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What is Automated Reasoning

Reasoning: The process of making inferences.

Automated reasoning studies methods to automate the process
of reasoning.

Automated reasoning systems: computer programs that
implement automated reasoning methods to perform reasoning
automatically (or semi-automatically).



Examples of Reasoning

All men are mortal. Socrates is a man. Therefore Socrates is
mortal.

Every fruit is tasty if it is not cooked. This apple not tasty.
Therefore, it is cooked.
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Do You Agree with These Reasonings?

All that glistens is not gold. This pot does not glisten.
Therefore, it is gold.

All numbers are odd. 2 is not odd. Therefore, 2 is not a number.

All numbers are odd. 2 is even. Therefore, 2 is not a number.

Some people are geniuses. Einstein is a person. Therefore,
Einstein is a genius.
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Are These Statements True?

There exists a person with the property that if he (or she) is a
genius then everybody is a genius.

If a group satisfies the identity x2 = 1, then it is commutative.
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Informal Example

Problem formulation (Chang and Lee, 1973):

Suppose that stock prices go down if the prime interest rate
goes up. Suppose also that most people are unhappy when
stock prices go down. Assume that prime interest rate does
go up. Are most people unhappy?

Formalization:

I P : prime interest rate goes up.

I S : stock prices go down.

I U : most people are unhappy.

I If the prime interest rate goes up, stock prices go down: P ⇒ S.

I If stock prices go down, most people are unhappy: S⇒ U.

Show that if P ⇒ S, S⇒ U, and P hold, then U holds as well.
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Informal Example

We should show that if P ⇒ S, S⇒ U, and P hold, then U holds as
well.

That means, ((P ⇒ S)∧ (S⇒ U)∧ P)⇒ U is valid.

Denote ((P ⇒ S)∧ (S⇒ U)∧ P)⇒ U by G.

Semantically:

P S U P ⇒ S S⇒ U G
true true true true true true
true true false true false true
true false true false true true
true false false false true true
false true true true true true
false false true true true true
false true false true false true
false false false true true true



Informal Example

In the example we used propositional logic.

Often we need more powerful logics.

For instance, we need first-order logic to express the Socrates
example:

I ∀x .man(x )⇒ mortal(x ): All men are mortal.

I man(socrates): Socrates is a man.

I mortal(socrates): Socrates is mortal.
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First-Order Logic

I Syntax

I Semantics

I Inference system



Syntax

I Alphabet

I Terms

I Formulas



Alphabet

A first-order alphabet consists of the following sets of symbols:

I A countable set of variables V.

I For each n > 0, a set of n-ary function symbols Fn.
Elements of F0 are called constants.

I For each n > 0, a set of n-ary predicate symbols Pn.

I Logical connectives ¬, ∨, ∧,⇒,⇔.

I Quantifiers ∃, ∀.

I Parentheses and comma.



Alphabet

Notation:

I x,y, z for variables.

I f,g for function symbols.

I a,b, c for constants.

I p,q for predicate symbols.



Terms

Definition

I A variable is a term.

I If t1, . . . , tn are terms and f ∈ Fn, then f(t1, . . . , tn) is a
term.

Notation:

I s, t, r for terms.

Ground term: a term without variables.



Terms

Definition

I A variable is a term.

I If t1, . . . , tn are terms and f ∈ Fn, then f(t1, . . . , tn) is a
term.

Notation:

I s, t, r for terms.

Ground term: a term without variables.



Terms

Definition

I A variable is a term.

I If t1, . . . , tn are terms and f ∈ Fn, then f(t1, . . . , tn) is a
term.

Notation:

I s, t, r for terms.

Ground term: a term without variables.



Terms

Example

I plus(plus(x, 1), x) is a non-ground term, if plus is a binary
function symbol, 1 is a constant, x is a variable.

I father(father(John)) is a ground term, if father is a
unary function symbol and John is a constant.
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Formulas

Definition

I If t1, . . . , tn are terms and p ∈ Pn, then p(t1, . . . , tn) is a
formula. It is called an atomic formula or an atom.

I If A is a formula, ¬(A) is a formula.

I If A and B are formulas, then (A∨ B), (A∧ B), (A⇒ B),
and (A⇔ B) are formulas.

I If A is a formula, then ∃x.A and ∀x.A are formulas.

Notation:

I A,B, F,G,H for formulas.



Formulas

Definition

I If t1, . . . , tn are terms and p ∈ Pn, then p(t1, . . . , tn) is a
formula. It is called an atomic formula or an atom.

I If A is a formula, ¬(A) is a formula.

I If A and B are formulas, then (A∨ B), (A∧ B), (A⇒ B),
and (A⇔ B) are formulas.

I If A is a formula, then ∃x.A and ∀x.A are formulas.

Notation:

I A,B, F,G,H for formulas.



Example

Translating English sentences into first-order logic formulas:

For each natural number there exists exactly one immediate
successor natural number.

∀x.(∃y.(y .
= succ(x)∧ ∀z.(z .

= succ(x)⇒ y
.
= z)))

Assume:

I succ: unary function symbol for immediate successor.

