Automated Reasoning

Rewriting-Based Deduction

Temur Kutsia

RISC, Johannes Kepler University, Linz, Austria
kutsia@risc.jku.at

The Equality Relation

Equality $\doteq:$ A very important relation

- Reflexive
- Symmetric
- Transitive
- Substitute equals by equals
- When equality is used in a theorem, we need extra axioms which describe the properties of equality

The Equality Relation: Example

Theorem: Let G be a group with the binary operation \cdot, the inverse ${ }^{-1}$, and the identity e. If $x \cdot x=e$ for all $x \in G$, then G is commutative.

Axioms:

1. For all $x, y \in G, x \cdot y \in G$.
2. For all $x, y, z \in G,(x \cdot y) \cdot z \doteq x \cdot(y \cdot z)$.
3. For all $x \in G, x \cdot e \doteq x$.
4. For all $x \in G, x \cdot x^{-1} \doteq e$.

The Equality Relation: Example (Cont.)

Express the axioms and the theorem in first-order logic with equality:
(A1) $\forall x, y . \exists z . x \cdot y \doteq z$.
(A2) $\forall x, y, z \cdot(x \cdot y) \cdot z \doteq x \cdot(y \cdot z)$.
(A3) $\forall x . x \cdot e \doteq x$.
(A4) $\forall x \cdot x \cdot i(x) \doteq e$.
(T) $\forall x \cdot x \cdot x \doteq e \Rightarrow \forall u, v . u \cdot v \doteq v \cdot u$.

The Equality Relation: Example (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \doteq f(x, y)$.
2. $(x \cdot y) \cdot z \doteq x \cdot(y \cdot z)$.
3. $x \cdot e \doteq x$.
4. $x \cdot i(x) \doteq e$.
5. $x \cdot x \doteq e$
6. $\neg(a \cdot b \doteq b \cdot a)$.

The Equality Relation: Example (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \doteq f(x, y)$.
2. $(x \cdot y) \cdot z \doteq x \cdot(y \cdot z)$.
3. $x \cdot e \doteq x$.
4. $x \cdot i(x) \doteq e$.
5. $x \cdot x \doteq e$
6. $a \cdot b \neq b \cdot a$.

The Equality Relation: Example (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

1. $x \cdot y \doteq f(x, y)$.
2. $(x \cdot y) \cdot z \doteq x \cdot(y \cdot z)$.
3. $x \cdot e \doteq x$.
4. $x \cdot i(x) \doteq e$.
5. $x \cdot x \doteq e$
6. $a \cdot b \neq b \cdot a$.

By resolution alone, we can not derive the contradiction here.

The Equality Relation: Example (Cont.)

We need extra axioms to describe the properties of equality.
Let S be a set of clauses. The set of the equality axioms for S is the set consisting of the following clauses:

1. $x \doteq x$.
2. $x \neq y \vee y \doteq x$.
3. $x \neq y \vee y \neq z \vee x \doteq z$.
4. $x \neq y \vee \neg p\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \vee p\left(x_{1}, \ldots, y, \ldots, x_{n}\right)$, where x and y appear in the same position i, for all $1 \leqslant i \leqslant n$, for every n-ary predicate symbol p appearing in S.
5. $x \neq y \vee f\left(x_{1}, \ldots, x, \ldots, x_{n}\right) \doteq f\left(x_{1}, \ldots, y, \ldots, x_{n}\right)$, where x and y appear in the same position \mathfrak{i}, for all $1 \leqslant \mathfrak{i} \leqslant n$, for every n-ary function symbol f appearing in S.

The Equality Relation: Example (Cont.)

We add extra axioms:

$$
\begin{array}{lll}
S: & x \cdot y \doteq f(x, y) . & x \neq y \vee y \neq z \vee x \doteq z \\
& (x \cdot y) \cdot z \doteq x \cdot(y \cdot z) . & x \neq y \vee x \neq u \vee y \doteq u . \\
& x \cdot e \doteq x . & y \neq x \vee u \neq x \vee y \doteq u . \\
& x \cdot i(x) \doteq e . & x \neq y \vee f(z, x) \doteq f(z, y) . \\
& x \cdot x \doteq e . & x \neq y \vee f(x, z) \doteq f(y, z) . \\
& a \cdot b \neq b \cdot a . & x \neq y \vee x \cdot z \doteq y \cdot z . \\
K: & x \doteq x . & x \neq y \vee z \cdot x \doteq z \cdot y . \\
& x \neq y \vee y \doteq x . & x \neq y \vee i(x) \doteq i(y) .
\end{array}
$$

The Equality Relation: Example (Cont.)

We add extra axioms:

$$
\begin{array}{lll}
S: & x \cdot y \doteq f(x, y) . & x \neq y \vee y \neq z \vee x \doteq z \\
& (x \cdot y) \cdot z \doteq x \cdot(y \cdot z) . & x \neq y \vee x \neq u \vee y \doteq u . \\
& x \cdot e \doteq x . & y \neq x \vee u \neq x \vee y \doteq u \\
& x \cdot i(x) \doteq e . & x \neq y \vee f(z, x) \doteq f(z, y) . \\
& x \cdot x \doteq e . & x \neq y \vee f(x, z) \doteq f(y, z) . \\
& a \cdot b \neq b \cdot a . & x \neq y \vee x \cdot z \doteq y \cdot z \\
K: & x \doteq x . & x \neq y \vee z \cdot x \doteq z \cdot y . \\
& x \neq y \vee y \doteq x . & x \neq y \vee i(x) \doteq i(y)
\end{array}
$$

Unsatisfiability of this set can be proved by resolution.

The Equality Relation

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- Clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

The Equality Relation

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- Clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

Requires a special approach.

Rewriting-Based Deduction for Unit Equalities

We assume that the given set of clauses consists of unit equalities and one ground inequality.

Goal: Design a calculus which works on such sets, is more efficient than the described approach, and is complete.

Later this calculus can be extended to general clauses.

