
Rewriting-Based Deduction. Completion

Temur Kutsia

RISC, JKU Linz

Motivation

I Unrestricted use of the paramodulation rule can be very
inefficient.

I Various methods have been proposed to restrict it without
compromising the completeness.

I Term rewriting contributed essential techniques for refining
paramodulation into a practical inference system.

Rewriting-Based Deduction for Unit Equalities

I We assume that the given set of clauses consists of unit
equalities and one ground inequality.

I Goal: Design a calculus which works on such sets, restricts
applications of the paramodulation rule, and is complete.

I Later this calculus can be extended to general clauses.

Equational Theory

I E: A set of equations.

I A: The set of equality axioms for E.

I E � s ≈ t iff I � s ≈ t for all interpretations I which is a
model of E ∪A.

I Equational theory of E:

≈E := {(s, t) | E � s ≈ t}

I Notation: s ≈E t iff (s, t) ∈ ≈E .

Basic Concepts in Term Rewriting

I A rewrite rule is an ordered pair of terms, written l→ r.

I Term rewriting system (TRS): a set of rewrite rules.

Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?

Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?

Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?

Problem

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

The problem is undecidable for an arbitrary E.

When E is finite and induces a (ground) convergent TRS,

the problem is decidable.

When E is finite and induces a (ground) convergent TRS,

What’s this?

Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

I Refute and skolemize the goal, obtaining the ground
disequation s′ 6≈E t′.

I Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

I In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

I If yes, stop. You obtained a contradiction, which proves
s ≈E t.

I If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

I Refute and skolemize the goal, obtaining the ground
disequation s′ 6≈E t′.

I Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

I In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

I If yes, stop. You obtained a contradiction, which proves
s ≈E t.

I If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

I Refute and skolemize the goal, obtaining the ground
disequation s′ 6≈E t′.

I Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

I In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

I If yes, stop. You obtained a contradiction, which proves
s ≈E t.

I If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

I Refute and skolemize the goal, obtaining the ground
disequation s′ 6≈E t′.

I Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

I In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

I If yes, stop. You obtained a contradiction, which proves
s ≈E t.

I If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

I Refute and skolemize the goal, obtaining the ground
disequation s′ 6≈E t′.

I Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

I In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

I If yes, stop. You obtained a contradiction, which proves
s ≈E t.

I If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.

Problem and Solving Idea

Given: A set of equations E and two terms s and t.

Decide: s ≈E t holds or not.

Solving Idea:

I Refute and skolemize the goal, obtaining the ground
disequation s′ 6≈E t′.

I Try to construct from E a ground convergent set of equations
and rewrite rules, with the procedure called completion.

I In the course of completion, from time to time check whether
s′ and t′ can be rewritten to the same term with the
equations and rules constructed so far.

I If yes, stop. You obtained a contradiction, which proves
s ≈E t.

I If not, continue with completion. If this is not possible, then
report: s ≈E t does not hold.

What We Need To Know

I What is rewriting?

I What is a ground convergent set of equations and rewrite
rules?

I What is completion?

Basic Concepts in Term Rewriting

R: A term rewriting system.

I The rewrite relation induced by R, denoted →R, is a binary
relation on terms defined as:

s→R t iff

there exist l→ r ∈ R, a position p in s, a substitution σ

such that s|p = lσ and t = s[rσ]p.

I Obviously R ⊆ →R.

I We may omit R when it is obvious from the context.

Basic Concepts in Term Rewriting

R: A term rewriting system.

I The rewrite relation induced by R, denoted →R, is a binary
relation on terms defined as:

s→R t iff

there exist l→ r ∈ R, a position p in s, a substitution σ

such that s|p = lσ and t = s[rσ]p.

I Obviously R ⊆ →R.

I We may omit R when it is obvious from the context.

Basic Concepts in Term Rewriting

I s rewrites to t by R iff s→R t.

I ←R stands for the inverse and →∗R for reflexive-transitive
closure of →R.

I s is irreducible by R iff there is no t such that s→R t.

I t is a normal form of s by R iff s→∗R t and t is irreducible
by R.

I R is terminating iff →R is well-founded, i.e., there is no
infinite sequence of rewrite steps s1 →R s2 →R s3 →R · · · .

