Rewriting-Based Deduction. Completion

Temur Kutsia

RISC, JKU Linz

Motivation

- Unrestricted use of the paramodulation rule can be very inefficient.
- Various methods have been proposed to restrict it without compromising the completeness.
- Term rewriting contributed essential techniques for refining paramodulation into a practical inference system.

Rewriting-Based Deduction for Unit Equalities

- We assume that the given set of clauses consists of unit equalities and one ground inequality.
- Goal: Design a calculus which works on such sets, restricts applications of the paramodulation rule, and is complete.
- Later this calculus can be extended to general clauses.

Equational Theory

- E : A set of equations.
- A : The set of equality axioms for E.
- $E \vDash s \approx t$ iff $I \vDash s \approx t$ for all interpretations I which is a model of $E \cup A$.
- Equational theory of E :

$$
\approx_{E}:=\{(s, t) \mid E \vDash s \approx t\}
$$

- Notation: $s \approx_{E} t$ iff $(s, t) \in \approx_{E}$.

Basic Concepts in Term Rewriting

- A rewrite rule is an ordered pair of terms, written $l \rightarrow r$.
- Term rewriting system (TRS): a set of rewrite rules.

Problem

Given: A set of equations E and two terms s and t.
Decide: $s \approx_{E} t$ holds or not.

Problem

Given: A set of equations E and two terms s and t. Decide: $s \approx_{E} t$ holds or not.

The problem is undecidable for an arbitrary E.

Problem

Given: A set of equations E and two terms s and t. Decide: $s \approx_{E} t$ holds or not.

The problem is undecidable for an arbitrary E.
When E is finite and induces a (ground) convergent TRS, the problem is decidable.

Problem

Given: A set of equations E and two terms s and t. Decide: $s \approx_{E} t$ holds or not.

The problem is undecidable for an arbitrary E.
When E is finite and induces a (ground) convergent TRS, the problem is decidable.

What's this?

Problem and Solving Idea

Given: A set of equations E and two terms s and t. Decide: $s \approx_{E} t$ holds or not.

Solving Idea:

Problem and Solving Idea

Given: A set of equations E and two terms s and t. Decide: $s \approx_{E} t$ holds or not.

Solving Idea:

- Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \not \ddot{z}_{E} t^{\prime}$.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.
Decide: $s \approx_{E} t$ holds or not.
Solving Idea:

- Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \not \nsim E_{E} t^{\prime}$.
- Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.
Decide: $s \approx_{E} t$ holds or not.
Solving Idea:

- Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \not \approx_{E} t^{\prime}$.
- Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s^{\prime} and t^{\prime} can be rewritten to the same term with the equations and rules constructed so far.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.
Decide: $s \approx_{E} t$ holds or not.
Solving Idea:

- Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \not \approx_{E} t^{\prime}$.
- Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s^{\prime} and t^{\prime} can be rewritten to the same term with the equations and rules constructed so far.
- If yes, stop. You obtained a contradiction, which proves $s \approx_{E} t$.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.
Decide: $s \approx_{E} t$ holds or not.
Solving Idea:

- Refute and skolemize the goal, obtaining the ground disequation $s^{\prime} \not \approx_{E} t^{\prime}$.
- Try to construct from E a ground convergent set of equations and rewrite rules, with the procedure called completion.
- In the course of completion, from time to time check whether s^{\prime} and t^{\prime} can be rewritten to the same term with the equations and rules constructed so far.
- If yes, stop. You obtained a contradiction, which proves $s \approx_{E} t$.
- If not, continue with completion. If this is not possible, then report: $s \approx_{E} t$ does not hold.

What We Need To Know

- What is rewriting?
- What is a ground convergent set of equations and rewrite rules?
- What is completion?

Basic Concepts in Term Rewriting

R : A term rewriting system.

- The rewrite relation induced by R, denoted \rightarrow_{R}, is a binary relation on terms defined as:

$$
s \rightarrow_{R} t \text { iff }
$$

there exist $l \rightarrow r \in R$, a position p in s, a substitution σ
such that $\left.s\right|_{p}=l \sigma$ and $t=s[r \sigma]_{p}$.

Basic Concepts in Term Rewriting

R : A term rewriting system.

