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The Equality Relation

I Equality ≈: A very important relation

I Reflexive

I Symmetric

I Transitive

I Substitute equals by equals

I When equality is used in a theorem, we need extra axioms
which describe the properties of equality



The Equality Relation

Example 1

Theorem: Let G be a group with the binary operation ·, the
inverse −1, and the identity e. If x · x = e for all x ∈ G, then G is
commutative.

Axioms:

1. For all x, y ∈ G, x · y ∈ G.

2. For all x, y, z ∈ G, (x · y) · z ≈ x · (y · z).
3. For all x ∈ G, x · e ≈ x.

4. For all x ∈ G, x · x−1 ≈ e.



The Equality Relation

Example 1 (Cont.)

Express the axioms and the theorem in first-order logic with
equality:

(A1) ∀x, y. ∃z. x · y ≈ z.

(A2) ∀x, y, z. (x · y) · z ≈ x · (y · z).
(A3) ∀x. x · e ≈ x.

(A4) ∀x. x · i(x) ≈ e.

(T) ∀x. x · x ≈ e⇒ ∀u, v. u · v ≈ v · u.



The Equality Relation

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem
and bring it to the Skolem normal form. We obtain the set
consisting of the clauses:

1. x · y ≈ f(x, y).
2. (x · y) · z ≈ x · (y · z).
3. x · e ≈ x.

4. x · i(x) ≈ e.

5. x · x ≈ e
6. ¬(a · b ≈ b · a).
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6. a · b 6≈ b · a.

Using resolution alone, we can not derive the contradiction here.
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The Equality Relation

Example 1 (Cont.)

We need extra axioms to describe the properties of equality:

S : x · y ≈ f(x, y). x 6≈ y ∨ y 6≈ z ∨ x ≈ z.
(x · y) · z ≈ x · (y · z). x 6≈ y ∨ x 6≈ u ∨ y ≈ u.
x · e ≈ x. x 6≈ y ∨ u 6≈ x ∨ y ≈ u.
x · i(x) ≈ e. x 6≈ y ∨ f(z, x) ≈ f(z, y).
x · x ≈ e. x 6≈ y ∨ f(x, z) ≈ f(y, z).
a · b 6≈ b · a. x 6≈ y ∨ x · z ≈ y · z.

K : x ≈ x. x 6≈ y ∨ z · x ≈ z · y.
x 6≈ y ∨ y ≈ x. x 6≈ y ∨ i(x) ≈ i(y).

Unsatisfiability of this set can be proved by resolution.
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The Equality Relation

The described approach has several drawbacks:

I Every time equality is used, one has to provide axioms that
specify reflexive, symmetric, transitive, substitutive properties
of equality.

I clumsy approach.

I Generates large search space.

I Hopelessly inefficient.

A solution: Use a dedicated inference rule for equality.
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Paramodulation

I An inference rule to handle equality, introduced by
G. A. Robinson and L. Wos in 1969.

I It can replace the axioms concerning symmetric, transitive,
substitutive properties of equality.

I Combined with resolution, paramodulation can be used to
prove theorems involving equality.

I Simple, natural, and more efficient than the naive approach
described in the previous slide.

I Still, search space can be large. Various improvements have
been proposed to improve efficiency.



Unsatisfiablity Under Special Class of Models

I The set S in Example 1 is not unsatisfiable.

I However, it is unsatisfiable in all models of the set K.

I Restriction to special classes of models.



Unsatisfiablity Under Special Class of Models

Definition 1
Given:

I S: a set of clauses,

I I: the set of all interpretations of S,

I J : a nonempty subset of I.

S is said to be J -unsatisfiable if S is false in every element of J .



Unsatisfiablity Under Special Class of Models

How can J be given?

I If it is finite, just list them.

I Otherwise, it is usually defined by the axioms of a theory.

I When the axioms are axioms of the equality theory,
J -unsatisfiable sets are called also E-unsatisfiable sets.



Unsatisfiablity Under Special Class of Models

I In Example 1, J is all models of K.

