Automated Reasoning Unification and Matching

Temur Kutsia

RISC, JKU Linz

Unification

Solving term equations:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = \sigma(t)$.

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma: \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{x \mid \sigma(x) \neq x\}$$

is finite.

Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{ x \mid \sigma(x) \neq x \}$$

is finite.

Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

▶ Variable range of a substitution σ :

$$VRan(\sigma) := Var(Ran(\sigma)).$$

▶ A $T(\mathcal{F}, \mathcal{V})$ -substitution: A function $\sigma : \mathcal{V} \to T(\mathcal{F}, \mathcal{V})$, whose domain

$$\mathcal{D}om(\sigma) := \{x \mid \sigma(x) \neq x\}$$

is finite.

Range of a substitution σ :

$$\mathcal{R}an(\sigma) := \{ \sigma(x) \mid x \in \mathcal{D}om(\sigma) \}.$$

▶ Variable range of a substitution σ :

$$VRan(\sigma) := Var(Ran(\sigma)).$$

Notation: lower case Greek letters $\sigma, \vartheta, \varphi, \psi, \ldots$ Identity substitution: ε .

Notation: If $\mathcal{D}om(\sigma)=\{x_1,\ldots,x_n\}$, then σ can be written as the set

$$\{x_1 \mapsto \sigma(x_1), \ldots, x_n \mapsto \sigma(x_n)\}.$$

Example:

$$\{x \mapsto i(y), y \mapsto e\}.$$

lacktriangle The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

lacktriangle The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$

$$t = f(y, f(x, y))$$

$$\sigma(t) = f(e, f(i(y), e))$$

lacktriangle The substitution σ can be extended to a mapping

$$\sigma: T(\mathcal{F}, \mathcal{V}) \to T(\mathcal{F}, \mathcal{V})$$

by induction:

$$\sigma(f(t_1,\ldots,t_n))=f(\sigma(t_1),\ldots,\sigma(t_n)).$$

Example:

$$\sigma = \{x \mapsto i(y), y \mapsto e\}.$$

$$t = f(y, f(x, y))$$

$$\sigma(t) = f(e, f(i(y), e))$$

Sub: The set of substitutions.

Composition of ϑ and σ :

$$\sigma \vartheta(x) := \sigma(\vartheta(x)).$$

- ► Composition of two substitutions is again a substitution.
- Composition is associative but not commutative.

Algorithm for obtaining a set representation of a composition of two substitutions in a set form.

Given:

$$\theta = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$$

$$\sigma = \{y_1 \mapsto s_1, \dots, y_m \mapsto s_m\},$$

the set representation of their composition $\sigma\theta$ is obtained from the set

$$\{x_1 \mapsto \sigma(t_1), \dots, x_n \mapsto \sigma(t_n), y_1 \mapsto s_1, \dots, y_m \mapsto s_m\}$$

by deleting

- ightharpoonup all $y_i \mapsto s_i$'s with $y_i \in \{x_1, \dots, x_n\}$,
- ▶ all $x_i \mapsto \sigma(t_i)$'s with $x_i = \sigma(t_i)$.

Example 3.1 (Composition)

$$\theta = \{x \mapsto f(y), y \mapsto z\}.$$

$$\sigma = \{x \mapsto a, y \mapsto b, z \mapsto y\}.$$

$$\sigma\theta = \{x \mapsto f(b), z \mapsto y\}.$$

 \blacktriangleright t is an instance of s iff there exists a σ such that

$$\sigma(s) = t$$
.

- ▶ Notation: $t \gtrsim s$ (or $s \lesssim t$).
- ▶ Reads: t is more specific than s, or s is more general than t.
- ▶ ≥ is a quasi-order.
- Strict part: >.

 \blacktriangleright t is an instance of s iff there exists a σ such that

$$\sigma(s) = t$$
.

- ▶ Notation: $t \gtrsim s$ (or $s \lesssim t$).
- ▶ Reads: t is more specific than s, or s is more general than t.
- ▶ ≥ is a quasi-order.
- ► Strict part: >.
- ▶ Example: $f(e, f(i(y), e)) \gtrsim f(y, f(x, y))$, because

$$\sigma(f(y, f(x, y))) = f(e, f(i(y), e))$$

for
$$\sigma = \{x \mapsto i(y), y \mapsto e\}$$

Unification

Syntactic unification:

Given: Two terms s and t.