Basic Concepts in Term Rewriting

I R is confluent iff for all terms s, t1, t2, if

s→∗R t1 and s→∗R t2,

then there exists a term r such that

t1 →∗R r and t2 →∗R r.

Graphically:
s t1

t2 r

∗

∗

∗∗

Basic Concepts in Term Rewriting

I R is confluent iff for all terms s, t1, t2, if

s→∗R t1 and s→∗R t2,

then there exists a term r such that

t1 →∗R r and t2 →∗R r.

Graphically:
s t1

t2 r

∗

∗

∗∗

Basic Concepts in Term Rewriting

I t1 and t2 are joinable by R if there exists a term r such that

t1 →∗R r and t2 →∗R r.

I Notation: t1 ↓R t2.

Basic Concepts in Term Rewriting

Example 1

Let + be a binary (infix) function symbol, s a unary function
symbol, 0 a constant.

R := {0 + x→ x, s(x) + y → s(x+ y)}.

Then:

I s(0) + s(s(0))→R s(0 + s(s(0)))→R s(s(s(0))).

I s(0) + s(s(0))→∗R s(s(s(0))).

I s(s(s(0))) is irreducible by R and, hence, is a normal form of
s(0) + s(s(0)), of s(0 + s(s(0))), and of s(s(s(0))).

Basic Concepts in Term Rewriting

I A TRS R is convergent iff it is confluent and terminating.

I A convergent TRS provides a decision procedure for the
underlying equational theory: Two terms are equivalent iff
they reduce to the same normal form.

I Computation of normal forms by repeated reduction is a don’t
care non-deterministic process for convergent TRSs.

Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then sσ > tσ for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l→ r ∈ R.

Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then sσ > tσ for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l→ r ∈ R.

Basic Concepts in Term Rewriting

A strict order > on terms is called a reduction order iff it is

1. monotonic: If s > t, then r[s] > r[t] for all terms s, t, r;

2. stable: If s > t, then sσ > tσ for all terms s, t and a
substitution σ;

3. well-founded.

Why are reduction orders interesting?

Theorem 1
A TRS R terminates iff there exists a reduction order > that
satisfies l > r for all l→ r ∈ R.

Reduction Orders

Example 2

I |t|: The size of the term t.

I The order >1: s >1 t iff |s| > |t|.

I >1 is monotonic and well-founded.

I However, >1 is not a reduction order because it is not stable:

|f(f(x, x), y)| = 5 > 3 = |f(y, y)|

For σ = {y 7→ f(x, x)}:

|σ(f(f(x, x), y))| = |f(f(x, x), f(x, x))| = 7,

|σ(f(y, y)| = |f(f(x, x), f(x, x))| = 7.

Reduction Orders

Example 2

I |t|: The size of the term t.

I The order >1: s >1 t iff |s| > |t|.
I >1 is monotonic and well-founded.

I However, >1 is not a reduction order because it is not stable:

|f(f(x, x), y)| = 5 > 3 = |f(y, y)|

For σ = {y 7→ f(x, x)}:

|σ(f(f(x, x), y))| = |f(f(x, x), f(x, x))| = 7,

|σ(f(y, y)| = |f(f(x, x), f(x, x))| = 7.

Reduction Orders

Example 2

I |t|: The size of the term t.

I The order >1: s >1 t iff |s| > |t|.
I >1 is monotonic and well-founded.

I However, >1 is not a reduction order because it is not stable:

|f(f(x, x), y)| = 5 > 3 = |f(y, y)|

For σ = {y 7→ f(x, x)}:

|σ(f(f(x, x), y))| = |f(f(x, x), f(x, x))| = 7,

|σ(f(y, y)| = |f(f(x, x), f(x, x))| = 7.

Reduction Orders

Example 2 (Cont.)

I |t|x: The number of occurrences of x in t.

I The order >2: s >2 t iff |s| > |t| and |s|x ≥ |t|x for all x.

I >2 is a reduction order.

Reduction Orders

Example 2 (Cont.)

I |t|x: The number of occurrences of x in t.

I The order >2: s >2 t iff |s| > |t| and |s|x ≥ |t|x for all x.

I >2 is a reduction order.

