
Variadic Equational Matching in Associative and

Commutative Theories

Besik Dunduaa,b, Temur Kutsiac, Mircea Marind

aKutaisi International University, Georgia
bVIAM, Ivane Javakhishvili Tbilisi State University, Georgia

cRISC, Johannes Kepler University Linz, Austria
dWest University of Timişoara, Romania

Abstract

In this paper we study matching in equational theories that specify counter-
parts of associativity and commutativity for variadic function symbols. We
design a procedure to solve a system of matching equations and prove its ter-
mination, soundness, completeness, and minimality. The minimal complete
set of matchers for such a system can be infinite, but our algorithm computes
its finite representation in the form of solved set. From the practical side, we
identify two finitary cases and impose restrictions on the procedure to get an
incomplete algorithm, which, based on our experiments, describes the input-
output behavior and properties of Mathematica’s flat and orderless pattern
matching.1

Keywords: Pattern matching, equational theories, variadic symbols,
Mathematica
2000 MSC: 03B70, 68Q42, 68N15, 33F10

1. Introduction

In variadic languages, function symbols do not have a fixed arity. They
can take an arbitrary number of arguments. In the literature, such symbols
are known by different names: flexary, of flexible arity, polyadic, multi-ary,
unranked. They are a convenient and useful tool for formalizing mathe-
matical texts, representing symbolic computation data structures, modeling

1The original experiments have been carried out for Mathematica 11.2. Later, they
have been repeated for Mathematica 12.0 with the same results.

Preprint submitted to Elsevier

XML documents, expressing patterns in declarative programming, etc. Usu-
ally, variadic languages contain variables not only for individual terms, but
also for finite sequences of terms, which help to take the full advantage of
the flexibility of such languages.

On the other hand, the increased expressiveness of variadic languages
has its price, from the computational perspective. Solving equations with
sequence variables is a nontrivial task (Kutsia, 2002b, 2004, 2007) and pattern
matching, a very common operation in the above-mentioned applications,
becomes pretty involved.

In this paper we address the problem of pattern matching in variadic lan-
guages, where some function symbols satisfy (the variadic counterparts of)
the commutativity (C) and associativity (A) properties. Equational match-
ing in these theories has been intensively studied in languages with ranked
alphabets, see, e.g., (Benanav et al., 1987; Eker, 2002, 2003; Hullot, 1979).
Variadic equational matching so far attracted less attention.

We try to address this shortcoming, approaching the problem both from
the theoretical and application points of view. From the theoretical side, we
propose a modular rule-based system for solving matching equations with
A, C, and AC function symbols. The major problem is that variadic A- and
AC-matching problems might have infinitely many incomparable solutions.
(They are examples of so called infinitary matching theories.) Hence, any
procedure that aims at enumerating the minimal complete set of matchers
in these theories is nonterminating. Therefore, we propose a finite repre-
sentation of this infinite set. From this representation, there is an “easy
way” to obtain any solution of the problem. It applies to both A- and AC-
matching. Our rules give algorithms for such a finite representation in the
corresponding theories. We prove termination, soundness and completeness
of the algorithms.

Our focus was not on coming up with an optimized, efficient procedure.
Rather, we chose a declarative, modular approach, which makes proving
properties easier. From the application perspective, we show how some intu-
itive modifications of the rules can lead to finitary cases. Two such special
cases: bounded fragment and strict variant, are studied in the paper.

The final part of the paper is devoted to the analysis of the behavior of the
equational variadic matching algorithm implemented in the symbolic com-
putation system Mathematica (Wolfram, 2003). Its programming language,
called Wolfram, has a powerful matching engine. It uses variadic symbols,
individual and sequence variables, and can work modulo A and C theories,

2

called there flat and orderless theories, respectively. The matching mecha-
nism is explained in tutorials and help files, but to the best of our knowl-
edge, its formal description has never been published. We try to fill this gap,
proposing rules which are a further restriction of the above-mentioned strict
variant and, in our opinion, describe the input-output behavior and proper-
ties of Mathematica’s flat and orderless pattern matching. In particular, our
analysis suggest that Mathematica’s matching corresponds to an incomplete
strict variant of a fragment normalized with respect to the given equational
theory. The algorithm is not complete. We suppose that incompleteness is a
deliberate decision motivated by efficiency reasons.

This paper is an extended and improved version of (Dundua et al., 2019).

Related work. In (Kutsia, 2008), a procedure for flat (A) matching was de-
scribed and its relation to the correspondent algorithm in Mathematica was
discussed. The current work builds on it and extends the results from that
paper. Namely, for the variadic A-theory, Kutsia (2008) presented a nonter-
minating complete procedure and terminating incomplete algorithms, while
we propose here a special representation of substitutions, which allows us to
design a terminating complete algorithm. The bounded fragment in the cur-
rent paper generalizes the bounded fragment in (Kutsia, 2008). The strict
variant that we consider here has not been studied in (Kutsia, 2008), but
the FNE algorithm there uses a similar idea. Moreover, in the current pa-
per we consider also variadic C- and AC-theories. They were not treated
in (Kutsia, 2008). Finally, the comparison with Mathematica’s behavior is
more comprehensive in the current paper than in (Kutsia, 2008). It covers
more theories, since in addition to flat, we also discuss matching with the
orderless and flat-orderless attributes, as the Mathematica counterparts of
variadic commutative and variadic associative-commutative matching. Also,
this comparison reflects some changes that, as it turned out, meanwhile hap-
pened in the system.

Pattern matching in Mathematica is informally described in (Wolfram,
2003; Trott, 2004) and in other sources on Mathematica programming. We
are not aware of any formal treatment of this mechanism and its semantics.

Variadic matching with sequence variables has been used in declarative
programming (Dundua, 2014; Dundua et al., 2016; Marin and Kutsia, 2006),
reasoning (Kutsia, 2003; Pease and Sutcliffe, 2007), XML processing and
transformation (Coelho et al., 2010; Coelho and Florido, 2007; Kutsia and
Marin, 2005; Hosoya and Pierce, 2003), program generation (Barthels et al.,

3

2019; Richardson and Fuchs, 1997; Chasseur and Deville, 1997), rewrit-
ing (Hamana, 1997; Buchberger, 1996; Dundua et al., 2009), etc. Corre-
sponding solving methods have been integrated in the mathematical assistant
system Theorema (Buchberger et al., 2006), rule-based system PρLog (Dun-
dua et al., 2017) and its predecessor FunLog (Marin and Kutsia, 2003), pro-
gramming package Sequentica (Marin and Tepeneu, 2003), XML processing
language CLP(Flex) (Coelho and Florido, 2004). Variadic matching with
regular expression types was studied in (Kutsia and Marin, 2015). Common
Logic (CL) (International Organization for Standardization, 2018) is a frame-
work for a family of logic-based languages, designed for knowledge exchange
in a heterogeneous network. It comes with variadic symbols and sequence
markers (a counterpart of our sequence variables). Syntactic matching for
CL was studied in (Kutsia and Marin, 2012).

Recently, a library to extend Python with variadic matching and sequence
variables has been developed (Krebber et al., 2017). Pattern matching com-
piler Tom (Cirstea et al., 2010) supports associative matching. Matching in
the combination of order-sorted associative, commutative, and unit element
theories is implemented in Maude (Clavel et al., 2007). In Kutsia (2007), it
was shown how variadic syntactic matching with sequence variables can be
encoded as a special form of order-sorted associative-unit matching. Useful-
ness of variadic operators and sequence variables in logical frameworks has
been discussed in (Horozal et al., 2014; Horozal, 2014).

2. Preliminaries

We assume some familiarity with the standard notions of unification the-
ory (Baader and Snyder, 2001). We consider four pairwise disjoint sets:
function symbols F , individual variables VInd, sequence variables VSeq, and
function variables VFun. All the symbols in F are variadic, i.e., their arity
is not fixed. We will use x, y, z for individual variables, x, y, z for sequence
variables, X, Y, Z for function variables, and a, b, c, f, g, h for function sym-
bols. The set of variables VInd ∪ VSeq ∪ VFun is denoted by V . Terms t and
sequence elements s are defined by the grammar:

t ::= x | f(s1, . . . , sn) | X(s1, . . . , sn), n ≥ 0, s ::= t | x.

When it is not ambiguous, we write f for the term f() where f ∈ F . In
particular, we will always write a, b, c for a(), b(), c(). Terms are denoted

4

by t, r and sequence elements by s, q. Finite, possibly empty sequences of
terms are denoted by t̃, r̃, while s̃, q̃ are used to denote sequences of sequence
elements.

The set of variables of a term t is denoted by V(t). We will use the
subscripts Ind, Seq, and Fun to indicate the sets of individual, sequence, and
function variables of a term, respectively. A ground term is a term without
variables. The size of a term t, denoted size(t), is the number of symbols in
it. These definitions are generalized for any syntactic object throughout the
paper. The head of a term is its root symbol. The head of a variable is the
variable itself.

A substitution is a mapping from individual variables to individual terms,
from sequence variables to finite sequences of sequence elements, and from
function variables to function symbols or function variables, such that all
but finitely many variables are mapped to themselves. (We do not distin-
guish between a singleton term sequence and its sole element.) We will use
lower case Greek letters for substitutions, with ε reserved for the identity
substitution.

For a substitution σ, the domain is the set of variables dom(σ) = {v ∈
V | σ(v) 6= v} and the range is the set of sequences range(σ) = {σ(v) | v ∈
dom(σ)}. A substitution can be represented explicitly as a function by a
finite set of bindings of variables in its domain: {v 7→ σ(v) | v ∈ dom(σ)}.
For readability, we put term sequences in parentheses. For instance, the set
{x 7→ f(a, y), x 7→ (), y 7→ (a,X(f(b)), x), X 7→ g} is such a representation of
the substitution, which maps x to the term f(a, y), x to the empty sequence,
y to the sequence of three elements (a,X(f(b)), x), and X to g.

Instances of a sequence element s and a sequence s̃ under a substitution
σ, denoted, respectively, by sσ and s̃σ, are defined as follows:

xσ = σ(x), xσ = σ(x), (f(s1, . . . , sn))σ = f(s1σ, . . . , snσ),

(X(s1, . . . , sn))σ = σ(X)(t1σ, . . . , tnσ), (s1, . . . , sn)σ = (s1σ, . . . , snσ).

Example 1. Let σ = {x 7→ f(a), x 7→ (b, c), y 7→ (), X 7→ g}. Then
(X(x, x, f(y)), x, y, x)σ = (g(f(a), b, c, f), b, c, f(a)). One can also see that
nested sequences are not allowed: they are immediately flattened.

Composition of two substitutions σ and ϑ, written σϑ, is a substitution
defined by (σϑ)(v) = ϑ(σ(v)) for all v ∈ V .

An equation is a pair of individual terms. Given a set E of equations
over F and V , we denote by

.
=E the least congruence relation on the set of

5

finite sequences of sequence elements (over F and V) that is closed under
substitution application and contains E. The set

.
=E is called an equational

theory defined by E. Slightly abusing the terminology, we will also call the
set E an equational theory or an E-theory. When s̃

.
=E q̃, we say that s̃

and q̃ are equal modulo E. The signature of E, denoted sig(E), is the set of
all function symbols occurring in E. A function symbol is called free with
respect to E if it does not occur in sig(E).

A substitution σ is more general than a substitution ϑ on a set of vari-
ables V modulo an equational theory E, denoted σ ≤·VE ϑ, if there exists a
substitution ϕ such that χσϕ

.
=E χϑ for all individual and sequence variables

χ ∈ V , and X()σϕ
.
=E X()ϑ for all function variables X ∈ V .

Two substitutions σ and ϑ are called equigeneral on a set of variables V
modulo an equational theory E (E-equigeneral) if σ ≤·VE ϑ and ϑ ≤·VE σ.

Solving equations in an equational theory E is called E-unification. If one
of the sides of an equation is ground, then it is called a matching equation,
and solving such equations in a theory E is called E-matching. We write
E-matching equations as s �E t, where t is ground. If E = ∅ (i.e., if all
involved function symbols are free), we talk about syntactic matching. An
E-matching problem over F is a finite set of E-matching equations over F
and V , which is usually denoted by Γ: Γ = {s1 �E t1, . . . , sn �E tn}.

An E-matcher of Γ is a substitution σ such that siσ
.
=E ti for all 1 ≤ i ≤

n. The set of all E-matchers of Γ is denoted by matchE(Γ). Γ is E-matchable,
or E-solvable, if matchE(Γ) 6= ∅.

A complete set of E-matchers of Γ is a set S of substitutions with the
following properties:

1. (Correctness) S ⊆ matchE(Γ), i.e., each element of S is an E-matcher
of Γ;

2. (Completeness) For each ϑ ∈ matchE(Γ) there exists σ ∈ S with

σ ≤·V(Γ)
E ϑ.

The set S is a minimal complete set of E-matchers of Γ with respect to
V(Γ) if it is a complete set of E-matchers satisfying the minimality property,
which states that two distinct elements of S are incomparable with respect
to ≤·V(Γ)

E :

3. (minimality) For all σ, ϑ ∈ S, if σ ≤·V(Γ)
E ϑ, then σ = ϑ.