- The rewrite relation induced by R, denoted \rightarrow_{R}, is a binary relation on terms defined as:

$$
s \rightarrow_{R} t \text { iff }
$$

there exist $l \rightarrow r \in R$, a position p in s, a substitution σ such that $\left.s\right|_{p}=l \sigma$ and $t=s[r \sigma]_{p}$.

- Obviously $R \subseteq \rightarrow_{R}$.
- We may omit R when it is obvious from the context.

Basic Concepts in Term Rewriting

- s rewrites to t by R iff $s \rightarrow_{R} t$.
- \leftarrow_{R} stands for the inverse and \rightarrow_{R}^{*} for reflexive-transitive closure of \rightarrow_{R}.
- s is irreducible by R iff there is no t such that $s \rightarrow_{R} t$.
- t is a normal form of s by R iff $s \rightarrow_{R}^{*} t$ and t is irreducible by R.
- R is terminating iff \rightarrow_{R} is well-founded, i.e., there is no infinite sequence of rewrite steps $s_{1} \rightarrow_{R} s_{2} \rightarrow_{R} s_{3} \rightarrow_{R} \cdots$.

Basic Concepts in Term Rewriting

- R is confluent iff for all terms s, t_{1}, t_{2}, if

$$
s \rightarrow_{R}^{*} t_{1} \text { and } s \rightarrow_{R}^{*} t_{2}
$$

then there exists a term r such that

$$
t_{1} \rightarrow_{R}^{*} r \text { and } t_{2} \rightarrow_{R}^{*} r .
$$

Basic Concepts in Term Rewriting

- R is confluent iff for all terms s, t_{1}, t_{2}, if

$$
s \rightarrow_{R}^{*} t_{1} \text { and } s \rightarrow_{R}^{*} t_{2}
$$

then there exists a term r such that

$$
t_{1} \rightarrow_{R}^{*} r \text { and } t_{2} \rightarrow_{R}^{*} r .
$$

Graphically:

Basic Concepts in Term Rewriting

- t_{1} and t_{2} are joinable by R if there exists a term r such that

$$
t_{1} \rightarrow_{R}^{*} r \text { and } t_{2} \rightarrow_{R}^{*} r .
$$

- Notation: $t_{1} \downarrow_{R} t_{2}$.

Basic Concepts in Term Rewriting

Example 1
Let + be a binary (infix) function symbol, s a unary function symbol, 0 a constant.

$$
R:=\{0+x \rightarrow x, \quad s(x)+y \rightarrow s(x+y)\} .
$$

Then:
$-s(0)+s(s(0)) \rightarrow_{R} s(0+s(s(0))) \rightarrow_{R} s(s(s(0)))$.

- $s(0)+s(s(0)) \rightarrow_{R}^{*} s(s(s(0)))$.
- $s(s(s(0)))$ is irreducible by R and, hence, is a normal form of $s(0)+s(s(0))$, of $s(0+s(s(0)))$, and of $s(s(s(0)))$.

Basic Concepts in Term Rewriting

- A TRS R is convergent iff it is confluent and terminating.
- A convergent TRS provides a decision procedure for the underlying equational theory: Two terms are equivalent iff they reduce to the same normal form.
- Computation of normal forms by repeated reduction is a don't care non-deterministic process for convergent TRSs.

Basic Concepts in Term Rewriting

A strict order $>$ on terms is called a reduction order iff it is

1. monotonic: If $s>t$, then $r[s]>r[t]$ for all terms s, t, r;
2. stable: If $s>t$, then $s \sigma>t \sigma$ for all terms s, t and a substitution σ;
3. well-founded.

Basic Concepts in Term Rewriting

A strict order $>$ on terms is called a reduction order iff it is

1. monotonic: If $s>t$, then $r[s]>r[t]$ for all terms s, t, r;
2. stable: If $s>t$, then $s \sigma>t \sigma$ for all terms s, t and a substitution σ;
3. well-founded.

Why are reduction orders interesting?

Basic Concepts in Term Rewriting

A strict order $>$ on terms is called a reduction order iff it is

1. monotonic: If $s>t$, then $r[s]>r[t]$ for all terms s, t, r;
2. stable: If $s>t$, then $s \sigma>t \sigma$ for all terms s, t and a substitution σ;
3. well-founded.

Why are reduction orders interesting?
Theorem 1
A TRS R terminates iff there exists a reduction order $>$ that satisfies $l>r$ for all $l \rightarrow r \in R$.