Methods for Construction Reduction Orders

I Polynomial orders
I Simplification orders:

I Recursive path orders
I Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also automatically.

Methods for Construction Reduction Orders

I Polynomial orders
I Simplification orders:

I Recursive path orders
I Knuth-Bendix orders

Goal: Provide a variety of different reduction orders that can be
used to show termination; not only by hand, but also automatically.

Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their immediate
subterms.

I Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

I Collections seen as tuples yields the lexicographic path order.

I Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)

Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their immediate
subterms.

I Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

I Collections seen as tuples yields the lexicographic path order.

I Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)

Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their immediate
subterms.

I Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

I Collections seen as tuples yields the lexicographic path order.

I Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)

Lexicographic Path Order

Main idea behind recursive path orders:

I Two terms are compared by first comparing their root
symbols.

I Then recursively comparing the collections of their immediate
subterms.

I Collections seen as multisets yields the multiset path order.
(Not considered in this course.)

I Collections seen as tuples yields the lexicographic path order.

I Combination of multisets and tuples yields the recursive path
order with status. (Not considered in this course.)

Lexicographic Path Order

Definition 1
Let F be a finite signature and > be a strict order on F (called
the precedence). The lexicographic path order >lpoon T (F ,V)
induced by > is defined as follows:

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

≥lpo stands for the reflexive closure of >lpo .

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(x, e) >lpo x by (LPO1)

I i(e) >lpo e by (LPO2a), because e ≥lpo e.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(x, e) >lpo x by (LPO1)

I i(e) >lpo e by (LPO2a), because e ≥lpo e.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(x, e) >lpo x by (LPO1)

I i(e) >lpo e by (LPO2a), because e ≥lpo e.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x, y)) >?
lpo f(i(x), i(y)):

I Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?

lpo i(x) and i(f(x, y)) >?
lpo i(y).

I i(f(x, y)) >?
lpo i(x) is reduced by (LPO2c) to

i(f(x, y)) >?
lpo x and f(x, y) >?

lpo x, which hold by (LPO1).
I i(f(x, y)) >lpo i(y) is shown similarly.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x, y)) >?
lpo f(i(x), i(y)):

I Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?

lpo i(x) and i(f(x, y)) >?
lpo i(y).

I i(f(x, y)) >?
lpo i(x) is reduced by (LPO2c) to

i(f(x, y)) >?
lpo x and f(x, y) >?

lpo x, which hold by (LPO1).
I i(f(x, y)) >lpo i(y) is shown similarly.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x, y)) >?
lpo f(i(x), i(y)):

I Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?

lpo i(x) and i(f(x, y)) >?
lpo i(y).

I i(f(x, y)) >?
lpo i(x) is reduced by (LPO2c) to

i(f(x, y)) >?
lpo x and f(x, y) >?

lpo x, which hold by (LPO1).
I i(f(x, y)) >lpo i(y) is shown similarly.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x, y)) >?
lpo f(i(x), i(y)):

I Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?

lpo i(x) and i(f(x, y)) >?
lpo i(y).

I i(f(x, y)) >?
lpo i(x) is reduced by (LPO2c) to

i(f(x, y)) >?
lpo x and f(x, y) >?

lpo x, which hold by (LPO1).

I i(f(x, y)) >lpo i(y) is shown similarly.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I i(f(x, y)) >?
lpo f(i(x), i(y)):

I Since i > f , (LPO2b) reduces it to the problems:
i(f(x, y)) >?

lpo i(x) and i(f(x, y)) >?
lpo i(y).

I i(f(x, y)) >?
lpo i(x) is reduced by (LPO2c) to

i(f(x, y)) >?
lpo x and f(x, y) >?

lpo x, which hold by (LPO1).
I i(f(x, y)) >lpo i(y) is shown similarly.

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).
I f(f(x, y), z) >?

lpo f(y, z): By (LPO2c) with i = 1:
I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).
I f(f(x, y), z) >?

lpo f(y, z): By (LPO2c) with i = 1:
I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).

I f(f(x, y), z) >?
lpo f(y, z): By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).
I f(f(x, y), z) >?

lpo f(y, z): By (LPO2c) with i = 1:
I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).