Find: A substitution σ such that $\sigma(s) = \sigma(t)$.

 \triangleright σ : a unifier of s and t.

 $ightharpoonup \sigma$: a solution of the equation s=?t.

Examples

```
f(x) = {}^? f(a): exactly one unifier \{x \mapsto a\} x = {}^? f(y): infinitely many unifiers \{x \mapsto f(y)\}, \{x \mapsto f(a), y \mapsto a\}, \dots f(x) = {}^? g(y): no unifiers x = {}^? f(x): no unifiers
```

Examples

$$x=^? f(y):$$
 infinitely many unifiers $\{x\mapsto f(y)\}, \{x\mapsto f(a), y\mapsto a\},\ldots$

▶ Some solutions are better than the others: $\{x\mapsto f(y)\}$ is more general than $\{x\mapsto f(a), y\mapsto a\}$

Instantiation Quasi-Ordering

- ▶ A substitution σ is more general than ϑ , written $\sigma \lesssim \vartheta$, if there exists η such that $\eta \sigma = \vartheta$.
- \triangleright ϑ is called an instance of σ .
- ► The relation ≤ is quasi-ordering (reflexive and transitive binary relation), called instantiation quasi-ordering.
- ▶ \sim is the equivalence relation corresponding to \lesssim , i.e., the relation $\lesssim \cap \gtrsim$.

Let
$$\sigma = \{x \mapsto y\}$$
, $\rho = \{x \mapsto a, y \mapsto a\}$, $\vartheta = \{y \mapsto x\}$.

- $\sigma \lesssim \rho$, because $\{y \mapsto a\}\sigma = \rho$.
- $\sigma \lesssim \vartheta$, because $\{y \mapsto x\}\sigma = \vartheta$.
- $\vartheta \lesssim \sigma$, because $\{x \mapsto y\}\vartheta = \sigma$.
- $\triangleright \sigma \sim \vartheta$.

Definition 3.2 (Variable Renaming)

A substitution $\sigma = \{x_1 \mapsto y_1, x_2 \mapsto y_2, \dots, x_n \mapsto y_n\}$ is called variable renaming iff $\{x_1, \dots, x_n\} = \{y_1, \dots, y_n\}$. (Permuting the domain variables.)

- $\{x \mapsto y, y \mapsto z, z \mapsto x\}$ is a variable renaming.
- $\blacktriangleright \ \{x\mapsto a\}\text{, } \{x\mapsto y\}\text{, and } \{x\mapsto z,y\mapsto z,z\mapsto x\} \text{ are not.}$

Definition 3.3 (Idempotent Substitution)

A substitution σ is idempotent iff $\sigma \sigma = \sigma$.

Let
$$\sigma = \{x \mapsto f(z), y \mapsto z\}$$
, $\vartheta = \{x \mapsto f(y), y \mapsto z\}$.

- σ is idempotent.
- ϑ is not: $\vartheta\vartheta=\sigma\neq\vartheta$.

Lemma 3.2

 $\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma = \vartheta$.

Proof.

Exercise.

Lemma 3.2

 $\sigma \sim \vartheta$ iff there exists a variable renaming ρ such that $\rho \sigma = \vartheta$.

Proof.

Exercise.

- $\vartheta = \{ y \mapsto x \}.$
- $ightharpoonup \sigma \sim \vartheta$.

Theorem 3.4

 σ is idempotent iff $\mathcal{D}om(\sigma) \cap \mathcal{VR}an(\sigma) = \emptyset$.

Proof.

Exercise.

Definition 3.4 (Unification Problem, Unifier, MGU)

▶ Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^{?}t_1, \dots, s_n = {}^{?}t_n\}.$

Definition 3.4 (Unification Problem, Unifier, MGU)

- ▶ Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^?t_1, \ldots, s_n = {}^?t_n\}.$
- ▶ Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.

Definition 3.4 (Unification Problem, Unifier, MGU)

- ▶ Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^?t_1, \ldots, s_n = {}^?t_n\}.$
- ▶ Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.
- ▶ $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ . Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.

