Rewriting-Based Deduction. Completion

Temur Kutsia

RISC, JKU Linz

Motivation

- Unrestricted use of the paramodulation rule can be very inefficient.
- Various methods have been proposed to restrict it without compromising the completeness.
- Term rewriting contributed essential techniques for refining paramodulation into a practical inference system.

Rewriting-Based Deduction for Unit Equalities

- We assume that the given set of clauses consists of unit equalities and one ground inequality.
- Goal: Design a calculus which works on such sets, restricts applications of the paramodulation rule, and is complete.

A D > A P > A B > A B >

Later this calculus can be extended to general clauses.

Equational Theory

- E: A set of equations.
- ► A: The set of equality axioms for E.
- ▶ $E \vDash s \approx t$ iff $I \vDash s \approx t$ for all interpretations I which is a model of $E \cup A$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

• Equational theory of *E*:

$$\approx_E := \{ (s,t) \mid E \vDash s \approx t \}$$

• Notation: $s \approx_E t$ iff $(s, t) \in \approx_E$.

- A rewrite rule is an ordered pair of terms, written $l \rightarrow r$.
- ► Term rewriting system (TRS): a set of rewrite rules.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

The problem is undecidable for an arbitrary E.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

The problem is undecidable for an arbitrary E. When E is finite and induces a (ground) convergent TRS, the problem is decidable.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

The problem is undecidable for an arbitrary E. When E is finite and induces a (ground) convergent TRS, the problem is decidable.

What's this?

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Solving Idea:

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Solving Idea:

► Refute and skolemize the goal, obtaining the ground disequation s' ≈_E t'.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ► Refute and skolemize the goal, obtaining the ground disequation s' ≈_E t'.
- ► Try to construct from *E* a ground convergent set of equations and rewrite rules, with the procedure called completion.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ► Refute and skolemize the goal, obtaining the ground disequation s' ≈_E t'.
- ► Try to construct from *E* a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s' and t' can be rewritten to the same term with the equations and rules constructed so far.

э

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ► Refute and skolemize the goal, obtaining the ground disequation s' ≈_E t'.
- ► Try to construct from *E* a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s' and t' can be rewritten to the same term with the equations and rules constructed so far.
- ▶ If yes, stop. You obtained a contradiction, which proves $s \approx_E t$.

Given: A set of equations E and two terms s and t. Decide: $s \approx_E t$ holds or not.

Solving Idea:

- ► Refute and skolemize the goal, obtaining the ground disequation s' ≈_E t'.
- ► Try to construct from *E* a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s' and t' can be rewritten to the same term with the equations and rules constructed so far.
- ▶ If yes, stop. You obtained a contradiction, which proves $s \approx_E t$.
- ▶ If not, continue with completion. If this is not possible, then report: $s \approx_E t$ does not hold.

What We Need To Know

- What is rewriting?
- What is a ground convergent set of equations and rewrite rules?
- What is completion?

- R: A term rewriting system.
 - ▶ The rewrite relation induced by R, denoted \rightarrow_R , is a binary relation on terms defined as:

 $s \to_R t$ iff there exist $l \to r \in R$, a position p in s, a substitution σ such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

(日)

- R: A term rewriting system.
 - ▶ The rewrite relation induced by R, denoted \rightarrow_R , is a binary relation on terms defined as:

 $s \to_R t$ iff there exist $l \to r \in R$, a position p in s, a substitution σ such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.

- Obviously $R \subseteq \rightarrow_R$.
- ▶ We may omit *R* when it is obvious from the context.

(日)、

- s rewrites to t by R iff $s \rightarrow_R t$.
- ► \leftarrow_R stands for the inverse and \rightarrow_R^* for reflexive-transitive closure of \rightarrow_R .
- ▶ s is irreducible by R iff there is no t such that $s \rightarrow_R t$.
- ► t is a normal form of s by R iff s →^{*}_R t and t is irreducible by R.
- ► R is terminating iff →_R is well-founded, i.e., there is no infinite sequence of rewrite steps s₁ →_R s₂ →_R s₃ →_R ···.

э

• R is confluent iff for all terms s, t_1, t_2 , if

$$s \to_R^* t_1$$
 and $s \to_R^* t_2$,

then there exists a term r such that

$$t_1 \rightarrow^*_R r$$
 and $t_2 \rightarrow^*_R r$.