6

Now we briefly discuss the matching type of equational theories. Its defi-
nition is based on the existence and cardinality of the minimal complete set
of E-matchers. A matching problem is of type unitary (resp. finitary, infini-
tary) if its minimal complete set of matchers exists and is a singleton (resp.,
a finite non-singleton set, an infinite set). It is of type zero if the minimal
complete set of matchers does not exist. These types are denoted respectively
by 1, ω,∞, 0, and are ordered as 1 < ω <∞ < 0. An equational theory E has
matching of type unitary (resp. finitary, infinitary, zero) if the <-maximal
type of E-matching problems in this theory is 1 (resp. ω,∞, 0). See (Baader
and Snyder, 2001) for more information about unification/matching types.

Below, in termination proofs, we will need a well-founded ordering on
multisets of natural numbers. For this, the Dershowitz-Manna ordering on
multisets (Dershowitz and Manna, 1979) will be used, which we denote by
>DM. It is defined as follows:

Definition 1 (Multiset Ordering >DM). Let S be a partially ordered set by
an ordering >, and M(S) be the set of all finite multisets with elements
taken from S. Then for M,M ′ ∈M(S), we say that M >DM M ′ if for some
multisets X, Y ∈M(S) where ∅ 6= X ⊆M , we have M ′ = (M \X)∪ Y and
for all y ∈ Y there exists x ∈ X such that x > y.

Dershowitz and Manna (1979) explain this definition also in words: “a
multiset is reduced by the removal of at least one element (those in X) and
their replacement with any finite number – possibly zero – of elements (those
in Y), each of which is smaller than one of the elements that have been
removed.”

In our proofs, we will have N in the role of S with the standard ordering
on natural numbers.

3. Variadic Equational Matching Problems

In this paper we consider equational theories that specify pretty com-
mon properties of variadic function symbols: counterparts of associativity
and commutativity. They are defined by the axioms below (for a function
symbol f):

f(x, f(y), z)
.
= f(x, y, z) variadic associativity for f , A(f)

f(x, x, y, y, z)
.
= f(x, y, y, x, z) variadic commutativity for f , C(f)

7

The A(f) axiom asserts that nested occurrences of f can be flattened out.
The C(f) axiom says that the order of arguments of f does not matter. Below
we often omit the word “variadic” and write associativity and commutativity
instead of variadic associativity and variadic commutativity. We also say f
is A, C, or AC if, respectively, only A(f), only C(f), or both A(f) and C(f)
hold for f .

Example 2. We can illustrate the notions of equality modulo A(f) and/or
C(f) for some f with the following examples:

• f(f(f(), a))
.
=A(f) f(f(a))

.
=A(f) f(f(), a)

.
=A(f) f(a).

• (f(f()), f(), f(a))
.
=A(f) (f(), f(), f(a)).

• (f(f()), f(), f(a)) 6 .=A(f) f(a).

• f(f(), . . . , f())
.
=A(f) f(), but (f(), . . . , f()) 6 .=A(f) f().

• f(f(f()))
.
=A(f) f(f())

.
=A(f) f().

• f(f(a), b, f(f(), c)))
.
=A(f) f(a, b, c).

• f(f(a), b, f(f(), c)))
.
=C(f) f(b, f(f(), c), f(a)).

• f(f(a), b, f(f(), c)))
.
=A(f),C(f) f(b, f(c), a)

.
=A(f),C(f) f(b, c, a).

An associative normal form (A-normal form) of a term or a sequence is
obtained by rewriting it with the associativity axiom from left to right as
long as possible. In Example 2, for instance, f(a) is the A-normal form of
the terms f(f(f(), a)), f(f(a)), f(f(), a), f(f(), a), and f(a); (f(), f(), f(a))
is the normal form of the sequences (f(f()), f(), f(a)), (f(), f(), f(a)), and
(f(f()), f(), f(a)); f(a, b, c) is the A-normal form of f(f(a), b, f(f(), c)). A
term or a sequence is in A-normal form if it is its own A-normal form

We introduce a strict total order on function symbols and extend it to
ground terms and term sequences so that the obtained ordering is also total.
A commutative normal form (C-normal form) of a ground term is obtained by
rearranging arguments of commutative function symbols to obtain the min-
imal term with respect to the defined ordering. An associative-commutative
normal form (AC-normal form) of a ground term t is the C-normal form of
the A-normal form of t.

8

A C-normal form (resp. an AC-normal form) of a sequence of ground
terms (t1, . . . , tn) is a sequence of ground terms (t′1, . . . , t

′
n) where t′i is a

C-normal form (resp. AC-normal form) of ti for all 1 ≤ i ≤ n.
Similarly, a C-normal form (resp. an AC-normal form) of a multiset of

ground terms {{t1, . . . , tn}} is a multiset of ground terms {{t′1, . . . , t′n}} where
t′i is a C-normal form (resp. AC-normal form) of ti for all 1 ≤ i ≤ n.

A ground term, sequence of ground terms, or a multiset of ground terms
is in C- (resp. AC-) normal form if it is its own C- (resp. AC-) normal form.
All these normal forms are unique.

The notion of normal form extends to substitutions straightforwardly: σ
is in A- (C-, AC-) normal form if χσ is in A- (C-, AC-) normal form for all
individual and sequence variables χ.

In A- and AC-theories there exist matching problems whose minimal com-
plete set of matchers is infinite. This is related to the flatness property
of variadic associative symbols, and originates from flat matching (Kutsia,
2002a, 2008). The simplest such problem is f(x) �E f(), where A(f) ∈ E.
Its complete solution set is {{x 7→ ()}, {x 7→ f()}, {x 7→ (f(), f())}, . . .},
which is based on the fact that f(f(), . . . , f())

.
=E f() when A(f) ∈ E. It,

naturally, implies that any matching procedure that directly enumerates a
complete set of A- or AC-matchers is non-terminating.

In general, our matching problems are formulated in a theory that may
contain several A, C, or AC-symbols.

Below we design variadic A-,C-, and AC-matching algorithms first for a
special case when no variable occurs more than once in matching problems.
Such matching problems are called linear. The general, nonlinear case will
be considered after that. To solve a nonlinear problem, we first linearize it,
solve the obtained linear problem by the corresponding algorithm, and then
combine the computed solutions into matchers of the original problem. In
the next two sections we discuss these algorithms in detail.

4. Matching algorithm for linear problems

We formulate our matching algorithm in a rule-based manner for linear
problems. The rules operate on a matching equation and return a set of
matching equations. They also produce a set of equations, which we call a
solved set, denoted in the rules by S.

Before continuing with the rules, we need to define notions related to
solved sets.

9

Definition 2 (Solved Set of Equations). Solved sets are sets of equations,
whose elements are called solved equations and have one of six possible forms:
x ≈ t, X ≈ g, x ≈ r̃, x ≈ {{r̃}}, x ≈ t̃[f], and x ≈ {{t̃}}[f], where the symbol
{{·}} denotes multisets. In equations x ≈ t̃[f] and x ≈ {{t̃}}[f], f is associative
or associative-commutative and no term in t̃ has f as its head. Besides, each
variable that appears in a solved set, appears there only once, in the left
hand side of an equation. The right hand sides are ground and in (A-, C-,
AC-) normal form.

Definition 3 (Set of Substitutions Generated by a Solved Equation). Each
solved equation eq generates a set of substitutions, denoted by Σ(eq), as
follows:

Σ(x ≈ t) = {{x 7→ t}}.
Σ(X ≈ f) = {{X 7→ f}}.
Σ(x ≈ t̃) = {{x 7→ t̃}}.
Σ(x ≈ {{t1, . . . , tn}}) =

{{x 7→ (tπ(1), . . . , tπ(n))} | π is a permutation of (1, . . . , n)}.
Σ(x ≈ (t1, . . . , tn)[f]) =

{{x 7→ r̃} | f(t1, . . . , tn)
.
=A(f) f(r̃) and r̃ is in A-normal form},

where n ≥ 0.

Σ(x ≈ {{t1, . . . , tn}}[f]) =

{{x 7→ r̃} | f(tπ(1), . . . , tπ(n))
.
=A(f) f(r̃), where π is a permutation

of (1, . . . , n) and r̃ is in AC-normal form},
where n ≥ 0.

To explain in words, each element of Σ(x ≈ (t1, . . . , tn)[f]) is a sub-
stitution that maps x either to (t1, . . . , tn) or to a sequence obtained from
(t1, . . . , tn) by applying f to some of its subsequence(s). That can be, in
particular, the empty subsequence, i.e., f()’s may get inserted. Similarly,
each element of Σ(x ≈ {{t1, . . . , tn}}[f]) is a substitution that maps x to a
permutation of (t1, . . . , tn) or to a sequence obtained from a permutation of
(t1, . . . , tn) by applying f to some of its subsequence(s) (which can be also
empty). The AC-normal form requirement in the definition guarantees that
if f is applied to a subsequence t̃ of a permutation (t1, . . . , tn), then f(t̃) is
AC-normalized.

10

Example 3. Each of the last two cases in Definition 3 actually defines an
infinite set of pairwise ≤·{x}E -incomparable substitutions. For instance, Σ(x ≈
(t1, t2, t3)[f]) is the set

{{x 7→ (r̃1, r1, r̃2, r2, r̃3, r3, r̃4)}
| r̃i ∈ {f()}∗, 1 ≤ i ≤ 4, rj ∈ {tj, f(tj)}, 1 ≤ j ≤ 3}

∪ {{x 7→ (r̃1, f(t1, t2), r̃2, r3, r̃3)}
| r̃i ∈ {f()}∗, 1 ≤ i ≤ 3, r3 ∈ {t3, f(t3)}}

∪ {{x 7→ (r̃1, r1, r̃2, f(t2, t3), r̃3)}
| r̃i ∈ {f()}∗, 1 ≤ i ≤ 3, r1 ∈ {t1, f(t1)}}

∪ {{x 7→ (r̃1, f(t1, t2, t3), r̃2)} | r̃i ∈ {f()}∗, 1 ≤ i ≤ 2}.

Here ∗ is the Kleene star: {f()}∗ is the set of sequences {(), f(), (f(), f()),
(f(), f(), f()), . . .}.

Assume that the function symbol names are ordered alphabetically (for
C-ordering). Then Σ(x ≈ {{a, b}}[f]) is the set

{{x 7→ (r̃1, r1, r̃2, r2, r̃3)}
| r̃i ∈ {f()}∗, 1 ≤ i ≤ 3, r1 ∈ {a, f(a)}, r2 ∈ {b, f(b)}}

∪ {{x 7→ (r̃1, r1, r̃2, r2, r̃3)}
| r̃i ∈ {f()}∗, 1 ≤ i ≤ 3, r1 ∈ {b, f(b)}, r2 ∈ {a, f(a)}}

∪ {{x 7→ (r̃1, f(a, b), r̃2)} | r̃i ∈ {f()}∗, 1 ≤ i ≤ 3}.

Note that f(b, a) does not appear in the range of the substitutions due to
the AC-normal form requirement in the definition of Σ(x ≈ {{a, b}}[f]): the
AC-normal form of f(b, a) is f(a, b) (with respect to the given ordering on
function symbols).

Definition 4 (Set of Substitutions Generated by Solved Sets). We extend
Σ to solved sets:

Σ(∅) = {ε}.
Σ({eq1, . . . , eqn}) = {σ1 ∪ · · · ∪ σn | σi ∈ Σ(eqi), 1 ≤ i ≤ n},

where n ≥ 1 and {eq1, . . . , eqn} is a solved set.

If S is a set of solved sets, then by Σ(S) we denote the set

Σ(S) :=
⋃
S∈S

Σ(S).

11

The matching algorithm defined below will be based on applications of
transformation rules. It is important to note that terms in the left hand sides
of the rules are kept in normal forms with respect to associativity, and those
in the right hand side (ground terms) are kept in normal forms with respect
to associativity and commutativity. The transformation rules are divided
into three groups: the common rules, rules for associative symbols, and the
rules that deal with commutativity.

The rules have the form s �E t S Γ, where s �E t is an E-matching
equation, S is a solved set (which is either empty or consists of a single solved
equation), and Γ is a finite set of E-matching equations. Intuitively, such
a rule transforms s �E t into Γ, and also records information in S how a
particular variable is supposed to be instantiated in this transformation.

Common Rules. The common rules apply in any theory.

T: Trivial

s�E s ∅ ∅.

IVE: Individual variable elimination

x�E t S ∅, where S = {x ≈ t}.

FVE: Function variable elimination

X(s̃)�E f(t̃) S {f(s̃)�E f(t̃)}, where S = {X ≈ f}.

Rules for free symbols. These rules apply when f is free.

Dec-F: Decomposition under free head

f(s, s̃)�E f(t, t̃) ∅ {s�E t, f(s̃)�E f(t̃)},
where f is free and s 6∈ VSeq.

SVE-F: Sequence variable elimination under free head

f(x, s̃)�E f(t̃1, t̃2) S {f(s̃)�E f(t̃2)},
where f is free and S = {x ≈ t̃1}.
Rules for commutative symbols. These rules apply when f is commutative
but not associative.

Dec-C: Decomposition under commutative head

f(s, s̃)�E f(t̃1, t, t̃2) ∅ {s�E t, f(s̃)�E f(t̃1, t̃2)},
where f is commutative and non-associative and s 6∈ VSeq.

12

SVE-C: Sequence variable elimination under commutative head

f(x, s̃)�E f(t̃1, t1, t̃2, . . . , t̃n, tn, t̃n+1) S {f(s̃)�E f(t̃1, . . . , t̃n+1)},
where n ≥ 0, f is commutative and non-associative, S = {x ≈ {{t1, . . . , tn}}}.