Reduction Orders

Example 2

- $|t|$: The size of the term t.
- The order $>_{1}: s>_{1} t$ iff $|s|>|t|$.

Reduction Orders

Example 2

- $|t|$: The size of the term t.
- The order $>_{1}: s>_{1} t$ iff $|s|>|t|$.
- $>_{1}$ is monotonic and well-founded.

Reduction Orders

Example 2

- $|t|$: The size of the term t.
- The order $>_{1}: s>_{1} t$ iff $|s|>|t|$.
- $>_{1}$ is monotonic and well-founded.
- However, $>_{1}$ is not a reduction order because it is not stable:

$$
|f(f(x, x), y)|=5>3=|f(y, y)|
$$

For $\sigma=\{y \mapsto f(x, x)\}$:

$$
\begin{aligned}
& |\sigma(f(f(x, x), y))|=|f(f(x, x), f(x, x))|=7 \\
& \mid \sigma(f(y, y)|=|f(f(x, x), f(x, x))|=7
\end{aligned}
$$

Reduction Orders

Example 2 (Cont.)

- $|t|_{x}$: The number of occurrences of x in t.
- The order $>_{2}: s>_{2} t$ iff $|s|>|t|$ and $|s|_{x} \geq|t|_{x}$ for all x.

Reduction Orders

Example 2 (Cont.)

- $|t|_{x}$: The number of occurrences of x in t.
- The order $>_{2}: s>_{2} t$ iff $|s|>|t|$ and $|s|_{x} \geq|t|_{x}$ for all x.
- $>_{2}$ is a reduction order.

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
- Recursive path orders
- Knuth-Bendix orders

Methods for Construction Reduction Orders

- Polynomial orders
- Simplification orders:
- Recursive path orders
- Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be used to show termination; not only by hand, but also automatically.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.

Lexicographic Path Order

Main idea behind recursive path orders:

- Two terms are compared by first comparing their root symbols.
- Then recursively comparing the collections of their immediate subterms.
- Collections seen as multisets yields the multiset path order. (Not considered in this course.)
- Collections seen as tuples yields the lexicographic path order.
- Combination of multisets and tuples yields the recursive path order with status. (Not considered in this course.)

Lexicographic Path Order

Definition 1

Let \mathcal{F} be a finite signature and $>$ be a strict order on \mathcal{F} (called the precedence). The lexicographic path order $>_{\text {lpo }}$ on $T(\mathcal{F}, \mathcal{V})$ induced by $>$ is defined as follows:
$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{\text {lpo }} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i,
$1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.
$\geq_{l p o}$ stands for the reflexive closure of $>_{l p o}$.

Lexicographic Path Order

$s>_{\text {lpo }} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

Lexicographic Path Order

$s>_{\text {lpo }} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $f(x, e)>_{l p o} x$ by (LPO1)

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{Var}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i,
$1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $f(x, e)>_{l p o} x$ by (LPO1)
- $i(e)>_{l p o} e$ by (LPO2a), because $e \geq_{l p o} e$.

Lexicographic Path Order

$s>_{\text {lpo }} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{Var}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $i(f(x, y))>{ }_{i_{p o}} f(i(x), i(y))$:

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i,
$1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $i(f(x, y))>_{\text {ipo }} f(i(x), i(y))$:
- Since $i>f$, (LPO2b) reduces it to the problems:

$$
i(f(x, y))>?_{l_{p o}} i(x) \text { and } i(f(x, y))>{ }_{\text {lpo }} i(y) .
$$

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i,
$1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $i(f(x, y))>_{\text {lpo }} f(i(x), i(y))$:
- Since $i>f$, (LPO2b) reduces it to the problems:

$$
i(f(x, y))>?_{i_{p o}} i(x) \text { and } i(f(x, y))>?_{i_{p o}} i(y) .
$$

- $i(f(x, y))>{ }_{i_{p o}} i(x)$ is reduced by (LPO2c) to $i(f(x, y)) \gg_{p o} x$ and $f(x, y) \gg_{p o} x$, which hold by (LPO1).

Lexicographic Path Order

$s>_{\text {lpo }} t$ iff
(LPO1) $t \in \operatorname{Var}(s)$ and $t \neq s$, or
$(\mathrm{LPO} 2) s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{\text {lpo }} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i,
$1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>_{\text {lpo }} t_{i}$.

Example 3 (Cont.)

