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The Equality Relation

Equality .
=: A very important relation

I Reflexive

I Symmetric

I Transitive

I Substitute equals by equals

I When equality is used in a theorem, we need extra axioms
which describe the properties of equality



The Equality Relation: Example

Theorem: Let G be a group with the binary operation ·, the
inverse −1, and the identity e. If x · x = e for all x ∈ G, then G is
commutative.

Axioms:

1. For all x,y ∈ G, x · y ∈ G.

2. For all x,y, z ∈ G, (x · y) · z .
= x · (y · z).

3. For all x ∈ G, x · e .
= x.

4. For all x ∈ G, x · x−1 .
= e.



The Equality Relation: Example (Cont.)

Express the axioms and the theorem in first-order logic with
equality:

(A1) ∀x,y. ∃z. x · y .
= z.

(A2) ∀x,y, z. (x · y) · z .
= x · (y · z).

(A3) ∀x. x · e .
= x.

(A4) ∀x. x · i(x) .
= e.

(T) ∀x. x · x .
= e⇒ ∀u, v. u · v .

= v · u.



The Equality Relation: Example (Cont.)

Take the conjunction of axioms and the negation of the theorem
and bring it to the Skolem normal form. We obtain the set
consisting of the clauses:

1. x · y .
= f(x,y).

2. (x · y) · z .
= x · (y · z).

3. x · e .
= x.

4. x · i(x) .
= e.

5. x · x .
= e

6. ¬(a · b .
= b · a).
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= e

6. a · b 6 .= b · a.

By resolution alone, we can not derive the contradiction here.
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The Equality Relation: Example (Cont.)

We need extra axioms to describe the properties of equality.

Let S be a set of clauses. The set of the equality axioms for S is
the set consisting of the following clauses:

1. x .
= x.

2. x 6 .= y∨ y
.
= x.

3. x 6 .= y∨ y 6 .= z∨ x .
= z.

4. x 6 .= y∨ ¬p(x1, . . . , x, . . . , xn)∨ p(x1, . . . ,y, . . . , xn), where
x and y appear in the same position i, for all 1 6 i 6 n, for
every n-ary predicate symbol p appearing in S.

5. x 6 .= y∨ f(x1, . . . , x, . . . , xn)
.
= f(x1, . . . ,y, . . . , xn), where x

and y appear in the same position i, for all 1 6 i 6 n, for
every n-ary function symbol f appearing in S.



The Equality Relation: Example (Cont.)

We add extra axioms:

S : x · y .
= f(x,y). x 6 .= y∨ y 6 .= z∨ x .

= z.

(x · y) · z .
= x · (y · z). x 6 .= y∨ x 6 .= u∨ y

.
= u.

x · e .
= x. y 6 .= x∨ u 6 .= x∨ y .

= u.

x · i(x) .
= e. x 6 .= y∨ f(z, x)

.
= f(z,y).

x · x .
= e. x 6 .= y∨ f(x, z)

.
= f(y, z).

a · b 6 .= b · a. x 6 .= y∨ x · z .
= y · z.

K : x
.
= x. x 6 .= y∨ z · x .

= z · y.
x 6 .= y∨ y

.
= x. x 6 .= y∨ i(x)

.
= i(y).

Unsatisfiability of this set can be proved by resolution.
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The Equality Relation

The described approach has several drawbacks:

I Every time equality is used, one has to provide axioms that
specify reflexive, symmetric, transitive, substitutive
properties of equality.

I Clumsy approach.

I Generates large search space.

I Hopelessly inefficient.

Requires a special approach.
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Rewriting-Based Deduction for Unit Equalities

We assume that the given set of clauses consists of unit
equalities and one ground inequality.

Goal: Design a calculus which works on such sets, is more
efficient than the described approach, and is complete.

Later this calculus can be extended to general clauses.



Equational Theory

I E: A set of equations.

I Ax: The set of equality axioms for E.

I E � s
.
= t iff S � s .

= t for all structures S which is a model
of E ∪Ax.

I Equational theory of E:

.
=E := {(s, t) | E � s

.
= t}

I Notation: s .
=E t iff (s, t) ∈ .