Equational Theory

- E : A set of equations.
- $A x$: The set of equality axioms for E.
- $E \vDash s \doteq t$ iff $S \vDash s \doteq t$ for all structures S which is a model of $E \cup A x$.
- Equational theory of E :

$$
\doteq_{\mathrm{E}}:=\{(\mathrm{s}, \mathrm{t}) \mid \mathrm{E} \vDash \mathrm{~s} \doteq \mathrm{t}\}
$$

- Notation: $s \doteq_{\mathrm{E}} \mathrm{t}$ iff $(\mathrm{s}, \mathrm{t}) \in \dot{=}_{\mathrm{E}}$.

Basic Concepts in Term Rewriting

- A rewrite rule is an ordered pair of terms, written $l \rightarrow r$.
- Term rewriting system (TRS): a set of rewrite rules.

Problem

Given: A set of equations E and two terms s and t.
Decide: $s \doteq_{\mathrm{E}} \mathrm{t}$ holds or not.

Problem

Given: A set of equations E and two terms s and t.
Decide: $s \dot{=}_{\mathrm{E}} \mathrm{t}$ holds or not.

The problem is undecidable for an arbitrary E.

Problem

Given: A set of equations E and two terms s and t.
Decide: $s \dot{=}_{\mathrm{E}} \mathrm{t}$ holds or not.

The problem is undecidable for an arbitrary E.
When E is finite and induces a (ground) convergent TRS, the problem is decidable.

Problem

Given: A set of equations E and two terms s and t .
Decide: $s \dot{=}_{\mathrm{E}} \mathrm{t}$ holds or not.

The problem is undecidable for an arbitrary E .
When E is finite and induces a (ground) convergent TRS, the problem is decidable.

What's this?

Problem

Given: A set of equations E and two terms s and t .

Decide: $s \doteq_{\mathrm{E}} \mathrm{t}$ holds or not.

Solving Idea

Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \neq \mathrm{E} \mathrm{t}^{\prime}$.

Solving Idea

Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \neq \mathrm{E} \mathrm{t}^{\prime}$.

Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.

Solving Idea

Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \neq \mathrm{E} \mathrm{t}^{\prime}$.

Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.

In the course of completion, from time to time check whether s^{\prime} and t^{\prime} can be rewritten to the same term with the equations and rules constructed so far.

Solving Idea

Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \neq \mathrm{E} \mathrm{t}^{\prime}$.

Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.

In the course of completion, from time to time check whether s^{\prime} and t^{\prime} can be rewritten to the same term with the equations and rules constructed so far.

If yes, stop. You obtained a contradiction, which proves $s \doteq \mathrm{E} t$.

Solving Idea

Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \neq \mathrm{E} \mathrm{t}^{\prime}$.

Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.

In the course of completion, from time to time check whether s^{\prime} and t^{\prime} can be rewritten to the same term with the equations and rules constructed so far.

If yes, stop. You obtained a contradiction, which proves $s \doteq_{\mathrm{E}} \mathrm{t}$.
If not, continue with completion. If this is not possible, then report: $s \doteq_{\mathrm{E}} \mathrm{t}$ does not hold.

What We Need To Know

- What is rewriting?
- What is a ground convergent set of equations and rewrite rules?
-What is completion?

Positions

The set of positions of a term $t, \operatorname{Pos}(t)$, is a set of strings of positive integers:

- If $\mathrm{t}=\mathrm{x}$, then $\operatorname{Pos}(\mathrm{t}):=\{\epsilon\}$,
- If $t=f\left(t_{1}, \ldots, t_{n}\right)$, then

$$
\operatorname{Pos}(\mathrm{t}):=\{\epsilon\} \cup\left\{\mathfrak{i p} \mid 1 \leqslant \mathfrak{i} \leqslant \boldsymbol{n}, \boldsymbol{p} \in \operatorname{Pos}\left(\mathrm{t}_{\mathrm{i}}\right)\right\} .
$$

More Notions about Terms

Term: $\mathfrak{t}=\mathfrak{f}(\mathrm{e}, \mathrm{f}(\mathrm{x}, \mathfrak{i}(\mathrm{x}))) \quad$ Tree:

More Notions about Terms

Term: $t=f(e, f(x, i(x))) \quad$ Tree:

Replacing a subterm at position p by $s: t[s]_{p}$

$$
\mathrm{t}[\mathrm{a}]_{\epsilon}=\mathrm{a}
$$

$$
\mathrm{t}[g(a, a)]_{21}=f(e, f(g(a, a), \mathfrak{i}(x)))
$$

$$
\mathrm{t}[\mathfrak{i}(y)]_{22}=f(e, f(x, i(y)))
$$

More Notions about Terms

Basic Concepts in Term Rewriting

R: a term rewriting system.

- The rewrite relation induced by R, denoted \rightarrow_{R}, is a binary relation on terms defined as:

$$
s \rightarrow_{R} t \text { iff }
$$

there exist $l \rightarrow r \in R$, a position p in s, a substitution σ such that $\left.s\right|_{p}=\sigma(l)$ and $t=s[\sigma(r)]_{p}$.

Basic Concepts in Term Rewriting

R: a term rewriting system.

- The rewrite relation induced by R, denoted \rightarrow_{R}, is a binary relation on terms defined as:

$$
s \rightarrow_{R} t \text { iff }
$$

there exist $l \rightarrow r \in R$, a position p in s, a substitution σ such that $\left.s\right|_{p}=\sigma(l)$ and $t=s[\sigma(r)]_{p}$.

- $R \subseteq \rightarrow_{R}$. We may omit R when it is obvious.

Basic Concepts in Term Rewriting

- s reduces to t by R iff $s \rightarrow_{\mathrm{R}} \mathrm{t}$.
- s is reducible by R iff there is a t such that $s \rightarrow_{R} t$.
- s is irreducible (is in normal form) by R iff s is not reducible.
$-\leftarrow_{\mathrm{R}}$ stands for the inverse and \rightarrow_{R}^{*} for reflexive-transitive closure of \rightarrow_{R}.
- t is a normal form of s by R iff $s \rightarrow_{R}^{*} t$ and t is irreducible by R.
- R is terminating iff \rightarrow_{R} is well-founded, i.e., there is no infinite sequence of rewrite steps $s_{1} \rightarrow_{R} s_{2} \rightarrow_{R} s_{3} \rightarrow_{R} \cdots$.