Rules for associative symbols. These rules apply when f is associative but
not commutative.

Dec-A: Decomposition under associative head

f(s, s̃)�E f(t, t̃) ∅ {s�E t, f(s̃)�E f(t̃)},
where f is associative and non-commutative and s 6∈ VSeq.

SVE-A: Sequence variable elimination under associative head

f(x, s̃)�E f(t̃1, t̃2) S {f(s̃)�E f(t̃2)},
where f is associative and non-commutative and S = {x ≈ (t̃1)[f]}.

FVE-A: Function variable elimination under associative head

f(X(s̃1), s̃2)�E f(t̃) S {f(s̃1, s̃2)�E f(t̃)},
where f is associative and non-commutative and S = {X ≈ f}.

IVE-A: Individual variable elimination under associative head

f(x, s̃)�E f(t̃1, t̃2) S {f(s̃)�E f(t̃2)},
where f is associative and non-commutative and S = {x ≈ f(t̃1)}.

Rules for associative-commutative symbols. These rules apply when f is both
associative and commutative.

Dec-AC: Decomposition under AC head

f(s, s̃)�E f(t̃1, t, t̃2) ∅ {s�E t, f(s̃)�E f(t̃1, t̃2)},
where f is associative-commutative and s 6∈ VSeq.

SVE-AC: Sequence variable elimination under AC head

f(x, s̃)�E f(t̃1, t1, t̃2, . . . , t̃n, tn, t̃n+1) S {f(s̃)�E f(t̃1, . . . , t̃n+1)},
where n ≥ 0, f is associative-commutative and S = {x ≈ {{t1, . . . , tn}}[f]}.

FVE-AC: Function variable elimination under AC head

f(X(s̃1), s̃2)�E f(t̃) S {f(s̃1, s̃2)�E f(t̃)},
where f is associative-commutative and S = {X ≈ f}.

13

IVE-AC: Individual variable elimination under AC head

f(x, s̃)�E f(t̃1, t1, t̃2, . . . , t̃n, tn, t̃n+1) S {f(s̃)�E f(t̃1, . . . , t̃n+1)},
where n ≥ 0, f is associative-commutative and S = {x ≈ f(t1, . . . , tn)}.

The matching algorithm. The form and the conditions of the rules guarantee
that no two rules apply to the same equation except if one of them is Dec-A
or Dec-AC. Dec-A can apply to the equation that is transformed by FVE-A or
IVE-A. Similarly, Dec-AC is an alternative of FVE-AC or IVE-AC.2 Moreover,
it is possible that a rule transforms the same equation in multiple ways. All
sequence variable elimination and individual variable elimination rules are
like that, depending on the choice of the subsequence of the right hand side
they match to. Also, Dec-C and Dec-AC rules may choose the t from the
right hand side in different ways.

The matching algorithm LM (“linear matching” to indicate that it works
on linear matching problems) works on pairs Γ;S, where Γ is a linear match-
ing problem consisting of equations in A-normalized left hand sides and AC-
normalized right hand sides. It selects an equation from Γ and transforms
it by the applicable rule, if such a rule exists. Assume a rule R transforms
s �E t S Γ. One step of LM is then performed as {s � t}] Γ′;S ′ R

Γ ∪ Γ′;S ∪ S ′, where] is the disjoint union symbol. A sequence of rule ap-
plications is called a derivation. If the chosen rule can be applied in multiple
ways, one alternative is chosen nondeterministically. Such a nondeterminism
introduces branching in the derivation tree.

Given a matching problem Γ, we create the initial system Γ; ∅ and start
applying the rules. If a derivation reaches a terminal system ∅;S, then it is
called a successful derivation and ∅;S is called a success leaf. If a derivation
cannot be extended further from a system of the form Γ′;S ′ where Γ′ 6= ∅,
then it is called failed.

The set S at the success leaf ∅;S of a derivation Γ; ∅ ∗ ∅;S is called an
answer of Γ computed by LM, or just a computed answer of Γ. The set of
answers of Γ computed by the algorithm LM is denoted by LM(Γ).

Example 4. Some linear matching problems and the corresponding com-
puted answers:

2In the published version, these properties of Dec-A or Dec-AC are overlooked to be
mentioned at this place, although the rules are correctly applied throughout the paper.

14

• Γ = {f(x)�E f(a, b)}, E = {C(f)}, LM(Γ) = {{x ≈ {{a, b}}}}.

• Γ = {f(x)�E f(a, b)}, E = {A(f)}, LM(Γ) = {{x ≈ (a, b)[f]}}.

• Γ = {f(x)�E f(a, b)}, E = {A(f),C(f)}, LM(Γ) = {{x ≈ {{a, b}}}[f]}.

• Γ = {f(x, y) �E f(a, b)}, E = {A(f),C(f)}, LM(Γ) = {{x ≈ a, y ≈
{{b}}[f]}, {x ≈ f(a), y ≈ {{b}}[f]}, {x ≈ b, y ≈ {{a}}[f]}, {x ≈ f(b), y ≈
{{a}}[f]}, {x ≈ f(), y ≈ {{a, b}}[f]}, {x ≈ f(a, b), y ≈ ∅[f]}}.

• Γ = {f(X(y), b, z) �E f(a, b, b)}, E = {A(f)}, LM(Γ) = {{X ≈ f,
y ≈ a, z ≈ b}, {X ≈ f, y ≈ a, z ≈ f(b)}, {X ≈ f, y ≈ f(a), z ≈
b}, {X ≈ f, y ≈ f(a), z ≈ f(b)}, {X ≈ f, y ≈ f(a, b), z ≈ f()}}.

Recall that our matching problems are formulated in a theory that may
contain one or more A, C, or AC-symbols. In the theorems proven below,
the equational theory E refers to such a theory. The considered matching
problems are linear.

Theorem 1 (Computed solved set). For a linear E-matching problem Γ,
every element of LM(Γ) is a solved set.

Proof. Let S ∈ LM(Γ). Since Γ is linear, by inspection of the rules it is clear
that no variable will occur more than once in S. Moreover, the right hand
sides of equations in S are E-normalized. Also, in the equations of the form
x ≈ {{t̃}}[f] and x ≈ t̃[f], f is not the head of any of the terms in t̃. Hence,
S is a solved set.

Theorem 2 (Termination of LM). The algorithm LM terminates for every
input.

Proof. Let the complexity measure of a linear E-matching problem Γ be the
pair (N,M), where N is the number of variables in Γ, and M is the multiset
of the sizes of the right hand sides of equations in Γ. Measures are compared
lexicographically. The obtained ordering is well-founded, as a lexicographic
combination of two well-founded orderings: > on natural numbers and >DM

on multisets of natural numbers. The rules strictly reduce this measure. It
is easy to see since each variable elimination rule reduces N and the other
rules reduce M without changing N .

For the soundness theorem, we will need the following lemma:

15

Lemma 1. If Γ1;S1 R Γ2;S1 ∪ S is a step in LM, then matchE(Γ2) =
matchE(Γ1σ) for each σ ∈ Σ(S).

Proof. We prove the lemma only for the rule SVE-AC. For the other rules the
proof is simpler.

If the step is performed by SVE-AC, then for some Γ and an AC symbol
f we have

Γ1 = {f(x, s̃)�E f(t̃1, t1, . . . , tn, t̃n)} ∪ Γ,

Γ2 = {f(s̃)�E f(t̃1, . . . , t̃n+1)} ∪ Γ,

S = {x ≈ {{t1, . . . , tn}}[f]}.

Let σ ∈ Σ(S). Then for ϕ ∈ matchE(Γ2) we have

f(s̃)ϕ = f(s̃ϕ) ≈AC f(t̃1, . . . , t̃n+1). (1)

Then dom(s) = {x}. Since we work with linear problems, x /∈ V(f(s̃)).
Therefore from (1) we get

f(x, s̃)σϕ ≈A f(t1, . . . , tn, s̃σϕ) ≈AC f(t1, . . . , tn, s̃ϕ)

≈AC f(t1, . . . , tn, t̃1, . . . , t̃n) ≈AC f(t̃1, t1, . . . , tn, t̃n).
(2)

Since Γ remains unchanged during the rule application, from (2) we get that
ϕ ∈ matchE(Γ1σ). This proves matchE(Γ2) ⊆ matchE(Γ1σ). The other
direction can be proved analogously.

Corollary 1. For each n, if Γ; ∅ n ∅;S is a sequence of rule applications
in LM, then Σ(S) ⊆ matchE(Γ), where Γ is linear.

Proof. By induction on n, using Lemma 1 to make the step.

Theorem 3 (Soundness). Σ(LM(Γ)) ⊆ matchE(Γ) for any linear E-mat-
ching problem Γ.

Proof. By Corollary 1, for each S ∈ LM(Γ) we have Σ(S) ⊆ matchE(Γ). By
the definition, Σ(LM(Γ)) = ∪S∈LM(Γ)Σ(S) and, hence, we get Σ(LM(Γ)) ⊆
matchE(Γ).

Theorem 4 (Completeness). Let Γ be a linear E-matching problem. Assume
σ ∈ matchE(Γ) and it is in E-normal form. Then σ|V(Γ) ∈ Σ(LM(Γ)).

16

Proof. We prove the theorem by constructing the derivation that starts from
Γ; ∅ and ends with ∅;S such that σ|V(Γ) ∈ Σ(S).

Assume that we have already constructed Γ; ∅ n Γn;Sn such that σ ∈
matchE(Γn) and σ|V(Sn) ∈ Σ(Sn). We show that we can make the next step
Γn;Sn Γn+1;Sn+1 such that

σ ∈ matchE(Γn+1), and (3)

σ|V(Sn+1) ∈ Σ(Sn+1). (4)

Let us select an equation s�E t ∈ Γn, assume Γn = {s�E t}] Γ′, and
show how to make the inference step. If head(s) 6= head(t), then head(s)
should be a variable. Otherwise Γn would not be solvable, which contradicts
the assumption that σ is a matcher of Γn.

If s is a variable x, then we have σ(x) = t. we extend the derivation
by the IVE rule, which gives Γn+1 = Γ′ and Sn+1 = Sn ∪ {x ≈ t}. Then
σ ∈ matchE(Γn+1), σ|V(Sn+1) = σ|V(Sn) ∪ {x 7→ t}, and σ|V(Sn+1) ∈ Σ(Sn+1).

In a similar manner, we can make the step when s has a form X(s̃).
Now assume head(s) = head(t). If s and t are the same, then the step is

made by the T rule and the conditions (3) and (4) are satisfied.
Assume now s = f(s0, s1, . . . , sn) and f is free. If s0 /∈ VSeq, we construct

the step by the Dec-F rule. Γn and Γn+1 have the same set of matchers,
Sn = Sn+1 and the conditions (3) and (4) hold. If s0 = x, then t should
have the form f(t̃1, t̃2), where σ(x) = t̃1. We make the step by the SVE-F
rule, choosing exactly t̃1. Then Γn+1 = {f(s1, . . . , sn) �E f(t̃2)} ∪ Γ′ and
Sn+1 = Sn ∪ {x ≈ t̃1}. Again, it is obvious that (3) and (4) hold.

The reasoning is similar when head(s) is commutative. Now we consider
the case when it is associative-commutative and s0 is a sequence variable. The
other remaining cases are similar or simpler. We have s = f(x, s1, . . . , sn)
and f is AC. Let r̃ = σ(x). Let t̃1 be obtained from r̃ by normalization and
removing all occurrences of f() as elements of r̃. Then t ≈AC f(t̃1, t̃2). We
make the step with SVE-AC, choosing t1, . . . , tn from the arguments of t so
that {{t1, . . . , tn}} = {{t̃1}}. Then Γn+1 = {f(s1, . . . , sn) �E f(t̃2)}] Γ′ and
the condition 3 holds. As for Sn+1, we have Sn+1 = Sn ∪ {x ≈ {{t̃1}}[f]}, and
by the definition of Σ, the condition 4 is also satisfied.

By iterating this process, we obtain a final state ∅;S such that σ|V(S) ∈
Σ(S). But V(S) = V(Γ), which finishes the proof.

Theorem 5 (Minimality). Σ(LM(Γ)) is minimal for any linear E-matching
problem Γ.

17

Proof. First, note that the rules in LM(Γ) do not introduce any fresh vari-
able, and every variable from V(Γ) is eventually moved to the solved set
(unless the algorithm fails and there is no solution). It implies that all sub-
stitutions in Σ(LM(Γ)) have the same domain, which is V(Γ).

Assume now by contradiction that there exists σ, ϑ ∈ Σ(LM(Γ)) such

that σ ≤·V(Γ)
E ϑ and σ 6= ϑ. Since dom(σ) = dom(ϑ) = V(Γ), we have that

σ(v) and ϑ(v) are ground for any v ∈ V(Γ). But then σ ≤·V(Γ)
E ϑ implies also

ϑ ≤·V(Γ)
E σ, i.e., σ and ϑ are E-equigeneral (on V(Γ)). Since we kept the right

hand sides E-normalized, the transformation rules guarantee that the terms
in each computed solved form in LM(Γ) are in E-normal form. From this
fact and the definition of Σ, the ranges of substitutions in Σ(LM(Γ)) are
E-normalized. Therefore, since the normal forms for our equational theories
are unique, equigenerality of σ(v) and ϑ(v) imply that σ(v) = ϑ(v) for any
v ∈ V(Γ). Together with dom(σ) = dom(ϑ), it implies that σ = ϑ, which is
a contradiction. Hence, Σ(LM(Γ)) is minimal.