• R is confluent iff for all terms s, t_1, t_2 , if

$$s \to_R^* t_1$$
 and $s \to_R^* t_2$,

then there exists a term \boldsymbol{r} such that

$$t_1 \to_R^* r$$
 and $t_2 \to_R^* r$.

Graphically:

ヘロト ヘロト ヘビト ヘビン

• t_1 and t_2 are joinable by R if there exists a term r such that

$$t_1 \to_R^* r$$
 and $t_2 \to_R^* r$.

• Notation: $t_1 \downarrow_R t_2$.

Example 1

Let + be a binary (infix) function symbol, s a unary function symbol, 0 a constant.

$$R := \{0+x \to x, \quad s(x)+y \to s(x+y)\}.$$

Then:

►
$$s(0) + s(s(0)) \rightarrow_R s(0 + s(s(0))) \rightarrow_R s(s(s(0))).$$

$$\blacktriangleright \ s(0) + s(s(0)) \rightarrow^*_R s(s(s(0))).$$

► s(s(s(0))) is irreducible by R and, hence, is a normal form of s(0) + s(s(0)), of s(0 + s(s(0))), and of s(s(s(0))).

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・

- ► A TRS *R* is convergent iff it is confluent and terminating.
- A convergent TRS provides a decision procedure for the underlying equational theory: Two terms are equivalent iff they reduce to the same normal form.
- Computation of normal forms by repeated reduction is a don't care non-deterministic process for convergent TRSs.

A strict order > on terms is called a reduction order iff it is

- 1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;
- 2. stable: If s > t, then $s\sigma > t\sigma$ for all terms s, t and a substitution σ ;
- 3. well-founded.

A strict order > on terms is called a reduction order iff it is

- 1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;
- 2. stable: If s > t, then $s\sigma > t\sigma$ for all terms s, t and a substitution σ ;
- 3. well-founded.

Why are reduction orders interesting?

A strict order > on terms is called a reduction order iff it is

- 1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;
- 2. stable: If s > t, then $s\sigma > t\sigma$ for all terms s, t and a substitution σ ;
- 3. well-founded.

Why are reduction orders interesting?

Theorem 1

A TRS R terminates iff there exists a reduction order > that satisfies l > r for all $l \rightarrow r \in R$.

Example 2

- |t|: The size of the term t.
- The order $>_1$: $s >_1 t$ iff |s| > |t|.

Example 2

- |t|: The size of the term t.
- The order $>_1$: $s >_1 t$ iff |s| > |t|.
- \triangleright >₁ is monotonic and well-founded.

Example 2

- |t|: The size of the term t.
- The order $>_1$: $s >_1 t$ iff |s| > |t|.
- \triangleright >₁ is monotonic and well-founded.
- However, $>_1$ is not a reduction order because it is not stable:

$$|f(f(x,x),y)| = 5 > 3 = |f(y,y)|$$

For $\sigma = \{y \mapsto f(x, x)\}$:

$$\begin{split} |\sigma(f(f(x,x),y))| &= |f(f(x,x),f(x,x))| = 7, \\ |\sigma(f(y,y))| &= |f(f(x,x),f(x,x))| = 7. \end{split}$$

(日)、

Example 2 (Cont.)

- $|t|_x$: The number of occurrences of x in t.
- The order $>_2$: $s >_2 t$ iff |s| > |t| and $|s|_x \ge |t|_x$ for all x.

Example 2 (Cont.)

- $|t|_x$: The number of occurrences of x in t.
- The order $>_2$: $s >_2 t$ iff |s| > |t| and $|s|_x \ge |t|_x$ for all x.
- \triangleright >₂ is a reduction order.

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
 - Recursive path orders
 - Knuth-Bendix orders

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
 - Recursive path orders
 - Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be used to show termination; not only by hand, but also automatically.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

 Collections seen as multisets yields the multiset path order. (Not considered in this course.)
Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)
- ► Collections seen as tuples yields the lexicographic path order.
- Combination of multisets and tuples yields the recursive path order with status. (Not considered in this course.)