I
.
=: binary predicate symbol for equality.
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Example

Translating English sentences into first-order logic formulas:

There is no natural number whose immediate successor is 0.

¬∃x. zero .
= succ(x)

Assume:

I zero: constant for 0.

I succ: unary function symbol for immediate successor.

I
.
=: binary predicate symbol for equality.
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Translating English sentences into first-order logic formulas:

For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x.(¬(x .
= 0)⇒

∃y.(y .
= pred(x)∧ ∀z.(z .

= pred(x)⇒ y
.
= z)))

Assume:

I zero: constant for 0.

I pred: unary function symbol for predecessor.

I
.
=: binary predicate symbol for equality.



Example

Translating English sentences into first-order logic formulas:

For each nonzero natural number there exists exactly one
immediate predecessor natural number.

∀x.(¬(x .
= 0)⇒

∃y.(y .
= pred(x)∧ ∀z.(z .

= pred(x)⇒ y
.
= z)))

Assume:

I zero: constant for 0.

I pred: unary function symbol for predecessor.

I
.
=: binary predicate symbol for equality.



Free and Bound Variables

A is the scope of a quantifier Qx in Qx.A, Q ∈ {∀,∃}.

An occurrence of a variable x in a formula is bound, if it is in
the scope of a quantifier Qx.

Any other occurrence of a variable in a formula is free.

In ∀x.p(x,y)∧ ∃y.q(y), the occurrence of x and the second
occurrence of y are bound, the first occurrence of y is free.

Formula without free occurrences of variables is called closed.
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Substitutions

Substitution: A function σ from variables to terms, whose
domain

Dom(σ) := {x | σ(x) 6= x}

is finite.

Range of a substitution σ:

Ran(σ) := {σ(x) | x ∈ Dom(σ)}.

Variable range of a substitution σ:

VRan(σ) := Var(Ran(σ)).

Notation: lower case Greek letters σ, ϑ,ϕ,ψ, . . ..

Identity substitution: ε.
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Substitutions

Notation: If Dom(σ) = {x1, . . . , xn}, then σ can be written as the
set

{x1 7→ σ(x1), . . . , xn 7→ σ(xn)}.



Substitutions

Substitutions can be extended to terms:

σ(f(t1, . . . , tn)) = f(σ(t1), . . . ,σ(tn)).

σ(t): an instance of t.

Example:

σ = {x 7→ i(y),y 7→ e}.

t = f(y, f(x,y))

σ(t) = f(e, f(i(y), e))

Sub : The set of substitutions.
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Substitution Composition

Composition of ϑ and σ:

(σϑ)(x) := σ(ϑ(x)).

Composition is associative but not commutative.



Substitution Composition

Algorithm for obtaining a set representation of a composition of
two substitutions in a set form.

I Given:

θ = {x1 7→ t1, . . . , xn 7→ tn}

σ = {y1 7→ s1, . . . ,ym 7→ sm},

the set representation of their composition σθ is obtained
from the set

{x1 7→ σ(t1), . . . , xn 7→ σ(tn),y1 7→ s1, . . . ,ym 7→ sm}

by deleting

I all yi 7→ si’s with yi ∈ {x1, . . . , xn},

I all xi 7→ σ(ti)’s with xi = σ(ti).



Substitution Composition

Example (Composition)

θ = {x 7→ f(y),y 7→ z}.

σ = {x 7→ a,y 7→ b, z 7→ y}.

σθ = {x 7→ f(b), z 7→ y}.

Let σ = {x 7→ y,y 7→ z, z 7→ x} and ϑ = {y 7→ x, z 7→ y, x 7→ z}

σσ =

{x 7→ z,y 7→ x, z 7→ y}.

ϑσ =

ε

.
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Semantics: Structure

Structure S = (D, I).

I D: nonempty domain.

I I: interpretation function.

I Structure fixes interpretation of function and predicate
symbols.

I Meaning of variables is determined by a variable
assignment.



Semantics: Interpretation Function

The interpretation function assigns

I to each f ∈ Fn an n-ary function fI : Dn → D,
(in particular, cI ∈ D for each constant c)

I to each p ∈ Pn (different from .
=), an n-ary relation

pI on D.



Variable Assignment

A structure S = (D, I) is given.

Variable assignment σS maps each x ∈ V into an element of D:
σS(x) ∈ D.

Semantic counterpart of substitutions.

Define:

σS[x→ d](y) :=

{
σS(y), if x 6= y
d, otherwise.



Interpretation of Terms

A structure S = (D, I) and a variable assignment σS are given.

Value of a term t under S and σS, ValS,σS(t):

I ValS,σS(x) = σS(x).

I ValS,σS(f(t1, . . . , tn)) = fI(ValS,σS(t1), . . . ,ValS,σS(tn)).



Interpretation of Formulas

A structure S = (D, I) and a variable assignment σS are given.

The truth value of a formula under S and σS is either true or
false.

For atomic formulas:

I ValS,σS(s
.
= t) = true iff ValS,σS(s) = ValS,σS(t).