Basic Concepts in Term Rewriting

R is confluent iff for all terms s, t_{1}, t_{2}, if

$$
s \rightarrow{ }_{R}^{*} t_{1} \text { and } s \rightarrow_{R}^{*} t_{2}
$$

then there exists a term r such that

$$
\mathrm{t}_{1} \rightarrow_{\mathrm{R}}^{*} \mathrm{r} \text { and } \mathrm{t}_{2} \rightarrow_{\mathrm{R}}^{*} \mathrm{r} .
$$

Basic Concepts in Term Rewriting

R is confluent iff for all terms s, t_{1}, t_{2}, if

$$
\mathrm{s} \rightarrow_{\mathrm{R}}^{*} \mathrm{t}_{1} \text { and } \mathrm{s} \rightarrow_{\mathrm{R}}^{*} \mathrm{t}_{2}
$$

then there exists a term r such that

$$
\mathrm{t}_{1} \rightarrow_{\mathrm{R}}^{*} \mathrm{r} \text { and } \mathrm{t}_{2} \rightarrow_{\mathrm{R}}^{*} \mathrm{r} .
$$

Graphically:

Basic Concepts in Term Rewriting

t_{1} and t_{2} are joinable by R if there exists a term r such that

$$
\mathrm{t}_{1} \rightarrow_{\mathrm{R}}^{*} \mathrm{r} \text { and } \mathrm{t}_{2} \rightarrow_{\mathrm{R}}^{*} \mathrm{r} .
$$

Notation: $\mathrm{t}_{1} \downarrow_{\mathrm{R}} \mathrm{t}_{2}$.

Basic Concepts in Term Rewriting

Example

Let + be a binary (infix) function symbol, s a unary function symbol, 0 a constant.

$$
R:=\{0+x \rightarrow x, \quad s(x)+y \rightarrow s(x+y)\}
$$

Then:

- $s(0)+s(s(0)) \rightarrow_{R} s(0+s(s(0))) \rightarrow_{R} s(s(s(0)))$.
- $s(0)+s(s(0)) \rightarrow_{R}^{*} s(s(s(0)))$.
- $s(s(s(0)))$ is irreducible by R and, hence, is a normal form of $s(0)+s(s(0))$, of $s(0+s(s(0)))$, and of $s(s(s(0)))$.

Basic Concepts in Term Rewriting

A TRS R is convergent iff it is confluent and terminating.
A convergent TRS provides a decision procedure for the underlying equational theory: Two terms are equivalent iff they reduce to the same normal form.

Computation of normal forms by repeated reduction is a don't care non-deterministic process for convergent TRSs.

Basic Concepts in Term Rewriting

A strict order $>$ on terms is called a reduction order iff it is

1. monotonic: If $s>t$, then $r[s]>r[t]$ for all terms s, t, r;
2. stable: If $s>t$, then $\sigma(s)>\sigma(t)$ for all terms s, t and a substitution σ;
3. well-founded.

Basic Concepts in Term Rewriting

A strict order $>$ on terms is called a reduction order iff it is

1. monotonic: If $s>t$, then $r[s]>r[t]$ for all terms s, t, r;
2. stable: If $s>t$, then $\sigma(s)>\sigma(t)$ for all terms s, t and a substitution σ;
3. well-founded.

Why are reduction orders interesting?

Basic Concepts in Term Rewriting

A strict order $>$ on terms is called a reduction order iff it is

1. monotonic: If $s>t$, then $r[s]>r[t]$ for all terms s, t, r;
2. stable: If $s>t$, then $\sigma(s)>\sigma(t)$ for all terms s, t and a substitution σ;
3. well-founded.

Why are reduction orders interesting?
Theorem
A TRS R terminates iff there exists a reduction order $>$ that satisfies $l>r$ for all $l \rightarrow r \in R$.

Reduction Orders

- $|t|$: The size of the term t.
- The order $>_{1}: s>_{1} t$ iff $|s|>|t|$.

Reduction Orders

- $|t|$: The size of the term t.
- The order $>_{1}: s>_{1} t$ iff $|s|>|t|$.
- $>_{1}$ is monotonic and well-founded.

Reduction Orders

- $|t|$: The size of the term t.
- The order $>_{1}: s>_{1} \mathrm{t}$ iff $|\mathrm{s}|>|\mathrm{t}|$.
- $>_{1}$ is monotonic and well-founded.
- However, $>_{1}$ is not a reduction order because it is not stable:

$$
|f(f(x, x), y)|=5>3=|f(y, y)|
$$

For $\sigma=\{y \mapsto f(x, x)\}$:

$$
\begin{aligned}
& |\sigma(f(f(x, x), y))|=|f(f(x, x), f(x, x))|=7 \\
& \mid \sigma(f(y, y)|=|f(f(x, x), f(x, x))|=7
\end{aligned}
$$

Reduction Orders

- $|t|_{x}$: The number of occurrences of x in t.
- The order $>_{2}: s>_{2} t$ iff $|s|>|t|$ and $|s|_{x} \geqslant|t|_{x}$ for all x.

Reduction Orders

- $|t|_{x}$: The number of occurrences of x in t.
- The order $>_{2}: s>_{2} t$ iff $|s|>|t|$ and $|s|_{x} \geqslant|t|_{x}$ for all x.
- $>_{2}$ is a reduction order.

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
- Recursive path orders
- Knuth-Bendix orders

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
- Recursive path orders
- Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be used to show termination; not only by hand, but also automatically.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.
- Combination of multisets and tuples yields the recursive path order with status. (Not considered in this course.)