Lexicographic Path Order

s >lpo t iff

(LPO1) t ∈ Var(s) and t 6= s, or

(LPO2) s = f(s1, . . . , sm), t = g(t1, . . . , tn), and

(LPO2a) si ≥lpo t for some i, 1 ≤ i ≤ m, or
(LPO2b) f > g and s >lpo tj for all j, 1 ≤ j ≤ n, or
(LPO2c) f = g, s >lpo tj for all j, 1 ≤ j ≤ n, and there exists i,

1 ≤ i ≤ m such that s1 = t1, . . . si−1 = ti−1 and
si >lpo ti.

Example 3 (Cont.)

F = {f, i, e}, f is binary, i is unary, e is constant, with i > f > e.

I f(f(x, y), z) >?
lpo f(x, f(y, z))). By (LPO2c) with i = 1:

I f(f(x, y), z) >lpo x because of (LPO1).
I f(f(x, y), z) >?

lpo f(y, z): By (LPO2c) with i = 1:
I f(f(x, y), z) >lpo y and f(f(x, y), z) >lpo z by (LPO1).
I f(x, y) >lpo y by (LPO1).

I f(x, y) >lpo x by (LPO1).

Reduction Orders

I Reduction orders are not total for terms with variables.

I For instance, f(x) and f(y) can not be ordered.

I f(x, y) and f(y, x) can not be ordered either.

I However, many reduction orders are total on ground terms.

I Fortunately, in theorem proving applications one can often
reason about non-ground formulas by considering the
corresponding ground instances.

I In such situations, ordered rewriting techniques can be applied.

Ordered Rewriting

I Given: A reduction order > and a set of equations E.

I The rewrite system E> is defined as

E> := {sσ → rσ | (s ≈ t ∈ E or t ≈ s ∈ E) and sσ > tσ}

I The rewrite relation →E> induced by E> represents ordered
rewriting with respect to E and >.

Ordered Rewriting

Example 4

I If > is a lexicographic path ordering with precedence
+ > a > b > c, then b+ c > c+ b > c.

I Let E := {x+ y ≈ y + x}.
I We may use the commutativity equation for ordered rewriting.

I (b+ c) + c→E> (c+ b) + c→E> c+ (c+ b).

Ordered Rewriting

I If > is a reduction ordering total on ground terms, then E>

contains all (non-trivial) ground instances of an equation
s ≈ t ∈ E, either as a rule sσ → tσ or a rule tσ → sσ.

I A rewrite system R is called ground convergent if the induced
ground rewrite relation (that is, the rewrite relation →R

restricted to pairs of ground terms) is terminating and
confluent.

I A set of equations E is called ground convergent with respect
to > if E> is ground convergent.

Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

s ≈ t r[u] ≈ v
(r[t] ≈ v)σ

,

where σ = mgu(s, u), tσ 6≥ sσ, vσ 6≥ rσ, and u is not a variable.

The equation (r[t] ≈ v)σ is called an ordered critical pair (with
overlapped term r[u]σ) between s ≈ t and r[u] ≈ v.

Lemma 1
Let > be a ground total reduction ordering. A set E of equations
is ground convergent with respect to > iff for all ordered critical
pairs (r[t] ≈ v)σ (with overlapped term r[u]σ) between equations
in E and for all ground substitutions ϕ, if r[u]σϕ > r[t]σϕ and
r[u]σϕ > vσϕ, then r[t]σϕ ↓E> vσϕ.

Critical Pairs

Ordered rewriting leads to the inference rule, called superposition:

s ≈ t r[u] ≈ v
(r[t] ≈ v)σ

,

where σ = mgu(s, u), tσ 6≥ sσ, vσ 6≥ rσ, and u is not a variable.

The equation (r[t] ≈ v)σ is called an ordered critical pair (with
overlapped term r[u]σ) between s ≈ t and r[u] ≈ v.

Lemma 1
Let > be a ground total reduction ordering. A set E of equations
is ground convergent with respect to > iff for all ordered critical
pairs (r[t] ≈ v)σ (with overlapped term r[u]σ) between equations
in E and for all ground substitutions ϕ, if r[u]σϕ > r[t]σϕ and
r[u]σϕ > vσϕ, then r[t]σϕ ↓E> vσϕ.