=E.



Basic Concepts in Term Rewriting

I A rewrite rule is an ordered pair of terms, written l→ r.

I Term rewriting system (TRS): a set of rewrite rules.



Problem

Given: A set of equations E and two terms s and t.

Decide: s .
=E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,
the problem is decidable.
When E is finite and induces a (ground) convergent TRS,

What’s this?
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Problem

Given: A set of equations E and two terms s and t.

Decide: s .
=E t holds or not.



Solving Idea

Refute and skolemize the goal, obtaining the ground
disequation s ′ 6 .=E t ′.

Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

In the course of completion, from time to time check whether s ′

and t ′ can be rewritten to the same term with the equations
and rules constructed so far.

If yes, stop. You obtained a contradiction, which proves s .
=E t.

If not, continue with completion. If this is not possible, then
report: s .

=E t does not hold.
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What We Need To Know

I What is rewriting?

I What is a ground convergent set of equations and rewrite
rules?

I What is completion?



Positions

The set of positions of a term t, Pos(t), is a set of strings of
positive integers:

I If t = x, then Pos(t) := {ε},

I If t = f(t1, . . . , tn), then

Pos(t) := {ε} ∪ {ip | 1 6 i 6 n, p ∈ Pos(ti)}.



More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

Subterm of t at position p: t|p
t|2 = f(x, i(x))
t|21 = x

t|22 = i(x)

f

ε

e
1

f

2

x
21

i

22

x
221



More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

Replacing a subterm
at position p by s: t[s]p

t[a]ε = a

t[g(a,a)]21 = f(e, f(g(a,a), i(x)))
t[i(y)]22 = f(e, f(x, i(y)))

f

ε

e
1

f

2

x
21

i

22

x
221



More Notions about Terms

Term: t = f(e, f(x, i(x))) Tree:

A size of t: |t| = card(Pos(t))
|t| = 6
|t[a]2| = 3
|t|22| = 2

f

ε

e
1

f

2

x
21

i

22

x
221



Basic Concepts in Term Rewriting

R: a term rewriting system.

I The rewrite relation induced by R, denoted→R, is a binary
relation on terms defined as:

s→R t iff
there exist l→ r ∈ R, a position p in s, a substitution σ
such that s|p = σ(l) and t = s[σ(r)]p.

I R ⊆ →R. We may omit R when it is obvious.



Basic Concepts in Term Rewriting

R: a term rewriting system.

I The rewrite relation induced by R, denoted→R, is a binary
relation on terms defined as:

s→R t iff
there exist l→ r ∈ R, a position p in s, a substitution σ
such that s|p = σ(l) and t = s[σ(r)]p.

I R ⊆ →R. We may omit R when it is obvious.



Basic Concepts in Term Rewriting

I s reduces to t by R iff s→R t.

I s is reducible by R iff there is a t such that s→R t.

I s is irreducible (is in normal form) by R iff s is not reducible.

I ←R stands for the inverse and→∗R for reflexive-transitive
closure of→R.

I t is a normal form of s by R iff s→∗R t and t is irreducible
by R.

I R is terminating iff→R is well-founded, i.e., there is no
infinite sequence of rewrite steps s1 →R s2 →R s3 →R · · · .



Basic Concepts in Term Rewriting

R is confluent iff for all terms s, t1, t2, if

s→∗R t1 and s→∗R t2,

then there exists a term r such that

t1 →∗R r and t2 →∗R r.

Graphically:
s t1

t2 r

∗

∗

∗∗
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Basic Concepts in Term Rewriting

t1 and t2 are joinable by R if there exists a term r such that

t1 →∗R r and t2 →∗R r.

Notation: t1 ↓R t2.



Basic Concepts in Term Rewriting

Example

Let + be a binary (infix) function symbol, s a unary function
symbol, 0 a constant.

R := {0+ x→ x, s(x) + y→ s(x+ y)}.

Then:

I s(0) + s(s(0))→R s(0+ s(s(0)))→R s(s(s(0))).

I s(0) + s(s(0))→∗R s(s(s(0))).