Lexicographic Path Order

Let \mathcal{F} be a finite signature and $>$ be a strict order on \mathcal{F} (called the precedence). The lexicographic path order $>_{l p o}$ on $\mathrm{T}(\mathcal{F}, \mathcal{V})$ induced by $>$ is defined as follows:
$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $\mathfrak{i}, 1 \leqslant \mathfrak{i} \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=\mathfrak{t}_{1}, \ldots s_{i-1}=\mathfrak{t}_{i-1}$ and $s_{i}>_{l p o} t_{i}$.
$\geqslant_{l p o}$ stands for the reflexive closure of $>_{l p o}$.

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=\mathrm{t}_{1}, \ldots \mathrm{~s}_{\mathrm{i}-1}=\mathrm{t}_{\mathrm{i}-1}$ and $s_{i}>_{l p o} \mathrm{t}_{\mathrm{i}}$.

Example

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $f=g, s>_{l p o} t_{j}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant n$, and there exists \mathfrak{i}, $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\mathrm{f}(\mathrm{x}, \mathrm{e})>_{l p o} \mathrm{x}$ by (1)

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $f=g, s>_{l p o} t_{j}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant n$, and there exists \mathfrak{i}, $1 \leqslant \mathfrak{i} \leqslant m$ such that $s_{1}=\mathfrak{t}_{1}, \ldots s_{i-1}=\mathfrak{t}_{i-1}$ and $s_{i}>_{l p o} \mathfrak{t}_{\mathrm{i}}$.

Example

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\mathrm{f}(\mathrm{x}, \mathrm{e})>_{l p o} \mathrm{x}$ by (1)
- $\mathfrak{i}(e)>_{l p o}$ e by (2a), because $e \geqslant_{l p o} e$.

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $f=g, s>_{l p o} t_{j}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant n$, and there exists \mathfrak{i}, $1 \leqslant i \leqslant m$ such that $s_{1}=\mathfrak{t}_{1}, \ldots s_{i-1}=\mathfrak{t}_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $f=g, s>_{l p o} t_{j}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant n$, and there exists \mathfrak{i}, $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\mathfrak{i}(f(x, y))>_{\text {lpo }} f(\mathfrak{i}(x), \mathfrak{i}(y)):$

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\mathfrak{i}(f(x, y))>_{\text {lpo }} f(\mathfrak{i}(x), \mathfrak{i}(y)):$
- Since $i>f,(2 b)$ reduces it to the problems:

$$
\mathfrak{i}(f(x, y))>?_{l o o} \mathfrak{i}(x) \text { and } \mathfrak{i}(f(x, y))>?_{l p o} \mathfrak{i}(y) .
$$

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant \mathfrak{i} \leqslant m$ such that $s_{1}=\mathfrak{t}_{1}, \ldots s_{i-1}=\mathfrak{t}_{i-1}$ and $s_{i}>_{l p o} \mathfrak{t}_{\mathrm{i}}$.

Example (Cont.)

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\mathfrak{i}(f(x, y))>_{l_{p o}} i(x)$ is reduced by (2c) to $\mathfrak{i}(f(x, y))>?_{\text {lpo }} x$ and $f(x, y)>{ }_{\text {lpo }} x$, which hold by (1).

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $\mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant \mathfrak{i} \leqslant m$ such that $s_{1}=\mathfrak{t}_{1}, \ldots s_{i-1}=\mathfrak{t}_{i-1}$ and $s_{i}>_{l p o} \mathfrak{t}_{\mathrm{i}}$.

Example (Cont.)

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\mathfrak{i}(f(x, y))>_{l_{p o}} \mathfrak{i}(x)$ is reduced by (2c) to $\mathfrak{i}(f(x, y))>?_{\text {lpo }} x$ and $f(x, y)>{ }_{\text {lpo }} x$, which hold by (1).
- $\mathfrak{i}(f(x, y))>_{l p o} \mathfrak{i}(y)$ is shown similarly.

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $f=g, s>_{l p o} t_{j}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant n$, and there exists \mathfrak{i}, $1 \leqslant i \leqslant m$ such that $s_{1}=\mathfrak{t}_{1}, \ldots s_{i-1}=\mathfrak{t}_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\left.\mathrm{f}(\mathrm{f}(\mathrm{x}, \mathrm{y}), z)>_{i_{p o}} \mathrm{f}(\mathrm{x}, \mathrm{f}(\mathrm{y}, \mathrm{z}))\right)$. By (2c) with $\mathrm{i}=1$:

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $s>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $f(f(x, y), z)>_{l p o} x$ because of (1).

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(\mathrm{~s})$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $\mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathrm{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $f(f(x, y), z)>{ }_{l p o} f(y, z):$ By (2c) with $\mathfrak{i}=1$:
- $f(f(x, y), z)>_{l p o} y$ and $f(f(x, y), z)>_{l p o} z$ by (1).
- $f(x, y)>_{\text {lpo }} y$ by (1).

Lexicographic Path Order

$s>_{l p o} \mathrm{t}$ iff
(1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(2a) $s_{i} \geqslant_{l p o} t$ for some $i, 1 \leqslant i \leqslant m$, or
(2b) $\mathrm{f}>\mathrm{g}$ and $\mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathfrak{j} \leqslant \mathrm{n}$, or
(2c) $\mathrm{f}=\mathrm{g}, \mathrm{s}>_{l p o} \mathrm{t}_{\mathrm{j}}$ for all $\mathfrak{j}, 1 \leqslant \mathrm{j} \leqslant \mathrm{n}$, and there exists i , $1 \leqslant i \leqslant m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{l p o} t_{i}$.

Example (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $f(x, y)>_{l p o} x$ by (1).

Reduction Orders

Reduction orders are not total for terms with variables.
For instance, $f(x)$ and $f(y)$ can not be ordered.
$f(x, y)$ and $f(y, x)$ can not be ordered either.
However, many reduction orders are total on ground terms.
Fortunately, in theorem proving applications one can often reason about non-ground formulas by considering the corresponding ground instances.
In such situations, ordered rewriting techniques can be applied.

Ordered Rewriting

Given: A reduction order $>$ and a set of equations E.
The rewrite system $E^{>}$is defined as

$$
\begin{aligned}
E^{>}:=\{\sigma(s) & \rightarrow \sigma(r) \mid \\
& (s \doteq t \in E \text { or } t \doteq s \in E) \text { and } \sigma(s)>\sigma(t)\}
\end{aligned}
$$

The rewrite relation \rightarrow_{E} > induced by $\mathrm{E}^{>}$represents ordered rewriting with respect to E and $>$.