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $i(f(x, y))>{ }_{\text {lpo }} f(i(x), i(y))$:
- Since $i>f$, (LPO2b) reduces it to the problems:

$$
i(f(x, y))>?_{i_{p o}} i(x) \text { and } i(f(x, y))>?_{l_{p o}} i(y)
$$

- $i(f(x, y))>{ }_{\text {? }}^{p o}$ $i(x)$ is reduced by (LPO2c) to $i(f(x, y))>?_{p o} x$ and $f(x, y)>?_{i_{p o}} x$, which hold by (LPO1).
- $i(f(x, y))>_{\text {lpo }} i(y)$ is shown similarly.

Lexicographic Path Order

$s>_{\text {lpo }} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\left.f(f(x, y), z)>\hat{i}_{p o} f(x, f(y, z))\right)$. By (LPO2c) with $i=1$:

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\left.f(f(x, y), z)>_{i_{p o}} f(x, f(y, z))\right)$. By (LPO2c) with $i=1$:
- $f(f(x, y), z)>_{l p o} x$ because of (LPO1).

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)
$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\left.f(f(x, y), z)>_{i_{p o}} f(x, f(y, z))\right)$. By (LPO2c) with $i=1$:
- $f(f(x, y), z)>_{l p o} x$ because of (LPO1).
- $f(f(x, y), z)>_{i_{p o}} f(y, z)$: By (LPO2c) with $i=1$:
- $f(f(x, y), z)>_{\text {lpo }} y$ and $f(f(x, y), z)>_{\text {lpo }} z$ by (LPO1).
- $f(x, y)>_{l p o} y$ by (LPO1).

Lexicographic Path Order

$s>_{l p o} t$ iff
(LPO1) $t \in \mathcal{V} \operatorname{ar}(s)$ and $t \neq s$, or
(LPO2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right)$, and
(LPO2a) $s_{i} \geq_{l p o} t$ for some $i, 1 \leq i \leq m$, or
(LPO2b) $f>g$ and $s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, or
(LPO2c) $f=g, s>_{l p o} t_{j}$ for all $j, 1 \leq j \leq n$, and there exists i, $1 \leq i \leq m$ such that $s_{1}=t_{1}, \ldots s_{i-1}=t_{i-1}$ and $s_{i}>{ }_{l p o} t_{i}$.

Example 3 (Cont.)

$\mathcal{F}=\{f, i, e\}, f$ is binary, i is unary, e is constant, with $i>f>e$.

- $\left.f(f(x, y), z)>_{i_{p o}} f(x, f(y, z))\right)$. By (LPO2c) with $i=1$:
- $f(f(x, y), z)>_{l p o} x$ because of (LPO1).
- $f(f(x, y), z)>{ }_{\text {p }}^{p o}$ $f(y, z)$: By (LPO2c) with $i=1$:
- $f(f(x, y), z)>_{\text {lpo }} y$ and $f(f(x, y), z)>_{\text {lpo }} z$ by (LPO1).
- $f(x, y)>_{l p o} y$ by (LPO1).
- $f(x, y)>_{l p o} x$ by (LPO1).

Reduction Orders

- Reduction orders are not total for terms with variables.
- For instance, $f(x)$ and $f(y)$ can not be ordered.
- $f(x, y)$ and $f(y, x)$ can not be ordered either.
- However, many reduction orders are total on ground terms.
- Fortunately, in theorem proving applications one can often reason about non-ground formulas by considering the corresponding ground instances.
- In such situations, ordered rewriting techniques can be applied.

Ordered Rewriting

- Given: A reduction order $>$ and a set of equations E.
- The rewrite system $E^{>}$is defined as

$$
E^{>}:=\{s \sigma \rightarrow r \sigma \mid(s \approx t \in E \text { or } t \approx s \in E) \text { and } s \sigma>t \sigma\}
$$

- The rewrite relation \rightarrow_{E} induced by $E^{>}$represents ordered rewriting with respect to E and $>$.

Ordered Rewriting

Example 4

- If $>$ is a lexicographic path ordering with precedence $+>a>b>c$, then $b+c>c+b>c$.
- Let $E:=\{x+y \approx y+x\}$.
- We may use the commutativity equation for ordered rewriting.
- $(b+c)+c \rightarrow_{E}(c+b)+c \rightarrow_{E>} c+(c+b)$.