I Since K is the set of axioms of the equality theory, the set S
is E-unsatisfiable.



E-Interpretation

Notation:

I S: a set of clauses,

I I: a Herbrand interpretation of S,

I s, t, r: terms from the Herbrand universe of S,

I L: a literal in I.

I is called an E-interpretation of S if it satisfies the following
conditions for all s, t, r, L:

1. s ≈ s ∈ I;

2. if s ≈ t ∈ I, then t ≈ s ∈ I;

3. if s ≈ t ∈ I and t ≈ r ∈ I, then s ≈ r ∈ I;

4. if s ≈ t ∈ I, L contains s, and L′ is the result of replacing of
one occurrence of s in L by t, then L′ ∈ I.



E-Interpretation

Example 2

I Let S := {p(a), ¬p(b), a ≈ b}.
I Then there are 64 Herbrand interpretations of S.

I Among them the following six are E-interpretations:

{ p(a) p(b) a ≈ a b ≈ b a ≈ b b ≈ a}
{¬p(a) ¬p(b) a ≈ a b ≈ b a ≈ b b ≈ a}
{ p(a) p(b) a ≈ a b ≈ b a 6≈ b b 6≈ a}
{ p(a) ¬p(b) a ≈ a b ≈ b a 6≈ b b 6≈ a}
{¬p(a) p(b) a ≈ a b ≈ b a 6≈ b b 6≈ a}
{¬p(a) ¬p(b) a ≈ a b ≈ b a 6≈ b b 6≈ a}

I S is satisfiable, but E-unsatisfiable.



Towards Herbrand’s Theorem for E-Unsatisfiable Sets

Definition 3
Let S be a set of clauses. The set of the equality axioms for S is
the set consisting of the following clauses:

1. x ≈ x.

2. x 6≈ y ∨ y ≈ x.

3. x 6≈ y ∨ y 6≈ z ∨ x ≈ z.

4. x 6≈ y ∨ ¬p(x1, . . . , x, . . . , xn) ∨ p(x1, . . . , y, . . . , xn), where x
and y appear in the same position i, for all 1 ≤ i ≤ n, for
every n-ary predicate symbol p appearing in S.

5. x 6≈ y ∨ f(x1, . . . , x, . . . , xn) ≈ f(x1, . . . , y, . . . , xn), where x
and y appear in the same position i, for all 1 ≤ i ≤ n, for
every n-ary function symbol f appearing in S.



Towards Herbrand’s Theorem for E-Unsatisfiable Sets

Theorem 1
Let S be a set of clauses and E be the set of equality axioms for
S. Then S is E-unsatisfiable iff S ∪ E is unsatisfiable.

Proof.

(⇒) Assume by contradiction that S is E-unsatisfiable but S ∪E is
satisfiable. Then I � S ∪ E for some Herbrand interpretation
I. Then I satisfies E. Then I satisfies the conditions of
E-interpretation. Then I is an E-model of S.
A contradiction.



Towards Herbrand’s Theorem for E-Unsatisfiable Sets

Theorem 1 (Cont.)

Let S be a set of clauses and E be the set of equality axioms for
S. Then S is E-unsatisfiable iff S ∪ E is unsatisfiable.

Proof.

(⇐) Assume by contradiction that S ∪ E is unsatisfiable but S is
E-satisfiable. Then I � S for some E-interpretation I. But
then I satisfies E as well. Then I satisfies S ∪ E.
A contradiction.



Herbrand’s Theorem for E-Unsatisfiable Sets

Theorem 2
A finite set S of clauses is E-unsatisfiable iff there exists a finite set
S′ of ground instances of clauses in S such that S′ is
E-unsatisfiable.

Proof.

(⇒) Let E be the set of equality axioms of S. By Theorem 1,
S ∪E is unsatisfiable. By Herbrand’s theorem, there is a finite
set S′ of ground instances of clauses in S such that S′ ∪ E is
unsatisfiable. Hence, by Theorem 1, S′ is E-unsatisfiable.

