluation of the

formula F(τ) under the interpretation u. The meaning of the notion of the depth of a formula is that

the truth value of the formula F(t) of depth r at the position τ of the interpretation u is determined

by the segment u(τ–r, τ) of the corresponding bi-infinite word. The interpretation under which the

formula ∀tF(t) is true is called a model for this formula. Every formula F = ∀tF(t) is associated

with a set M(F) of all models for this formula, i.e., bi-infinite words.

Verification of temporal properties not expressible in the language L.

To represent formulas specifying the algorithm and the property to be checked, we use the first

order logic with monadic predicates. The algorithm specified by the formula F = ∀tF(t) satisfies the

property ϕ = ∀tϕ(t), if the formula ∀tF(t) → ∀tϕ(t) is valid, i.e., all the models for F are models for

ϕ. The properties which can be expressed in the language L, need not be proved, as they can be

included in the algorithm specification, and the synthesized algorithm is guaranteed to satisfy these

properties. The most simple property that is not expressible in L is of the form ϕ = ∀t∃t1(t1 ≥

t)F1(t1), where F1(t) is an L formula that contains no quantifiers. Specification F does not satisfy this

property, if there exists its model u such that, beginning from a certain position τ of this model

formula ¬F1(t) holds at every position t ≥ τ. Let the depth of formula F(t) be r, i.e. the values of all

its predicates at any position t of the interpretation u are determined by the segment u(t–r, t) of the

corresponding bi-infinite word. Then in the interpretation u there exist two positions τi and τj (τ < τi

< τj), such that u(τi–r, τi) = u(τj–r, τj), and thus bi-infinite word (u(τi + 1, τj))
Z is also a model for F.

This model satisfies the property ∀t¬F1(t). From the other hand, if there is a model satisfying this

property then the algorithm specified by F does not satisfy the property ϕ. Thus specification F does

not satisfy property ϕ if and only if the formula ∀tF(t)&¬F1(t) is satisfiable. Since this is an L

formula, its satisfiability can be easily checked by the available tools based on the improved

resolution method.

The property that has to be checked is often of the form ϕ = ∀t(F1(t) → ∃t1(t1 ≥ t)F2(t1)),

where F1(t) and F2(t1) are L formulas that contain no quantifiers. First consider the case when F1(t)

retains the value “true” till the time instant t1. More precise this condition is expressed by the

formula ∀t(F1(t)&¬F2(t)&¬F2(t + 1) → F1(t +1)). In this case the property ϕ can be replaced by the

property ϕ′ = ∀t∃t1(t1 ≥ t)&(¬F1(t1) ∨ F2(t1)), which asserts that F1(t1)&¬F2(t) does not retain the

value “true” for infinitely long time. Thus the problem reduces to the above case, i.e., to checking L

formula ∀tF(t)&F1(t)&¬F2(t) for satisfiability.

We now consider the case when F1(t) does not retain the value “true” till the time instant t1. In

this case we add the formula ϕz = ∀t(z(t) ↔ ∃t1(t1 ≥ t)F1(t1)&¬F2(t1)&∀t2((t1 ≤ t2 ≤ t) → ¬F2(t2)))

to the specification. Here, z is a new predicate symbol (not occurred in the specification). Now, the

property to be proved can be expressed by the formula ϕ′ = ∀t∃t1(t1 ≥ t)&¬z(t1), and proving this

property amounts to checking the formula ∀tF(t)&ϕz(t)&z(t) for satisfiability. Note that formula ϕz

is not an L formula, therefore this specification has to be transformed into a specification in the

language L. It has been shown that there exists a specification in the language L equivalent to this

specification with respect to the semantics of the languages involved. This specification can be

obtained by replacing formula ϕz by the L formula ∀t(z(t) ↔ (z(t–1)&¬F2(t) ∨ F1(t)&¬F2(t))) and

subsequent transformation of the resulting formula. The appropriate technique has been developed.

For open systems, the properties to be proved are, as a rule, of the form ϕe → ϕs, where ϕe is a

property of the environment and ϕs is a property of the algorithm to be verified. Formulas ϕe and ϕs

are finite conjunctions of L formulas and formulas of the form ∀t∃t1(t1 ≥ t)F1(t1) or ∀t(F1(t) →

∃t1(t1 ≥ t)& F2(t1)). Let ∀tFe(t) and ∀tF(t) be L specifications of the environment and the algorithm,

respectively. First we check whether the specification of the algorithm satisfies the property ϕs. As

it has been shown above, such check can be performed by applying the resolution procedure to

some formula of language L. If this check accomplishes successfully, we are done. If the check

fails, which corresponds to satisfiability of the analyzed formula, we get a formula ∀tF′(t) that

characterize the set of all models for the specification, which do not satisfy the property ϕs. In this

case, the system satisfies the property ϕe → ϕs if and only if the specification ∀tF′(t) satisfies the

property ¬ϕe. Let the property ϕe be of the form ∀t(F1(t) → ∃t1(t1 ≥ t)& F2(t1)). Without loss of

generality, we may regard the property of the form ∀t∃t1(t1 ≥ t)&(¬F1(t1) ∨ F2(t1)) instead of ϕe. Its

negation is ∃t∀t1((t1 ≥ t) → F1(t1)&¬F2(t1)). The specification does not satisfy this property if and

only if there exist models that satisfy the property ∀t∃t1(t1 ≥ t)&(¬F1(t1) ∨ F2(t1)). It can be easily

shown that the existence of such models imply the existence of the models satisfying the property

∀t∃t1(t1 ≤ t)&(¬F1(t1) ∨ F2(t1)). Hence, checking property ϕe → ϕs reduces to checking the formula

∀tF′(t)&∃t1(t1 ≤ t)&(¬F1(t1) ∨ F2(t1)) for satisfiability. To this end, the subformula ∃t1(t1 ≤ t)&

(¬F1(t1) ∨ F2(t1)) is replaced by the formula z(t)&(z(t) ↔ (z(t –1) ∨ ¬F1(t1) ∨ F2(t1)) = z(t)&(z(t –1)

∨ ¬F1(t1) ∨ F2(t1)), where z is a newly introduced predicate symbol. The resulting formula is

transformed to obtain an L formula equivalent to ∀t F′(t)&∃t1(t1 ≤ t)&(¬F1(t1) ∨ F2(t1)).

From the above discussion it follows that not only proving properties expressible in GR(1)

language can be reduced to checking satisfiability of L formulas, but also more general kind of

properties.

References

1. A. Chebotarev and M. Morokhovets. Consistency checking of automata function

specifications. Proc. LPAR’93, Lecture Notes in Artificial Intelligence, v. 698, Springer,

Berlin, 76 – 85, 1993.

2. A. Chebotarev, S. Krivoi. Improved Resolution-Based Method for Satisfiability Checking

Formulas of the Language L. Proc. conf PSI’06, LNCS, vol. 4378, Springer, Berlin, 438 –

442, 2007.

3. N. Piterman, A. Pnueli, Y. Sa’ar. Synthesis of reactive(1) designs // Proc. of Conf, on
Verification, Model Checking and Abstract Interpretation, 364–380, 2006.