Definition 1

Let \mathcal{F} be a finite signature and > be a strict order on \mathcal{F} (called the precedence). The lexicographic path order $>_{lpo}$ on $T(\mathcal{F}, \mathcal{V})$ induced by > is defined as follows:

$$s >_{lpo} t$$
 iff
(LPO1) $t \in Var(s)$ and $t \neq s$, or
(LPO2) $s = f(s_1, \dots, s_m)$, $t = g(t_1, \dots, t_n)$, and
(LPO2a) $s_i \ge_{lpo} t$ for some $i, 1 \le i \le m$, or
(LPO2b) $f > g$ and $s >_{lpo} t_j$ for all $j, 1 \le j \le n$, or
(LPO2c) $f = g, s >_{lpo} t_j$ for all $j, 1 \le j \le n$, and there exists $i, 1 \le i \le m$ such that $s_1 = t_1, \dots s_{i-1} = t_{i-1}$ and
 $s_i >_{lpo} t_i$.

 \geq_{lpo} stands for the reflexive closure of $>_{lpo}$.

э

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3

 $\mathcal{F} = \{f, i, e\}$, f is binary, i is unary, e is constant, with i > f > e.

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3

$$\mathcal{F} = \{f, i, e\}, f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$$

$$\blacktriangleright f(x, e) >_{lpo} x \text{ by (LPO1)}$$

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3

 $\mathcal{F} = \{f, i, e\}, f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e.$ $f(x, e) >_{lpo} x \text{ by (LPO1)}$

A D F A B F A B F A B F

э

► $i(e) >_{lpo} e$ by (LPO2a), because $e ≥_{lpo} e$.

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, f$ is binary, i is unary, e is constant, with i > f > e.

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

$$\begin{split} \mathcal{F} &= \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e. \\ &\blacktriangleright \ i(f(x,y)) >_{lpo}^? f(i(x), i(y)): \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

 $\begin{aligned} \mathcal{F} &= \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e. \\ &\blacktriangleright \ i(f(x, y)) >_{lpo}^{?} f(i(x), i(y)): \\ &\blacktriangleright \ \text{Since } i > f, \ (\text{LPO2b}) \text{ reduces it to the problems:} \\ &\quad i(f(x, y)) >_{lpo}^{?} i(x) \text{ and } i(f(x, y)) >_{lpo}^{?} i(y). \end{aligned}$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

э

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

 $\begin{aligned} \mathcal{F} &= \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e. \\ &\blacktriangleright \ i(f(x,y)) >_{lpo}^? f(i(x), i(y)): \\ & \quad \text{Since } i > f, \ (\text{LPO2b}) \text{ reduces it to the problems:} \\ & \quad i(f(x,y)) >_{lpo}^? i(x) \text{ and } i(f(x,y)) >_{lpo}^? i(y). \\ & \quad i(f(x,y)) >_{lpo}^? i(x) \text{ is reduced by (LPO2c) to} \\ & \quad i(f(x,y)) >_{lpo}^? x \text{ and } f(x,y) >_{lpo}^? x, \text{ which hold by (LPO1).} \end{aligned}$

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

 $\begin{aligned} \mathcal{F} &= \{f, i, e\}, \ f \ \text{is binary, } i \ \text{is unary, } e \ \text{is constant, with } i > f > e. \\ &\blacktriangleright \ i(f(x,y)) >_{lpo}^? \ f(i(x),i(y)): \\ & \ \text{Since } i > f, \ (\text{LPO2b}) \ \text{reduces it to the problems:} \\ & \ i(f(x,y)) >_{lpo}^? \ i(x) \ \text{and} \ i(f(x,y)) >_{lpo}^? \ i(y). \\ & \ i(f(x,y)) >_{lpo}^? \ i(x) \ \text{is reduced by (LPO2c) to} \\ & \ i(f(x,y)) >_{lpo}^? \ x \ \text{and} \ f(x,y) >_{lpo}^? x, \ \text{which hold by (LPO1).} \\ & \ i(f(x,y)) >_{lpo}^? \ i(y) \ \text{is shown similarly.} \end{aligned}$

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

 $\mathcal{F} = \{f, i, e\}, f$ is binary, i is unary, e is constant, with i > f > e.