Ordered Rewriting

Example

- If $>$ is a lexicographic path ordering with precedence $+>\mathrm{a}>\mathrm{b}>\mathrm{c}$, then $\mathrm{b}+\mathrm{c}>\mathrm{c}+\mathrm{b}>\mathrm{c}$.
- Let $\mathrm{E}:=\{x+y \doteq y+x\}$.
- We may use the commutativity equation for ordered rewriting.
- $(\mathrm{b}+\mathrm{c})+\mathrm{c} \rightarrow_{\mathrm{E}}>(\mathrm{c}+\mathrm{b})+\mathrm{c} \rightarrow_{\mathrm{E}}>\mathrm{c}+(\mathrm{c}+\mathrm{b})$.

Ordered Rewriting

If $>$ is a reduction ordering total on ground terms, then E > contains all (non-trivial) ground instances of an equation $s \doteq \mathrm{t} \in \mathrm{E}$, either as a rule $\sigma(\mathrm{s}) \rightarrow \sigma(\mathrm{t})$ or a rule $\sigma(\mathrm{t}) \rightarrow \sigma(\mathrm{s})$.

A rewrite system R is called ground convergent if the induced ground rewrite relation (that is, the rewrite relation \rightarrow_{R} restricted to pairs of ground terms) is terminating and confluent.

A set of equations E is called ground convergent with respect to
$>$ if $\mathrm{E}^{>}$is ground convergent.

Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

$$
\frac{s \doteq t \quad r[u] \doteq v}{\sigma(r[t] \doteq v)}
$$

where $\sigma=\operatorname{mgu}(\mathrm{s}, \mathrm{u}), \sigma(\mathrm{t}) \nsupseteq \sigma(\mathrm{s}), \sigma(v) \nsupseteq \sigma(\mathrm{r})$, and u is not a variable.

The equation $\sigma(r[t] \doteq v)$ is called an ordered critical pair (with overlapped term $\sigma(r[u])$) between $s \doteq t$ and $r[u] \doteq v$.

Critical Pairs

Lemma

Let $>$ be a ground total reduction ordering.
A set E of equations is ground convergent with respect to > iff
for all ordered critical pairs $\sigma(r[t] \doteq v$) (with overlapped term $\sigma(r[u]))$ between equations in E and for all ground substitutions
φ,
if $\varphi(\sigma(\mathrm{r}[\mathrm{u}]))>\varphi(\sigma(\mathrm{r}[\mathrm{t}]))$ and $\varphi(\sigma(\mathrm{r}[\mathrm{u}]))>\varphi(\sigma(v))$, then $\varphi(\sigma(r[t])) \downarrow_{E}>\varphi(\sigma(v))$.

Critical Pairs

Example

- Let $E:=\{f(f(x)) \doteq g(x)\}$ and $>$ be the LPO with $f>g$.
- Take a critical pair between the equation and its renamed copy, $f(f(x)) \doteq g(x)$ and $f(f(y)) \doteq g(y)$.

Critical Pairs

Example

- Let $E:=\{f(f(x)) \doteq g(x)\}$ and $>$ be the LPO with $f>g$.
- Take a critical pair between the equation and its renamed copy, $f(f(x)) \doteq g(x)$ and $f(f(y)) \doteq g(y)$.

- $f(f(f(x)))>f(g(x))$ and $f(f(f(x)))>g(f(x))$, but $f(g(x)) \not L_{E}>g(f(x))$.

Critical Pairs

Example

- Let $E:=\{f(f(x)) \doteq g(x)\}$ and $>$ be the LPO with $f>g$.
- Take a critical pair between the equation and its renamed copy, $f(f(x)) \doteq g(x)$ and $f(f(y)) \doteq g(y)$.

- $f(f(f(x)))>f(g(x))$ and $f(f(f(x)))>g(f(x))$, but $f(g(x)) \not L_{E}>g(f(x))$.
- E is not ground convergent with respect to $>$.

Adding Critical Pairs to Equations

Since critical pairs are equational consequences, adding a critical pair to the set of equations does not change the induced equational theory.

If E^{\prime} is obtained from E by adding a critical pair, then $\dot{=}_{E}=\dot{=}_{E^{\prime}}$.
The idea of adding a critical pair as a new equation is called "completion".

Convergence

Example

- Let $E^{\prime}:=\{f(f(x)) \doteq g(x), f(g(x)) \doteq g(f(x))\}$
- Let $>$ be the LPO with $f>g$.

Convergence

Example

- Let $\mathrm{E}^{\prime}:=\{\mathrm{f}(\mathrm{f}(\mathrm{x})) \doteq \mathrm{g}(\mathrm{x}), \mathrm{f}(\mathrm{g}(\mathrm{x})) \doteq \mathrm{g}(\mathrm{f}(\mathrm{x}))\}$
- Let $>$ be the LPO with $f>g$.
- E^{\prime} has two critical pairs. Both are joinable:

Convergence

Example

- Let $\mathrm{E}^{\prime}:=\{\mathrm{f}(\mathrm{f}(\mathrm{x})) \doteq \mathrm{g}(\mathrm{x}), \mathrm{f}(\mathrm{g}(\mathrm{x})) \doteq \mathrm{g}(\mathrm{f}(\mathrm{x}))\}$
- Let $>$ be the LPO with $f>g$.
- E^{\prime} has two critical pairs. Both are joinable:

- E^{\prime} is (ground) convergent.

Ordered Completion

Described as a set of inference rules.
Parametrized by a reduction ordering $>$.
Works on pairs (E, R), where E is a set of equations and R is a set of rewrite rules.
$E ; R \vdash E^{\prime} ; R^{\prime}$ means that $E^{\prime} ; R^{\prime}$ can be obtained from $E ; R$ by applying a completion inference.