Example 5. Note that if we did not require normalization of the right hand
sides in matching problems, LM(Γ) may contain elements that are not solved
sets. This can be illustrated, e.g., by the solutions to the E-matching problem
Γ = {f(x, y)�E f(f(a, b), f(b, a))}, where {C(f)} = E. In this case, LM(Γ)
would be {{x ≈ f(a, b), y ≈ f(b, a)}, {x ≈ f(b, a), y ≈ f(a, b)}}, and its
elements are not solved sets, since the right hand sides are not normalized.

Moreover, it would have the consequence that Σ(LM(Γ)) would not be
minimal, since we would get Σ(LM(Γ)) = {σ1, σ2}, where σ1 = {x 7→
f(a, b), y 7→ f(b, a)} and σ2 = {x 7→ f(b, a), y 7→ f(a, b)} with σ1 'C(f) σ2.

With the normalized right hand sides, LM(Γ) = {{x ≈ f(a, b), y ≈
f(a, b)}} and Σ(LM(Γ)) contains only the substitution {x 7→ f(a, b), y 7→
f(a, b)}, although it is still computed twice.

Example 6. For minimality of Σ(LM(Γ)), normalization of x 7→ r̃ in the
definitions of Σ(x ≈ (t1, . . . , tn)[f]) and Σ(x ≈ {{t1, . . . , tn}}[f]) (Definition 3)
is important. For instance, without this requirement, for Γ = {f(x) �E

f(a, b)} where E = {A(f),C(f)}, the algorithm LM gives the solved set
{{a, b}}[f], and Σ(LM(Γ)) contains the substitutions {x 7→ f(a, b)} and {x 7→
f(b, a)}, among others.

Theorem 6 (Types of variadic linear C-, A-, and AC-matching problems).

18

• The type of variadic linear syntactic and C-matching problems is at
most finitary.

• The type of variadic linear A- and AC-matching problems is at most
infinitary.

Proof. By Theorem 5, every linear variadic E-matching problem Γ admits
a minimal complete set of E-matchers, which is Σ(LM(Γ)). It implies that
not Γ is of type zero. By construction, the set Σ(LM(Γ)) is infinite iff
x ≈ (t̃)[f] ∈ LM(Γ) or x ≈ {{t̃}}[f] ∈ LM(Γ) for some x, t̃, and f . Inspecting
the rules of LM, one can see that such equations are in LM(Γ) iff Γ is an A-
or an AC-matching problem. For syntactic and C-matching problems this is
not the case. Hence, if Γ is a syntactic or a C-matching problem, Σ(LM(Γ))
is finite. For some such Γ’s this set may contain more than one element. For
instance, Σ(LM({f(x, y)�∅ f(a)})) = {{x 7→ (), y 7→ a}, {x 7→ a, y 7→ ()}}
and Σ(LM({f(x, y)�{C(f)} f(a, b)})) = {{x 7→ a, y 7→ b}, {x 7→ b, y 7→ a}}.
It implies that variadic linear syntactic and C-matching problems have at
most finitary type.

On the other hand, when Γ is a linear A- or AC-matching problem, if it is
solvable, then Σ(LM(Γ)) can be either a singleton, a finite non-singleton, or
an infinite set. As examples illustrating each of these possibilities we could
take the following problems, where E = {A(f)} or E = {A(f),C(f)}:

• Σ(LM({f(x)�E f()})) = {{x 7→ f()}},

• Σ(LM({f(x)�E f(a)})) = {{x 7→ a}, {x 7→ f(a)}},

• Σ(LM({f(x) �E f(a)})) = {{x 7→ (r̃1, t, r̃2)} | r̃1, r̃2 ∈ {f()}∗, t ∈
{a, f(a)}}.

It implies that variadic linear A- or AC-matching problems have at most
infinitary type.

5. Nonlinear matching

To solve nonlinear variadic equational matching problems, we first lin-
earize them, replacing multiple occurrences of the same variable by fresh
variables. Then solve the obtained problem by the matching algorithm LM
described in the previous section. The last step is to check the obtained
solutions for consistency. We describe this step in this section.

19

We assume that the input is normalized with respect to associativity (the
left hand sides) and associativity and commutativity (the right hand sides),
whenever such symbols appear there.

Let Slin be an answer computed by LM for the linearized version Γlin of
a matching problem Γ. For each variable v in Γ we have variables v1, . . . , vn
in Γlin, which correspond to different occurrences of v in Γ. We call them
copied variables. The algorithm RS (for “reconstruct solutions”) described
below produces (nondeterministically) from Slin a set S which solves Γ. We
initialize S by Slin.

RS: Reconstruct solutions.

Input: Slin.

1. S := Slin.

2. Replace all copies of individual, function, and sequence variables in
S with their original names. For instance, if S contains v1

x ≈ t1 and
v2
x ≈ t2, replace them respectively by x ≈ t1 and x ≈ t2. If t1 = t2, this

operation will collapse multiple occurrences of the same equation into
one occurrence, because S is a set.

3. If S contains two equations for the same individual or function variable
(i.e., two equations of the form x ≈ t1 and x ≈ t2 with t1 6= t2, or
X ≈ f1 and X ≈ f2 with f1 6= f2), stop with failure.

4. If S contains two equations for the same sequence variable of the form
x ≈ r̃, x ≈ t̃, or of the form x ≈ r̃[f], x ≈ t̃[f], where r̃ 6= t̃, stop with
failure.

5. If S contains two equations for the same sequence variable of the form
x ≈ {{r̃}}, x ≈ {{t̃}}, or of the form x ≈ {{r̃}}[f], x ≈ {{t̃}}[f], where the
multisets {{r̃}} and {{t̃}} are not equal, stop with failure.

6. Otherwise, if S contains two equations for the same sequence variable
x ≈ R1, x ≈ R2, where

(a) R1 = r̃ or R1 = r̃[f], and R2 = t̃[g], or

(b) R1 = {{r̃}} or R1 = {{r̃}}[f], and R2 = t̃ or R2 = t̃[g], or

20

(c) R1 = r̃ or R1 = r̃[f], and R2 = {{t̃}} or R2 = {{t̃}}[g], or

(d) R1 = {{r̃}} or R1 = {{r̃}}[f], and R2 = {{t̃}}[g],

with f 6= g, then create the pair R1 u R2;R0, where R0 = () in the
cases (a)–(c) and R0 = ∅ in the case (d), and apply the reduction rules
in Group 1–4 below as long as possible. If the process ends with >;R,
then update S with S := S \ {x ≈ R1, x ≈ R2} ∪ {x ≈ R}, and repeat
Step 6. If the process terminates without reaching >;R, stop with
failure.

7. Return S.

The reduction rules operate on pairs of the form R1uR2; I, where R1 and R2

originate from Step 6 of the RS algorithm above. (Remember that they are
in normal form.) The goal is to compute a sequence (or a multiset) that “is
common” between R1 and R2, i.e., some kind of “intersection” between them.
More precisely, we aim at computing an I such that Σ(I) = Σ(R1) ∩ Σ(R2).
We compute it in the second argument of the pair R1 u R2; I, which serves
like an accumulator for the result computed so far during execution.

Due to the nature of R1 and R2, we have four groups of rules: when
both R1 and R2 are sequences, when one of them is a sequence and the
other one a multiset, and when both are multisets. In each group, there
are four types of rules: success, common term/intersection, relax left, relax
right. This gives 16 types of rules. Within each type, we have two, three,
or four rules depending on whether the function symbols are attached to
sequence/multisets or not.

The reduction rules are the following (in all rules f 6= g, and ∪, ∩, and \
are operations on multisets):

Group 1, sequences in both sides. This group contains 10 rules:

(Succ-S) Success, sequences:

Succ-S.1 ()[f] u (); r̃ =⇒ >; r̃

Succ-S.2 () u ()[g]; r̃ =⇒ >; r̃

Succ-S.3 ()[f] u ()[g]; r̃ =⇒ >; r̃

21

(CFT) Common first term in sequences:

CFT.1 (r, t̃1)[f] u (r, t̃2); r̃ =⇒ t̃1[f] u t̃2; (r̃, r)

CFT.2 (r, t̃1) u (r, t̃2)[g]; r̃ =⇒ t̃1 u t̃2[g]; (r̃, r)

CFT.3 (r, t̃1)[f] u (r, t̃2)[g]; r̃ =⇒ t̃1[f] u t̃2[g]; (r̃, r)

(RL-S) Relax the left hand side, sequences:

RL-S.1 (g(t̃1), t̃2) u (t̃1, t̃3)[g]; r̃ =⇒ t̃2 u t̃3[g]; (r̃, g(t̃1))

RL-S.2 (g(t̃1), t̃2)[f] u (t̃1, t̃3)[g]; r̃ =⇒ t̃2[f] u t̃3[g]; (r̃, g(t̃1))

(RR-S) Relax the right hand side, sequences:

RR-S.1 (t̃1, t̃2)[f] u (f(t̃1), t̃3); r̃ =⇒ t̃2[f] u t̃3; (r̃, f(t̃1))

RR-S.2 (t̃1, t̃2)[f] u (f(t̃1), t̃3)[g]; r̃ =⇒ t̃2[f] u t̃3[g]; (r̃, f(t̃1))

Example 7. We illustrate four rules: RL-S.2, RR-S.2, CFT.3, and Succ-S.3:

(g(a, b), c)[f] u (a, b, f(), c)[g]; () =⇒RL-S.2

(c)[f] u (f(), c)[g]; (g(a, b)) =⇒RR-S.2

(c)[f] u (c)[g]; (g(a, b), f()) =⇒CFT.3

()[f] u ()[g]; (g(a, b), f(), c) =⇒Succ-S.3

>; (g(a, b), f(), c).

Note that both RL-S.2 and RR-S.2 can apply to some problem. Therefore,
to get all solutions, we need to try both alternatives:

Alternative 1, leading to the result (g(), f()):

(g())[f] u (f())[g]; () =⇒RL-S.2

()[f] u (f())[g]; (g()) =⇒RR-S.2

()[f] u ()[g]; (g(), f()) =⇒Succ-S.3

>; (g(), f()).

Alternative 2, leading to the result (f(), g()):

(g())[f] u (f())[g]; () =⇒RR-S.2

(g())[f] u ()[g]; (f()) =⇒RL-S.2

()[f] u ()[g]; (f(), g()) =⇒Succ-S.3

>; (f(), g()).

22

Group 2, left multiset, right sequence. This group contains 12 rules:

(Succ-MS) Success, multiset-sequence:

Succ-MS.1 ∅ u (); r̃ =⇒ >; r̃

Succ-MS.2 ∅[f] u (); r̃ =⇒ >; r̃

Succ-MS.3 ∅ u ()[g]; r̃ =⇒ >; r̃

Succ-MS.4 ∅[f] u ()[g]; r̃ =⇒ >; r̃

(CT-MS) Common term, multiset-sequence:

CT-MS.1 ({{r}} ∪M) u (r, t̃); r̃ =⇒M u t̃; (r̃, r)

CT-MS.2 ({{r}} ∪M) u (r, t̃)[g]; r̃ =⇒M u t̃[g]; (r̃, r)

CT-MS.3 ({{r}} ∪M)[f] u (r, t̃); r̃ =⇒M [f] u t̃; (r̃, r)

CT-MS.4 ({{r}} ∪M)[f] u (r, t̃)[g]; r̃ =⇒M [f] u t̃[g]; (r̃, r)

(RL-MS) Relax the left hand side, multiset-sequence:

RL-MS.1 ({{g(t̃1)}} ∪M) u (t̃1, t̃2)[g]; r̃

=⇒M u t̃2[g]; (r̃, g(t̃1))

RL-MS.2 ({{g(t̃1)}} ∪M)[f] u (t̃1, t̃2)[g]; r̃

=⇒M [f] u t̃2[g]; (r̃, g(t̃1))

(RR-MS) Relax the right hand side, multiset-sequence:

RR-MS.1 ({{t̃1}} ∪M)[f] u (f(t̃1), t̃2); r̃

=⇒M [f] u t̃2; (r̃, f(t̃1)))

RR-MS.2 ({{t̃1}} ∪M)[f] u (f(t̃1), t̃2)[g]; r̃

=⇒M [f] u t̃2[g]; (r̃, f(t̃1))

Example 8. We illustrate some of the rules in Group 2:

{{c, g(a, b), g()}} u (a, b, c, f())[g]; () =⇒RL-MS.1

{{c, g()}} u (c, f())[g]; (g(a, b)) =⇒CT-MS.2

{{g()}} u (f())[g]; (g(a, b), c) =⇒RL-MS.1

23

{{}} u (f())[g]; (g(a, b), c, g()).

Note that to the initial problem, we could also apply the RL-MS.1 differ-
ently, which would lead to a different derivation:

{{c, g(a, b), g()}} u (a, b, c, f())[g]; () =⇒RL-MS.1

{{c, g(a, b)}} u (a, b, c, f())[g]; (g()) =⇒RL-MS.1

{{c}} u (c, f())[g]; (g(), g(a, b)) =⇒CT-MS.2

{{}} u (f())[g]; (g(), g(a, b), c).