I s(s(s(0))) is irreducible by R and, hence, is a normal form
of s(0) + s(s(0)), of s(0+ s(s(0))), and of s(s(s(0))).



Basic Concepts in Term Rewriting

A TRS R is convergent iff it is confluent and terminating.

A convergent TRS provides a decision procedure for the
underlying equational theory: Two terms are equivalent iff they
reduce to the same normal form.

Computation of normal forms by repeated reduction is a don’t
care non-deterministic process for convergent TRSs.



Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then σ(s) > σ(t) for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem

A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l→ r ∈ R.
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Reduction Orders

I |t|: The size of the term t.

I The order >1: s >1 t iff |s| > |t|.

I >1 is monotonic and well-founded.

I However, >1 is not a reduction order because it is not
stable:

|f(f(x, x),y)| = 5 > 3 = |f(y,y)|

For σ = {y 7→ f(x, x)}:

|σ(f(f(x, x),y))| = |f(f(x, x), f(x, x))| = 7,

|σ(f(y,y)| = |f(f(x, x), f(x, x))| = 7.
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Reduction Orders

I |t|x: The number of occurrences of x in t.

I The order >2: s >2 t iff |s| > |t| and |s|x > |t|x for all x.

I >2 is a reduction order.
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Methods for Construction Reduction Orders

I Polynomial orders

I Simplification orders:

I Recursive path orders

I Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also
automatically.
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Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their
immediate subterms.

I Collections seen as multisets yields the multiset path
order. (Not considered in this course.)

I Collections seen as tuples yields the lexicographic path
order.

I Combination of multisets and tuples yields the recursive
path order with status. (Not considered in this course.)



Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their
immediate subterms.

I Collections seen as multisets yields the multiset path
order. (Not considered in this course.)

I Collections seen as tuples yields the lexicographic path
order.

I Combination of multisets and tuples yields the recursive
path order with status. (Not considered in this course.)



Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their
immediate subterms.

I Collections seen as multisets yields the multiset path
order. (Not considered in this course.)

I Collections seen as tuples yields the lexicographic path
order.

I Combination of multisets and tuples yields the recursive
path order with status. (Not considered in this course.)



Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their
immediate subterms.

I Collections seen as multisets yields the multiset path
order. (Not considered in this course.)

I Collections seen as tuples yields the lexicographic path
order.

I Combination of multisets and tuples yields the recursive
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Lexicographic Path Order

Let F be a finite signature and > be a strict order on F (called
the precedence). The lexicographic path order >lpo on T(F,V)
induced by > is defined as follows:

s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

>lpo stands for the reflexive closure of >lpo .



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and
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(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(x, e) >lpo x by (1)

I i(e) >lpo e by (2a), because e >lpo e.
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F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x,y)) >?
lpo f(i(x), i(y)):

I Since i > f, (2b) reduces it to the problems:
i(f(x,y)) >?

lpo i(x) and i(f(x,y)) >?
lpo i(y).
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(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x,y)) >?
lpo f(i(x), i(y)):

I Since i > f, (2b) reduces it to the problems:
i(f(x,y)) >?

lpo i(x) and i(f(x,y)) >?
lpo i(y).



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x,y)) >?
lpo i(x) is reduced by (2c) to i(f(x,y)) >?

lpo x and
f(x,y) >?

lpo x, which hold by (1).

I i(f(x,y)) >lpo i(y) is shown similarly.



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x,y)) >?
lpo i(x) is reduced by (2c) to i(f(x,y)) >?

lpo x and
f(x,y) >?

lpo x, which hold by (1).

I i(f(x,y)) >lpo i(y) is shown similarly.



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x,y), z) >?
lpo f(x, f(y, z))). By (2c) with i = 1:



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x,y), z) >?
lpo f(x, f(y, z))). By (2c) with i = 1:



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x,y), z) >lpo x because of (1).



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x,y), z) >?
lpo f(y, z): By (2c) with i = 1:

I f(f(x,y), z) >lpo y and f(f(x,y), z) >lpo z by (1).

I f(x,y) >lpo y by (1).