Ordered Completion: Notions

Derivation: A (finite or countably infinite) sequence
$\left(\mathrm{E}_{0} ; \mathrm{R}_{0}\right) \vdash\left(\mathrm{E}_{1} ; \mathrm{R}_{1}\right) \cdots$.
Usually, E_{0} is the set of initial equations and $R_{0}=\emptyset$.
The limit of a derivation: the pair $E_{\omega} ; R_{\omega}$, where

$$
E_{\omega}:=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} E_{j} \text { and } R_{\omega}:=\bigcup_{i \geqslant 0} \bigcap_{j \geqslant i} R_{j} .
$$

Goal: to obtain a limit system that is ground convergent.

Ordered Completion: Notation

\uplus : Disjoint union
$s \triangleright t$: Strict encompassment relation. An instance of t is a subterm of s, but not vice versa.
$s \approx t$ stands for $s \doteq t$ or $t \doteq s$.
$C P_{>}(\mathrm{E} \cup \mathrm{R})$: The set of all ordered critical pairs, with the ordering $>$, generated by equations in E and rewrite rules in R treated as equations.

Ordered Completion: Rules

DEDUCTION: $\quad \mathrm{E} ; \mathrm{R} \vdash \mathrm{E} \cup\{\mathrm{s} \doteq \mathrm{t}\} ; \mathrm{R}$ if $s \doteq \mathrm{t} \in C P_{>}(\mathrm{E} \cup \mathrm{R})$.

Orientation: $\quad \mathrm{E} \uplus\{s \approx \mathrm{t}\} ; \mathrm{R} \vdash \mathrm{E} ; \mathrm{R} \cup\{\mathrm{s} \rightarrow \mathrm{t}\}$, if $s>\mathrm{t}$.
Deletion: $\quad \mathrm{E} \uplus\{s \doteq s\} ; R \vdash \mathrm{E} ; \mathrm{R}$.

Ordered Completion: Rules

Composition: $\quad \mathrm{E} ; \mathrm{R} \uplus\{s \rightarrow \mathrm{t}\} \vdash \mathrm{E} ; \mathrm{R} \cup\{s \rightarrow r\}$,
if $t \rightarrow R \cup E>r$.

SIMPLIFICATION: $E \cup\{s \approx t\} ; R \vdash E \cup\{u \doteq t\} ; R$,
if $s \rightarrow_{R} u$ or $s \rightarrow_{E>} u$ with $\sigma(l) \rightarrow \sigma(r)$ for $l \approx r \in E, s \triangleright l$.

Collapse:
$\mathrm{E} ; \mathrm{R} \uplus\{s \rightarrow \mathrm{t}\} \vdash \mathrm{E} \cup\{\mathrm{u} \doteq \mathrm{t}\} ; \mathrm{R}$,
if $s \rightarrow_{R} u$ or $s \rightarrow_{E>} u$ with $\sigma(l) \rightarrow \sigma(r)$ for $l \approx r \in E, s \triangleright l$.

Ordered Completion: Properties

Theorem

Let $\left(E_{0} ; R_{0}\right),\left(E_{1} ; R_{1}\right), \ldots$ be an ordered completion derivation where all critical pairs are eventually generated (a fair derivation). Then these three properties are equivalent for all ground terms s and t :
(1) $\mathrm{E}_{0} \vDash \mathrm{~s} \doteq \mathrm{t}$.
(2) $s \downarrow_{E}>{ }_{\omega} \cup R_{\omega} t$.
(3) $s \downarrow_{E_{i}} \cup R_{i}$ tor some $i \geqslant 0$.

This theorem, in particular, asserts the refutational completeness of ordered completion.

Proving by Ordered Completion: Example

Given:

1. $(x \cdot y) \cdot z \doteq x \cdot(y \cdot z)$.
2. $x \cdot e \doteq x$.
3. $x \cdot i(x) \doteq e$.
4. $x \cdot x \doteq e$.

Prove
Goal: $x \cdot y \doteq y \cdot x$.

Proving by Ordered Completion: Example

Proof by ordered completion:

- Skolemize the goal: $\mathrm{a} \cdot \mathrm{b} \doteq \mathrm{b} \cdot \mathrm{a}$.
- Take LPO as the reduction ordering with the precedence $i>f>e>a>b$
- $E_{0}:=\{(x \cdot y) \cdot z \doteq x \cdot(y \cdot z), x \cdot e \doteq x, x \cdot i(x) \doteq e, x \cdot x \doteq e\}$
- $\mathrm{R}_{0}:=\emptyset$
- Start applying the rules.

Proving by Ordered Completion: Example

$$
\begin{aligned}
& E_{0}=\{(x \cdot y) \cdot z \doteq x \cdot(y \cdot z), x \cdot e \doteq x, x \cdot i(x) \doteq e, x \cdot x \doteq e\} \\
& R_{0}=\emptyset
\end{aligned}
$$

Apply Orient 4 times:

$$
\begin{aligned}
& E_{4}=\emptyset \\
& R_{4}=\{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
& \mathrm{E}_{0}=\{(x \cdot y) \cdot z \doteq x \cdot(y \cdot z), x \cdot e \doteq x, x \cdot i(x) \doteq e, x \cdot x \doteq e\} \\
& R_{0}=\emptyset
\end{aligned}
$$

Apply Orient 4 times:

$$
\begin{aligned}
& E_{4}=\emptyset \\
& R_{4}=\{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e\}
\end{aligned}
$$

Apply Deduce with the rules $(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)$ and $x \cdot e \rightarrow x$ to the overlapping term $(x \cdot e) \cdot z$, and then Orient:

$$
\begin{aligned}
E_{6}= & \emptyset \\
R_{6}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{6}= & \emptyset \\
R_{6}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Deduce with the rules $x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}$ and $x \cdot \mathfrak{i}(x) \rightarrow e$ to the overlapping term $x_{1} \cdot(e \cdot i(e))$:

$$
\begin{aligned}
\mathrm{E}_{7}= & \left\{x_{1} \cdot \mathfrak{i}(e) \doteq x_{1} \cdot e\right\} \\
\mathrm{R}_{7}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
\mathrm{E}_{7}= & \left\{x_{1} \cdot \mathfrak{i}(e) \doteq x_{1} \cdot e\right\} \\
\mathrm{R}_{7}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Orient to $x_{1} \cdot i(e) \doteq x_{1} \cdot e$ and then COMPOSITION with the rule $x \cdot e \rightarrow x$:

$$
\begin{aligned}
\mathrm{E}_{9}= & \emptyset \\
\mathrm{R}_{9}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
\mathrm{E}_{9}= & \emptyset \\
\mathrm{R}_{9}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x\right\}
\end{aligned}
$$