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

 $\begin{aligned} \mathcal{F} &= \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e. \\ &\blacktriangleright \ f(f(x, y), z) >_{lpo}^{?} f(x, f(y, z))). \text{ By (LPO2c) with } i = 1: \end{aligned}$

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

$$\begin{split} \mathcal{F} &= \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e. \\ \blacktriangleright \ f(f(x, y), z) >^{?}_{lpo} f(x, f(y, z))). \ \text{By (LPO2c) with } i = 1: \\ \vdash \ f(f(x, y), z) >_{lpo} x \text{ because of (LPO1).} \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

$$\begin{split} \mathcal{F} &= \{f, i, e\}, \ f \text{ is binary, } i \text{ is unary, } e \text{ is constant, with } i > f > e. \\ \blacktriangleright \ f(f(x,y),z) >_{lpo}^? f(x,f(y,z))). \ \text{By (LPO2c) with } i = 1: \\ \vdash \ f(f(x,y),z) >_{lpo} x \text{ because of (LPO1).} \\ \vdash \ f(f(x,y),z) >_{lpo}^? f(y,z): \ \text{By (LPO2c) with } i = 1: \\ \vdash \ f(f(x,y),z) >_{lpo} y \text{ and } f(f(x,y),z) >_{lpo} z \text{ by (LPO1).} \\ \vdash \ f(x,y) >_{lpo} y \text{ by (LPO1).} \end{split}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

$$\begin{split} s >_{lpo} t \text{ iff} \\ (\text{LPO1}) \ t \in \mathcal{V}ar(s) \text{ and } t \neq s, \text{ or} \\ (\text{LPO2}) \ s = f(s_1, \dots, s_m), \ t = g(t_1, \dots, t_n), \text{ and} \\ (\text{LPO2a}) \ s_i \ge_{lpo} t \text{ for some } i, \ 1 \le i \le m, \text{ or} \\ (\text{LPO2b}) \ f > g \text{ and } s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ or} \\ (\text{LPO2c}) \ f = g, \ s >_{lpo} t_j \text{ for all } j, \ 1 \le j \le n, \text{ and there exists } i, \\ 1 \le i \le m \text{ such that } s_1 = t_1, \dots s_{i-1} = t_{i-1} \text{ and} \\ s_i >_{lpo} t_i. \end{split}$$

Example 3 (Cont.)

$$\begin{split} \mathcal{F} &= \{f, i, e\}, \ f \ \text{is binary, } i \ \text{is unary, } e \ \text{is constant, with} \ i > f > e. \\ \blacktriangleright \ f(f(x, y), z) >_{lpo}^{?} f(x, f(y, z))). \ \text{By (LPO2c) with} \ i = 1: \\ \vdash \ f(f(x, y), z) >_{lpo} x \ \text{because of (LPO1).} \\ \vdash \ f(f(x, y), z) >_{lpo}^{?} f(y, z): \ \text{By (LPO2c) with} \ i = 1: \\ \vdash \ f(f(x, y), z) >_{lpo} y \ \text{and} \ f(f(x, y), z) >_{lpo} z \ \text{by (LPO1).} \\ \vdash \ f(x, y) >_{lpo} y \ \text{by (LPO1).} \\ \vdash \ f(x, y) >_{lpo} x \ \text{by (LPO1).} \end{split}$$

・ロト ・聞ト ・ヨト ・ヨト

Reduction Orders

- Reduction orders are not total for terms with variables.
- For instance, f(x) and f(y) can not be ordered.
- f(x,y) and f(y,x) can not be ordered either.
- However, many reduction orders are total on ground terms.
- Fortunately, in theorem proving applications one can often reason about non-ground formulas by considering the corresponding ground instances.
- In such situations, ordered rewriting techniques can be applied.

Ordered Rewriting

- ▶ Given: A reduction order > and a set of equations *E*.
- The rewrite system $E^>$ is defined as

$$E^{>} := \{ s\sigma \to r\sigma \mid (s \approx t \in E \text{ or } t \approx s \in E) \text{ and } s\sigma > t\sigma \}$$

► The rewrite relation →_E induced by E[>] represents ordered rewriting with respect to E and >.

Ordered Rewriting

Example 4

► If > is a lexicographic path ordering with precedence + > a > b > c, then b + c > c + b > c.

• Let
$$E := \{x + y \approx y + x\}.$$

We may use the commutativity equation for ordered rewriting.

$$\blacktriangleright (b+c) + c \rightarrow_{E^{>}} (c+b) + c \rightarrow_{E^{>}} c + (c+b).$$

Ordered Rewriting

- If > is a reduction ordering total on ground terms, then E[>] contains all (non-trivial) ground instances of an equation s ≈ t ∈ E, either as a rule sσ → tσ or a rule tσ → sσ.
- A rewrite system R is called ground convergent if the induced ground rewrite relation (that is, the rewrite relation →_R restricted to pairs of ground terms) is terminating and confluent.
- ► A set of equations E is called ground convergent with respect to > if E[>] is ground convergent.