Critical Pairs

Example 5

I Let E := {f(f(x)) ≈ g(x)} and > be the LPO with f > g.

I Take a critical pair between the equation and its renamed
copy, f(f(x)) ≈ g(x) and f(f(y)) ≈ g(y).

f(f(f(x)))

f(g(x)) g(f(x))

I f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) 6 ↓ E>g(f(x)).

I E is not ground convergent with respect to >.

Critical Pairs

Example 5

I Let E := {f(f(x)) ≈ g(x)} and > be the LPO with f > g.

I Take a critical pair between the equation and its renamed
copy, f(f(x)) ≈ g(x) and f(f(y)) ≈ g(y).

f(f(f(x)))

f(g(x)) g(f(x))

I f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) 6 ↓ E>g(f(x)).

I E is not ground convergent with respect to >.

Critical Pairs

Example 5

I Let E := {f(f(x)) ≈ g(x)} and > be the LPO with f > g.

I Take a critical pair between the equation and its renamed
copy, f(f(x)) ≈ g(x) and f(f(y)) ≈ g(y).

f(f(f(x)))

f(g(x)) g(f(x))

I f(f(f(x))) > f(g(x)) and f(f(f(x))) > g(f(x)), but
f(g(x)) 6 ↓ E>g(f(x)).

I E is not ground convergent with respect to >.

Adding Critical Pairs to Equations

I Since critical pairs are equational consequences, adding a
critical pair to the set of equations does not change the
induced equational theory.

I If E′ is obtained from E by adding a critical pair, then
≈E =≈E′ .

I The idea of adding a critical pair as a new equation is called
“completion”.

Convergence

Example 6

I Let E′ := {f(f(x)) ≈ g(x), f(g(x)) ≈ g(f(x))}
I Let > be the LPO with f > g.

I E′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

I E′ is (ground) convergent.

Convergence

Example 6

I Let E′ := {f(f(x)) ≈ g(x), f(g(x)) ≈ g(f(x))}
I Let > be the LPO with f > g.

I E′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

I E′ is (ground) convergent.

Convergence

Example 6

I Let E′ := {f(f(x)) ≈ g(x), f(g(x)) ≈ g(f(x))}
I Let > be the LPO with f > g.

I E′ has two critical pairs. Both are joinable:

f(f(f(x)))

f(g(x)) g(f(x))

f(f(g(x)))

g(g(x))

f(g(f(x)))

g(f(f(x)))

I E′ is (ground) convergent.

Ordered Completion

I Described as a set of inference rules.

I Parametrized by a reduction ordering >.

I Works on pairs (E,R), where E is a set of equations and R is
a set of rewrite rules.

I E;R ` E′;R′ means that E′;R′ can be obtained from E;R
by applying a completion inference.

Ordered Completion: Notions

I Derivation: A (finite or countably infinite) sequence
(E0;R0) ` (E1;R1) · · · .

I Usually, E0 is the set of initial equations and R0 = ∅.
I The limit of a derivation: the pair Eω;Rω, where

Eω :=
⋃
i≥0

⋂
j≥i

Ej and Rω :=
⋃
i≥0

⋂
j≥i

Rj .

I Goal: to obtain a limit system that is ground convergent.

Ordered Completion: Notation

I]: Disjoint union

I sB t: Strict encompassment relation. An instance of t is a
subterm of s, but not vice versa.

I s u t stands for s ≈ t or t ≈ s.

I CP>(E ∪R): The set of all ordered critical pairs, with the
ordering >, generated by equations in E and rewrite rules in
R treated as equations.

Ordered Completion: Rules

Deduction: E;R ` E ∪ {s ≈ t};R
if s ≈ t ∈ CP>(E ∪R).

Orientation: E] {s u t};R ` E;R ∪ {s→ t}, if s > t.

Deletion: E] {s ≈ s};R ` E;R.

Composition: E;R] {s→ t} ` E;R ∪ {s→ r},
if t→R∪E> r.

Ordered Completion: Rules

Simplification: E ∪ {s u t};R ` E ∪ {u ≈ t};R,
if s→R u or s→E> u with lσ → rσ

for l u r ∈ E, sB l.