Apply Deduce with the rules $x \cdot x \rightarrow e$ and $x \cdot i(e) \rightarrow x$ to the overlapping term $\mathfrak{i}(e) \cdot \mathfrak{i}(e)$, and then ORIENT:

$$
\begin{aligned}
E_{11}= & \emptyset \\
R_{11}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x, \mathfrak{i}(e) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{11}= & \emptyset \\
R_{11}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x, i(e) \rightarrow e\right\}
\end{aligned}
$$

Apply COLLAPSE to $x \cdot \mathfrak{i}(e) \rightarrow x$ with $\mathfrak{i}(e) \rightarrow e:$

$$
\begin{aligned}
\mathrm{E}_{12}= & \{x \cdot e \doteq x\} \\
\mathrm{R}_{12}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
\mathrm{E}_{12}= & \{x \cdot e \doteq x\} \\
\mathrm{R}_{12}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Apply Simplification to $x \cdot e \doteq x$ with $x \cdot e \rightarrow x$ and then DELETE to the obtained $x \doteq x$:

$$
\begin{aligned}
E_{14}= & \emptyset \\
R_{14}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \mathfrak{i}(e) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{14}= & \emptyset \\
R_{14}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Apply Deduce to $(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)$ and $x \cdot i(x) \rightarrow e$ with the overlapping term $(x \cdot \mathfrak{i}(x)) \cdot z$ and then ORIENT:

$$
\begin{aligned}
E_{16}= & \emptyset \\
R_{16}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{16}= & \emptyset \\
R_{16}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}$ and $x \cdot x \rightarrow e$ with the overlapping term $\mathrm{x}_{1} \cdot\left(\mathfrak{i}\left(\mathrm{x}_{1}\right) \cdot \mathfrak{i}\left(\mathrm{x}_{1}\right)\right)$:

$$
\begin{aligned}
\mathrm{E}_{17}= & \{e \cdot \mathfrak{i}(x) \doteq x \cdot e\} \\
\mathrm{R}_{17}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{17}= & \{e \cdot \mathfrak{i}(x) \doteq x \cdot e\} \\
R_{17}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Apply SIMPLIFICATION to $e \cdot i(x) \doteq x \cdot e$ with $x \cdot e \rightarrow x$ and then Orient:

$$
\begin{aligned}
E_{19}= & \emptyset \\
R_{19}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& e \cdot i(x) \rightarrow x\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{19}= & \emptyset \\
R_{19}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot \mathfrak{i}(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& e \cdot i(x) \rightarrow x\}
\end{aligned}
$$

Apply DEDUCE to $x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}$ and $e \cdot i(x) \rightarrow x$ with the overlapping term $x_{1} \cdot\left(e \cdot \mathfrak{i}\left(x_{2}\right)\right)$ and then ORIENT:

$$
\begin{aligned}
E_{21}= & \emptyset \\
R_{21}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{21}= & \emptyset \\
R_{21}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Applying Collapse, Simplification, and Delete, we get rid of $x \cdot i(x) \rightarrow e$:

$$
\begin{aligned}
E_{24}= & \emptyset \\
R_{24}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{24}= & \emptyset \\
R_{24}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \mathfrak{i}(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Applying Collapse and Orient, we replace $e \cdot \mathfrak{i}(x) \rightarrow x$ with $e \cdot x \rightarrow x$:

$$
\begin{aligned}
E_{26}= & \emptyset \\
R_{26}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{26}= & \emptyset \\
R_{26}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Applying Collapse and Delete, we get rid of $x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}:$

$$
\begin{aligned}
E_{28}= & \emptyset \\
\mathrm{R}_{28}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& \mathfrak{i}(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{28}= & \emptyset \\
\mathrm{R}_{28}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& \mathfrak{i}(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Deduce to $e \cdot x \rightarrow x$ and $x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}$ with the overlapping term $e \cdot i\left(x_{2}\right)$:

$$
\begin{aligned}
E_{29}= & \left\{\mathfrak{i}\left(x_{1}\right) \doteq e \cdot x_{2}\right\} \\
\mathrm{R}_{29}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& \mathfrak{i}(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{29}= & \left\{i\left(x_{2}\right) \doteq e \cdot x_{2}\right\} \\
\mathrm{R}_{29}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& \mathfrak{i}(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Simplification to $\mathfrak{i}\left(x_{1}\right) \doteq e \cdot x_{2}$ with $e \cdot x \rightarrow x$ and then Orient:

$$
\begin{aligned}
E_{31}= & \emptyset \\
R_{31}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \mathfrak{i}(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{31}= & \emptyset \\
R_{31}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& \mathfrak{i}(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \mathfrak{i}(x) \rightarrow x\right\}
\end{aligned}
$$

Apply Collapse and Delete, we get rid of $\mathfrak{i}(e) \rightarrow e:$

$$
\begin{aligned}
E_{33}= & \emptyset \\
R_{33}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \quad i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{33}= & \emptyset \\
R_{33}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \mathfrak{i}(x) \rightarrow x\right\}
\end{aligned}
$$

Applying COMPOSITION, we replace $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}$ by $\mathrm{x}_{1} \cdot\left(\mathfrak{i}\left(\mathrm{x}_{1}\right) \cdot \mathrm{x}_{2}\right) \rightarrow \mathrm{x}_{2}$:

$$
\begin{aligned}
E_{34}= & \emptyset \\
R_{34}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{34}= & \emptyset \\
R_{34}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \mathfrak{i}(x) \rightarrow x\right\}
\end{aligned}
$$

