The Equality Relation. Paramodulation

Temur Kutsia

RISC, JKU Linz

- ► Equality ≈: A very important relation
- Reflexive
- Symmetric
- Transitive
- Substitute equals by equals
- When equality is used in a theorem, we need extra axioms which describe the properties of equality

Example 1

Theorem: Let G be a group with the binary operation \cdot , the inverse $^{-1}$, and the identity e. If $x\cdot x=e$ for all $x\in G$, then G is commutative.

Axioms:

- 1. For all $x, y \in G$, $x \cdot y \in G$.
- 2. For all $x, y, z \in G$, $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$.
- 3. For all $x \in G$, $x \cdot e \approx x$.
- 4. For all $x \in G$, $x \cdot x^{-1} \approx e$.

Example 1 (Cont.)

Express the axioms and the theorem in first-order logic with equality:

- (A1) $\forall x, y. \exists z. \ x \cdot y \approx z.$
- (A2) $\forall x, y, z. (x \cdot y) \cdot z \approx x \cdot (y \cdot z).$
- (A3) $\forall x. \ x \cdot e \approx x.$
- (A4) $\forall x. \ x \cdot i(x) \approx e.$
 - (T) $\forall x. \ x \cdot x \approx e \Rightarrow \forall u, v. \ u \cdot v \approx v \cdot u.$

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

- 1. $x \cdot y \approx f(x, y)$.
- 2. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$.
- 3. $x \cdot e \approx x$.
- 4. $x \cdot i(x) \approx e$.
- 5. $x \cdot x \approx e$
- 6. $\neg (a \cdot b \approx b \cdot a)$.

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

- 1. $x \cdot y \approx f(x, y)$.
- 2. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$.
- 3. $x \cdot e \approx x$.
- 4. $x \cdot i(x) \approx e$.
- 5. $x \cdot x \approx e$
- 6. $a \cdot b \not\approx b \cdot a$.

Example 1 (Cont.)

Take the conjunction of axioms and the negation of the theorem and bring it to the Skolem normal form. We obtain the set consisting of the clauses:

- 1. $x \cdot y \approx f(x, y)$.
- 2. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$.
- 3. $x \cdot e \approx x$.
- 4. $x \cdot i(x) \approx e$.
- 5. $x \cdot x \approx e$
- 6. $a \cdot b \not\approx b \cdot a$.

Using resolution alone, we can not derive the contradiction here.

Example 1 (Cont.)

We need extra axioms to describe the properties of equality:

$$S: \quad x \cdot y \approx f(x,y). \qquad \qquad x \not\approx y \vee y \not\approx z \vee x \approx z.$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z). \qquad x \not\approx y \vee x \not\approx u \vee y \approx u.$$

$$x \cdot e \approx x. \qquad \qquad x \not\approx y \vee u \not\approx x \vee y \approx u.$$

$$x \cdot i(x) \approx e. \qquad \qquad x \not\approx y \vee f(z,x) \approx f(z,y).$$

$$x \cdot x \approx e. \qquad \qquad x \not\approx y \vee f(x,z) \approx f(y,z).$$

$$a \cdot b \not\approx b \cdot a. \qquad \qquad x \not\approx y \vee x \cdot z \approx y \cdot z.$$

$$K: \quad x \approx x. \qquad \qquad x \not\approx y \vee z \cdot x \approx z \cdot y.$$

$$x \not\approx y \vee y \approx x. \qquad \qquad x \not\approx y \vee i(x) \approx i(y).$$

Example 1 (Cont.)

We need extra axioms to describe the properties of equality:

$$S: \quad x \cdot y \approx f(x,y). \qquad \qquad x \not\approx y \vee y \not\approx z \vee x \approx z.$$

$$(x \cdot y) \cdot z \approx x \cdot (y \cdot z). \qquad x \not\approx y \vee x \not\approx u \vee y \approx u.$$

$$x \cdot e \approx x. \qquad \qquad x \not\approx y \vee u \not\approx x \vee y \approx u.$$

$$x \cdot i(x) \approx e. \qquad \qquad x \not\approx y \vee f(z,x) \approx f(z,y).$$

$$x \cdot x \approx e. \qquad \qquad x \not\approx y \vee f(x,z) \approx f(y,z).$$

$$a \cdot b \not\approx b \cdot a. \qquad \qquad x \not\approx y \vee x \cdot z \approx y \cdot z.$$

$$K: \quad x \approx x. \qquad \qquad x \not\approx y \vee z \cdot x \approx z \cdot y.$$

$$x \not\approx y \vee y \approx x. \qquad \qquad x \not\approx y \vee i(x) \approx i(y).$$

Unsatisfiability of this set can be proved by resolution.