Definition 3.4 (Unification Problem, Unifier, MGU)

- ▶ Unification problem: A finite set of equations $\Gamma = \{s_1 = {}^?t_1, \ldots, s_n = {}^?t_n\}.$
- ▶ Unifier or solution of Γ : A substitution σ such that $\sigma(s_i) = \sigma(t_i)$ for all $1 \le i \le n$.
- ▶ $\mathcal{U}(\Gamma)$: The set of all unifiers of Γ . Γ is unifiable iff $\mathcal{U}(\Gamma) \neq \emptyset$.
- $ightharpoonup \sigma$ is a most general unifier (mgu) of Γ iff it is a least element of $\mathcal{U}(\Gamma)$:
 - \bullet $\sigma \in \mathcal{U}(\Gamma)$, and
 - $\sigma \lesssim \vartheta$ for every $\vartheta \in \mathcal{U}(\Gamma)$.

Unifiers

Example 3.6

 $\sigma := \{x \mapsto y\} \text{ is an mgu of } x = ?y.$

For any other unifier ϑ of $x=^{?}y$, $\sigma\lesssim\vartheta$ because

- $\vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$
- $\vartheta(y) = \vartheta \sigma(y).$
- $\vartheta(z) = \vartheta \sigma(z)$ for any other variable z.

Unifiers

Example 3.6

 $\sigma:=\{x\mapsto y\} \text{ is an mgu of } x=^?y.$

For any other unifier ϑ of $x=^{?}y$, $\sigma\lesssim\vartheta$ because

- $\vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$
- $\vartheta(y) = \vartheta \sigma(y).$
- $\vartheta(z) = \vartheta \sigma(z)$ for any other variable z.

 $\sigma' := \{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of $x = {}^?y$.

Unifiers

Example 3.6

 $\sigma := \{x \mapsto y\}$ is an mgu of x =? y.

For any other unifier ϑ of $x=^?y$, $\sigma\lesssim\vartheta$ because

- $\vartheta(x) = \vartheta(y) = \vartheta\sigma(x).$
- $\vartheta(y) = \vartheta \sigma(y).$
- $\vartheta(z) = \vartheta \sigma(z)$ for any other variable z.

 $\sigma' := \{x \mapsto z, y \mapsto z\}$ is a unifier but not an mgu of $x = {}^?y$.

 $\sigma'' = \{x \mapsto y, z_1 \mapsto z_2, z_2 \mapsto z_1\}$ is an mgu of x = y.

• σ'' is not idempotent.

Unification

Question: How to compute an mgu of an unification problem?

Rule-Based Formulation of Unification

- Unification algorithm in a rule-base way.
- Repeated transformation of a set of equations.
- ► The left-to-right search for disagreements: modeled by term decomposition.

The Inference System $\mathfrak U$

A set of equations in solved form:

$$\{x_1 \approx t_1, \dots, x_n \approx t_n\}$$

where each x_i occurs exactly once.

- ► For each idempotent substitution there exists exactly one set of equations in solved form.
- Notation:
 - $[\sigma]$ for the solved form set for an idempotent substitution σ .
 - $lackbox{\sigma}_S$ for the idempotent substitution corresponding to a solved form set S.

The Inference System $\mathfrak U$

- ▶ System: The symbol \bot or a pair P; S where
 - ▶ *P* is a set of unification problems,
 - ightharpoonup S is a set of equations in solved form.
- ▶ ⊥ represents failure.
- ▶ A unifier (or a solution) of a system *P*; *S*: A substitution that unifies each of the equations in *P* and *S*.
- ▶ ⊥ has no unifiers.

The Inference System $\mathfrak U$

- ► System: $\{g(a) = {}^? g(y), g(z) = {}^? g(g(x))\}; \{x \approx g(y)\}.$
- ▶ Its unifier: $\{x \mapsto g(a), y \mapsto a, z \mapsto g(g(a))\}.$

The Inference System \$\mathfrak{U}\$

Six transformation rules on systems:1

Trivial:

$$\{s = {}^? s\} \uplus P'; S \Leftrightarrow P'; S.$$

Decomposition:

$$\{f(s_1,\ldots,s_n) = f(t_1,\ldots,t_n)\} \uplus P'; S \Leftrightarrow$$
$$\{s_1 = f(t_1,\ldots,s_n) = f(t_n)\} \cup P'; S, \text{ where } n \geq 0.$$