Lexicographic Path Order
s >lpo t iff

(1) t ∈ Var(s) and t 6= s, or

(2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(2a) si >lpo t for some i, 1 6 i 6 m, or

(2b) f > g and s >lpo tj for all j, 1 6 j 6 n, or

(2c) f = g, s >lpo tj for all j, 1 6 j 6 n, and there exists i,
1 6 i 6 m such that s1 = t1, . . . si−1 = ti−1 and si >lpo ti.

Example (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(x,y) >lpo x by (1).



Reduction Orders

Reduction orders are not total for terms with variables.

For instance, f(x) and f(y) can not be ordered.

f(x,y) and f(y, x) can not be ordered either.

However, many reduction orders are total on ground terms.

Fortunately, in theorem proving applications one can often
reason about non-ground formulas by considering the
corresponding ground instances.

In such situations, ordered rewriting techniques can be applied.



Ordered Rewriting

Given: A reduction order > and a set of equations E.

The rewrite system E> is defined as

E> := {σ(s)→ σ(r) |

(s
.
= t ∈ E or t .

= s ∈ E) and σ(s) > σ(t)}

The rewrite relation→E> induced by E> represents ordered
rewriting with respect to E and >.



Ordered Rewriting

Example

I If > is a lexicographic path ordering with precedence
+ > a > b > c, then b+ c > c+ b > c.

I Let E := {x+ y
.
= y+ x}.

I We may use the commutativity equation for ordered
rewriting.

I (b+ c) + c→E> (c+ b) + c→E> c+ (c+ b).



Ordered Rewriting

If > is a reduction ordering total on ground terms, then E>

contains all (non-trivial) ground instances of an equation
s
.
= t ∈ E, either as a rule σ(s)→ σ(t) or a rule σ(t)→ σ(s).

A rewrite system R is called ground convergent if the induced
ground rewrite relation (that is, the rewrite relation→R
restricted to pairs of ground terms) is terminating and confluent.

A set of equations E is called ground convergent with respect to
> if E> is ground convergent.



Critical Pairs

Ordered rewriting leads to the inference rule, called
superposition:

s
.
= t r[u]

.
= v

σ(r[t]
.
= v)

,

where σ = mgu(s,u), σ(t) 6> σ(s), σ(v) 6> σ(r), and u is not a
variable.

The equation σ(r[t] .
= v) is called an ordered critical pair (with

overlapped term σ(r[u])) between s .
= t and r[u] .

= v.



Critical Pairs

Lemma

Let > be a ground total reduction ordering.

A set E of equations is ground convergent with respect to >

iff

for all ordered critical pairs σ(r[t] .
= v) (with overlapped term

σ(r[u])) between equations in E and for all ground substitutions
ϕ,

if ϕ(σ(r[u])) > ϕ(σ(r[t])) and ϕ(σ(r[u])) > ϕ(σ(v)), then
ϕ(σ(r[t])) ↓E> ϕ(σ(v)).



Critical Pairs

Example

I Let E := {f(f(x))
.
= g(x)} and > be the LPO with f > g.

I Take a critical pair between the equation and its renamed
copy, f(f(x)) .

= g(x) and f(f(y)) .
= g(y).

f(f(f(x)))

f(g(x)) g(f(x))

I f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) 6 ↓ E>g(f(x)).

I E is not ground convergent with respect to >.



Critical Pairs

Example

I Let E := {f(f(x))
.
= g(x)} and > be the LPO with f > g.

I Take a critical pair between the equation and its renamed
copy, f(f(x)) .

= g(x) and f(f(y)) .
= g(y).

f(f(f(x)))

f(g(x)) g(f(x))

I f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) 6 ↓ E>g(f(x)).

I E is not ground convergent with respect to >.



Critical Pairs

Example

I Let E := {f(f(x))
.
= g(x)} and > be the LPO with f > g.

I Take a critical pair between the equation and its renamed
copy, f(f(x)) .

= g(x) and f(f(y)) .
= g(y).

f(f(f(x)))

f(g(x)) g(f(x))

I f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) 6 ↓ E>g(f(x)).

I E is not ground convergent with respect to >.



Adding Critical Pairs to Equations

Since critical pairs are equational consequences, adding a
critical pair to the set of equations does not change the induced
equational theory.