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

The described approach has several drawbacks:

- Every time equality is used, one has to provide axioms that specify reflexive, symmetric, transitive, substitutive properties of equality.
- clumsy approach.
- Generates large search space.
- Hopelessly inefficient.

A solution: Use a dedicated inference rule for equality.

- ► An inference rule to handle equality, introduced by G. A. Robinson and L. Wos in 1969.
- It can replace the axioms concerning symmetric, transitive, substitutive properties of equality.
- Combined with resolution, paramodulation can be used to prove theorems involving equality.
- Simple, natural, and more efficient than the naive approach described in the previous slide.
- ▶ Still, search space can be large. Various improvements have been proposed to improve efficiency.

- ▶ The set *S* in Example 1 is not unsatisfiable.
- ▶ However, it is unsatisfiable in all models of the set *K*.
- Restriction to special classes of models.

Definition 1

Given:

- S: a set of clauses,
- $ightharpoonup \mathcal{I}$: the set of all interpretations of S,
- $ightharpoonup \mathcal{J}$: a nonempty subset of \mathcal{I} .

S is said to be $\mathcal{J}\text{-unsatisfiable}$ if S is false in every element of $\mathcal{J}.$

How can \mathcal{J} be given?

- If it is finite, just list them.
- ▶ Otherwise, it is usually defined by the axioms of a theory.
- ▶ When the axioms are axioms of the equality theory, \mathcal{J} -unsatisfiable sets are called also \mathcal{E} -unsatisfiable sets.

- ▶ In Example 1, \mathcal{J} is all models of K.
- ▶ Since K is the set of axioms of the equality theory, the set S is \mathcal{E} -unsatisfiable.

\mathcal{E} -Interpretation

Notation:

- S: a set of clauses,
- ► I: a Herbrand interpretation of S,
- ightharpoonup s,t,r: terms from the Herbrand universe of S,
- ▶ L: a literal in I.

I is called an \mathcal{E} -interpretation of S if it satisfies the following conditions for all s,t,r,L:

- 1. $s \approx s \in I$;
- 2. if $s \approx t \in I$, then $t \approx s \in I$;
- 3. if $s \approx t \in I$ and $t \approx r \in I$, then $s \approx r \in I$;
- 4. if $s \approx t \in I$, L contains s, and L' is the result of replacing of one occurrence of s in L by t, then $L' \in I$.

\mathcal{E} -Interpretation

Example 2

- ▶ Let $S := \{p(a), \neg p(b), a \approx b\}.$
- ▶ Then there are 64 Herbrand interpretations of *S*.
- ▶ Among them the following six are \mathcal{E} -interpretations:

ightharpoonup S is satisfiable, but \mathcal{E} -unsatisfiable.

Towards Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Definition 3

Let S be a set of clauses. The set of the equality axioms for S is the set consisting of the following clauses:

- 1. $x \approx x$.
- 2. $x \not\approx y \lor y \approx x$.
- 3. $x \not\approx y \lor y \not\approx z \lor x \approx z$.
- 4. $x \not\approx y \vee \neg p(x_1, \dots, x, \dots, x_n) \vee p(x_1, \dots, y, \dots, x_n)$, where x and y appear in the same position i, for all $1 \le i \le n$, for every n-ary predicate symbol p appearing in S.
- 5. $x \not\approx y \lor f(x_1, \dots, x, \dots, x_n) \approx f(x_1, \dots, y, \dots, x_n)$, where x and y appear in the same position i, for all $1 \le i \le n$, for every n-ary function symbol f appearing in S.

Towards Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Theorem 1

Let S be a set of clauses and E be the set of equality axioms for S. Then S is \mathcal{E} -unsatisfiable iff $S \cup E$ is unsatisfiable.

Proof.