Collapse: E;R] {s→ t} ` E ∪ {u ≈ t};R,
if s→R u or s→E> u with lσ → rσ

for l u r ∈ E, sB l.

Ordered Completion: Properties

Theorem 2
Let (E0;R0), (E1;R1), . . . be an ordered completion derivation
where all critical pairs are eventually generated (a fair derivation).
Then these three properties are equivalent for all ground terms s
and t:

(1) E0 � s ≈ t.
(2) s ↓E>

ω ∪Rω
t.

(3) s ↓E>
i ∪Ri

t for some i ≥ 0.

This theorem, in particular, asserts the refutational completeness
of ordered completion.

Proving by Ordered Completion: Example

Given:

1. (x · y) · z ≈ x · (y · z).
2. x · e ≈ x.

3. x · i(x) ≈ e.

4. x · x ≈ e.

Prove

Goal: x · y ≈ y · x.

Proving by Ordered Completion: Example

Proof by ordered completion:

I Skolemize the goal: a · b ≈ b · a.

I Take LPO as the reduction ordering with the precedence
i > f > e > a > b

I E0 := {(x · y) · z ≈ x · (y · z), x · e ≈ x, x · i(x) ≈ e, x ·x ≈ e}
I R0 := ∅
I Start applying the rules.

Proving by Ordered Completion: Example

E0 = {(x · y) · z ≈ x · (y · z), x · e ≈ x, x · i(x) ≈ e, x · x ≈ e}
R0 = ∅

Apply Orient 4 times:

E4 = ∅
R4 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e}

Apply Deduce with the rules (x · y) · z → x · (y · z) and x · e→ x
to the overlapping term (x · e) · z, and then Orient:

E6 = ∅
R6 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Proving by Ordered Completion: Example

E0 = {(x · y) · z ≈ x · (y · z), x · e ≈ x, x · i(x) ≈ e, x · x ≈ e}
R0 = ∅

Apply Orient 4 times:

E4 = ∅
R4 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e}

Apply Deduce with the rules (x · y) · z → x · (y · z) and x · e→ x
to the overlapping term (x · e) · z, and then Orient:

E6 = ∅
R6 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Proving by Ordered Completion: Example

E6 = ∅
R6 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Apply Deduce with the rules x1 · (e · x2)→ x1 · x2 and
x · i(x)→ e to the overlapping term x1 · (e · i(e)):

E7 = {x1 · i(e) ≈ x1 · e}
R7 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Proving by Ordered Completion: Example

E7 = {x1 · i(e) ≈ x1 · e}
R7 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2}

Apply Orient to x1 · i(e) ≈ x1 · e and then Composition with
the rule x · e→ x:

E9 = ∅
R9 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x}

Proving by Ordered Completion: Example

E9 = ∅
R9 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x}

Apply Deduce with the rules x · x→ e and x · i(e)→ x to the
overlapping term i(e) · i(e), and then Orient:

E11 = ∅
R11 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x, i(e)→ e}

Proving by Ordered Completion: Example

E11 = ∅
R11 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, x · i(e)→ x, i(e)→ e}

Apply Collapse to x · i(e)→ x with i(e)→ e:

E12 = {x · e ≈ x}
R12 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}

Proving by Ordered Completion: Example

E12 = {x · e ≈ x}
R12 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}

Apply Simplification to x · e ≈ x with x · e→ x and then
Delete to the obtained x ≈ x:

E14 = ∅
R14 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}

Proving by Ordered Completion: Example

E14 = ∅
R14 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e}

Apply Deduce to (x · y) · z → x · (y · z) and x · i(x)→ e with the
overlapping term (x · i(x)) · z and then Orient:

E16 = ∅
R16 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}

Proving by Ordered Completion: Example

E16 = ∅
R16 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}

Apply Deduce to x1 · (i(x1) · x2)→ e · x2 and x · x→ e with the
overlapping term x1 · (i(x1) · i(x1)):

E17 = {e · i(x) ≈ x · e}
R17 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}

Proving by Ordered Completion: Example

E17 = {e · i(x) ≈ x · e}
R17 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2}

Apply Simplification to e · i(x) ≈ x · e with x · e→ x and then
Orient:

E19 = ∅
R19 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x}

Proving by Ordered Completion: Example

E19 = ∅
R19 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x}

Apply Deduce to x1 · (e · x2)→ x1 · x2 and e · i(x)→ x with the
overlapping term x1 · (e · i(x2)) and then Orient:

E21 = ∅
R21 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}

Proving by Ordered Completion: Example

E21 = ∅
R21 = {(x · y) · z → x · (y · z), x · e→ x, x · i(x)→ e, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}

Applying Collapse, Simplification, and Delete, we get rid
of x · i(x)→ e:

E24 = ∅
R24 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}

Proving by Ordered Completion: Example

E24 = ∅
R24 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · i(x)→ x, x1 · i(x2)→ x1 · x2}

Applying Collapse and Orient, we replace e · i(x)→ x with
e · x→ x:

E26 = ∅
R26 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Proving by Ordered Completion: Example

E26 = ∅
R26 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (e · x2)→ x1 · x2, i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Applying Collapse and Delete, we get rid of
x1 · (e · x2)→ x1 · x2:

E28 = ∅
R28 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Proving by Ordered Completion: Example

E28 = ∅
R28 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Apply Deduce to e · x→ x and x1 · i(x2)→ x1 · x2 with the
overlapping term e · i(x2):

E29 = {i(x1) ≈ e · x2}
R29 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Proving by Ordered Completion: Example

E29 = {i(x2) ≈ e · x2}
R29 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2}

Apply Simplification to i(x1) ≈ e · x2 with e · x→ x and then
Orient:

E31 = ∅
R31 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2, i(x)→ x}

Proving by Ordered Completion: Example

E31 = ∅
R31 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

i(e)→ e, x1 · (i(x1) · x2)→ e · x2,
e · x→ x, x1 · i(x2)→ x1 · x2, i(x)→ x}

Apply Collapse and Delete, we get rid of i(e)→ e:

E33 = ∅
R33 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ e · x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Proving by Ordered Completion: Example

E33 = ∅
R33 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ e · x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Applying Composition, we replace x1 · (i(x1) · x2)→ e · x2 by
x1 · (i(x1) · x2)→ x2:

E34 = ∅
R34 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Proving by Ordered Completion: Example

E34 = ∅
R34 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Applying Simplification and Orient, we replace
x1 · (i(x1) · x2)→ x2 by x1 · (x1 · x2)→ x2:

E36 = ∅
R36 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Proving by Ordered Completion: Example

E36 = ∅
R36 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (i(x1) · x2)→ x2, e · x→ x,

x1 · i(x2)→ x1 · x2, i(x)→ x}

Apply Deduce to (x · y) · z → x · (y · z) and x · x→ e with the
overlapping term (x1 · x2) · (x1 · x2), then Orient:

E37 = ∅
R37 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e}

Proving by Ordered Completion: Example

E37 = ∅
R37 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e}

Apply Deduce to x1 · (x1 · x2)→ x2 and x1 · (x2 · (x1 · x2))→ e
with the overlapping term x1 · (x1 · (x2 · (x1 · x2))), then Orient:

E39 = ∅
R39 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}

Proving by Ordered Completion: Example

E39 = ∅
R39 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}

Apply Composition to x2 · (x1 · x2)→ x1 · e with x · e→ x:

E40 = ∅
R40 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1}

Proving by Ordered Completion: Example

E41 = ∅
R41 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1}

Apply Deduce to x1 · (x1 · x2)→ x2 and x2 · (x1 · x2)→ x1 with
the overlapping term x2 · (x2 · (x1 · x2)):

E42 = {x1 · x2 ≈ x2 · x1}
R42 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}

Proving by Ordered Completion: Example

E42 = {x1 · x2 ≈ x2 · x1}
R42 = {(x · y) · z → x · (y · z), x · e→ x, x · x→ e,

x1 · (x1 · x2)→ x2, e · x→ x, x1 · i(x2)→ x1 · x2,
i(x)→ x, x1 · (x2 · (x1 · x2))→ e, x2 · (x1 · x2)→ x1 · e}

The equation x1 · x2 ≈ x2 · x1 joins the goal a · b ≈ b · a. Hence,
the goal is proved.

	*