Yet another alternative can be obtained from the first derivation by trans-
forming {{c, g()}} u (c, f())[g]; (g(a, b)) with RL-MS.1 instead of CT-MS.2,
eventually leading to the terminal pair {{}} u (f())[g]; (g(a, b), g(), c).

Group 3, left sequence, right multiset. These rules are symmetric to
those in the previous group, obtained by swapping the arguments of u. We
do not list them explicitly. Their names are similar to the names of the rules
in Group 2, with the difference that MS (multiset, sequence) is changed into
SM (sequence, multiset).

Group 4, multisets in both sides. This group contains 10 rules:

(Succ-M) Success, multisets:

Succ-M.1 ∅[f] u ∅; M =⇒ >; M

Succ-M.2 ∅ u ∅[g]; M =⇒ >; M

Succ-M.3 ∅[f] u ∅[g]; M =⇒ >; M

(NMI) Nonempty multiset intersection:

NMI.1 M1[f] uM2; M

=⇒ (M1 \N)[f] u (M2 \N); M ∪N
NMI.2 M1 uM2[g]; M

=⇒ (M1 \N) u (M2 \N)[g]; M ∪N
NMI.3 M1[f] uM2[g]; M

=⇒ (M1 \N)[f] u (M2 \N)[g]; M ∪N

where N = M1 ∩M2 6= ∅.

24

(RL-M) Relax the left hand side, multisets:

RL-M.1 ({{g(t̃1)}} ∪M1) u ({{t̃1}} ∪M2)[g]; M

=⇒M1 uM2[g]; M ∪ {{g(t̃1)}}
RL-M.2 ({{g(t̃1)}} ∪M1)[f] u ({{t̃1}} ∪M2)[g]; M

=⇒M1[f] uM2[g]; M ∪ {{g(t̃1)}}

(RR-M) Relax the left hand side, multisets:

RR-M.1 ({{t̃1}} ∪M1)[f] u ({{f(t̃1)}} ∪M2); M

=⇒M1[f] uM2; M ∪ {{f(t̃1)}}
RR-M.2 ({{t̃1}} ∪M1)[f] u ({{f(t̃1)}} ∪M2)[g]; M

=⇒M1[f] uM2[g]; M ∪ {{f(t̃1)}}

Example 9. We illustrate some of the rules in Group 4:

{{a, b, c, a, b, c, d}}[f] u {{b, f(b, c), f(c, d), a, a}}; ∅ =⇒NMI.1

{{c, b, c, d}}[f] u {{f(b, c), f(c, d)}}; {{a, a, b}} =⇒RR-M.1

{{c, d}}[f] u {{f(c, d)}}; {{a, a, b, f(b, c)}} =⇒RR-M.1

∅[f] u ∅; {{a, a, b, f(b, c), f(c, d)}} =⇒Succ-M.1

>; {{a, a, b, f(b, c), f(c, d)}}.

Note that alternative derivations in this case do not lead to different re-
sults, since the order of elements in the computed multiset does not matter.
Therefore, it does not make sense to try rules in a different order. Nondeter-
minism between the rules in Group 4 is don’t-care nondeterminism, unlike
the previous three groups where it is don’t-know nondeterminism.

Hence, as we saw, the rules RL-S.2 and RR-S.2 are alternatives of each
other and can be used nondeterministically, when t̃1 = (). The same is true
for RL-SM.2 and RR-SM.2, RL-MS.2 and RR-MS.2, and RL-M.2 and RR-M.2.
There are also overlaps between common term rules and relax rules. All these
are examples of don’t-know nondeterminism. They cause branching in the
derivation tree. On the other hand, nondeterminism in Group 4 is don’t-care
nondeterminism and we can fix an arbitrary application order of rules in that
group. It does not cause branching.

25

The rules are applied as long as possible. The successful derivations are
those that end with >; r̃ for some sequence r̃ (as in Example 7), or with >;M
for some multiset M (as in Example 9). Failed derivations are those which
are not successful ones but no rule applies to them (as in Example 8). The
set of all S’s computed in Step 7 is denoted by RS(Slin).

Example 10. Let {A(f),C(f),A(g)} = E and consider the matching prob-
lem

Γ = {h(f(x), g(x))�E h(f(a, g()), g(f(), a, f()))}.

Linearization gives

Γlin = {h(f(x1), g(x2))�E h(f(a, g()), g(f(), a, f()))},

where x1 and x2 are copies of x. The algorithm LM returns one solved set

Slin = {x1 ≈ {{a, g()}}[f], x2 ≈ (f(), a, f())[g]}.

We apply the RS algorithm to Slin. We restore the variable x:

S := {x ≈ {{a, g()}}[f], x ≈ (f(), a, f())[g]}.

Step 6 of RS produces four alternative derivations:

{{a, g()}}[f] u (f(), a, f())[g]; () =⇒RL-MS.2

{{a}}[f] u (f(), a, f())[g]; g() =⇒RR-MS.2

{{a}}[f] u (a, f())[g]; (g(), f()) =⇒CT-MS.4

∅[f] u (f())[g]; (g(), f(), a) =⇒RR-MS.2

∅[f] u ()[g]; (g(), f(), a, f()) =⇒Succ-S.4

>; (g(), f(), a, f()).

{{a, g()}}[f] u (f(), a, f())[g]; () =⇒RR-MS.2

{{a, g()}}[f] u (a, f())[g]; f() =⇒RL-MS.2

{{a}}[f] u (a, f())[g]; (f(), g()) =⇒CT-MS.4

∅[f] u f()[g]; (f(), g(), a) =⇒RR-MS.2

∅[f] u ()[g]; (f(), g(), a, f()) =⇒Succ-MS.4

26

>; (f(), g(), a, f()).

{{a, g()}}[f] u (f(), a, f())[g]; () =⇒RR-MS.2

{{a, g()}}[f] u (a, f())[g]; f() =⇒CT-MS.4

{{g()}}[f] u (f())[g]; (f(), a) =⇒RL-MS.2

∅[f] u f()[g]; (f(), a, g()) =⇒RR-MS.2

∅[f] u ()[g]; (f(), a, g(), f()) =⇒Succ-MS.4

>; (f(), a, g(), f()).

{{a, g()}}[f] u (f(), a, f())[g]; () =⇒RR-MS.2

{{a, g()}}[f] u (a, f())[g]; f() =⇒CT-MS.4

{{g()}}[f] u ()[g]; (f(), a) =⇒RR-MS.2

{{g()}}[f] u f()[g]; (f(), a, f()) =⇒RL-MS.2

∅[f] u ()[g]; (f(), a, f(), g()) =⇒Succ-MS.4

>; (f(), a, f(), g()).

These derivations give four solved forms as results of application of RS to
Slin. It is easy to see that they give solutions of Γ:

RS(Slin) := {{x ≈ (g(), f(), a, f())}, {x ≈ (f(), g(), a, f())},
{x ≈ (f(), a, g(), f())}, {x ≈ (f(), a, f(), g())}}.

Example 11. Let {A(f),A(g)} = E and consider the matching problem

Γ = {h(f(x, y), f(y), g(x))�E h(f(g(a), b, c, d), f(c, d), g(a, f(), f(b)))}.

After linearizing it (taking x1, x2 as copies of x and y1, y2 as copies of y) and
using the algorithm LM, we get solved sets:

S1
lin = {x1 ≈ ()[f], y1 ≈ (g(a), b, c, d)[f],

y2 ≈ (c, d)[f], x2 ≈ (a, f(), f(b))[g]}.
S2
lin = {x1 ≈ g(a)[f], y1 ≈ (b, c, d)[f], y2 ≈ (c, d)[f],

x2 ≈ (a, f(), f(b))[g]}.
S3
lin = {x1 ≈ (g(a), b)[f], y1 ≈ (c, d)[f], y2 ≈ (c, d)[f],

x2 ≈ (a, f(), f(b))[g]}.
S4
lin = {x1 ≈ (g(a), b, c)[f], y1 ≈ d[f], y2 ≈ (c, d)[f],

27

x2 ≈ (a, f(), f(b))[g]}.
S5
lin = {x1 ≈ (g(a), b, c, d)[f], y1 ≈ ()[f], y2 ≈ (c, d)[f],

x2 ≈ (a, f(), f(b))[g]}.

Because of Step 4 of the algorithm, we get RS(S1
lin) = RS(S2

lin) = RS(S4
lin) =

RS(S5
lin) = ∅. Step 6 gives RS(S3

lin) = {x ≈ (g(a), f(), f(b)), y ≈ (c, d)[f]},
which is the final solution. The solved equation for x has been computed by
the following reduction:

(g(a), b)[f] u (a, f(), f(b))[g]; () =⇒RL-S.2

b[f] u (f(), f(b))[g]; g(a) =⇒RR-S.2

b[f] u f(b)[g]; (g(a), f()) =⇒RR-S.2

()[f] u ()[g]; (g(a), f(), f(b)) =⇒Succ.3

>; (g(a), f(), f(b)).

Theorem 7 (Termination of RS). The procedure RS terminates for every
input.

Proof. Steps 2, 3, 4, and 5 in RS cannot cause non-termination. Step 2 is
performed only once at the beginning, while 3, 4, and 5 immediately stop the
procedure. As for Step 6, we cannot have an infinite sequence of applications
of reduction rules, because each rule strictly reduces the size of the first
component of the pair it transforms. Moreover, this step is performed either
after Step 2, or after an application of itself. Hence, Step 6 is executed
finitely many times, each time performing finitely many reduction steps.
These observations imply termination of RS.

Theorem 8 (Soundness and Completeness of RS). Let v ≈ R1 and v ≈ R2

be two equations for the same v, obtained from Slin at Step 2 of the RS
algorithm. Then Σ(v ≈ R1) ∩ Σ(v ≈ R2) 6= ∅ iff either

• R1 = R2, or

• R1 6= R2 and there exists a derivation R1 u R2;R0 =⇒∗ >;R in RS,
where R0 = () or R0 = ∅, and Σ(v ≈ R1) ∩ Σ(v ≈ R2) = Σ(v ≈ R).

Proof. If v ∈ VFun ∪ VInd, then by the definition of Σ, we have Σ(v ≈ R1) ∩
Σ(v ≈ R2) 6= ∅ iff R1 = R2. The RS algorithm detects it either in Step 2 or
in Step 3. There is no attempt to construct a reduction derivation.

28

Now assume v ∈ VSeq and consider the possible forms of R1 and R2. They
are in normal form, if we have symbols from the corresponding theories.

First, let both R1 and R2 be sequences. Recall that if they are of the
form s̃[f], then no term in s̃ has f as its head.

• R1 = s̃, R2 = t̃ for some s̃ and t̃, or R1 = s̃[f], R2 = t̃[f] for some s̃, t̃,
and f . In this case, by the definition of Σ, we have Σ(v ≈ R1)∩Σ(v ≈
R2) 6= ∅ iff R1 = R2. The RS algorithm detects it at Step 2 or at Step
4. No reduction derivation is constructed.

• R1 = s̃, R2 = t̃[g] for some s̃, t̃, and associative g. Let Cond be the
condition: s̃ is either t̃, or is obtained from t̃ by replacing some of
its (possibly empty) subsequences t̃′ by g(t̃′). By the definition of Σ,
we have Σ(v ≈ s̃) ∩ Σ(v ≈ t̃[g]) 6= ∅ iff Cond holds. Moreover, when
Σ(v ≈ s̃) ∩ Σ(v ≈ t̃[g]) 6= ∅, then Σ(v ≈ s̃) ∩ Σ(v ≈ t̃[g]) = {{v 7→ s̃}}.
The derivation constructed by RS for suchR1 andR2 deals exactly with
these cases using the rules Succ-S.2, CFT.2 and RL-S.1. It succeeds
iff Cond holds, and fails otherwise. The R, obtained by a successful
derivation, is s̃.

• R1 = s̃[f], R2 = t̃ for some s̃, t̃, and associative f . The proof for this
case is analogous to the previous one, using the rules the rules Succ-S.1,
CFT-S.1 and RR-S.1 in the derivation.

• R1 = s̃[f], R2 = t̃[g] for some s̃, t̃, and associative f and g with f 6= g.
Let Cond is this case be the condition consisting of four cases:

1. s̃ and t̃ are the same, or

2. s̃ is obtained from t̃ by replacing some of its (possibly empty)
subsequences t̃′ by g(t̃′), or

3. t̃ is obtained from s̃ by replacing some of its (possibly empty)
subsequences s̃′ by f(s̃′), or

4. in some places, where t̃ contains a (possibly empty) subsequence
t̃′, s̃ contains g(t̃′), and vice versa: in some places, where s̃ contains
a (possibly empty) subsequence s̃′, t̃ contains f(s̃′). (s̃ does not
contain terms with the head f , and t̃ does not contain terms with
the head g.)

29

By the definition of Σ, we have Σ(v ≈ s̃[f]) ∩ Σ(v ≈ t̃[g]) 6= ∅ iff Cond
holds. The derivation constructed by RS for such R1 and R2 deals
exactly with these cases using the rules Succ-S.3, CFT-S.3, RL-S.2, and
RR-S.2. It succeeds iff Cond holds, and fails otherwise. By applying
RL-S.2 and RR-S.2 rules in different order we get different derivations.
When successful, those derivations produce different elements of Σ(v ≈
s̃[f]) ∩ Σ(v ≈ t̃[g]).