Ordered rewriting leads to the inference rule, called superposition:

$$\frac{s \approx t \qquad r[u] \approx v}{(r[t] \approx v)\sigma}$$

where $\sigma = mgu(s, u)$, $t\sigma \not\geq s\sigma$, $v\sigma \not\geq r\sigma$, and u is not a variable.

The equation $(r[t] \approx v)\sigma$ is called an ordered critical pair (with overlapped term $r[u]\sigma$) between $s \approx t$ and $r[u] \approx v$.

Ordered rewriting leads to the inference rule, called superposition:

$$\frac{s \approx t \qquad r[u] \approx v}{(r[t] \approx v)\sigma}$$

where $\sigma = mgu(s, u)$, $t\sigma \not\geq s\sigma$, $v\sigma \not\geq r\sigma$, and u is not a variable.

The equation $(r[t] \approx v)\sigma$ is called an ordered critical pair (with overlapped term $r[u]\sigma$) between $s \approx t$ and $r[u] \approx v$.

Lemma 1

Let > be a ground total reduction ordering. A set E of equations is ground convergent with respect to > iff for all ordered critical pairs $(r[t] \approx v)\sigma$ (with overlapped term $r[u]\sigma$) between equations in E and for all ground substitutions φ , if $r[u]\sigma\varphi > r[t]\sigma\varphi$ and $r[u]\sigma\varphi > v\sigma\varphi$, then $r[t]\sigma\varphi\downarrow_{E^>} v\sigma\varphi$.

・ ロ ト ・ 白 ト ・ 正 ト ・ 正 ト

Example 5

- ▶ Let $E := \{f(f(x)) \approx g(x)\}$ and > be the LPO with f > g.
- ▶ Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

Example 5

- ▶ Let $E := \{f(f(x)) \approx g(x)\}$ and > be the LPO with f > g.
- ▶ Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

► f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but $f(g(x)) \not\downarrow_{E} > g(f(x))$.

(日)、

Example 5

- ▶ Let $E := \{f(f(x)) \approx g(x)\}$ and > be the LPO with f > g.
- ► Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

- ► f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but $f(g(x)) \not\downarrow_{E} > g(f(x))$.
- E is not ground convergent with respect to >.

э

A D F A B F A B F A B F

Adding Critical Pairs to Equations

- Since critical pairs are equational consequences, adding a critical pair to the set of equations does not change the induced equational theory.
- If E' is obtained from E by adding a critical pair, then ≈_E = ≈_{E'}.
- The idea of adding a critical pair as a new equation is called "completion".

Convergence

Example 6

- $\blacktriangleright \text{ Let } E' := \{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let > be the LPO with f > g.

Convergence

Example 6

- $\blacktriangleright \ \text{Let} \ E' := \{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let > be the LPO with f > g.
- E' has two critical pairs. Both are joinable:

イロト イ押ト イヨト イヨト

Convergence

Example 6

- $\blacktriangleright \ \text{Let} \ E' := \{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let > be the LPO with f > g.
- E' has two critical pairs. Both are joinable:

A D > A P > A B > A B >

► E' is (ground) convergent.

Ordered Completion

- Described as a set of inference rules.
- Parametrized by a reduction ordering >.
- ▶ Works on pairs (*E*, *R*), where *E* is a set of equations and *R* is a set of rewrite rules.
- E; R ⊢ E'; R' means that E'; R' can be obtained from E; R by applying a completion inference.

A D F A B F A B F A B F

Ordered Completion: Notions

- ▶ Derivation: A (finite or countably infinite) sequence $(E_0; R_0) \vdash (E_1; R_1) \cdots$.
- Usually, E_0 is the set of initial equations and $R_0 = \emptyset$.
- The limit of a derivation: the pair $E_{\omega}; R_{\omega}$, where

$$E_{\omega} := \bigcup_{i \ge 0} \bigcap_{j \ge i} E_j \text{ and } R_{\omega} := \bigcup_{i \ge 0} \bigcap_{j \ge i} R_j.$$

Goal: to obtain a limit system that is ground convergent.