Symbol Clash:

$$\{f(s_1,\ldots,s_n)=^? g(t_1,\ldots,t_m)\} \uplus P'; S \Leftrightarrow \bot, \text{ if } f \neq g.$$

The Inference System \$\mathfrak{U}\$

Orient:

$$\{t = {}^?x\} \uplus P'; S \Leftrightarrow \{x = {}^?t\} \cup P'; S, \text{ if } t \notin \mathcal{V}.$$

Occurs Check:

$$\{x = {}^?t\} \uplus P'; S \Leftrightarrow \bot \text{ if } x \in \mathcal{V}ar(t) \text{ but } x \neq t.$$

Variable Elimination:

$$\{x=^?t\}\uplus P';S\Leftrightarrow \{x\mapsto t\}(P');\{x\mapsto t\}(S)\cup \{x\approx t\},$$
 if $x\notin \mathcal{V}ar(t).$

Unification with \$\mathcal{U}\$

In order to unify s and t:

- 1. Create an initial system $\{s = {}^{?} t\}; \emptyset$.
- 2. Apply successively rules from \mathfrak{U} .

The system $\mathfrak U$ is essentially the Herbrand's Unification Algorithm.

Examples

```
Example 3.8 (Failure) Unify p(f(a),g(x)) and p(y,y). \{p(f(a),g(x))=^? p(y,y)\}; \ \emptyset \Longrightarrow_{\mathsf{Dec}} \\ \{f(a)=^? y,g(x)=^? y\}; \ \emptyset \Longrightarrow_{\mathsf{Or}} \\ \{y=^? f(a),g(x)=^? y\}; \ \emptyset \Longrightarrow_{\mathsf{VarEl}} \\ \{g(x)=^? f(a)\}; \ \{y\approx f(a)\} \Longrightarrow_{\mathsf{SymCl}} \bot
```

Examples

```
Example 3.9 (Success)
Unify p(a, x, h(q(z))) and p(z, h(y), h(y)).
                        \{p(a,x,h(q(z)))=?p(z,h(y),h(y))\}; \emptyset \Longrightarrow_{\mathsf{Dec}}
                       \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y), h(q(z)) = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y)\}; \emptyset \Longrightarrow_{\mathsf{Or}} \{a = {}^? z, x = {}^? h(y)\}
                       \{z = {}^{?} a, x = {}^{?} h(y), h(q(z)) = {}^{?} h(y)\}; \emptyset \Longrightarrow_{\mathsf{VarFI}}
                            \{x = {}^{?} h(y), h(q(a)) = {}^{?} h(y)\}; \{z \approx a\} \Longrightarrow_{\mathsf{VarFI}}
                                 \{h(a(a)) = {}^? h(y)\}; \{z \approx a, x \approx h(y)\} \Longrightarrow_{\mathsf{Dec}}
                                                                   \{a(a) = {}^{?}y\}; \{z \approx a, x \approx h(y)\} \Longrightarrow_{Or}
                                                                   \{y=^{?} a(a)\}; \{z\approx a, x\approx h(y)\} \Longrightarrow_{\mathsf{VarEI}}
                                                    \emptyset: \{z \approx a, x \approx h(q(a)), y \approx q(a)\}.
```

Answer: $\{z \mapsto a, x \mapsto h(g(a)), y \mapsto g(a)\}$

Examples

Lemma 3.3

For any finite set of equations P, every sequence of transformations in $\mathfrak U$

$$P; \emptyset \Leftrightarrow P_1; S_1 \Leftrightarrow P_2; S_2 \Leftrightarrow \cdots$$

terminates either with \bot or with \emptyset ; S, with S in solved form.

Proof.

Complexity measure on the set P of equations: $\langle n_1, n_2, n_3 \rangle$, ordered lexicographically on triples of naturals, where

 $n_1 =$ The number of distinct variables in P.

 $n_2 =$ The number of symbols in P.

 n_3 = The number of equations in P of the form t = x where t is not a variable.

Proof [Cont.]

Each rule in $\mathfrak U$ strictly reduces the complexity measure.

Rule	n_1	n_2	n_3
Trivial	>	>	
Decomposition	=	>	
Orient	=	=	>
Variable Elimination	>		

Proof [Cont.]

