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One of the most important problems related to the development ofveeatgorithms is to
guarantee the correctness of the algorithm specification. Hmisbe achieved only by formal
verification of the desired properties of the algorithm. The icatibn consists in showing that the
model of the algorithm to be verified satisfies correctnespgsties of its behavior. In order to be
able to perform verification, one needs a formal model of therithm and a language for the
formulation of properties. As a model of the algorithm, we considespiecification in quite simple
logical languagel [1]. Simplicity of this language enables to efficiently syninesmperative
representation of the algorithm from its declarative specifinatChecking such specification for
satisfiability plays an important role in the design process,a rather high efficiency of a
satisfiability checking algorithm is required. Efficient mmeds for checkingL formulas for
satisfiability has been developed [1], [2] and implemented in thesqmrnding tools. To formulate
properties to be proved we use the General Reaction (1) cla§d dbrmulas [3]. Although the
properties specified in this language are not expressible inrthedge., we proposed an approach
that reduces proving such properties to satisfiability checkifgrmulas with available tools for
handlingL specifications.
The language for specification of reactive algorithms.
The specification languagé is a fragment of a first-order logic with monadic predicates
interpreting over the set of integetqdiscrete time domain). A specification in the langulge of
the formtF(t), whereF(t) is a formula constructed by means of logical connectinga fitomic
formulas (atoms) of the form(t + k), wherep is a monadic predicate symbbis a variable ranging
overZ, andk is an integer constant called ttenk of the atom. Define thedepth of a formula F(t)
to be the difference between the maximal and minimal ranks afttimes occurring if-(t). Since
F(t) is interpreted over the set of integers the equivaléné¢t) = OtF(t + k), whereF(t + k)
denotes the formula obtained froft) by addingk to the ranks of all its atoms, holds for any
integerk. Hence, we may assume that the maximal rank of atoms ogrurramy formula is equal
to 0.

In defining the semantics of specification languages they areedlieag formalisms for
describing sets of infinite words. LEtbe a finite alphabef, the set of integers, and Kt = {z O
Z | z> 0}. Mappingsu: Z - ¥ andl: N* — X are called respectivelyla-infinite word (indicated as
o U(=2U(-2DuO)u()u(?) -..) and armw-word (indicated a$(1)I(2) ...) over the alphabét. The set

of all bi-infinite words over is denoted by?. A segmenu(t)u(t+1) ... u(t+k) of a bi-infinite



word u is denoted bw(t, T+k) and a bi-infinite word which is an infinite repetition of a nongmpt
wordr, i.e.r[D ..., is denoted by”.

The interpretation domain of the languageis Z, and only predicate symbols are
uninterpreted. Thus an interpretation of the fornmut&(t) is a collection of monadic predicates
corresponding to all predicate symbols(ni.e.,g-tuple <m, T, ..., > of predicates. Each such
predicaters we can regard as a bi-infinite word over the alphabet {0, 1}. A cadie of q such
predicates may be viewed as a bi-infinite word over the alphabet{0, 1}% We will not
distinguish between interpretations and bi-infinite words @vand will speak of the truth value of
the formulaF(t) at the positiort (t O Z) in the bi-infinite wordu, to mean the evaluation of the
formulaF(t) under the interpretatiom The meaning of the notion of the depth of a formula is that
the truth value of the formula(t) of depthr at the positiort of the interpretatiom is determined
by the segmeni(t—r, 1) of the corresponding bi-infinite word. The interpretation under wkieh t
formula OtF(t) is true is called anodd for this formula. Every formula F £ltF(t) is associated
with a setM(F) of all models for this formula, i.e., bi-infinite words.

Verification of temporal properties not expressible in the language L.

To represent formulas specifying the algorithm and the properbe checked, we use the first
order logic with monadic predicates. The algorithm specifiethb formula F £1tF(t) satisfies the
property¢ = Ctd(t), if the formulaldtF(t) — Ot(t) is valid, i.e., all the models for F are models for
¢. The properties which can be expressed in the languageed not be proved, as they can be
included in the algorithm specification, and the synthesized algoistlymaranteed to satisfy these
properties. The most simple property that is not expressibleignof the form¢ = Otl1;(t; =
t)Fi(t1), whereF(t) is anL formula that contains no quantifiers. Specification F does not satisfy this
property, if there exists its modalsuch that, beginning from a certain positioof this model
formula-F4(t) holds at every position> 1. Let the depth of formul&(t) ber, i.e. the values of all

its predicates at any positiorof the interpretation are determined by the segmeiitr, t) of the
corresponding bi-infinite word. Then in the interpretaticthere exist two positions andt; (T<T;
<Tj), such that(ti—r, 1) = u(ti—, T;), and thus bi-infinite wordu(Tt; + 1, T,-))Z is also a model for F.
This model satisfies the propefiy-F1(t). From the other hand, if there is a model satisfying this
property then the algorithm specified by F does not satisfgribgertyd. Thus specification F does
not satisfy property if and only if the formulaltF(t)&-F4(t) is satisfiable. Since this is an L
formula, its satisfiability can be easily checked by theilabie tools based on the improved

resolution method.