I ValS,σS(p(t1, . . . , tn)) = true iff
(ValS,σS(t1), . . . ,ValS,σS(tn)) ∈ pI.
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Interpretation of Formulas

For compound formulas:

I ValS,σS(¬A) = true iff ValS,σS(A) = false.

I ValS,σS(A∨ B) = true iff
ValS,σS(A) = true or ValS,σS(B) = true.

I ValS,σS(A∧ B) = true iff
ValS,σS(A) = true and ValS,σS(B) = true.

I ValS,σS(A⇒ B) = true iff
ValS,σS(A) = false or ValS,σS(B) = true.

I ValS,σS(A⇔ B) = true iff ValS,σS(A) = ValS,σS(B).
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Interpretation of Formulas

For quantified formulas:

I ValS,σS(∃x.A) = true iff
ValS,σS[x→d](A) = true for some d ∈ D.

I ValS,σS(∀x.A) = true iff
ValS,σS[x→d](A) = true for all d ∈ D.



Interpretation of Formulas

The value of a formula A under S:

I ValS(A) = true iff ValS,σS(A) = true for all σS.

The value of a closed formula is independent of variable
assignment.

S is called a model of A iff ValS(A) = true.

Written �S A.

A is a logical consequence of B iff every model of B is a model
of A.

Written B � A.
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Example

Formula: ∀x.(p(x)⇒ q(f(x),a))

Define S = (D, I) as

I D = {1, 2},
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I fI(1) = 2, fI(2) = 1,

I pI = {2},
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ValS(∀x.(p(x)⇒ q(f(x),a))) = true.

Hence, �S A.
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Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-valid

Valid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-valid

Valid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

A formula A is valid, if �S A for all S.

Written � A.

A formula A is unsatisfiable, if �S A for no S.

Formulas

Valid Non-validValid Non-valid

Satisfiable Unsat

Valid
Non-valid

sat Unsat



Validity, Unsatisfiability

Proposition

Let A and B be formulas and K be a set of formulas. Then

1. A is valid iff ¬A is unsatisfiable.

2. B |= A iff B∧ ¬A is unsatisfiable.

3. K |= A iff K ∪ {¬A} is unsatisfiable.



Inference System

Resolution Calculus



The Resolution Calculus

Operates on the clausal fragment of first-order logic

Clause: A formula of the form ∀x1. · · · .∀xn.(L1 ∨ · · ·∨ Lk),
where

I each Li is a literal,

I L1 ∨ · · ·∨ Lk contains no variables other than x1, . . . , xn.

Every first-order formula can be reduced to a set of clauses.

The reduction preserves unsatisfiability.

Clauses are often written without quantifier prefix: L1 ∨ · · ·∨ Lk.



Clausification

Every first-order formula can be reduced to a set of clauses:

Step 1: Transformation into a prenex normal form:

Q1x1. · · ·Qnxn.M,

where each Qi is either ∀ or ∃ and the formula M
contains no quantifiers.

Step 2: Skolemization.

Step 3: CNF transformation.

Step 4: Stripping off the quantifiers and transforming the
formula in CNF into set of clauses.



Transformation into a Prenex Normal Form

Traditional way.

Rename bound variables, apply the P rules in any context.

(∀ = ∃, ∃ = ∀, B does not contain x freely.)

A1 ⇔ A2  P (A1 ⇒ A2)∧ (A2 ⇒ A1).

¬Qx.A P Qx.¬A.

((Qx.A) ? B) P (Qx.A ? B), ? ∈ {∧,∨}

((Qx.A)⇒ B) P (Qx.A⇒ B).

(B ? (Qx.A)) P Qx.(B ?A), ? ∈ {∧,∨,⇒}

If F ∗P G, then G is in prenex normal form.

If F and G are closed, then they are equivalent.
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Skolemization

Replace existentially quantified variables by Skolem functions:

I The formula Q1x1. · · ·Qnxn.M is in prenex normal form

I Skolemization rule:

∀x1. · · · ∀xn.∃y.Q1z1. · · ·Qmzm.M[y] S
∀x1. · · · ∀xn.Q1z1. · · ·Qmzm.M[f(x1, . . . , xn)]

where f is a new function symbol of arity n with n > 0.

I Intuition: replace ∃y by a concrete choice function
computing y from all the arguments it depends on.

If G is in PNF and G ∗S H, then H is in PNF without ∃.

H |= G but not the other way around.

G is (un)satisfiable iff H is (un)satisfiable.
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Skolemization does not preserve equivalence

G ∗S H, G 6|= H:

I G = ∃x.p(x), H = p(a).

I S = ({1, 2}, I).

I aI = 1.

I pI = {2}.

I Then ValS(G) = true but ValS(H) = false.



Transformation into Clausal Normal Form

F ∗P Q1y1 · · ·Qnyn.A
 ∗S ∀x1 · · · ∀xn.B
 ∗CNF ∀x1. · · · .∀xn.∧ki=1 Ci

where Ci are clauses.

 ∗CNF preserves (un)satisfiability.

{C1, . . . ,Ck}: clausal normal form of F.