If E ′ is obtained from E by adding a critical pair, then .
=E=

.
=E ′ .

The idea of adding a critical pair as a new equation is called
“completion”.



Convergence

Example

I Let E ′ := {f(f(x))
.
= g(x), f(g(x))

.
= g(f(x))}

I Let > be the LPO with f > g.

I E ′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

I E ′ is (ground) convergent.



Convergence

Example

I Let E ′ := {f(f(x))
.
= g(x), f(g(x))

.
= g(f(x))}

I Let > be the LPO with f > g.

I E ′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

I E ′ is (ground) convergent.



Convergence

Example

I Let E ′ := {f(f(x))
.
= g(x), f(g(x))

.
= g(f(x))}

I Let > be the LPO with f > g.

I E ′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

I E ′ is (ground) convergent.



Ordered Completion

Described as a set of inference rules.

Parametrized by a reduction ordering >.

Works on pairs (E,R), where E is a set of equations and R is a
set of rewrite rules.

E;R ` E ′;R ′ means that E ′;R ′ can be obtained from E;R by
applying a completion inference.



Ordered Completion: Notions

Derivation: A (finite or countably infinite) sequence
(E0;R0) ` (E1;R1) · · · .

Usually, E0 is the set of initial equations and R0 = ∅.

The limit of a derivation: the pair Eω;Rω, where

Eω :=
⋃
i>0

⋂
j>i

Ej and Rω :=
⋃
i>0

⋂
j>i

Rj.

Goal: to obtain a limit system that is ground convergent.



Ordered Completion: Notation

]: Disjoint union

sB t: Strict encompassment relation. An instance of t is a
subterm of s, but not vice versa.

s u t stands for s .
= t or t .

= s.

CP>(E ∪ R): The set of all ordered critical pairs, with the
ordering >, generated by equations in E and rewrite rules in R
treated as equations.



Ordered Completion: Rules

DEDUCTION: E;R ` E ∪ {s
.
= t};R

if s .
= t ∈ CP>(E ∪ R).

ORIENTATION: E ] {s u t};R ` E;R ∪ {s→ t}, if s > t.

DELETION: E ] {s
.
= s};R ` E;R.



Ordered Completion: Rules

COMPOSITION: E;R ] {s→ t} ` E;R ∪ {s→ r},

if t→R∪E> r.

SIMPLIFICATION: E ∪ {s u t};R ` E ∪ {u
.
= t};R,

if s→R u or s→E> u with σ(l)→ σ(r) for l u r ∈ E, sB l.

COLLAPSE: E;R ] {s→ t} ` E ∪ {u
.
= t};R,

if s→R u or s→E> u with σ(l)→ σ(r) for l u r ∈ E, sB l.



Ordered Completion: Properties

Theorem

Let (E0;R0), (E1;R1), . . . be an ordered completion derivation
where all critical pairs are eventually generated (a fair
derivation). Then these three properties are equivalent for all
ground terms s and t:

(1) E0 � s
.
= t.

(2) s ↓E>ω∪Rω t.

(3) s ↓E>i ∪Ri t for some i > 0.

This theorem, in particular, asserts the refutational
completeness of ordered completion.



Proving by Ordered Completion: Example

Given:

1. (x · y) · z .
= x · (y · z).

2. x · e .
= x.

3. x · i(x) .
= e.

4. x · x .
= e.

Prove

Goal: x · y .
= y · x.



Proving by Ordered Completion: Example

Proof by ordered completion:

I Skolemize the goal: a · b .
= b · a.

I Take LPO as the reduction ordering with the precedence
i > f > e > a > b

I E0 := {(x · y) · z .
= x · (y · z), x · e .

= x, x · i(x) .
= e, x · x .

= e}

I R0 := ∅

I Start applying the rules.



Proving by Ordered Completion: Example

E0 = {(x · y) · z .
= x · (y · z), x · e .

= x, x · i(x) .
= e, x · x .