The property that has to be checked is often of the formOt(Fi(t) — [Ii(ty = t)F,(t1)),
whereFy(t) andF,(t;) areL formulas that contain no quantifiers. First consider the case Ri(®
retains the value “true” till the time instatit More precise this condition is expressed by the
formulaOt(F1(t)&-F2()&-F,(t + 1) - F4(t +1)). In this case the properpycan be replaced by the
propertyd’ = Otl1(t; = t)&(=Fa(ty)) O Fy(t1)), which asserts thai;(t;)& - F,(t) does not retain the
value “true” for infinitely long time. Thus the problem reduceth®above case, i.e., to checking
formulaOtF(t)& F1(t) & - F,(t) for satisfiability.

We now consider the case whejft) does not retain the value “true” till the time instantn
this case we add the formupa = Ct(z(t) - [I1(ty = )F1(t)& - Fo(t)& Otx((ty S t, < 1) - —Fo(t2)))
to the specification. Hereg,is a new predicate symbol (not occurred in the specification). MNaw,
property to be proved can be expressed by the fordiufalt[1;(t; > t)&-2z(t;), and proving this
property amounts to checking the formald-(t)& ¢,(t)& z(t) for satisfiability. Note that formulé,
iIs not anL formula, therefore this specification has to be transformexdangpecification in the
language.. It has been shown that there exists a specification in tgedgel equivalent to this
specification with respect to the semantics of the languaryedved. This specification can be
obtained by replacing formully, by theL formulaOt(z(t) - (z(t—1)& F»(t) O F1(t)&-F,(t))) and
subsequent transformation of the resulting formula. The appropriate technique hasviedsred.

For open systems, the properties to be proved are, as a rule, of thig forgr’, whered®is a
property of the environment aigpd is a property of the algorithm to be verified. Formuiasnd¢®
are finite conjunctions of formulas and formulas of the formt[1(t; = t)Fi(t;) or Ot(F.(t) —
[1a(t; = )& Fa(ty)). Let OtF¢(t) andtF(t) beL specifications of the environment and the algorithm,
respectively. First we check whether the specification ofitherithm satisfies the properdy. As
it has been shown above, such check can be performed by applyingdiudaesprocedure to
some formula of languagde. If this check accomplishes successfully, we are done. Ifbekc
fails, which corresponds to satisfiability of the analyzed formwia,get a formulaltF {t) that
characterize the set of all models for the specification, wiichot satisfy the property®. In this
case, the system satisfies the propéfty-. ¢°if and only if the specificatiofltF (t) satisfies the
property—¢°. Let the propertyp® be of the formOt(Fi(t) — Ii(t; = t)& Fa(ty)). Without loss of
generality, we may regard the property of the faitit(t; > t)&(—~F1(ty) OFa(ty)) instead ofh®. Its
negation iS00t ((t; =2 t) —» F1(t1)&—F2(t1)). The specification does not satisfy this property if and
only if there exist models that satisfy the propértit;(t; = t)&(=Fi(t1) OF2(ty)). It can be easily
shown that the existence of such models imply the existence afdtels satisfying the property
OtC(t; < t)&(=Fa(t;) OF2(ty)). Hence, checking propery’ — ¢° reduces to checking the formula
OtF ()& [1a(t; < )&(=Fa(t) O Fo(ty)) for satisfiability. To this end, the subformula(t; < t)&



(=F1(t)) OF,(ty)) is replaced by the formuldt)&(z(t) o (z(t —1) O=Fy(t1) O Fy(ty)) = z(t)&(z(t -1)
O =F4(t) O Fy(t1)), wherez is a newly introduced predicate symbol. The resulting formmla i
transformed to obtain dnformula equivalent t@lt F (t)& [11(t1 < t)&(~ F1(ty) O F2(ty)).

From the above discussion it follows that not only proving propertipeessible in GR(1)

language can be reduced to checking satisfiability of L forspldat also more general kind of
properties.
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