Ordered Rewriting

- If $>$ is a reduction ordering total on ground terms, then $E^{>}$ contains all (non-trivial) ground instances of an equation $s \approx t \in E$, either as a rule $s \sigma \rightarrow t \sigma$ or a rule $t \sigma \rightarrow s \sigma$.
- A rewrite system R is called ground convergent if the induced ground rewrite relation (that is, the rewrite relation \rightarrow_{R} restricted to pairs of ground terms) is terminating and confluent.
- A set of equations E is called ground convergent with respect to $>$ if $E^{>}$is ground convergent.

Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

$$
\frac{s \approx t \quad r[u] \approx v}{(r[t] \approx v) \sigma}
$$

where $\sigma=\operatorname{mgu}(s, u), t \sigma \nsupseteq s \sigma, v \sigma \nsupseteq r \sigma$, and u is not a variable.
The equation $(r[t] \approx v) \sigma$ is called an ordered critical pair (with overlapped term $r[u] \sigma$) between $s \approx t$ and $r[u] \approx v$.

Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

$$
\frac{s \approx t \quad r[u] \approx v}{(r[t] \approx v) \sigma}
$$

where $\sigma=\operatorname{mgu}(s, u), t \sigma \nsupseteq s \sigma, v \sigma \nsupseteq r \sigma$, and u is not a variable.
The equation $(r[t] \approx v) \sigma$ is called an ordered critical pair (with overlapped term $r[u] \sigma$) between $s \approx t$ and $r[u] \approx v$.

Lemma 1
Let $>$ be a ground total reduction ordering. A set E of equations is ground convergent with respect to $>$ iff for all ordered critical pairs $(r[t] \approx v) \sigma$ (with overlapped term $r[u] \sigma$) between equations in E and for all ground substitutions φ, if $r[u] \sigma \varphi>r[t] \sigma \varphi$ and $r[u] \sigma \varphi>v \sigma \varphi$, then $r[t] \sigma \varphi \downarrow_{E}>v \sigma \varphi$.

Critical Pairs

Example 5

- Let $E:=\{f(f(x)) \approx g(x)\}$ and $>$ be the LPO with $f>g$.
- Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

Critical Pairs

Example 5

- Let $E:=\{f(f(x)) \approx g(x)\}$ and $>$ be the LPO with $f>g$.
- Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

- $f(f(f(x)))>f(g(x))$ and $f(f(f(x)))>g(f(x))$, but $f(g(x)) \not \swarrow_{E}>g(f(x))$.

Critical Pairs

Example 5

- Let $E:=\{f(f(x)) \approx g(x)\}$ and $>$ be the LPO with $f>g$.
- Take a critical pair between the equation and its renamed copy, $f(f(x)) \approx g(x)$ and $f(f(y)) \approx g(y)$.

- $f(f(f(x)))>f(g(x))$ and $f(f(f(x)))>g(f(x))$, but $f(g(x)) \not \swarrow_{E>} g(f(x))$.
- E is not ground convergent with respect to $>$.

Adding Critical Pairs to Equations

- Since critical pairs are equational consequences, adding a critical pair to the set of equations does not change the induced equational theory.
- If E^{\prime} is obtained from E by adding a critical pair, then $\approx_{E}=\approx_{E^{\prime}}$.
- The idea of adding a critical pair as a new equation is called "completion".

Convergence

Example 6

- Let $E^{\prime}:=\{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let $>$ be the LPO with $f>g$.

Convergence

Example 6

- Let $E^{\prime}:=\{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let $>$ be the LPO with $f>g$.
- E^{\prime} has two critical pairs. Both are joinable:

Convergence

Example 6

- Let $E^{\prime}:=\{f(f(x)) \approx g(x), f(g(x)) \approx g(f(x))\}$
- Let $>$ be the LPO with $f>g$.
- E^{\prime} has two critical pairs. Both are joinable:

- E^{\prime} is (ground) convergent.

Ordered Completion

- Described as a set of inference rules.
- Parametrized by a reduction ordering $>$.
- Works on pairs (E, R), where E is a set of equations and R is a set of rewrite rules.
- $E ; R \vdash E^{\prime} ; R^{\prime}$ means that $E^{\prime} ; R^{\prime}$ can be obtained from $E ; R$ by applying a completion inference.