Applying Simplification and Orient, we replace $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}$ by $x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}:$

$$
\begin{aligned}
E_{36}= & \emptyset \\
\mathrm{R}_{36}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{36}= & \emptyset \\
R_{36}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(\mathfrak{i}\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(x) \rightarrow x\right\}
\end{aligned}
$$

Apply Deduce to $(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)$ and $x \cdot x \rightarrow e$ with the overlapping term $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{1} \cdot x_{2}\right)$, then ORIENT:

$$
\begin{aligned}
E_{37}= & \emptyset \\
R_{37}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{37}= & \emptyset \\
R_{37}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e\right\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}$ and $x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e$ with the overlapping term $x_{1} \cdot\left(x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right)\right)$, then ORIENT:

$$
\begin{aligned}
E_{39}= & \emptyset \\
\mathrm{R}_{39}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.\mathfrak{i}(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{39}= & \emptyset \\
R_{39}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

Apply COMPOSITION to $x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e$ with $x \cdot e \rightarrow x$:

$$
\begin{aligned}
E_{40}= & \emptyset \\
R_{40}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
& E_{41}= \emptyset \\
& R_{41}=\{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot \mathfrak{i}\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
&\left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1}\right\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}$ and $x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1}$ with the overlapping term $x_{2} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right)$:

$$
\begin{aligned}
E_{42}= & \left\{x_{1} \cdot x_{2} \doteq x_{2} \cdot x_{1}\right\} \\
R_{42}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{42}= & \left\{x_{1} \cdot x_{2} \doteq x_{2} \cdot x_{1}\right\} \\
R_{42}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.\mathfrak{i}(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

The equation $\mathrm{x}_{1} \cdot \mathrm{x}_{2} \doteq \mathrm{x}_{2} \cdot \mathrm{x}_{1}$ joins the goal $\mathrm{a} \cdot \mathrm{b} \doteq \mathrm{b} \cdot \mathrm{a}$. Hence, the goal is proved.

Superposition Calculus with Ordering and Selection

Back to general clauses.
\doteq the only predicate.
A well-behaves selection function wrt \succ :

- If only positive literals are selected in C, then all maximal (wrt \succ) literals in C are selected.

Superposition Calculus with Ordering and Selection

Back to general clauses.
\doteq the only predicate.
A well-behaves selection function wrt \succ :

- If only positive literals are selected in C, then all maximal (wrt \succ) literals in C are selected.
Comparison between literals. Assume $l \succeq r$ and $s \succeq t$. Then
- If $\mathrm{l} \succ \mathrm{s}$, then $\mathrm{l} \neq \mathrm{r} \succ \mathrm{l} \doteq \mathrm{r} \succ \mathrm{s} \neq \mathrm{t} \succ \mathrm{s} \doteq \mathrm{t}$.
- If $\mathrm{l}=\mathrm{s}$, then $\mathrm{l} \neq \mathrm{r} \succ \mathrm{s} \doteq \mathrm{t}$ and $\mathrm{s} \neq \mathrm{t} \succ \mathrm{l} \doteq \mathrm{r}$,

Superposition Calculus with Ordering and Selection

Superposition:

$$
\begin{aligned}
& \frac{l \doteq r \vee C \quad}{\sigma(s[r] \doteq t \vee C \vee D)}, \\
& \frac{\mathrm{l} \doteq \mathrm{\doteq} \vee \mathrm{l} \vee \mathrm{l}] \doteq \mathrm{t} \vee \mathrm{D}}{\sigma(\mathrm{~s}[\mathrm{r}] \neq \mathrm{t} \vee \mathrm{C} \vee \mathrm{D})}
\end{aligned}
$$

Superposition Calculus with Ordering and Selection

Superposition:

$$
\begin{aligned}
& \frac{l \doteq r \vee C \quad}{\sigma(s[r] \doteq t \vee C \vee D)}, \\
& \frac{\mathrm{l} \doteq \mathrm{r} \vee \mathrm{C} \quad \mathrm{~s}\left[\mathrm{l}^{\prime}\right] \neq \mathrm{t} \vee \mathrm{D}}{\sigma(\mathrm{~s}[\mathrm{r}] \neq \mathrm{t} \vee \mathrm{C} \vee \mathrm{D})}
\end{aligned}
$$

where

- $\sigma=\operatorname{mgu}\left(l, l^{\prime}\right)$,
- $l^{\prime} \notin \mathcal{V}$,
- $\sigma(r) \nsucceq \sigma(l)$,
- $\sigma(\mathrm{t}) \nsucceq \sigma\left(\mathrm{s}\left[\mathrm{l}^{\prime}\right]\right)$.

Superposition Calculus with Ordering and Selection

Equality resolution:

$$
\frac{s \doteq t \vee C}{\sigma(C)}, \quad \text { where } \sigma=\operatorname{mgu}(s, t)
$$

Equality factoring:

$$
\frac{l \doteq r \vee l^{\prime} \doteq r^{\prime} \vee C}{\sigma\left(l \doteq r \vee r \neq r^{\prime} \vee C\right)},
$$

Superposition Calculus with Ordering and Selection

Equality resolution:

$$
\frac{s \doteq t \vee C}{\sigma(C)}
$$

where $\sigma=\operatorname{mgu}(s, t)$.

Equality factoring:

$$
\frac{l \doteq r \vee l^{\prime} \doteq r^{\prime} \vee C}{\sigma\left(l \doteq r \vee r \neq r^{\prime} \vee C\right)},
$$

where

- $\sigma=\mathrm{mgu}\left(\mathrm{l}, \mathrm{l}^{\prime}\right), \sigma(\mathrm{r}) \nsucceq \sigma(\mathrm{l}), \sigma\left(\mathrm{r}^{\prime}\right) \nsucceq \sigma\left(\mathrm{l}^{\prime}\right), \sigma\left(\mathrm{r}^{\prime}\right) \nsucceq \sigma(\mathrm{r})$,

The superposition calculus with ordering and selection is refutationally complete.