 $(\Rightarrow) \ \, \text{Assume by contradiction that } S \ \text{is } \mathcal{E}\text{-unsatisfiable but } S \cup E \ \text{is satisfiable.} \ \, \text{Then } I \vDash S \cup E \ \text{for some Herbrand interpretation} \\ I. \ \, \text{Then } I \ \text{satisfies } E. \ \, \text{Then } I \ \text{satisfies the conditions of} \\ \mathcal{E}\text{-interpretation.} \ \, \text{Then } I \ \text{is an } \mathcal{E}\text{-model of } S. \\ \text{A contradiction.} \ \, \text{A contradiction.}$

Towards Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Theorem 1 (Cont.)

Let S be a set of clauses and E be the set of equality axioms for S. Then S is \mathcal{E} -unsatisfiable iff $S \cup E$ is unsatisfiable.

Proof.

(\Leftarrow) Assume by contradiction that $S \cup E$ is unsatisfiable but S is \mathcal{E} -satisfiable. Then $I \vDash S$ for some \mathcal{E} -interpretation I. But then I satisfies E as well. Then I satisfies $S \cup E$. A contradiction.

Herbrand's Theorem for \mathcal{E} -Unsatisfiable Sets

Theorem 2

A finite set S of clauses is \mathcal{E} -unsatisfiable iff there exists a finite set S' of ground instances of clauses in S such that S' is \mathcal{E} -unsatisfiable.

Proof.

- (⇒) Let E be the set of equality axioms of S. By Theorem 1, $S \cup E$ is unsatisfiable. By Herbrand's theorem, there is a finite set S' of ground instances of clauses in S such that $S' \cup E$ is unsatisfiable. Hence, by Theorem 1, S' is \mathcal{E} -unsatisfiable.
- (\Leftarrow) Since S' is \mathcal{E} -unsatisfiable, every \mathcal{E} -interpretation falsifies S'. Then every \mathcal{E} -interpretation falsifies S. Hence, S is \mathcal{E} -unsatisfiable.

Example 2

Consider the clauses:

 C_1 : p(a).

 C_2 : $a \approx b$.

We can substitute b for a in C_1 to obtain

$$C_3$$
: $p(b)$.

Example 2

Consider the clauses:

 C_1 : p(a).

 C_2 : $a \approx b$.

We can substitute b for a in C_1 to obtain

$$C_3$$
: $p(b)$.

Paramodulation is an inference rule that extends this equality substitution rule.

Example 2

Consider the clauses:

 C_1 : p(a).

 C_2 : $a \approx b$.

We can substitute b for a in C_1 to obtain

 C_3 : p(b).

Paramodulation is an inference rule that extends this equality substitution rule.

Notation: A[t] for A containing a term t.

A can be a clause, a literal, or a term.

Paramodulation for Ground Clauses

Definition 4

Given:

- ▶ A ground clause $C_1 = L[s] \lor C'_1$, where L[s] is a literal containing a term s, and C'_1 is a clause,
- ▶ a ground clause $C_2 = s \approx t \vee C_2'$, where C_2' is a clause.

Infer the following ground clause, called a paramodulant

$$L[t] \vee C_1' \vee C_2'$$
.

Paramodulation for Ground Clauses

Example 5

 $C_1: p_1(a) \vee p_2(b)$

 C_2 : $a \approx b \vee p_3(b)$

Paramodulant of C_1 and C_2 : $p_1(b) \vee p_2(b) \vee p_3(b)$.

Binary Paramodulation for General Clauses

Definition 6

Given:

- ▶ A general clause $C_1 = L[r] \lor C_1'$, where L[r] is a literal containing a term r, and C_1' is a clause,
- ▶ a general clause $C_2 = s \approx t \vee C_2'$, where C_2' is a clause, C_1 and C_2 have no variables in common, and s and r have an mgu σ .

Infer the following clause, called a binary paramodulant of the parent clauses C_1 and C_2 :

$$L\sigma[t\sigma] \vee C_1'\sigma \vee C_2'\sigma.$$

The literals L and $s\approx t$ are called the literals paramodulated upon. Sometimes one also says that paramodulation has been applied from C_2 into C_1 .