Ordered Completion: Notation

- ▶ ⊎: Disjoint union
- S > t: Strict encompassment relation. An instance of t is a subterm of s, but not vice versa.
- $s \cong t$ stands for $s \approx t$ or $t \approx s$.
- ► CP_>(E ∪ R): The set of all ordered critical pairs, with the ordering >, generated by equations in E and rewrite rules in R treated as equations.

Ordered Completion: Rules

DEDUCTION:	$E; R \vdash E \cup \{s \approx t\}; R$
	if $s \approx t \in CP_{>}(E \cup R)$.
ORIENTATION:	$E \uplus \{s \cong t\}; R \vdash E; R \cup \{s \to t\}, \text{ if } s > t.$
DELETION:	$E \uplus \{s \approx s\}; R \vdash E; R.$
Composition:	$E; R \uplus \{s \to t\} \vdash E; R \cup \{s \to r\},$
	if $t \rightarrow_{R \cup E^{>}} r$.

・ロト ・ 一下・ ・ ヨト・

Ordered Completion: Rules

Ordered Completion: Properties

Theorem 2

Let $(E_0; R_0), (E_1; R_1), \ldots$ be an ordered completion derivation where all critical pairs are eventually generated (a fair derivation). Then these three properties are equivalent for all ground terms sand t:

(1) $E_0 \models s \approx t$. (2) $s \downarrow_{E_{\omega}^{>} \cup R_{\omega}} t$. (3) $s \downarrow_{E_i^{>} \cup R_i} t$ for some $i \ge 0$.

This theorem, in particular, asserts the refutational completeness of ordered completion.

Proving by Ordered Completion: Example

Given:

1. $(x \cdot y) \cdot z \approx x \cdot (y \cdot z)$. 2. $x \cdot e \approx x$. 3. $x \cdot i(x) \approx e$. 4. $x \cdot x \approx e$.

Prove

Goal: $x \cdot y \approx y \cdot x$.

Proof by ordered completion:

- Skolemize the goal: $a \cdot b \approx b \cdot a$.
- $\blacktriangleright\,$ Take LPO as the reduction ordering with the precedence i>f>e>a>b
- $\blacktriangleright E_0 := \{ (x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ x \cdot e \approx x, \ x \cdot i(x) \approx e, \ x \cdot x \approx e \}$
- $\blacktriangleright R_0 := \emptyset$
- Start applying the rules.

$$E_0 = \{ (x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ x \cdot e \approx x, \ x \cdot i(x) \approx e, \ x \cdot x \approx e \}$$

$$R_0 = \emptyset$$

Apply ORIENT 4 times:

$$E_4 = \emptyset$$

$$R_4 = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e \}$$

$$E_0 = \{ (x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ x \cdot e \approx x, \ x \cdot i(x) \approx e, \ x \cdot x \approx e \}$$

$$R_0 = \emptyset$$

Apply ORIENT 4 times:

$$E_4 = \emptyset$$

$$R_4 = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e \}$$

Apply DEDUCE with the rules $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ and $x \cdot e \to x$ to the overlapping term $(x \cdot e) \cdot z$, and then ORIENT:

$$E_{6} = \emptyset$$

$$R_{6} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e, \\ x_{1} \cdot (e \cdot x_{2}) \to x_{1} \cdot x_{2}\}$$

э

$$E_6 = \emptyset$$

$$R_6 = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e, \\ x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2 \}$$

Apply DEDUCE with the rules $x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2$ and $x \cdot i(x) \rightarrow e$ to the overlapping term $x_1 \cdot (e \cdot i(e))$:

$$E_7 = \{x_1 \cdot i(e) \approx x_1 \cdot e\}$$

$$R_7 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2\}$$

$$E_7 = \{x_1 \cdot i(e) \approx x_1 \cdot e\}$$

$$R_7 = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2\}$$

Apply ORIENT to $x_1 \cdot i(e) \approx x_1 \cdot e$ and then COMPOSITION with the rule $x \cdot e \rightarrow x$:

$$E_{9} = \emptyset$$

$$R_{9} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e, \ x_{1} \cdot (e \cdot x_{2}) \to x_{1} \cdot x_{2}, \ x \cdot i(e) \to x \}$$

$$E_{9} = \emptyset$$

$$R_{9} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e, \ x_{1} \cdot (e \cdot x_{2}) \to x_{1} \cdot x_{2}, \ x \cdot i(e) \to x \}$$