When at least one of R1 and R2 is a multiset, we will need to use the
RS rules from groups 2, 3, or 4, in place of the rules from Group 1. The
adaptation of the reasoning above to the corresponding cases is not difficult.

Let S(Γ) be the set of all solved forms obtained for an E-matching prob-
lem Γ by LM and RS:

S(Γ) := {RS(Slin) | Slin ∈ LM(Γlin),Γlin is the linearization of Γ}.

Theorem 9. Σ(S(Γ)) is a minimal complete set of E-matchers of an E-
matching problem Γ.

Proof. By Theorems 4 and 8, Σ(S) is a complete set of matchers for C-, A-,
and AC- theories. For minimality, we reason as follows: First, our equational
theories are regular, meaning that for each axiom s

.
= t defining them we have

V(s) = V(t). Second, according to (Fages and Huet, 1986, Proposition 4.1),
for a regular theory E, any complete set of different E-matchers of a term to
a ground term is minimal. Redundancies in Σ(S(Γ)) can be caused only by
substitutions that are equigeneral to each other (modulo C-, A- or AC, with
respect to the variables of the input matching problem). This is because all
input matching variables appear in the domain of each matcher in Σ(S(Γ))
(due to regularity), and the range of each matcher in Σ(S(Γ)) is ground
(since matching problems have ground right hand sides). However, since our
substitutions are in normal forms and the normal forms are unique, their
equigenerality actually means their equality. Therefore, in Σ(S(Γ)) no two
distinct substitutions are ≤·E-comparable. Hence, Σ(S(Γ)) is minimal.

In Theorem 6 we showed what are the maximal matching types for linear
C-, A-, and AC-problems. Now we get a more general result about matching
types in these theories:

30

Theorem 10 (Matching types of variadic C-, A-, and AC-theories).

• The variadic C-theory has the finitary matching type.

• The variadic A- and AC-theories have the infinitary matching type.

Proof. Follows from Theorem 6 and Theorem 9.

Theorem 11. Variadic associative, commutative, and associative-commuta-
tive matchings are NP-complete problems.

Proof. First, we show that if an associative, commutative, or associative-com-
mutative matching problem Γ is solvable, then it has a solution whose size is
polynomially bounded by the size of Γ. For a linear Γ, this follows from the
existence of a solution that just “fills the missing gaps” in the non-ground side
to fit it to the ground one, without inserting extra terms of the form f() in the
instantiations of sequence variables. The exact construction of such a solution
is given by algorithm LM. It shows that each occurrence of a non-associative
symbol in the ground side of Γ (denoted by ground(Γ)) is consumed by at
most one variable instantiation in the solution, while each occurrence of an
associative (i.e., A or AC) symbol may appear in the instantiations of several
variables. Hence, the size of such a matcher is bounded by |V(Γ)|·|ground(Γ)|,
where |ground(Γ)| is the size of the ground side of Γ.

For a nonlinear Γ, to show the existence of a polynomially bounded
matcher, we can follow the construction of algorithm RS. The algorithm
shows how to build solutions of Γ starting from the representation of solu-
tions for its linearized version Γlin. For each function or individual variable
in Γ, by this construction we have that any solution of Γ retains the repre-
sentation of the instantiation of that variable in the solution of Γlin. For a
sequence variable x ∈ V(Γ), the size of its instantiation in a solution of Γ
can be, in the worst case, the sum of the instantiation sizes for its copies in
Γlin. The worst case is achieved for A- or AC-matching problems, e.g., of the
form Γ = {f(g(x), h(x)) �E f(g(h()n), h(g()m))}, where {A(g),A(h)} ⊆ E
and h()n stands for the n-element sequence (h(), . . . , h()). (Same for g()m.)
Then for Γlin, by LM we get a solution {v1

x ≈ (h()n)[g], v2
x ≈ (g()m)[h]}, from

which RS gives n+m-long sequences, e.g. x ≈ (h()n, g()m).
Hence, we showed that a solvable Γ has a matcher whose size is bounded

polynomially in the size of Γ, by
∑

v∈V(Γ) #(v,Γ) · |ground(Γ)|, where #(v,Γ)
is the number of occurrences of v in Γ.

31

Now membership in NP follows from the fact that checking whether a
substitution is a solution of any of stated matching problems can be done
in polynomial time. The check involves the normalization of a term with
respect to associativity and commutativity (according to the given ordering
on function symbols) and then checking two terms for equality.

Hardness follows from the hardness of the syntactic variadic matching
problem. The latter can be shown by a reduction from positive 1-in-3-
SAT (Schaefer, 1978). In positive 1-in-3-SAT problems, clauses contain three
positive literals. One looks for a truth assignment which makes exactly one
literal true in each clause. In the reduction, we associate a term variable to
each literal and encode a clause p1 ∨ p2 ∨ p3 as a matching problem

assign(y1, or(x1, x2, x3), y2)� assign(or(t, f, f), or(f, t, f), or(f, f, t)),

where the variable xi corresponds to pi, 1 ≤ i ≤ 3, the symbol t corresponds
to true, and the symbol f to false. Each solution to such a matching problem
corresponds to an 1-in-3 truth assignment. For instance, {y1 7→ (), x1 7→
t, x2 7→ f, x3 7→ f, y2 7→ (or(f, t, f), or(f, f, t))} corresponds to the truth
assignment that maps p1 to true and p2 and p3 to false. This encoding is
similar to the one used in proving NP-hardness of regular expression order-
sorting matching (Kutsia and Marin, 2015).

To encode a SAT problem, i.e., a set of clauses, we take matching equa-
tions s1 �E t1, . . . , sk �E tk for the clauses and form a single matching equa-
tion as usual, using a free function symbol: g(s1, . . . , sk) �E g(t1, . . . , tk).
The encoding is polynomial and preserves solvability in both directions: for
each matcher, there exists the corresponding truth assignment that solves the
given positive 1-in-3 SAT problem and vice versa. It implies that syntactic
variadic matching problem is NP-hard.

We conclude this section with a remark on a potential application of our
finite representation of matchers’ sets in rule-based transformations modulo
variadic equational theories. To make such transformations work, one could
enrich rules with constraints, which represent solved set equations. At each
step, matching will need to take into account the existing constraints. It goes
beyond the scope of this paper and can be a subject of a potential future
work.

32

6. Finitary fragment and variant

A fragment of equational matching is obtained by restricting the form of
the input, while variants require computing solutions of some special form
without restricting the input. The algorithms LM and RS provide a finite
representation of potentially infinite complete sets of E-matchers. An inter-
esting question is to identify special cases when the set itself is finite. In
this section we discuss two such special cases: the bounded fragment and the
strict variant.

6.1. Bounded fragment

We start with a fragment that restricts occurrences of sequence variables.

Definition 5. Let Γ be a matching problem. A sequence variable x is called
bounded in Γ if

• it occurs as an argument of at least two different function symbols or

• it is not an argument of any associative and associative-commutative
symbol in Γ.

The problem Γ is called bounded if all its sequence variables are bounded in
it.

Example 12. Let E = {A(f),C(f),A(g),C(g)}. The following matching
problems are bounded:

• {f(x) �E f(a, g(b)), g(x) �E g(f(a), b)}, which has two solutions
{x 7→ (f(a), g(b))} and {x 7→ (g(b), f(a))}.

• {f(x) �E f(g(), g()), g(x) �E g(f(), f(), f())}, which has 10 solu-
tions: {{x 7→ t̃} | t̃ is a permutation of (g(), g(), f(), f(), f())}.

An important property of bounded matching problems is the existence of
a bound on the size of their solutions. More precisely, the following lemma
holds:

Lemma 2. Let Γ be a bounded matching problem and σ be its solution.
Assume that the terms in the range of σ are A-normalized. Then for every
variable v ∈ V(Γ), we have size(vσ) ≤

∑
s�Et∈Γ size(t).

33

Proof. Since Γ is bounded, there will be an occurrence of v in some s �E

t ∈ Γ such that vσ is not flattened in sσ. If the inequality does not hold, we
will have size(sσ) ≥ size(vσ) > size(t), contradicting the assumption that σ
solves Γ.

For bounded problems, RS returns a solution in which solved equations
for sequence variables have the form x ≈ r̃, but neither x ≈ r̃[f] nor x ≈
M [f]. This is easy to see: if a sequence variable occurs only under free or
commutative symbol, then LM never applies the rules SVE-A and SVE-AC,
which is the only source of generating solved equations of the form x ≈ r̃[f] or
x ≈M [f]. If a sequence variable, say x, appears under two distinct function
symbols, say f and g, it can be that those symbols are, e.g., associative and
after LM we have two equations of the form y ≈ s̃[f] and z ≈ t̃[g], where
y and z are copies of x. However, application of RS to s̃[f] u t̃[g] produces
r̃ without a function symbol attached to it, which gives a solved equation
x ≈ r̃. (The same reasoning applies to the associative-commutative case.)

Hence, for bounded problems, no solution computed by LM and RS
contains an equation of the form x ≈ r̃[f] or x ≈ M [f]. It implies that if
S is a solution of a bounded problem Γ, the set Σ(S) is finite. Moreover,
the number of distinct solutions is always finite for any matching problem.
Therefore, the set of all solutions S of Γ is finite, and Σ(S) is finite.

6.2. Strict variant

Infinitely many solutions to our matching problems are caused by se-
quences of f()’s in the matchers, where f is an A or AC function symbol.
But one might be interested in solutions, which do not introduce such extra
f()’s.

For a precise characterization, we modify the variadic associativity axiom
into variadic strict associativity:

f(x, f(y1, y, y2), z)
.
= f(x, y1, y, y2, z).

For an f , this axiom is denoted by As(f) and we use As for the corresponding
equational theory. Obviously, any solution of a matching problem modulo
As or AsC is also a solution modulo A or AC. Hence, we can say that we
are aiming at solving a variant of A or AC-matching. We call it the strict
variant and adapt our algorithms to compute matchers for it. Actually, the
adaptation is pretty small. It concerns the definition of Σ and an extra
condition for the A and AC rules in LM and for relaxing rules in RS. They

34

are discussed below. The notions of As-normal form and AsC-normal form
are defined analogously to their A- and AC-counterparts.

Adapting the definition of Σ to As. In solved sets, the equations of the form
x ≈ (t1, . . . , tn)[f] and x ≈ {{t1, . . . , tn}}[f] now will have f as a strict asso-
ciative symbol (instead of associative). Consequently, in the definition of Σ,
≈A is changed into ≈As and A- and AC-normal forms into As- and AsC-normal
forms, respectively.

This modified definition defines a finite set of pairwise ≤·{x}E -incomparable
substitutions. For instance, Σ(x ≈ (t1, t2, t3)[f]) for a strict associative f is
the set

{{x 7→ (r1, r2, r3)} | rj ∈ {tj, f(tj)}, 1 ≤ j ≤ 3}
∪ {{x 7→ (f(t1, t2), r3)} | r3 ∈ {t3, f(t3)}}
∪ {{x 7→ (r1, f(t2, t3))} | r1 ∈ {t1, f(t1)}}
∪ {{x 7→ (f(t1, t2, t3))}}.

Adapting the associative and associative-commutative rules to As. We re-
place the associative and associative-commutative rules by their strict coun-
terparts, requiring strict associativity in the conditions. In addition, in the
FVE-A-strict and FVE-AC-strict rules we require s̃ 6= (), in the IVE-A-strict
rule t̃1 6= (), and in the IVE-AC-strict rule n > 0. For SVE-A-strict and SVE-
AC-strict, we do not need any extra condition, because the modified definition
of Σ does the job. We call the modified algorithm LMS.

Adapting the reduction rules to As. This change is motivated by the fact
that in the relaxing rules, one cannot relax the sides by pretending that
terms like f() or g() stand in the corresponding sequences or multisets. We
need to impose an extra condition on those rules. Namely, we require t̃1 6= ()
in each of the relaxing rules. We call the modified algorithm RSS.

It is assumed that the equations these algorithms work on are normalized:
LMS works on equations with As-normal left hand sides and AsC-normal right
hand sides, and RSS on AsC-normal forms.

Theorem 12. The algorithm LMS is terminating, sound, complete, and
minimal.

35

Proof. Termination is obvious, since LM is terminating (Theorem 2). Sound-
ness means that the algorithm only computes strict solutions. That it com-
putes solutions, follows from Theorem 3. Strictness of the computed solu-
tions follows from the fact that no rule invents terms like f() for the matchers.
Completeness follows from Theorem 4 based on the observation that the new
definition of Σ and the new conditions in the rules do not discard strict so-
lutions. Hence, LMS computes all linear strict solutions and, therefore, is
complete. Minimality means the minimality of the set Σ(LMS(Γ)) for any
Γ, which follows from the minimality of Σ(LM(Γ)) (Theorem 5).

Similarly, RS remains terminating, sound, and complete for theories in-
volving As:

Theorem 13. The algorithm RSS is terminating, sound, and complete.

Proof. RSS terminates, since RS terminates (Theorem 7). Soundness and
completeness can be shown similarly to soundness and completeness of RS.
We need to take into account the definition of Σ adapted to As and the
new conditions imposed over the relaxing reduction rules, which do not al-
low to introduce extra subsequences of the form (f(), . . . , f()) in solutions,
preventing non-strict results.

Example 13. If E = {A(f)}, the matching problem f(x) �E f(a, a) has
infinitely many solutions. If E = {As(f)}, there are five matchers: {x 7→
(a, a)}, {x 7→ f(a, a)}, {x 7→ (f(a), a)}, {x 7→ (a, f(a)), {x 7→ (f(a), f(a))}.