(⇐) Since S′ is E-unsatisfiable, every E-interpretation falsifies S′.
Then every E-interpretation falsifies S. Hence, S is
E-unsatisfiable.



Paramodulation

Example 2

Consider the clauses:

C1: p(a).

C2: a ≈ b.
We can substitute b for a in C1 to obtain

C3: p(b).

Paramodulation is an inference rule that extends this equality
substitution rule.

Notation: A[t] for A containing a term t.
A can be a clause, a literal, or a term.
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Paramodulation for Ground Clauses

Definition 4
Given:

I A ground clause C1 = L[s] ∨ C ′1, where L[s] is a literal
containing a term s, and C ′1 is a clause,

I a ground clause C2 = s ≈ t ∨ C ′2, where C ′2 is a clause.

Infer the following ground clause, called a paramodulant

L[t] ∨ C ′1 ∨ C ′2.



Paramodulation for Ground Clauses

Example 5

C1: p1(a) ∨ p2(b)
C2: a ≈ b ∨ p3(b)
Paramodulant of C1 and C2: p1(b) ∨ p2(b) ∨ p3(b).



Binary Paramodulation for General Clauses

Definition 6
Given:

I A general clause C1 = L[r] ∨ C ′1, where L[r] is a literal
containing a term r, and C ′1 is a clause,

I a general clause C2 = s ≈ t∨C ′2, where C ′2 is a clause, C1 and
C2 have no variables in common, and s and r have an mgu σ.

Infer the following clause, called a binary paramodulant of the
parent clauses C1 and C2:

Lσ[tσ] ∨ C ′1σ ∨ C ′2σ.

The literals L and s ≈ t are called the literals paramodulated
upon. Sometimes one also says that paramodulation has been
applied from C2 into C1.



Binary Paramodulation for General Clauses

Example 7

I C1: p1(g(f(x))) ∨ p2(x).
I C2: f(g(b)) ≈ a ∨ p3(g(c)).
I An mgu of f(x) and f(g(b)): σ = {x 7→ g(b)}.
I Paramodulant of C1 and C2: p1(g(a)) ∨ p2(g(b)) ∨ p3(g(c)).
I The literals paramodulated upon are p1(g(f(x))) and
f(g(b)) ≈ a.



Putting Things Together: The Inference system RP

Binary Resolution:
A ∨ C ¬B ∨D

(C ∨D)σ
, σ = mgu(A,B)

Positive Factoring:
A ∨B ∨ C
(A ∨ C)σ

, σ = mgu(A,B)

Binary Paramodulation:
s ≈ t ∨ C L[r] ∨D
(L[t] ∨ C ∨D)σ

, σ = mgu(s, r)

Reflexivity Resolution:
s 6≈ t ∨ C

Cσ
, σ = mgu(s, t)

A,B atomic formulas, C,D clauses, L literal, s, t, r terms.



Completeness of RP

Theorem 3
If S is an E-unsatisfiable set of clauses, then the empty clause can
be generated from S using the rules in RP.



Resolution and Paramodulation

Example 8

(1) q(a)

(2) ¬q(a) ∨ f(x) ≈ x
(3) p(x) ∨ p(f(a))
(4) ¬p(x) ∨ ¬p(f(x))

(5) f(x) ≈ x Resolution (1,2)

(6) ¬p(f(f(a)) Resolution (factor 3,4)

(7) ¬p(f(a)) Paramodulation (5,6)

(8) � Resolution (factor 3,7)
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Restriction of Paramodulation

I Unrestricted use of paramodulation can make the inference
system too inefficient.

I For instance, from an equation f(a) ≈ a it can generate
infinitely many new equations:
f(f(a)) ≈ a, f(f(f(a))) ≈ a, . . ..

I History of paramodulation-based proving: Restrict
applications of the paramodulation rule.

I Important restrictions:
I Prohibit paramodulation into a variable.
I The use of reduction orderings.
I The basic strategy of paramodulation.
I Simplification.
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