Clausification Example

∀x.∃y.(∃z.(p(x, z)∨ p(y, z))⇒ ∃u.q(x,y,u))

 P ∀x.∃y.∀z.(p(x, z)∨ p(y, z)⇒ ∃u.q(x,y,u))
 P ∀x.∃y.∀z.∃u.(p(x, z)∨ p(y, z)⇒ q(x,y,u))

 S ∀x.∀z.∃u.(p(x, z)∨ p(f1(x), z)⇒ q(x, f1(x),u))

 S ∀x.∀z.(p(x, z)∨ p(f1(x), z)⇒ q(x, f1(x), f2(x, z)))

 CNF ∀x.∀z.((¬p(x, z)∨ q(x, f1(x), f2(x, z)))∧
(¬p(f1(x), z)∨ q(x, f1(x), f2(x, z))))

{¬p(x, z)∨ q(x, f1(x), f2(x, z)),¬p(f1(x), z)∨ q(x, f1(x), f2(x, z))}
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What Do We Do?

Given: A set of assumptions A1, . . . ,An and a conjecture B.

Establish validity of A1 ∧ · · ·∧An ⇒ B.

For this, we negate the conjecture and try to establish
unsatisfiability of A1 ∧ · · ·∧An ∧ ¬B.

Inference system (for the fragment without equality): resolution
calculus.

Clausification of A1 ∧ · · ·∧An ∧ ¬B preserves unsatisfiability.

Resolution works on clauses and tries to derive a contradiction.
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Herbrand Interpretation

Structure H = (D, I), where

I D is the set of ground terms,

I for each n-ary function symbol f, fi maps
(t1, . . . , tn) ∈ Dn into f(t1, . . . , tn) ∈ D.

Herbrand interpretation H can be identified with the set of
ground atoms which are true in H.



Herbrand’s Theorem

Substitutions extend to clauses.

σ(C): an instance of a clause C.

ground(K), where K is a set of clauses: The set of all ground
instances of clauses in K.

Theorem

A set of clauses K is satisfiable iff it has a Herbrand model iff
ground(K) has a Herbrand model.



Inference Systems

Inference systems are sets of inferences:

Inference: a tuple (F1, . . . , Fn, Fn+1), n > 0, written as

F1, . . . , Fn
Fn+1

F1, . . . , Fn: premises.

Fn+1: conclusion.



Proofs

A proof in an inference system IS of a formula A from a set of
assumptions K: A sequence of formulas F1, . . . , Fm, where

I Fm = A,

I for all 1 6 i 6 m, Fi ∈ K or there exists an inference in IS

Fi1 , . . . , Fik
Fi

where 1 6 ij 6 i for each 1 6 j 6 k.



Soundness and Completeness

K `IS A: There exists a proof of A from K in IS, A is provable
from K in IS.

Soundness of IS: For each inference F1,...,Fn
F ∈ IS,

F1, . . . , Fn |= F.

Completeness of IS: If K |= F, then K `IS F.

Refutational Completeness of IS: If K |= �, then K `IS �,
where � is the empty clause.



Resolution Calculus for Ground Clauses

A: atom, C,D: clauses, L: literal.

I Ground Binary resolution:

A∨ C ¬A∨D

C∨D

I Ground Factoring:

L∨ L∨ C

L∨ C



Resolution Calculus for Ground Clauses

Sample refutation:

1. p(a)∨ q(b)

2. p(a)∨ ¬q(b)

3. ¬p(a)∨ q(b)

4. ¬p(a)∨ ¬q(b)

5. p(a)∨ p(a) (BR 1,2)

6. p(a) (Factor, 5)

7. ¬p(a)∨ ¬p(a) (BR 3,4)

8. ¬p(a) (Factor, 7)

9. � (BR 6, 8)



Resolution Calculus for Ground Clauses

Theorem

Resolution calculus for ground clauses is sound.

Theorem

Resolution calculus for ground clauses is refutationally
complete: If K 6`GRes �, then K has a model.

Proof is based on a construction that builds a Herbrand model
for K.



Resolution Calculus for General Case

How to lift the results from propositional to first-order case?

Property: Any model of a clause C is also a model for all
instances σ(C) of C.

Prove that some instances of clauses from K form an
unsatisfiable set. Then K will be unsatisfiable.

Find appropriate instantiations.



Resolution Calculus for General Case

Appropriate instantiations should create complementary literals.

p(x1, x1)∨ ¬q(x2) ¬p(a,y) p(z1,b)∨ q(f(z1, z2))

p(a,a)∨ ¬q(f(a,b))

¬p(a,a)

p(a,b)∨ q(f(a,b))

¬p(a,b)

x1 7→ a

x2 7→ f(a,b)

y 7→ a
z1 7→ a

z2 7→ b

y 7→ b

¬q(f(a,b)) q(f(a,b))

�

Do only necessary work.

Unification.
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Unification

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that σ(s) = σ(t).

I σ: a unifier of s and t.

I σ: a solution of the equation s .
=? t.