= e}

R0 = ∅

Apply ORIENT 4 times:

E4 = ∅
R4 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e}

Apply DEDUCE with the rules (x · y) · z→ x · (y · z) and x · e→ x

to the overlapping term (x · e) · z, and then ORIENT:

E6 = ∅
R6 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}



Proving by Ordered Completion: Example

E0 = {(x · y) · z .
= x · (y · z), x · e .

= x, x · i(x) .
= e, x · x .

= e}

R0 = ∅

Apply ORIENT 4 times:

E4 = ∅
R4 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e}

Apply DEDUCE with the rules (x · y) · z→ x · (y · z) and x · e→ x

to the overlapping term (x · e) · z, and then ORIENT:

E6 = ∅
R6 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}



Proving by Ordered Completion: Example

E6 = ∅
R6 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Apply DEDUCE with the rules x1 · (e · x2)→ x1 · x2 and
x · i(x)→ e to the overlapping term x1 · (e · i(e)):

E7 = {x1 · i(e)
.
= x1 · e}

R7 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}



Proving by Ordered Completion: Example

E7 = {x1 · i(e)
.
= x1 · e}

R7 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Apply ORIENT to x1 · i(e)
.
= x1 · e and then COMPOSITION with

the rule x · e→ x:

E9 = ∅
R9 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x}



Proving by Ordered Completion: Example

E9 = ∅
R9 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x}

Apply DEDUCE with the rules x · x→ e and x · i(e)→ x to the
overlapping term i(e) · i(e), and then ORIENT:

E11 = ∅
R11 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x, i(e)→ e}



Proving by Ordered Completion: Example

E11 = ∅
R11 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x, i(e)→ e}

Apply COLLAPSE to x · i(e)→ x with i(e)→ e:

E12 = {x · e .
= x}

R12 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}



Proving by Ordered Completion: Example

E12 = {x · e .
= x}

R12 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}

Apply SIMPLIFICATION to x · e .
= x with x · e→ x and then

DELETE to the obtained x .
= x:

E14 = ∅
R14 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}



Proving by Ordered Completion: Example

E14 = ∅
R14 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}

Apply DEDUCE to (x · y) · z→ x · (y · z) and x · i(x)→ e with the
overlapping term (x · i(x)) · z and then ORIENT:

E16 = ∅
R16 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}



Proving by Ordered Completion: Example

E16 = ∅
R16 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}

Apply DEDUCE to x1 · (i(x1) · x2)→ e · x2 and x · x→ e with the
overlapping term x1 · (i(x1) · i(x1)):

E17 = {e · i(x) .
= x · e}

R17 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}



Proving by Ordered Completion: Example

E17 = {e · i(x) .
= x · e}

R17 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}

Apply SIMPLIFICATION to e · i(x) .
= x · e with x · e→ x and then

ORIENT:

E19 = ∅
R19 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x}



Proving by Ordered Completion: Example

E19 = ∅
R19 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x}

Apply DEDUCE to x1 · (e · x2)→ x1 · x2 and e · i(x)→ x with the
overlapping term x1 · (e · i(x2)) and then ORIENT:

E21 = ∅
R21 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}



Proving by Ordered Completion: Example

E21 = ∅
R21 = {(x · y) · z→ x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}

Applying COLLAPSE, SIMPLIFICATION, and DELETE, we get rid
of x · i(x)→ e:

E24 = ∅
R24 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}



Proving by Ordered Completion: Example

E24 = ∅
R24 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}

Applying COLLAPSE and ORIENT, we replace e · i(x)→ x with
e · x→ x:

E26 = ∅
R26 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}



Proving by Ordered Completion: Example

E26 = ∅
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x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Applying COLLAPSE and DELETE, we get rid of
x1 · (e · x2)→ x1 · x2:
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Proving by Ordered Completion: Example

E28 = ∅
R28 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Apply DEDUCE to e · x→ x and x1 · i(x2)→ x1 · x2 with the
overlapping term e · i(x2):

E29 = {i(x1)
.
= e · x2}

R29 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}



Proving by Ordered Completion: Example

E29 = {i(x2)
.
= e · x2}

R29 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Apply SIMPLIFICATION to i(x1)
.
= e · x2 with e · x→ x and then

ORIENT:

E31 = ∅
R31 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2, i(x)→ x}



Proving by Ordered Completion: Example

E31 = ∅
R31 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2, i(x)→ x}

Apply COLLAPSE and DELETE, we get rid of i(e)→ e:

E33 = ∅
R33 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ e · x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}



Proving by Ordered Completion: Example

E33 = ∅
R33 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ e · x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Applying COMPOSITION, we replace x1 · (i(x1) · x2)→ e · x2 by
x1 · (i(x1) · x2)→ x2:

E34 = ∅
R34 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}



Proving by Ordered Completion: Example

E34 = ∅
R34 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Applying SIMPLIFICATION and ORIENT, we replace
x1 · (i(x1) · x2)→ x2 by x1 · (x1 · x2)→ x2:

E36 = ∅
R36 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}



Proving by Ordered Completion: Example

E36 = ∅
R36 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Apply DEDUCE to (x · y) · z→ x · (y · z) and x · x→ e with the
overlapping term (x1 · x2) · (x1 · x2), then ORIENT:

E37 = ∅
R37 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e}



Proving by Ordered Completion: Example

E37 = ∅
R37 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e}

Apply DEDUCE to x1 · (x1 · x2)→ x2 and x1 · (x2 · (x1 · x2))→ e

with the overlapping term x1 · (x1 · (x2 · (x1 · x2))), then ORIENT:

E39 = ∅
R39 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}



Proving by Ordered Completion: Example

E39 = ∅
R39 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}

Apply COMPOSITION to x2 · (x1 · x2)→ x1 · e with x · e→ x:

E40 = ∅
R40 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1}



Proving by Ordered Completion: Example

E41 = ∅
R41 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1}

Apply DEDUCE to x1 · (x1 · x2)→ x2 and x2 · (x1 · x2)→ x1 with
the overlapping term x2 · (x2 · (x1 · x2)):

E42 = {x1 · x2
.
= x2 · x1}

R42 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}



Proving by Ordered Completion: Example

E42 = {x1 · x2
.
= x2 · x1}

R42 = {(x · y) · z→ x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}

The equation x1 · x2
.
= x2 · x1 joins the goal a · b .

= b · a. Hence,
the goal is proved.



Superposition Calculus with Ordering and Selection

Back to general clauses.
.
= the only predicate.

A well-behaves selection function wrt �:

I If only positive literals are selected in C, then all maximal
(wrt � ) literals in C are selected.

Comparison between literals. Assume l � r and s � t. Then

I If l � s, then l 6 .= r � l .
= r � s 6 .= t � s .

= t.

I If l = s, then l 6 .= r � s .
= t and s 6 .= t � l .

= r,
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Superposition Calculus with Ordering and Selection

Superposition:

l
.
= r∨ C s[l ′]

.
= t∨D

σ(s[r]
.
= t∨ C∨D)

,

l
.
= r∨ C s[l ′] 6 .= t∨D
σ(s[r] 6 .= t∨ C∨D)

where

I σ = mgu(l, l ′),

I l ′ /∈ V,

I σ(r) 6� σ(l),

I σ(t) 6� σ(s[l ′]).
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Superposition Calculus with Ordering and Selection

Equality resolution:

s
.
= t∨ C

σ(C)
, where σ = mgu(s, t).

Equality factoring:

l
.
= r∨ l ′

.
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σ(l
.
= r∨ r 6 .= r ′ ∨ C)

,

where

I σ = mgu(l, l ′), σ(r) 6� σ(l), σ(r ′) 6� σ(l ′), σ(r ′) 6� σ(r),

The superposition calculus with ordering and selection is
refutationally complete.



Superposition Calculus with Ordering and Selection

Equality resolution:

s
.
= t∨ C

σ(C)
, where σ = mgu(s, t).

Equality factoring:

l
.
= r∨ l ′

.
= r ′ ∨ C

σ(l
.
= r∨ r 6 .= r ′ ∨ C)

,

where

I σ = mgu(l, l ′), σ(r) 6� σ(l), σ(r ′) 6� σ(l ′), σ(r ′) 6� σ(r),

The superposition calculus with ordering and selection is
refutationally complete.


	*