Ordered Completion: Notions

- Derivation: A (finite or countably infinite) sequence $\left(E_{0} ; R_{0}\right) \vdash\left(E_{1} ; R_{1}\right) \cdots$.
- Usually, E_{0} is the set of initial equations and $R_{0}=\emptyset$.
- The limit of a derivation: the pair $E_{\omega} ; R_{\omega}$, where

$$
E_{\omega}:=\bigcup_{i \geq 0} \bigcap_{j \geq i} E_{j} \text { and } R_{\omega}:=\bigcup_{i \geq 0} \bigcap_{j \geq i} R_{j} .
$$

- Goal: to obtain a limit system that is ground convergent.

Ordered Completion: Notation

- \uplus : Disjoint union
- $s \triangleright t$: Strict encompassment relation. An instance of t is a subterm of s, but not vice versa.
- $s \approx t$ stands for $s \approx t$ or $t \approx s$.
- $C P_{>}(E \cup R)$: The set of all ordered critical pairs, with the ordering $>$, generated by equations in E and rewrite rules in R treated as equations.

Ordered Completion: Rules

Deduction: $\quad E ; R \vdash E \cup\{s \approx t\} ; R$

$$
\text { if } s \approx t \in C P_{>}(E \cup R)
$$

Orientation:
$E \uplus\{s \approx t\} ; R \vdash E ; R \cup\{s \rightarrow t\}$, if $s>t$.
Deletion: $\quad E \uplus\{s \approx s\} ; R \vdash E ; R$.
Composition: $\quad E ; R \uplus\{s \rightarrow t\} \vdash E ; R \cup\{s \rightarrow r\}$,

$$
\text { if } t \rightarrow_{R \cup E>} r \text {. }
$$

Ordered Completion: Rules

Simplification: $E \cup\{s \approx t\} ; R \vdash E \cup\{u \approx t\} ; R$, if $s \rightarrow_{R} u$ or $s \rightarrow_{E>} u$ with $l \sigma \rightarrow r \sigma$ for $l \approx r \in E, s \triangleright l$.

Collapse: $\quad E ; R \uplus\{s \rightarrow t\} \vdash E \cup\{u \approx t\} ; R$, if $s \rightarrow_{R} u$ or $s \rightarrow_{E}>u$ with $l \sigma \rightarrow r \sigma$ for $l \approx r \in E, s \triangleright l$.

Ordered Completion: Properties

Theorem 2
Let $\left(E_{0} ; R_{0}\right),\left(E_{1} ; R_{1}\right), \ldots$ be an ordered completion derivation where all critical pairs are eventually generated (a fair derivation). Then these three properties are equivalent for all ground terms s and t :
(1) $E_{0} \vDash s \approx t$.
(2) $s \downarrow_{E_{\omega} \cup R_{\omega}} t$.
(3) $s \downarrow_{E_{i}^{>} \cup R_{i}} t$ for some $i \geq 0$.

This theorem, in particular, asserts the refutational completeness of ordered completion.

Proving by Ordered Completion: Example

Given:

1. $(x \cdot y) \cdot z \approx x \cdot(y \cdot z)$.
2. $x \cdot e \approx x$.
3. $x \cdot i(x) \approx e$.
4. $x \cdot x \approx e$.

Prove
Goal: $x \cdot y \approx y \cdot x$.

Proving by Ordered Completion: Example

Proof by ordered completion:

- Skolemize the goal: $a \cdot b \approx b \cdot a$.
- Take LPO as the reduction ordering with the precedence $i>f>e>a>b$
- $E_{0}:=\{(x \cdot y) \cdot z \approx x \cdot(y \cdot z), x \cdot e \approx x, x \cdot i(x) \approx e, x \cdot x \approx e\}$
- $R_{0}:=\emptyset$
- Start applying the rules.

Proving by Ordered Completion: Example

$$
\begin{aligned}
& E_{0}=\{(x \cdot y) \cdot z \approx x \cdot(y \cdot z), x \cdot e \approx x, x \cdot i(x) \approx e, x \cdot x \approx e\} \\
& R_{0}=\emptyset
\end{aligned}
$$

Apply Orient 4 times:

$$
\begin{aligned}
& E_{4}=\emptyset \\
& R_{4}=\{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
& E_{0}=\{(x \cdot y) \cdot z \approx x \cdot(y \cdot z), x \cdot e \approx x, x \cdot i(x) \approx e, x \cdot x \approx e\} \\
& R_{0}=\emptyset
\end{aligned}
$$