Example

x
.
=? f(y) : infinitely many unifiers

{x 7→ f(y)}, {x 7→ f(a),y 7→ a}, . . .

Some solutions are better than the others: {x 7→ f(y)} is more
general than {x 7→ f(a),y 7→ a}



Instantiation Quasi-Ordering

A substitution σ is more general than ϑ, written σ . ϑ, if there
exists η such that ησ = ϑ.

ϑ is called an instance of σ.

The relation . is reflexive and transitive binary relation, called
instantiation quasi-ordering.

' is the equivalence relation corresponding to ., i.e., the
relation . ∩ &.



Instantiation Quasi-Ordering

Example

Let σ = {x 7→ y}, ρ = {x 7→ a,y 7→ a}, ϑ = {y 7→ x}.

I σ . ρ, because {y 7→ a}σ = ρ.

I σ . ϑ, because {y 7→ x}σ = ϑ.

I ϑ . σ, because {x 7→ y}ϑ = σ.

I σ ' ϑ.



Variable Renaming

A substitution σ = {x1 7→ y1, x2 7→ y2, . . . , xn 7→ yn} is called
variable renaming iff {x1, . . . , xn} = {y1, . . . ,yn}.

(Permuting the domain variables.)

Example

I {x 7→ y,y 7→ z, z 7→ x} is a variable renaming.

I {x 7→ a}, {x 7→ y}, and {x 7→ z,y 7→ z, z 7→ x} are not.



Idempotent Substitutions

Definition

A substitution σ is idempotent iff σσ = σ.

Example

Let σ = {x 7→ f(z),y 7→ z}, ϑ = {x 7→ f(y),y 7→ z}.

I σ is idempotent.

I ϑ is not: ϑϑ = σ 6= ϑ.

Theorem

σ is idempotent iff Dom(σ) ∩VRan(σ) = ∅.
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' and Variable Renaming

Lemma

σ ' ϑ iff there exists a variable renaming ρ such that ρσ = ϑ.

Example

I σ = {x 7→ y}.

I ϑ = {y 7→ x}.

I σ ' ϑ.

I {x 7→ y,y 7→ x}σ = ϑ.



' and Variable Renaming

Lemma

σ ' ϑ iff there exists a variable renaming ρ such that ρσ = ϑ.

Example

I σ = {x 7→ y}.

I ϑ = {y 7→ x}.

I σ ' ϑ.

I {x 7→ y,y 7→ x}σ = ϑ.



Unification Problem, Unifier, MGU

Unification problem:
A finite set of equations Γ = {s1

.
=? t1, . . . , sn

.
=? tn}.

Unifier or solution of Γ :
A substitution σ such that σ(si) = σ(ti) for all 1 6 i 6 n.

U(Γ): The set of all unifiers of Γ . Γ is unifiable iff U(Γ) 6= ∅.

σ is a most general unifier (mgu) of Γ iff it is a least element of
U(Γ):

I σ ∈ U(Γ), and

I σ . ϑ for every ϑ ∈ U(Γ).
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Unifiers: Example

σ := {x 7→ y} is an mgu of x .
=? y.

For any other unifier ϑ of x .
=? y, σ . ϑ because

I ϑ(x) = ϑ(y) = ϑσ(x).

I ϑ(y) = ϑσ(y).

I ϑ(z) = ϑσ(z) for any other variable z.

σ ′ := {x 7→ z,y 7→ z} is a unifier but not an mgu of x .
=? y.

I σ ′ = {y 7→ z}σ.

I {z 7→ y}σ ′ = {x 7→ y, z 7→ y} 6= σ.

σ ′′ = {x 7→ z1,y 7→ z1, z1 7→ y} is an mgu of x .
=? y.

I σ = {y 7→ z1, z1 7→ y}σ ′′.

I σ ′′ is not idempotent.
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Unification

Question: How to compute an mgu of an unification problem?

Rule-based unification algorithm.

Repeated transformation of a set of equations.
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The Inference System U

A set of equations in solved form:

{x1 ≈ t1, . . . , xn ≈ tn}

where each xi occurs exactly once.

For each idempotent substitution there exists exactly one set of
equations in solved form.

Notation:

I [σ] for the solved form set for an idempotent substitution σ.

I σS for the idempotent substitution corresponding to a
solved form set S.



The Inference System U

System: The symbol ⊥ or a pair P;S where

I P is a multiset of unification problems,

I S is a set of equations in solved form.

⊥ represents failure.

A unifier (or a solution) of a system P;S: A substitution that
unifies each of the equations in P and S.

⊥ has no unifiers.



The Inference System U

Example

I System: {g(a) .
=? g(y),g(z)

.
=? g(g(x))}; {x ≈ g(y)}.

I Its unifier: {x 7→ g(a),y 7→ a, z 7→ g(g(a))}.



The Inference System U

Six transformation rules on systems:

Trivial:

{s
.
=? s} ] P ′;S⇔ P ′;S.

Decomposition:

{f(s1, . . . , sn)
.
=? f(t1, . . . , tn)} ] P ′;S⇔

{s1
.
=? t1, . . . , sn

.
=? tn} ∪ P ′;S, where n > 0.