- ▶ A rule can always be applied to a system with non-empty *P*.
- ▶ The only systems to which no rule can be applied are \bot and \emptyset ; S.
- ▶ Whenever an equation is added to S, the variable on the left-hand side is eliminated from the rest of the system, i.e. S_1, S_2, \ldots are in solved form.

Corollary 3.1

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$ then σ_S is idempotent.

Notation: Γ for systems.

Lemma 3.4

For any transformation $P; S \Leftrightarrow \Gamma$, a substitution ϑ unifies P; S iff it unifies Γ .

Proof.

Occurs Check: If $x \in \mathcal{V}ar(t)$ and $x \neq t$, then

- ightharpoonup x contains fewer symbols than t,
- $\triangleright \vartheta(x)$ contains fewer symbols than $\vartheta(t)$ (for any ϑ).

Therefore, $\vartheta(x)$ and $\vartheta(t)$ can not be unified.

Variable Elimination: From $\vartheta(x)=\vartheta(t)$, by structural induction on u:

$$\vartheta(u) = \vartheta\{x \mapsto t\}(u)$$

for any term, equation, or set of equations u. Then

$$\vartheta(P') = \vartheta\{x \mapsto t\}(P'), \qquad \vartheta(S') = \vartheta\{x \mapsto t\}(S').$$

Theorem 3.5 (Soundness)
If $P: \emptyset \Leftrightarrow^+ \emptyset$; S, then σ_S unifies any equation in P.

Theorem 3.5 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S unifies any equation in P.

Proof.

By induction on the length of derivation, using the previous lemma and the fact that σ_S unifies S.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S \lesssim \vartheta$.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S \lesssim \vartheta$.

Proof.

Such a sequence must end in \emptyset ; S where ϑ unifies S (why?). For every binding $x\mapsto t$ in $\sigma_S,\, \vartheta\sigma_S(x)=\vartheta(t)=\vartheta(x)$ and for every $x\notin \mathcal{D}om(\sigma_S),\, \vartheta\sigma_S(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta\sigma_S$.

Theorem 3.6 (Completeness)

If ϑ unifies every equation in P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S \lesssim \vartheta$.

Proof.

Such a sequence must end in \emptyset ; S where ϑ unifies S (why?). For every binding $x\mapsto t$ in σ_S , $\vartheta\sigma_S(x)=\vartheta(t)=\vartheta(x)$ and for every $x\notin \mathcal{D}om(\sigma_S)$, $\vartheta\sigma_S(x)=\vartheta(x)$. Hence, $\vartheta=\vartheta\sigma_S$.

Corollary 3.2

If P has no unifiers, then any maximal sequence of transformations from $P; \emptyset$ must have the form $P; \emptyset \Leftrightarrow \cdots \Leftrightarrow \bot$.

Observations

- \(\mathcal{U} \) computes an idempotent mgu.
- ► The choice of rules in computations via 𝑢 is "don't care" nondeterminism (the word "any" in Completeness Theorem).
- Any control strategy will result to an mgu for unifiable terms, and failure for non-unifiable terms.
- ► Any practical algorithm that proceeds by performing transformations of 𝒰 in any order is
 - sound and complete,
 - generates mgus for unifiable terms.
- Not all transformation sequences have the same length.
- ▶ Not all transformation sequences end in exactly the same mgu.

Matching

Definition 3.5

Matcher, Matching Problem

- A substitution σ is a matcher of s to t if $\sigma(s) = t$.
- ▶ A matching equation between s and t is represented as $s \lesssim^{?} t$.
- ► A matching problem is a finite set of matching equations.