Apply DEDUCE with the rules $x \cdot x \to e$ and $x \cdot i(e) \to x$ to the overlapping term $i(e) \cdot i(e)$, and then ORIENT:

$$E_{11} = \emptyset$$

$$R_{11} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ x \cdot i(e) \to x, \ i(e) \to e \}$$

$$E_{11} = \emptyset$$

$$R_{11} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ x \cdot i(e) \to x, \ i(e) \to e \}$$

Apply Collapse to $x \cdot i(e) \to x$ with $i(e) \to e$:

$$E_{12} = \{x \cdot e \approx x\}$$

$$R_{12} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e\}$$

$$E_{12} = \{x \cdot e \approx x\}$$

$$R_{12} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e\}$$

Apply SIMPLIFICATION to $x \cdot e \approx x$ with $x \cdot e \rightarrow x$ and then DELETE to the obtained $x \approx x$:

$$E_{14} = \emptyset$$

$$R_{14} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e \}$$

$$E_{14} = \emptyset$$

$$R_{14} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e \}$$

Apply DEDUCE to $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ and $x \cdot i(x) \to e$ with the overlapping term $(x \cdot i(x)) \cdot z$ and then ORIENT:

$$E_{16} = \emptyset$$

$$R_{16} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2 \}$$

$$E_{16} = \emptyset$$

$$R_{16} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2 \}$$

Apply DEDUCE to $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2$ and $x \cdot x \rightarrow e$ with the overlapping term $x_1 \cdot (i(x_1) \cdot i(x_1))$:

$$E_{17} = \{e \cdot i(x) \approx x \cdot e\}$$

$$R_{17} = \{(x \cdot y) \cdot z \rightarrow x \cdot (y \cdot z), \ x \cdot e \rightarrow x, \ x \cdot i(x) \rightarrow e, \ x \cdot x \rightarrow e,$$

$$x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2, \ i(e) \rightarrow e, \ x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2\}$$

$$E_{17} = \{e \cdot i(x) \approx x \cdot e\}$$

$$R_{17} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2\}$$

Apply SIMPLIFICATION to $e \cdot i(x) \approx x \cdot e$ with $x \cdot e \to x$ and then Orient:

$$E_{19} = \emptyset$$

$$R_{19} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x\}$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

$$E_{19} = \emptyset$$

$$R_{19} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x \}$$

Apply DEDUCE to $x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2$ and $e \cdot i(x) \rightarrow x$ with the overlapping term $x_1 \cdot (e \cdot i(x_2))$ and then ORIENT:

$$E_{21} = \emptyset$$

$$R_{21} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e, \\ x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \\ e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

$$E_{21} = \emptyset$$

$$R_{21} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot i(x) \to e, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \}$$

Applying COLLAPSE, SIMPLIFICATION, and DELETE, we get rid of $x \cdot i(x) \rightarrow e$:

$$\begin{split} E_{24} &= \emptyset \\ R_{24} &= \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ &\quad x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \\ &\quad e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \} \end{split}$$

э

$$E_{24} = \emptyset$$

$$R_{24} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot i(x) \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \}$$

Applying COLLAPSE and ORIENT, we replace $e \cdot i(x) \rightarrow x$ with $e \cdot x \rightarrow x$:

$$\begin{split} E_{26} &= \emptyset \\ R_{26} &= \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ &\quad x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \\ &\quad e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \} \end{split}$$

э

$$E_{26} = \emptyset$$

$$R_{26} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (e \cdot x_2) \to x_1 \cdot x_2, \ i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \}$$

Applying COLLAPSE and DELETE, we get rid of $x_1 \cdot (e \cdot x_2) \rightarrow x_1 \cdot x_2$:

$$E_{28} = \emptyset$$

$$R_{28} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

$$E_{28} = \emptyset$$

$$R_{28} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2 \}$$

Apply DEDUCE to $e \cdot x \to x$ and $x_1 \cdot i(x_2) \to x_1 \cdot x_2$ with the overlapping term $e \cdot i(x_2)$:

$$E_{29} = \{i(x_1) \approx e \cdot x_2\}$$

$$R_{29} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2\}$$

э

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

$$E_{29} = \{i(x_2) \approx e \cdot x_2\}$$

$$R_{29} = \{(x \cdot y) \cdot z \rightarrow x \cdot (y \cdot z), \ x \cdot e \rightarrow x, \ x \cdot x \rightarrow e,$$