Symbol Clash:

{f(s1, . . . , sn)
.
=? g(t1, . . . , tm)} ] P ′;S⇔ ⊥, if f 6= g.



The Inference System U

Orient:

{t
.
=? x} ] P ′;S⇔ {x

.
=? t} ∪ P ′;S, if t /∈ V.

Occurs Check:

{x
.
=? t} ] P ′;S⇔ ⊥ if x ∈ Var(t) but x 6= t.

Variable Elimination:

{x
.
=? t} ] P ′;S⇔ {x 7→ t}(P ′); {x 7→ t}(S) ∪ {x ≈ t},

if x /∈ Var(t).



Unification with U

In order to unify s and t:

1. Create an initial system {s
.
=? t}; ∅.

2. Apply successively rules from U.

The system U is essentially the Herbrand’s Unification
Algorithm.



Example: Symbol Clash

Example (Failure)

Unify p(f(a),g(x)) and p(y,y).

{p(f(a),g(x))
.
=? p(y,y)}; ∅ =⇒Dec

{f(a)
.
=? y,g(x)

.
=? y}; ∅ =⇒Or

{y
.
=? f(a),g(x)

.
=? y}; ∅ =⇒VarEl

{g(x)
.
=? f(a)}; {y ≈ f(a)} =⇒SymCl

⊥



Example: Success

Example

Unify p(a, x,h(g(z))) and p(z,h(y),h(y)).

{p(a, x,h(g(z)))
.
=? p(z,h(y),h(y))}; ∅ =⇒Dec

{a
.
=? z, x

.
=? h(y),h(g(z))

.
=? h(y)}; ∅ =⇒Or

{z
.
=? a, x

.
=? h(y),h(g(z))

.
=? h(y)}; ∅ =⇒VarEl

{x
.
=? h(y),h(g(a))

.
=? h(y)}; {z ≈ a} =⇒VarEl

{h(g(a))
.
=? h(y)}; {z ≈ a, x ≈ h(y)} =⇒Dec

{g(a)
.
=? y}; {z ≈ a, x ≈ h(y)} =⇒Or

{y
.
=? g(a)}; {z ≈ a, x ≈ h(y)} =⇒VarEl

∅; {z ≈ a, x ≈ h(g(a)),y ≈ g(a)}.

Answer: {z 7→ a, x 7→ h(g(a)),y 7→ g(a)}



Example: Occurrence Check

Example

Unify p(x, x) and p(y, f(y)).

{p(x, x)
.
=? p(y, f(y))}; ∅ =⇒Dec

{x
.
=? y, x

.
=? f(y)}; ∅ =⇒VarEl

{y
.
=? f(y)}; {x ≈ y} =⇒OccCh

⊥



Properties of U: Termination

Theorem (Termination)

For any finite set of equations P, every sequence of
transformations in U

P; ∅ ⇔ P1;S1 ⇔ P2;S2 ⇔ · · ·

terminates either with ⊥ or with ∅;S, with S in solved form.

Corollary

If P; ∅ ⇔+ ∅;S then σS is idempotent.



Properties of U: Soundness and Completeness

Theorem (Soundness)

If P; ∅ ⇔+ ∅;S, then σS unifies any equation in P.

Theorem (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of
transformations P; ∅ ⇔ · · · ends in a system ∅;S such that
σS . ϑ.

Corollary

If P has no unifiers, then any maximal sequence of
transformations from P; ∅ must have the form P; ∅ ⇔ · · · ⇔ ⊥.
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Theorem (Soundness)

If P; ∅ ⇔+ ∅;S, then σS unifies any equation in P.

Theorem (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of
transformations P; ∅ ⇔ · · · ends in a system ∅;S such that
σS . ϑ.

Corollary
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Observations

U computes an idempotent mgu.

The choice of rules in computations via U is “don’t care”
nondeterminism (the word “any” in Completeness Theorem).

Any control strategy will result to an mgu for unifiable terms,
and failure for non-unifiable terms.

Any practical algorithm that proceeds by performing
transformations of U in any order is

I sound and complete,

I generates mgus for unifiable terms.

Not all transformation sequences have the same length.

Not all transformation sequences end in exactly the same mgu.



Back to Resolution: Calculus for General Case

Two inference rules: Binary resolution and factoring.

A,B: atom, C,D: clauses, L: literal

I Binary resolution:

A∨ C ¬B∨D

σ(C∨D)

where σ = mgu(A,B).

I Factoring:

A∨ B∨ C

σ(A∨ C)

where σ = mgu(A,B).



Resolution: Soundness and Completeness

Theorem

Resolution calculus for general case is sound.

Theorem

Resolution calculus for general case is refutationally complete:
If K is a set of clauses saturated wrt Res (i.e., Res(K) ⊆ K) and
K |= �, then � ∈ K.

Proof is based on the idea that in this case ground(K) is also
saturated, ground(K) |= �, and resolution calculus for ground
clauses is refutationally complete.