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x\mapsto g(z),y\mapsto c\}$	$\{x\mapsto g(z),y\mapsto c\}$

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x\mapsto g(z),y\mapsto c\}$	$\{x\mapsto g(z), y\mapsto c\}$
$f(x,y) \lesssim^? f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x\mapsto g(z),y\mapsto x\}$	$\{x\mapsto g(z),y\mapsto g(z)\}$

$f(x,y) \lesssim^{?} f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x\mapsto g(z),y\mapsto c\}$	$\{x\mapsto g(z),y\mapsto c\}$
$f(x,y) \lesssim^{?} f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x\mapsto g(z),y\mapsto x\}$	$\{x\mapsto g(z), y\mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	f(x,a) = f(b,y)
No matcher	$\{x\mapsto b, y\mapsto a\}$

$f(x,y) \lesssim^{?} f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x\mapsto g(z),y\mapsto c\}$	$\{x\mapsto g(z),y\mapsto c\}$
$f(x,y) \lesssim^{?} f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x\mapsto g(z),y\mapsto x\}$	$\{x\mapsto g(z),y\mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	f(x,a) = f(b,y)
No matcher	$\{x\mapsto b,y\mapsto a\}$
$f(x,x) \lesssim^? f(x,a)$	f(x,x) = f(x,a)
No matcher	$\{x \mapsto a\}$

$f(x,y) \lesssim^? f(g(z),c)$	f(x,y) = f(g(z),c)
$\{x\mapsto g(z),y\mapsto c\}$	$\{x\mapsto g(z),y\mapsto c\}$
$f(x,y) \lesssim^? f(g(z),x)$	f(x,y) = f(g(z),x)
$\{x\mapsto g(z),y\mapsto x\}$	$\{x\mapsto g(z),y\mapsto g(z)\}$
$f(x,a) \lesssim^? f(b,y)$	f(x,a) = f(b,y)
No matcher	$\{x\mapsto b,y\mapsto a\}$
$f(x,x) \lesssim^? f(x,a)$	f(x,x) = f(x,a)
No matcher	$\{x \mapsto a\}$
$x \lesssim^? f(x)$	x = f(x)
$\{x \mapsto f(x)\}$	No unifier

How to Solve Matching Problems

- s = t and $s \lesssim t$ coincide, if t is ground.
- ▶ When t is not ground in $s \lesssim^{?} t$, simply regard all variables in t as constants and use the unification algorithm.
- ► Alternatively, modify the rules in \$\mathcal{U}\$ to work directly with the matching problem.

Matched Form

- A set of equations $\{x_1 \approx t_1, \dots, x_n \approx t_n\}$ is in matched from, if all x's are pairwise distinct.
- ▶ The notation σ_S extends to matched forms.
- ▶ If S is in matched form, then

$$\sigma_S(x) = \left\{ \begin{array}{ll} t, & \text{if } x \approx t \in S \\ x, & \text{otherwise} \end{array} \right.$$

The Inference System ${\mathfrak M}$

- ▶ Matching system: The symbol \bot or a pair P; S, where
 - ▶ *P* is set of matching problems.
 - ▶ S is set of equations in matched form.
- ▶ A matcher (or a solution) of a system *P*; *S*: A substitution that solves each of the matching equations in *P* and *S*.
- ▶ ⊥ has no matchers.

The Inference System ${\mathfrak M}$

Five transformation rules on matching systems:²

Decomposition:

$$\{f(s_1,\ldots,s_n)\lesssim^? f(t_1,\ldots,t_n)\}\uplus P';S\Leftrightarrow$$
$$\{s_1\lesssim^? t_1,\ldots,s_n\lesssim^? t_n\}\cup P';S, \text{ where } n\geq 0.$$

Symbol Clash:

$$\{f(s_1,\ldots,s_n)\lesssim^? g(t_1,\ldots,t_m)\}\uplus P';S\Leftrightarrow\bot, \text{ if }f\neq g.$$

The Inference System ${\mathfrak M}$

Symbol-Variable Clash:

$$\{f(s_1,\ldots,s_n)\lesssim^? x\}\uplus P';S\Leftrightarrow\bot.$$

Merging Clash:

$$\{x \lesssim^? t_1\} \uplus P'; \{x \approx t_2\} \uplus S' \Leftrightarrow \bot, \text{ if } t_1 \neq t_2.$$

Elimination:

$$\{x \lesssim^? t\} \uplus P'; S \Leftrightarrow P'; \{x \approx t\} \cup S,$$

if S does not contain $x \approx t'$ with $t \neq t'$.

Matching with $\mathfrak M$

In order to match s to t

- 1. Create an initial system $\{s \lesssim^? t\}; \emptyset$.
- 2. Apply successively the rules from \mathfrak{M} .