Note that the size of matchers is bounded by the size of the right-hand
side of matching equations both for the bounded fragment and for the strict
variant.

7. Experimenting with the Mathematica variant

7.1. Data and observations

The programming language of Mathematica, called Wolfram, supports
equational variadic matching in A, C, AC theories with individual and se-
quence variables. The terminology is a bit different, though. Variadic as-
sociative symbols there are called flat and commutative ones orderless. In-
dividual variables correspond to patterns like x , and sequence variables to
patterns like y .

36

The matching variants used in Mathematica are efficiently implemented,
but the algorithm is not public. In this section we first show Mathematica’s
behavior on some selected characteristic examples and then will try to imitate
it by variants of our rules. In the experiments we used the Mathematica built-
in function ReplaceList[expr,rules], which attempts to transform the
entire expression expr by applying a rule or list of rules in all possible ways,
and returns a list of the results obtained. In transformation, Mathematica
tries to match rules to expr, exhibiting the behavior of the built-in matching
mechanism. The equational theories can be specified by setting attributes
(flat, orderless) to symbols.

The examples below are used to illustrate the behavior of Mathematica,
but we prefer to write those examples in the notation of this paper. We
compare it to our strict variant, because it also does not compute extra f()’s
in the answer. However, they are not the same, as the examples below show.
We report only sets of matchers, ignoring their order and how many times the
same (syntactically or modulo an equational theory) matcher was computed.
The strict variant treats associativity of input symbols as strict associativity.
Mathematica treats them as symbols with the attribute Flat.

Problem: f(x)�E f(a), f is A or AC. (5)

Strict matchers: {x 7→ a}, {x 7→ f(a)}.
Mathematica: {x 7→ a}.

Problem: f(f())�E f(), f is A or AC. (6)

Strict matchers: No solutions.

Mathematica: ε.

Problem: f(x, y)�E f(a, b), f is AC. (7)

Strict matchers: {x 7→ t1, y 7→ t2},
with t1 ∈ {a, f(a)}, t2 ∈ {b, f(b)},

{x 7→ t1, y 7→ t2},
with t1 ∈ {b, f(b)}, t2 ∈ {a, f(a)}.

Mathematica: {x 7→ f(a), y 7→ f(b)}, {x 7→ a, y 7→ b},
{x 7→ f(b), y 7→ f(a)}, {x 7→ b, y 7→ a}

Problem: f(x, y)�E f(a, b), f is AC. (8)

Strict matchers: {x 7→ (), y 7→ (t1, t2)},

37

with t1 ∈ {a, f(a)}, t2 ∈ {b, f(b)},
{x 7→ (), y 7→ (t1, t2)},

with t1 ∈ {b, f(b)}, t2 ∈ {a, f(a)},
{x 7→ (), y 7→ f(a, b)},
{x 7→ (t1, t2), y 7→ ()},

with t1 ∈ {a, f(a)}, t2 ∈ {b, f(b)},
{x 7→ (t1, t2), y 7→ ()},

with t1 ∈ {b, f(b)}, t2 ∈ {a, f(a)},
{x 7→ f(a, b), y 7→ ()},
{x 7→ t1, y 7→ t2},

with t1 ∈ {a, f(a)}, t2 ∈ {b, f(b)},
{x 7→ t1, y 7→ t2},

with t1 ∈ {b, f(b)}, t2 ∈ {a, f(a)},
Mathematica: {x 7→ a, y 7→ b}, {x 7→ b, y 7→ a},

{x 7→ (a, b), y 7→ ()}, {x 7→ (), y 7→ (a, b)},

Problem: f(x, y)�E f(a, b, c), f is A. (9)

Strict matchers: {x 7→ a, y 7→ f(b, c)}, {x 7→ f(a), y 7→ f(b, c)},
{x 7→ f(a, b), y 7→ c}, {x 7→ f(a, b), y 7→ f(c)}.
{x 7→ t1, y 7→ (t2, t3)},with t1 ∈ {a, f(a)},

t2 ∈ {b, f(b)}, t3 ∈ {c, f(c)},
{x 7→ f(a, b, c), y 7→ ()}.

Mathematica: {x 7→ a, y 7→ (b, c)}, {x 7→ f(a), y 7→ (b, c)},
{x 7→ f(a, b), y 7→ c}, {x 7→ f(a, b, c), y 7→ ()}.

Problem: g(f(x), x)�E g(f(a), f(a)),

f is A or AC, g is free. (10)

Strict matchers: {x 7→ f(a)}.
Mathematica: No solutions.

Problem: g(f(x), g(x))�E g(f(b, a), g(b, a)),

f is C, g is free. (11)

Strict matchers: {x 7→ (b, a)}.
Mathematica: No solutions.

38

In (6), strictness does not allow one to flatten the left hand side, but
Mathematica does not have this restriction and transforms the term into
f().

Interestingly, the behavior of Mathematica’s matching changed from Ver-
sion 6.0 to Version 11.2.3 As reported in (Kutsia, 2008), for Problem (9),
Mathematica 6.0 would return three out of four substitutions reported above.
It would not compute {x 7→ a, y 7→ (b, c)}.

For problems like (7), Mathematica does not compute a matcher in which
one individual variable is mapped to a subterm from the right hand side, and
the other one is instantiated by f applied to a single subterm from the right
hand side. (The same is true when f is A.) Examining more examples, e.g.
f(x, y, z) �E f(a, b, c, d), for f being AC, confirms this observation. One
can see there matchers like {x 7→ a, y 7→ b, z 7→ f(c, d)} and {x 7→ f(a), y 7→
f(b), z 7→ f(c, d)} (and many more, the solution set consists of 72 matchers),
but not {x 7→ a, y 7→ f(b), z 7→ f(c, d)} or similar.

However, this concerns only those individual variables which are argu-
ments of the same occurrence of an associative symbol, as in f(x, y) �E

f(a, b). For problems like g(f(x), f(y))�E g(f(a), f(b)), where g is free and
f is associative or associative-commutative, Mathematica computes mixed
solutions: {x 7→ f(a), y 7→ f(b)}, {x 7→ f(a), y 7→ b}, {x 7→ a, y 7→ f(b)},
{x 7→ a, y 7→ b}.

It is interesting to see how sequence variables behave in such a situation.
Example (8) shows that in Mathematica matchers, f is not applied to terms
from the right hand side. Besides, when a sequence variable is instantiated
by a sequence, the order of elements in that sequence coincide with their
relative order in the canonical form of the right hand side of the equation.
For instance, in (8) Mathematica does not return {x 7→ (b, a), y 7→ ()}. Note
that if f were only C in (8), Mathematica would still compute exactly the
same set of matchers.

The canonical form of the right hand side is important. There is a so

3The experiments with pattern matching described in this paper have been originally
carried out for Mathematica 11.2. Later, we repeated them for Mathematica 12.0 and got
the same results.

39

called canonical order imposed on all Mathematica expressions,4 and when-
ever there is a commutative symbol, the system rearranges its arguments
according to this order. This is why Mathematica returns {x 7→ (a, b)} to
the matching problem f(x) �E f(b, a), when C(f) ∈ E. The arguments of
f(b, a) are first rearranged by the canonical order into f(a, b), and matching
is performed afterwards. These issues affect solvability of problems, as one
can see in (11). It also indicates that imitating Mathematica’s nonlinear
matching (i.e. when the same variable occurs more than once in matching
equations) is not trivial.

The final set of examples concerns function variables. One can see from
the examples that even if a function variable gets instantiated by an equa-
tional symbol, Mathematica treats that instance as a free symbol (in (14)
and (15), f(b, a) is first normalized to f(a, b)):

Problem: X(x)�E f(a), f is A or AC. (12)

Strict matchers: {X 7→ f, x 7→ a}, {X 7→ f, x 7→ f(a)}.
Mathematica: {X 7→ f, x 7→ a}.

Problem: X(x)�E f(a, b), f is A or AC. (13)

Strict matchers: {X 7→ f, x 7→ f(a, b)}.
Mathematica: No solutions.

Problem: X(a, b)�E f(b, a), f is C. (14)

Strict matchers: {X 7→ f}.
Mathematica: {X 7→ f}.

Problem: X(b, a)�E f(b, a), f is C. (15)

Strict matchers: {X 7→ f}.
Mathematica: No solutions.

Problem: f(x,X(b, c))�E f(a, b, c), f is A or AC. (16)

Strict matchers: {X 7→ f}.
Mathematica: No solutions.

4Roughly, the canonical order orders symbols alphabetically and extends to trees with
respect to left-to-right pre-order.

40

7.2. Imitating variadic equational matching of Mathematica

These observations suggest that Mathematica’s equational matching can
be characterized as an incomplete strict variant of a normalized fragment. It
means that in any combination of A and C (flat and orderless) theories, the
matching algorithm takes input that is in the normal form (with respect to
the given theory, without the strictness assumption) and aims at computing
strict matchers for it. The algorithm is not complete. We suppose that it
is a deliberate decision made for efficiency. It can happen that the same
matcher is computed several times, supposedly in different ways of applying
the algorithm.

One can also observe that an algorithm that tries to imitate Mathemat-
ica’s equational matching behavior should indeed follow the idea of our con-
struction: first linearizing the matching problem, then solving the obtained
linear problem, and finally reconstructing the solution of the original one.
For the exact details, we need to look into the behavior of each kind of vari-
able. This is done below. Note that the original given matching problem is
assumed to be A-/C-/AC-normalized.

Imitating the behavior of function variables. Equations of the form X(s̃)�E

f(t̃) are transformed by a new rule, which we denote by FVE-M (M for mod-
ified): X(s̃)�E f(t̃) ϑ {g(s̃)�E g(t̃)}, where ϑ = {X 7→ f} and g is free.
This rule replaces FVE. Besides, FVE-A-strict and FVE-AC-strict are dropped.

Imitating the behavior of individual and sequence variables under commuta-
tive symbols. The rule SVE-C is dropped. Instead, SVE-F is allowed to be
used. (As we will see below, SVE-F can be used actually without any re-
striction to the head of the involved terms and, therefore, we can rename it
to SVE.) On the other hand, Dec-C stays. Hence, commutative terms with
individual variables can still be decomposed by the Dec-C rule.

Imitating the behavior of sequence variables under As and AsC symbols. For
equations f(s̃)�E f(t̃), where As(f) ∈ E and a sequence variable x appears
in its solution σ, no element of the sequence xσ should have f as its head.
For this, to make things simple, we just drop SVE-A-strict and SVE-AC-strict.
Instead, SVE-F may apply also to strict associative and strict associative-
commutative heads. We said above that this rule applies also to terms with
a commutative head. We rename this modified rule into SVE, to reflect that
it is not restricted to free symbols only and applies to any head. It implies
that for the algorithm that reconstructs nonlinear solutions from the linear

41

ones, we will not have the reduction rules anymore (i.e., Step 6 of RSS does
not apply).

Imitating the behavior of individual variables under As and AsC symbols. This
concerns equations of the form f(s̃) �E f(t̃), where As(f) ∈ E. As we
observed, if individual variables x and y occur as arguments of f(s̃), and t1
and t2 are two terms among t̃, then for the same matcher σ it cannot happen
that xσ = t1 and yσ = f(t2): Either xσ should also have the head f , or yσ
should have more arguments. This is what Mathematica does.

To imitate this behavior, we introduce markings for equations of the form
s �E t, where head(s) = head(t) and As(head(s)) ∈ E. Initially, they are
not marked. First, assume that f is not commutative.

If for an unmarked equation s �E t, the first argument of s is not an
individual variable, then no marking takes place.

Now assume that an unmarked equation has a form f(x, s̃) �E f(t, t̃),
where f is As. There are only two rules that apply to this equation: Dec-A-
strict and IVE-A-strict. Then marking works in the following way:

• If the unmarked equation is transformed by the Dec-A-strict rule into
{x�E t, f(s̃)�E f(t̃)}, then f(s̃)�E f(t̃) is marked by 0.

• If the unmarked equation is transformed by the IVE-A-strict rule into
{x�E f(t), f(s̃)�E f(t̃)}, then f(s̃)�E f(t̃) is marked by 1.

• Otherwise, if the unmarked equation is transformed by the IVE-A-strict
rule into {x�E f(t, t̃1), f(s̃)�E f(t̃2)}, where t̃1 6= (), then f(s̃)�E

f(t̃2) remains unmarked.

After introducing markings, they are used in rule applications. Remem-
ber that for each marked equation s �E t we have head(s) = head(t) and
{As(head(s))} = E. Therefore, the applicable rules are T, SVE, Dec-A-strict,
or IVE-A-strict.

• If T applies, the equation is removed.

• If SVE applies (i.e., if the first argument of s is a sequence variable),
then the obtained equation retains the marking of s�E t.

• Otherwise, if the first argument of s is not an individual variable, the
only applicable rule is Dec-A-strict. It produced two new equations.
The first one, obtained from the first arguments of s and t, is unmarked.
The second one retains the marking of s�E t.

42

• Otherwise, the first argument of s is an individual variable. We have
two cases depending on the marking of s�E t:

– s �E t is marked by 1. Then it will not be transformed by
the Dec-A-strict rule. Only IVE-A-strict applies and the obtained
equation retains the mark 1.