Proving by Resolution

Given a set of clauses K and a hypothesis H, to prove H from K

by resolution one should

1. Negate the hypothesis;

2. Add the negated hypothesis to K and start derivation,
trying to obtain the contradiction;

3. In the derivation, use binary resolution and factoring rules
to generate new clauses, add them to K;

4. If the empty clause appears, stop: contradiction found, H is
proved;

5. If no step can be made and the empty clause is not found,
then H can not be proved.



Example. Proving by Resolution

Show that the given set of clauses (1-3) is unsatisfiable:

1. ¬p(x,y)∨ q(x,y).

2. p(x,y)∨ q(y, x).

3. ¬q(a,a)∨ ¬q(b,b)

4. q(x1,y1)∨ q(y1, x1). (Resolvent of 1 and 2)

5. q(x1, x1) (Factor of 4)

6. ¬q(b,b) (Resolvent of 5 and 3)

7. � (Resolvent of 5 and 6, contradiction found.)
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Proving by Resolution

Unrestricted application of the inference rules might lead to
search space explosion.

Most of the generated clauses are redundant.

Resolution strategies.

Redundancy elimination.



Ordered Resolution

One of most efficient resolution strategies.

Assumes a partial ordering on terms and literals.

Ordered inference:

I A subset of the literals is marked as maximal

I (If the clause is ground, i.e, without variables, the order is
total, and the greatest literal is marked as maximal)

I The inference rules may be restricted in some cases so
that they apply only to maximal literals.



Orderings

�: a well-founded ordering on atoms such that

I � is total on ground atoms,

I � is stable: A � B implies σ(A) � σ(B) for any atoms A
and B and all substitutions σ.

Extension on literals:

I ¬A � ¬B if A � B for any atoms A and B.

I ¬A � A for any atom A.

� := � ∪ =.

� := �−1



Ground Ordered Resolution

A: atom, C,D: clauses, L: literal

I Ground ordered binary resolution:

A∨ C ¬A∨D

C∨D
,

where A � L for all L in C and ¬A � L for all L in D.

I Ground ordered positive factoring:

A∨A∨ C

A∨ C
,

where A � L for all L from C.

The proofs remain correct.
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C∨D
,

where A � L for all L in C and ¬A � L for all L in D.

I Ground ordered positive factoring:

A∨A∨ C

A∨ C
,

where A � L for all L from C.

The proofs remain correct.



Ordered Resolution: General Case

A,B: atoms, C,D: clauses, L: literal

I Ordered binary resolution:

A∨ C ¬B∨D

σ(C∨D)
,

where σ = mgu(A,B), σ(A) 6� σ(L) for all L in C, and
σ(¬B) 6≺ σ(L) for all L in D.

I Ordered positive factoring:

A∨ B∨ C

σ(A∨ C)
,

where σ = mgu(A,B) and σ(A) 6≺ σ(L) for all L in C.



Selection Function

A selection function is a mapping

sel : C −→ set of occurrences of negative literals in C.

Will be used to further improve the inference system.

Intuition:

I If a clause has at least one selected literal, compute only
inferences that involve a selected literal.

I If a clause has no selected literals, compute only
inferences that involve a maximal literal.



Ordered Resolution with Selection: General Case

Res�sel, parametrized by � and sel.

A,B: atoms, C,D: clauses, L: literal

Ordered binary resolution with selection:

A∨ C ¬B∨D

σ(C∨D)
,

where

I σ = mgu(A,B),

I σ(A) 6� σ(L) for all L in C,

I sel(A∨ C) = ∅,

I ¬B ∈ sel(¬B∨D), or
sel(¬B∨D) = ∅ and σ(¬B) 6≺ σ(L) for all L in D.



Ordered Resolution with Selection: General Case

Res�sel, parametrized by � and sel.

A,B: atoms, C,D: clauses, L: literal

Ordered binary resolution with selection:

A∨ C ¬B∨D

σ(C∨D)
,

where

I σ = mgu(A,B),

I σ(A) 6� σ(L) for all L in C,

I sel(A∨ C) = ∅,

I ¬B ∈ sel(¬B∨D), or
sel(¬B∨D) = ∅ and σ(¬B) 6≺ σ(L) for all L in D.



Ordered Resolution with Selection: General Case

Res�sel, parametrized by � and sel.

A,B: atoms, C,D: clauses, L: literal

Ordered positive factoring with selection:

A∨ B∨ C

σ(A∨ C)
,

where

I σ = mgu(A,B),

I σ(A) 6≺ σ(L) for all L in C,

I sel(A∨ B∨ C) = ∅.



Ordered Resolution with Selection: General Case

Res�sel, parametrized by � and sel.

A,B: atoms, C,D: clauses, L: literal

Ordered positive factoring with selection:

A∨ B∨ C

σ(A∨ C)
,

where

I σ = mgu(A,B),

I σ(A) 6≺ σ(L) for all L in C,

I sel(A∨ B∨ C) = ∅.



Ordered Resolution with Selection: General Case

Ordering and selection restrictions do not affect refutational
completeness:

Theorem

Given �, sel, and a set of clauses K saturated wrt Res�sel
(i.e., Res�sel(K) ⊆ K), if K |= �, then � ∈ K.