Matching with \mathfrak{M}

Example 3.12

Match f(x, f(a, x)) to f(g(a), f(a, g(a))):

$$\{f(x, f(a, x)) \lesssim^? f(g(a), f(a, g(a)))\}; \emptyset \Leftrightarrow_{\text{Decomposition}} \{x \lesssim^? g(a), f(a, x) \lesssim^? f(a, g(a))\}; \emptyset \Leftrightarrow_{\text{Elimination}} \{f(a, x) \lesssim^? f(a, g(a))\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Decomposition}} \{a \lesssim^? a, x \lesssim^? g(a)\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Decomposition}} \{x \lesssim^? g(a)\}; \{x \approx g(a)\} \Leftrightarrow_{\text{Merge}} \emptyset; \{x \approx g(a)\}$$

Matcher: $\{x \mapsto g(a)\}.$

Matching with \mathfrak{M}

No matcher.

Properties of \mathfrak{M} : Termination

Theorem 3.7

For any finite set of matching problems P, every sequence of transformations in $\mathfrak M$ of the form $P;\emptyset\Leftrightarrow P_1;S_1\Leftrightarrow P_2;S_2\Leftrightarrow\cdots$ terminates either with \bot or with $\emptyset;S$, with S in matched form.

Properties of \mathfrak{M} : Termination

Theorem 3.7

For any finite set of matching problems P, every sequence of transformations in $\mathfrak M$ of the form $P;\emptyset\Leftrightarrow P_1;S_1\Leftrightarrow P_2;S_2\Leftrightarrow\cdots$ terminates either with \bot or with $\emptyset;S$, with S in matched form.

Proof.

- Termination is obvious, since every rule strictly decreases the size of the first component of the matching system.
- ▶ A rule can always be applied to a system with non-empty P.
- ▶ The only systems to which no rule can be applied are \bot and \emptyset ; S.
- ▶ Whenever $x \approx t$ is added to S, there is no other equation $x \approx t'$ in S. Hence, S_1, S_2, \ldots are in matched form.

The following lemma is straightforward:

Lemma 3.5

For any transformation of matching systems $P; S \Leftrightarrow \Gamma$, a substitution ϑ is a matcher for P; S iff it is a matcher for Γ .

Theorem 3.8 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S solves all matching equations in P.

Theorem 3.8 (Soundness)

If $P; \emptyset \Leftrightarrow^+ \emptyset; S$, then σ_S solves all matching equations in P.

Proof.

By induction on the length of derivations, using the previous lemma and the fact that σ_S solves the matching problems in S.

Let $v(\{s_1 \approx t_1, \dots, s_n \approx t_n\})$ be $Var(\{s_1, \dots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P;\emptyset\Leftrightarrow\cdots$ ends in a system $\emptyset;S$ such that $\sigma_S=\vartheta|_{v(P)}.$

Let $v(\{s_1 \approx t_1, \dots, s_n \approx t_n\})$ be $Var(\{s_1, \dots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Proof.

Such a sequence must end in $\emptyset; S$ where ϑ is a matcher of S. v(S)=v(P). For every equation $x\approx t\in S$, either t=x or $x\mapsto t\in \sigma_S.$ Therefore, for any such x, $\sigma_S(x)=t=\vartheta(x).$ Hence, $\sigma_S=\vartheta|_{v(P)}.$

Let $v(\{s_1 \approx t_1, \dots, s_n \approx t_n\})$ be $Var(\{s_1, \dots, s_n\})$.

Theorem 3.9 (Completeness)

If ϑ is a matcher of P, then any maximal sequence of transformations $P; \emptyset \Leftrightarrow \cdots$ ends in a system $\emptyset; S$ such that $\sigma_S = \vartheta|_{v(P)}$.

Proof.

Such a sequence must end in \emptyset ; S where ϑ is a matcher of S. v(S)=v(P). For every equation $x\approx t\in S$, either t=x or $x\mapsto t\in \sigma_S$. Therefore, for any such x, $\sigma_S(x)=t=\vartheta(x)$. Hence, $\sigma_S=\vartheta|_{v(P)}$.

Corollary 3.3

If P has no matchers, then any maximal sequence of transformations from $P; \emptyset$ must have the form $P; \emptyset \Leftrightarrow \cdots \Leftrightarrow \bot$.