Binary Paramodulation for General Clauses

Example 7

- ► C_1 : $p_1(g(f(x))) \lor p_2(x)$.
- $C_2: f(g(b)) \approx a \vee p_3(g(c)).$
- ▶ An mgu of f(x) and f(g(b)): $\sigma = \{x \mapsto g(b)\}.$
- ▶ Paramodulant of C_1 and C_2 : $p_1(g(a)) \lor p_2(g(b)) \lor p_3(g(c))$.
- ▶ The literals paramodulated upon are $p_1(g(f(x)))$ and $f(g(b)) \approx a$.

Putting Things Together: The Inference system \mathcal{RP}

Binary Resolution:
$$\frac{A \vee C \quad \neg B \vee D}{(C \vee D)\sigma}, \qquad \sigma = mgu(A,B)$$

Positive Factoring:
$$\frac{A \vee B \vee C}{(A \vee C)\sigma}, \qquad \qquad \sigma = mgu(A,B)$$

$$\text{Binary Paramodulation:} \quad \frac{s\approx t\vee C \quad L[r]\vee D}{(L[t]\vee C\vee D)\sigma}, \quad \sigma=mgu(s,r)$$

Reflexivity Resolution:
$$\frac{s \not\approx t \vee C}{C\sigma}, \qquad \qquad \sigma = mgu(s,t)$$

A, B atomic formulas, C, D clauses, L literal, s, t, r terms.

Completeness of \mathcal{RP}

Theorem 3

If S is an \mathcal{E} -unsatisfiable set of clauses, then the empty clause can be generated from S using the rules in \mathcal{RP} .

Example 8

- (1) q(a)
- (2) $\neg q(a) \lor f(x) \approx x$
- (3) $p(x) \lor p(f(a))$
- $(4) \quad \neg p(x) \vee \neg p(f(x))$

Example 8

- (1) q(a)
- (2) $\neg q(a) \lor f(x) \approx x$
- (3) $p(x) \lor p(f(a))$
- (4) $\neg p(x) \lor \neg p(f(x))$
- (5) $f(x) \approx x$

Resolution (1,2)

Example 8

- (1) q(a)
- (2) $\neg q(a) \lor f(x) \approx x$
- (3) $p(x) \lor p(f(a))$
- $(4) \quad \neg p(x) \lor \neg p(f(x))$
- (5) $f(x) \approx x$

Resolution (1,2)

(6) $\neg p(f(f(a)))$

Resolution (factor 3,4)

Example 8

$$(1)$$
 $q(a)$

(2)
$$\neg q(a) \lor f(x) \approx x$$

(3)
$$p(x) \vee p(f(a))$$

$$(4) \quad \neg p(x) \lor \neg p(f(x))$$

(5)
$$f(x) \approx x$$

(6)
$$\neg p(f(f(a)))$$

(7)
$$\neg p(f(a))$$

Resolution (1,2)

Resolution (factor 3,4)

Paramodulation (5,6)

Example 8

$$(1)$$
 $q(a)$

(2)
$$\neg q(a) \lor f(x) \approx x$$

(3)
$$p(x) \vee p(f(a))$$

$$(4) \quad \neg p(x) \lor \neg p(f(x))$$

(5)
$$f(x) \approx x$$

(6)
$$\neg p(f(f(a)))$$

(7)
$$\neg p(f(a))$$

Resolution (1,2)

Resolution (factor 3,4)

Paramodulation (5,6)

Example 8

$$(1)$$
 $q(a)$

(2)
$$\neg q(a) \lor f(x) \approx x$$

(3)
$$p(x) \vee p(f(a))$$

$$(4) \quad \neg p(x) \lor \neg p(f(x))$$

$$(5) \quad f(x) \approx x$$

(6)
$$\neg p(f(f(a)))$$

(7)
$$\neg p(f(a))$$

Resolution (1,2)

Resolution (factor 3,4)

Paramodulation (5,6)

Resolution (factor 3,7)

Restriction of Paramodulation

- Unrestricted use of paramodulation can make the inference system too inefficient.
- For instance, from an equation $f(a) \approx a$ it can generate infinitely many new equations: $f(f(a)) \approx a, \ f(f(f(a))) \approx a, \ldots$
- ► History of paramodulation-based proving: Restrict applications of the paramodulation rule.
- Important restrictions:
 - Prohibit paramodulation into a variable.
 - ► The use of reduction orderings.
 - ▶ The basic strategy of paramodulation.
 - Simplification.