Ordered Resolution with Selection

p(a) � q(b). Selected literals are underlined. Compare:

1. p(a)∨ q(b)

2. p(a)∨ ¬q(b)

3. ¬p(a)∨ q(b)

4. ¬p(a)∨ ¬q(b)

5. p(a)∨ p(a) (BR 1,2)

6. p(a) (Factor, 5)

7. ¬p(a)∨ ¬p(a) (BR 3,4)

8. ¬p(a) (Factor, 7)

9. � (BR 6, 8)

1. p(a)∨ q(b)

2. p(a)∨ ¬q(b)

3. ¬p(a)∨ q(b)

4. ¬p(a)∨ ¬q(b)

5. q(b)∨ q(b) (OBRS 1,3)

6. q(b) (OPFS, 5)

7. ¬p(a) (OBRS 6,4)

8. p(a) (OBRS 6,2)

9. � (OBRS 7, 8)

Smaller search space with Res�s el.



Ordered Resolution with Selection

Smaller search space with Res�sel.

Rotation redundancies are avoided, e.g., in Res, two derivations
of the same clause are possible:

1. C1 ∨A

2. C2 ∨ ¬A∨ B

3. C3 ∨ ¬B

4. C1 ∨ C2 ∨ B (BR 1,2)

5. C1 ∨ C2 ∨ C3 (BR 3,4)

1. C1 ∨A

2. C2 ∨ ¬A∨ B

3. C3 ∨ ¬B

4. C2 ∨ ¬A∨ C3 (BR 2,3)

5. C1 ∨ C2 ∨ C3 (BR 3,4)

If A � B, Res�sel forbids the second derivation.



Redundancies

Ordering on clauses.

Treat clauses as multisets.

Multiset extension �mul of �:

C1 �mul C2 iff there exist multisets D1 6= ∅ and D2 such that

I D1 ⊆ C1,

I C2 = (C1 −D1) ∪D2,

I for each d2 ∈ D2 there is d1 ∈ D1 such that d1 � d2.

�mul is used to defined the notion of redundancy.

We reuse � for �mul.



Redundancies

Ordering on clauses.

Treat clauses as multisets.

Multiset extension �mul of �:

C1 �mul C2 iff there exist multisets D1 6= ∅ and D2 such that

I D1 ⊆ C1,

I C2 = (C1 −D1) ∪D2,

I for each d2 ∈ D2 there is d1 ∈ D1 such that d1 � d2.

�mul is used to defined the notion of redundancy.

We reuse � for �mul.



Redundancies

Define for a set of ground clauses K and a ground clause C:

K≺C := {D ∈ K | D ≺ C}

C is redundant wrt K if K≺C |= C.

C is redundant in K if K≺C |= C and C ∈ K.

A general clause C is redundant wrt a set of general clauses K
if all ground instances of C are redundant wrt ground(K).

Examples of redundancy:

I Tautologies: they are redundant wrt any K.

I Subsumption: σ(C) ⊂ D. D is redundant wrt K ∪ {C}.
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Inference with Redundancy Elimination

Consider an inference process in the inference system IS

(called IS-run) with two kinds of step Ki ` Ki+1:

1. inference in IS,

2. elimination of redundancy: Ki+1 = Ki − {C}, if C is
redundant in K.



Inference with Redundancy Elimination

Let K0 ` K1 ` K2 ` · · · be an IS-run.

A clause C is called persistent in it if there exists i such that for
all j > i, C ∈ Kj.

The limit Kω of the run is the set of all persistent clauses:

Kω =
⋃
i>0

⋂
j>i

Kj.



Inference with Redundancy Elimination

Let K0 ` K1 ` K2 ` · · · be a run.

The run is called IS-fair if every inference with persistent
premises in Kω has been applied, i.e, if

C1 · · · Cn
C

is an inference step in IS and {C1, . . . ,Cn} ⊆ Kω, then there
exists i such that C ∈ Ki.



Res�sel with Redundancy Elimination

Res�sel with Redundancy Elimination is refutationally complete:

Theorem

Let K0 ` K1 ` K2 ` · · · be a Res�sel-fair run. If K0 is unsatisfiable
then � ∈ Ki for some i.



Implementation: Given Clause Algorithm

The clause set is split into two parts: active A and passive P.

The set A contains already seen given clauses.

The clauses in P have not yet been selected as “given”.

From the beginning, P consists of the initial clauses.



Given Clause Algorithm: Main Loop

At each iteration:

I Select a new given clause C from P and remove is from P.

I Infer new clauses: conclusions of inferences between
clauses from A and C.

I New clauses simplify and get simplified by clauses in
active.

I If new clauses contain �, the algorithm returns
unsatisfiable.

I Add new clauses to P.

I Add C to A.



Variations of the Algorithm

Otter loop: new clauses simplify and get simplified by passive.

Discount loop: passive clauses do not participate in
simplification. Given clause participates in simplification
inferences with active.


	Introduction
	The Resolution Calculus