Apply Orient 4 times:

$$
\begin{aligned}
& E_{4}=\emptyset \\
& R_{4}=\{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e\}
\end{aligned}
$$

Apply Deduce with the rules $(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)$ and $x \cdot e \rightarrow x$ to the overlapping term $(x \cdot e) \cdot z$, and then Orient:

$$
\begin{aligned}
E_{6}= & \emptyset \\
R_{6}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{6}= & \emptyset \\
R_{6}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Deduce with the rules $x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}$ and $x \cdot i(x) \rightarrow e$ to the overlapping term $x_{1} \cdot(e \cdot i(e))$:

$$
\begin{aligned}
E_{7}= & \left\{x_{1} \cdot i(e) \approx x_{1} \cdot e\right\} \\
R_{7}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{7}= & \left\{x_{1} \cdot i(e) \approx x_{1} \cdot e\right\} \\
R_{7}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Orient to $x_{1} \cdot i(e) \approx x_{1} \cdot e$ and then Composition with the rule $x \cdot e \rightarrow x$:

$$
\begin{aligned}
E_{9}= & \emptyset \\
R_{9}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{9}= & \emptyset \\
R_{9}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x\right\}
\end{aligned}
$$

Apply Deduce with the rules $x \cdot x \rightarrow e$ and $x \cdot i(e) \rightarrow x$ to the overlapping term $i(e) \cdot i(e)$, and then Orient:

$$
\begin{aligned}
E_{11}= & \emptyset \\
R_{11}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x, i(e) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{11}= & \emptyset \\
R_{11}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, x \cdot i(e) \rightarrow x, i(e) \rightarrow e\right\}
\end{aligned}
$$

Apply Collapse to $x \cdot i(e) \rightarrow x$ with $i(e) \rightarrow e$:

$$
\begin{aligned}
E_{12}= & \{x \cdot e \approx x\} \\
R_{12}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{12}= & \{x \cdot e \approx x\} \\
R_{12}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Apply Simplification to $x \cdot e \approx x$ with $x \cdot e \rightarrow x$ and then Delete to the obtained $x \approx x$:

$$
\begin{aligned}
E_{14}= & \emptyset \\
R_{14}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{14}= & \emptyset \\
R_{14}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e\right\}
\end{aligned}
$$

Apply Deduce to $(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)$ and $x \cdot i(x) \rightarrow e$ with the overlapping term $(x \cdot i(x)) \cdot z$ and then Orient:

$$
\begin{aligned}
E_{16}= & \emptyset \\
R_{16}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{16}= & \emptyset \\
R_{16}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}$ and $x \cdot x \rightarrow e$ with the overlapping term $x_{1} \cdot\left(i\left(x_{1}\right) \cdot i\left(x_{1}\right)\right)$:

$$
\begin{aligned}
E_{17}= & \{e \cdot i(x) \approx x \cdot e\} \\
R_{17}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{17}= & \{e \cdot i(x) \approx x \cdot e\} \\
R_{17}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& \left.x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}\right\}
\end{aligned}
$$

Apply Simplification to $e \cdot i(x) \approx x \cdot e$ with $x \cdot e \rightarrow x$ and then Orient:

$$
\begin{aligned}
E_{19}= & \emptyset \\
R_{19}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& e \cdot i(x) \rightarrow x\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{19}= & \emptyset \\
R_{19}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2} \\
& e \cdot i(x) \rightarrow x\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}$ and $e \cdot i(x) \rightarrow x$ with the overlapping term $x_{1} \cdot\left(e \cdot i\left(x_{2}\right)\right)$ and then Orient:

$$
\begin{aligned}
E_{21}= & \emptyset \\
R_{21}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{21}= & \emptyset \\
R_{21}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot i(x) \rightarrow e, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Applying Collapse, Simplification, and Delete, we get rid of $x \cdot i(x) \rightarrow e$:

$$
\begin{aligned}
E_{24}= & \emptyset \\
R_{24}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2} \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{24}= & \emptyset \\
R_{24}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot i(x) \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Applying Collapse and Orient, we replace $e \cdot i(x) \rightarrow x$ with $e \cdot x \rightarrow x$:

$$
\begin{aligned}
E_{26}= & \emptyset \\
R_{26}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2} \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{26}= & \emptyset \\
R_{26}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Applying Collapse and Delete, we get rid of $x_{1} \cdot\left(e \cdot x_{2}\right) \rightarrow x_{1} \cdot x_{2}$:

$$
\begin{aligned}
E_{28}= & \emptyset \\
R_{28}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{28}= & \emptyset \\
R_{28}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Deduce to $e \cdot x \rightarrow x$ and $x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}$ with the overlapping term $e \cdot i\left(x_{2}\right)$:

$$
\begin{aligned}
E_{29}= & \left\{i\left(x_{1}\right) \approx e \cdot x_{2}\right\} \\
R_{29}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{29}= & \left\{i\left(x_{2}\right) \approx e \cdot x_{2}\right\} \\
R_{29}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2} \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}\right\}
\end{aligned}
$$

Apply Simplification to $i\left(x_{1}\right) \approx e \cdot x_{2}$ with $e \cdot x \rightarrow x$ and then Orient:

$$
\begin{aligned}
E_{31}= & \emptyset \\
R_{31}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2} \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \quad i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{31}= & \emptyset \\
R_{31}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& i(e) \rightarrow e, x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, \\
& \left.e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(x) \rightarrow x\right\}
\end{aligned}
$$

Apply Collapse and Delete, we get rid of $i(e) \rightarrow e$:

$$
\begin{aligned}
E_{33}= & \emptyset \\
R_{33}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{33}= & \emptyset \\
R_{33}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, i(x) \rightarrow x\right\}
\end{aligned}
$$

Applying Composition, we replace $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow e \cdot x_{2}$ by $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}:$

$$
\begin{aligned}
E_{34}= & \emptyset \\
R_{34}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \quad i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{34}= & \emptyset \\
R_{34}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \quad i(x) \rightarrow x\right\}
\end{aligned}
$$

Applying Simplification and Orient, we replace $x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}$ by $x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}$:

$$
\begin{aligned}
E_{36}= & \emptyset \\
R_{36}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \quad i(x) \rightarrow x\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{36}= & \emptyset \\
R_{36}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(i\left(x_{1}\right) \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, \\
& \left.x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \quad i(x) \rightarrow x\right\}
\end{aligned}
$$

Apply Deduce to $(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z)$ and $x \cdot x \rightarrow e$ with the overlapping term $\left(x_{1} \cdot x_{2}\right) \cdot\left(x_{1} \cdot x_{2}\right)$, then Orient:

$$
\begin{aligned}
E_{37}= & \emptyset \\
R_{37}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{37}= & \emptyset \\
R_{37}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e\right\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}$ and $x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e$ with the overlapping term $x_{1} \cdot\left(x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right)\right)$, then Orient:

$$
\begin{aligned}
E_{39}= & \emptyset \\
R_{39}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{39}= & \emptyset \\
R_{39}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

Apply Composition to $x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e$ with $x \cdot e \rightarrow x$:

$$
\begin{aligned}
E_{40}= & \emptyset \\
R_{40}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1}\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{41}= & \emptyset \\
R_{41}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1}\right\}
\end{aligned}
$$

Apply Deduce to $x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}$ and $x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1}$ with the overlapping term $x_{2} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right)$:

$$
\begin{aligned}
E_{42}= & \left\{x_{1} \cdot x_{2} \approx x_{2} \cdot x_{1}\right\} \\
R_{42}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e, \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

Proving by Ordered Completion: Example

$$
\begin{aligned}
E_{42}= & \left\{x_{1} \cdot x_{2} \approx x_{2} \cdot x_{1}\right\} \\
R_{42}= & \{(x \cdot y) \cdot z \rightarrow x \cdot(y \cdot z), x \cdot e \rightarrow x, x \cdot x \rightarrow e \\
& x_{1} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{2}, e \cdot x \rightarrow x, x_{1} \cdot i\left(x_{2}\right) \rightarrow x_{1} \cdot x_{2}, \\
& \left.i(x) \rightarrow x, x_{1} \cdot\left(x_{2} \cdot\left(x_{1} \cdot x_{2}\right)\right) \rightarrow e, x_{2} \cdot\left(x_{1} \cdot x_{2}\right) \rightarrow x_{1} \cdot e\right\}
\end{aligned}
$$

The equation $x_{1} \cdot x_{2} \approx x_{2} \cdot x_{1}$ joins the goal $a \cdot b \approx b \cdot a$. Hence, the goal is proved.