$$i(e) \rightarrow e, \ x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2,$$

$$e \cdot x \rightarrow x, \ x_1 \cdot i(x_2) \rightarrow x_1 \cdot x_2\}$$

Apply SIMPLIFICATION to $i(x_1) \approx e \cdot x_2$ with $e \cdot x \rightarrow x$ and then ORIENT:

$$E_{31} = \emptyset$$

$$R_{31} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

$$E_{31} = \emptyset$$

$$R_{31} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$i(e) \to e, \ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2,$$

$$e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x \}$$

Apply COLLAPSE and DELETE, we get rid of $i(e) \rightarrow e$:

$$E_{33} = \emptyset$$

$$R_{33} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \ e \cdot x \to x, \\ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

$$E_{33} = \emptyset$$

$$R_{33} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (i(x_1) \cdot x_2) \to e \cdot x_2, \ e \cdot x \to x, \\ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

Applying COMPOSITION, we replace $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow e \cdot x_2$ by $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow x_2$:

$$\begin{split} E_{34} &= \emptyset \\ R_{34} &= \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (i(x_1) \cdot x_2) \to x_2, \ e \cdot x \to x, \\ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x \} \end{split}$$

э

$$E_{34} = \emptyset$$

$$R_{34} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (i(x_1) \cdot x_2) \to x_2, \ e \cdot x \to x,$$

$$x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x \}$$

Applying SIMPLIFICATION and ORIENT, we replace $x_1 \cdot (i(x_1) \cdot x_2) \rightarrow x_2$ by $x_1 \cdot (x_1 \cdot x_2) \rightarrow x_2$:

$$\begin{split} E_{36} &= \emptyset \\ R_{36} &= \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \\ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x \} \end{split}$$

・ロト ・聞ト ・ヨト ・ヨト

$$E_{36} = \emptyset$$

$$R_{36} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ x_1 \cdot (i(x_1) \cdot x_2) \to x_2, \ e \cdot x \to x, \\ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \ i(x) \to x\}$$

Apply DEDUCE to $(x \cdot y) \cdot z \to x \cdot (y \cdot z)$ and $x \cdot x \to e$ with the overlapping term $(x_1 \cdot x_2) \cdot (x_1 \cdot x_2)$, then ORIENT:

$$E_{37} = \emptyset$$

$$R_{37} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e\}$$

$$E_{37} = \emptyset$$

$$R_{37} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e\}$$

Apply DEDUCE to $x_1 \cdot (x_1 \cdot x_2) \rightarrow x_2$ and $x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \rightarrow e$ with the overlapping term $x_1 \cdot (x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)))$, then ORIENT:

$$\begin{split} E_{39} &= \emptyset \\ R_{39} &= \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e, \\ & x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2, \\ & i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e \} \end{split}$$

A D F A B F A B F A B F

$$E_{39} = \emptyset$$

$$R_{39} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e\}$$

Apply COMPOSITION to $x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e$ with $x \cdot e \to x$:

$$E_{40} = \emptyset$$

$$R_{40} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

э

$$E_{41} = \emptyset$$

$$R_{41} = \{ (x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \}$$

Apply DEDUCE to $x_1 \cdot (x_1 \cdot x_2) \rightarrow x_2$ and $x_2 \cdot (x_1 \cdot x_2) \rightarrow x_1$ with the overlapping term $x_2 \cdot (x_2 \cdot (x_1 \cdot x_2))$:

$$E_{42} = \{x_1 \cdot x_2 \approx x_2 \cdot x_1\}$$

$$R_{42} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e\}$$

$$E_{42} = \{x_1 \cdot x_2 \approx x_2 \cdot x_1\}$$

$$R_{42} = \{(x \cdot y) \cdot z \to x \cdot (y \cdot z), \ x \cdot e \to x, \ x \cdot x \to e,$$

$$x_1 \cdot (x_1 \cdot x_2) \to x_2, \ e \cdot x \to x, \ x_1 \cdot i(x_2) \to x_1 \cdot x_2,$$

$$i(x) \to x, \ x_1 \cdot (x_2 \cdot (x_1 \cdot x_2)) \to e, \ x_2 \cdot (x_1 \cdot x_2) \to x_1 \cdot e\}$$

The equation $x_1 \cdot x_2 \approx x_2 \cdot x_1$ joins the goal $a \cdot b \approx b \cdot a$. Hence, the goal is proved.