– s�E t is marked by 0. Then it can be transformed both by Dec-
A-strict and IVE-A-strict. If Dec-A-strict is used, two equations are
obtained, from which the second one retains the mark 0. If IVE-
A-strict is used, the sequence t̃1 in the rule cannot be a singleton:
more terms should be put in it. Also here, the obtained equation
has the mark 0.

Marking works analogously for AsC matching: simply use the Dec-AC-
strict and IVE-AC-strict rules instead of Dec-A-strict and IVE-A-strict.

The algorithm MMma. To summarize, we need the following to imitate Math-
ematica’s behavior:

• For linear matching, from the algorithm LMS:

– All common rules, where FVE is replaced by FVE-M.

– Both free symbol rules, but SVE-F is replaced by SVE, since it may
apply to terms with any head, not just to those with free ones.

– From the commutative rules only Dec-C is needed.

– From the strict associative rules we need only Dec-A-strict and
IVE-A-strict, and they take into account the equation marking, as
discussed above.

– From the strict associative-commutative rules we need only Dec-
AC-strict and IVE-AC-strict, and they take into account the equa-
tion marking, as discussed above.

• For non-linear matching, from the algorithm RSS:

– we need steps 1, 2, 3, 4, and 7, but in step 4, we will not have
equations of the form x ≈ t̃[f].

– we do not need the reduction rules.

43

We denote the obtained algorithm by MMma to indicate that it (tries to)
imitate the Mathematica variant of variadic equational matching. Since the
latter is incomplete, it is not surprising that to get MMma, we had to omit
or restrict some rules in our algorithm.

Example 14. We apply MMma to the problem (7): f(x, y)�E f(a, b) with
E = {As(f)}. First alternative, start from Dec-A-strict:

{f(x, y)�E f(a, b)}; ∅ Dec-A-strict

f(y)�E f(b) gets marked by 0.

{x�E a, f(y)�E f(b)}; ∅ IVE

{f(y)�E f(b)}; {x ≈ a} Dec-A-strict

Since f(y)�E f(b) is marked by 0, IVE-A-strict cannot apply:

f(b) has too few arguments to be assigned to y by IVE-A-strict.

{y �E b, f()�E f()}; {x ≈ a} IVE

{f()�E f()}; {x ≈ a, y ≈ b} T

∅; {x ≈ a, y ≈ b}.

Second alternative, start from IVE-A-strict with f(a):

{f(x, y)�E f(a, b)}; ∅ IVE-A-strict

f(y)�E f(b) gets marked by 1.

{x�E f(a), f(y)�E f(b)}; ∅ IVE

{f(y)�E f(b)}; {x ≈ f(a)} IVE-A-strict

Since f(y)�E f(b) is marked by 1, Dec-A-strict cannot apply.

{y �E f(b), f()�E f()}; {x ≈ f(a)} IVE

{f()�E f()}; {x ≈ f(a), y ≈ f(b)} T

∅; {x ≈ f(a), y ≈ f(b)}.

Third alternative, start from IVE-A-strict with f(a, b):

{f(x, y)�E f(a, b)}; ∅ IVE-A-strict

f(y)�E f() stays unmarked.

{x�E f(a, b), f(y)�E f()}; ∅ IVE

{f(y)�E f()}; {x ≈ f(a, b)}
No applicable rule. Fail.

44

Hence, MMma computes two substitutions {x 7→ a, y 7→ b} and {x 7→
f(a), y 7→ f(b)}. This is also what Mathematica returns.

Example 15. Let the equation be g(X(x, y), X(y, x))�E g(f(a, b), f(b, a)),
where E = {C(f)}. Since MMma expects normalized input, we should actu-
ally take

g(X(x, y), X(y, x))�E g(f(a, b), f(a, b)).

Linearization transforms it into

g(X1(x1, y1), X2(y2, x2))�E g(f(a, b), f(a, b)).

By Dec-F, we get two equations

X1(x1, y1)�E f(a, b), X2(y2, x2)�E f(a, b).

The first one gives the solution σ1 = {X1 7→ f, x1 7→ a, y1 7→ b}. The second
one is solved by σ2 = {X2 7→ f, x2 7→ b, y2 7→ a}. Since x1σ1 6= x2σ2, the
solutions are inconsistent and, hence, MMma cannot solve the problem. This
is also how Mathematica behaves.

At the end of this section, we note that Mathematica has matching with
yet another equational theory, called OneIdentity. It can be characterized
by the axiom f(x) ≈ x. It is an example of a collapse theory, where a term is
equal to its proper subterm (Siekmann, 1989). It implies that the equivalence
class of a variable does not consist of that variable only. Such theories need
a special treatment and we have not considered it in our work. It can be a
subject of future investigations.

8. Discussion and conclusion

We studied matching in variadic equational theories for associativity, com-
mutativity, and their combination. Variadic A-matching and AC-matching
in the presence of sequence variables are infinitary. Therefore, any procedure
that tries to directly enumerate their complete set of matchers is nontermi-
nating. However, looking at those matchers closer, one can see that there
is a pretty regular way to obtain them from finitely many basic ones. This
observation allowed us to develop a terminating matching algorithm for the
mentioned variadic equational theories. The algorithm computes a finite rep-
resentation of a possibly infinite complete set of matchers. It works in two

45

steps: first, the given matching problem is linearized by replacing multiple
occurrences of the same variable with fresh variables. Next, the obtained
linear problem is solved by an algorithm called LM. It gives a finite repre-
sentation of potentially infinite set of matchers in the form of solved equations
of certain kind. Finally, from the solutions of the linear problem we recon-
struct solutions of the original one by another algorithm, which is called RS.
Termination, soundness, and completeness of LM and RS are proved.

After that, we looked into special matching problems for which the com-
plete set of matchers is finite. It requires certain restrictions on occurrences
of sequence variables in the problem or in the solutions. We identified two
such cases: a bounded fragment and a strict variant. In the bounded frag-
ment, each sequence variable either is an argument of two different function
symbols, or never appears as an argument of any associative and associative-
commutative symbol. This condition implies that solutions have a bound on
their size and, hence, there are finitely many matchers.

The strictness property imposes a restriction on the way nested associa-
tive function symbols are flattened: The inner one should have at least one
argument. The strict variant requires us to compute matchers modulo the
strictness property. There are finitely many such matchers. Our algorithms
need only a minor modification to compute them. We called the algorithms
adapted to the strict variant LMS and RSS.

Further, we made an attempt to understand the behavior of the power-
ful variadic equational matching algorithm of the Mathematica system. Our
analysis suggests that it corresponds to an incomplete strict variant of a
fragment normalized with respect to the given equational theory, where in-
completeness stems from the goal of making it efficient. To model its behav-
ior, we restricted LMS and RSS and obtained an algorithm which we called
MMma. Its evaluation showed that for those examples we experimented with,
MMma computes the same set of answers as Mathematica’s equational (flat,
orderless) matching algorithm.

Acknowledgments.

This research has been partially supported by the Austrian Science Fund
(FWF) under the project 28789-N32 and the Shota Rustaveli National Sci-
ence Foundation of Georgia under the grant FR-19-18557.

46

References

Baader, F., Snyder, W., 2001. Unification theory. In: Robinson, J. A.,
Voronkov, A. (Eds.), Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, pp. 445–532.

Barthels, H., Psarras, C., Bientinesi, P., 2019. Automatic generation of effi-
cient linear algebra programs. CoRR abs/1907.02778.
URL http://arxiv.org/abs/1907.02778

Benanav, D., Kapur, D., Narendran, P., 1987. Complexity of matching prob-
lems. J. Symb. Comput. 3 (1/2), 203–216.
URL https://doi.org/10.1016/S0747-7171(87)80027-5

Buchberger, B., 1996. Mathematica as a rewrite language. In: Ida, T., Ohori,
A., Takeichi, M. (Eds.), Proceeding of the 2nd Fuji International Workshop
on Functional and Logic Programming. World Scientific, pp. 1–13.

Buchberger, B., Craciun, A., Jebelean, T., Kovács, L., Kutsia, T., Nakagawa,
K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W., 2006.
Theorema: Towards computer-aided mathematical theory exploration. J.
Appl. Logic 4 (4), 470–504.
URL https://doi.org/10.1016/j.jal.2005.10.006

Chasseur, E., Deville, Y., 1997. Logic program schemas, constraints, and
semi-unification. In: Fuchs (1998), pp. 69–89.
URL https://doi.org/10.1007/3-540-49674-2_4

Cirstea, H., Kirchner, C., Kopetz, R., Moreau, P.-E., 2010. Anti-patterns for
rule-based languages. J. Symb. Comput. 45 (5), 523–550.
URL https://doi.org/10.1016/j.jsc.2010.01.007

Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J.,
Talcott, C. L. (Eds.), 2007. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic. Vol. 4350 of Lecture Notes in Computer Science. Springer.
URL https://doi.org/10.1007/978-3-540-71999-1

Coelho, J., Dundua, B., Florido, M., Kutsia, T., 2010. A rule-based ap-
proach to XML processing and web reasoning. In: Hitzler, P., Lukasiewicz,

47

http://arxiv.org/abs/1907.02778
https://doi.org/10.1016/S0747-7171(87)80027-5
https://doi.org/10.1016/j.jal.2005.10.006
https://doi.org/10.1007/3-540-49674-2_4
https://doi.org/10.1016/j.jsc.2010.01.007
https://doi.org/10.1007/978-3-540-71999-1

T. (Eds.), Web Reasoning and Rule Systems - Fourth International Con-
ference, RR 2010, Bressanone/Brixen, Italy, September 22-24, 2010. Pro-
ceedings. Vol. 6333 of Lecture Notes in Computer Science. Springer, pp.
164–172.
URL http://dx.doi.org/10.1007/978-3-642-15918-3_13

Coelho, J., Florido, M., 2004. CLP(Flex): constraint logic programming ap-
plied to XML processing. In: Meersman, R., Tari, Z. (Eds.), On the Move
to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, OTM
Confederated International Conferences, Agia Napa, Cyprus, October 25-
29, 2004, Proceedings, Part II. Vol. 3291 of Lecture Notes in Computer
Science. Springer, pp. 1098–1112.
URL https://doi.org/10.1007/978-3-540-30469-2_17

Coelho, J., Florido, M., 2007. XCentric: A logic-programming language for
XML processing. In: PLAN-X 2007, Programming Language Technologies
for XML, An ACM SIGPLAN Workshop colocated with POPL 2007, Nice,
France, January 20, 2007. pp. 93–94.
URL http://www.plan-x-2007.org/plan-x-2007.pdf

Dershowitz, N., Manna, Z., 1979. Proving termination with multiset order-
ings. Commun. ACM 22 (8), 465–476.
URL https://doi.org/10.1145/359138.359142

Dundua, B., 2014. Programming with sequence and context variables: Foun-
dations and applications. Ph.D. thesis, University of Porto.

Dundua, B., Florido, M., Kutsia, T., Marin, M., 2016. CLP(H): constraint
logic programming for hedges. TPLP 16 (2), 141–162.
URL https://doi.org/10.1017/S1471068415000071

Dundua, B., Kutsia, T., Marin, M., 2009. Strategies in PρLog. In: Fernández,
M. (Ed.), 9th Int. Workshop on Reduction Strategies in Rewriting and
Programming, WRS’09. Vol. 15 of EPTCS. pp. 32–43.
URL https://doi.org/10.4204/EPTCS.15

Dundua, B., Kutsia, T., Marin, M., 2019. Variadic equational matching. In:
Kaliszyk, C., Brady, E., Kohlhase, A., Coen, C. S. (Eds.), Intelligent Com-
puter Mathematics - 12th International Conference, CICM 2019, Prague,
Czech Republic, July 8-12, 2019, Proceedings. Vol. 11617 of Lecture Notes

48

http://dx.doi.org/10.1007/978-3-642-15918-3_13
https://doi.org/10.1007/978-3-540-30469-2_17
http://www.plan-x-2007.org/plan-x-2007.pdf
https://doi.org/10.1145/359138.359142
https://doi.org/10.1017/S1471068415000071
https://doi.org/10.4204/EPTCS.15

in Computer Science. Springer, pp. 77–92.
URL https://doi.org/10.1007/978-3-030-23250-4_6

Dundua, B., Kutsia, T., Reisenberger-Hagmayer, K., 2017. An overview of
PρLog. In: Lierler, Y., Taha, W. (Eds.), Practical Aspects of Declarative
Languages - 19th International Symposium, PADL 2017, Paris, France,
January 16-17, 2017, Proceedings. Vol. 10137 of Lecture Notes in Computer
Science. Springer, pp. 34–49.
URL https://doi.org/10.1007/978-3-319-51676-9_3

Eker, S., 2002. Single elementary associative-commutative matching. J. Au-
tom. Reasoning 28 (1), 35–51.
URL https://doi.org/10.1023/A:1020122610698

Eker, S., 2003. Associative-commutative rewriting on large terms. In:
Nieuwenhuis (2003), pp. 14–29.
URL https://doi.org/10.1007/3-540-44881-0_3

Fages, F., Huet, G. P., 1986. Complete sets of unifiers and matchers in equa-
tional theories. Theor. Comput. Sci. 43, 189–200.
URL https://doi.org/10.1016/0304-3975(86)90175-1

Fuchs, N. E. (Ed.), 1998. Logic Programming Synthesis and Transforma-
tion, 7th International Workshop, LOPSTR’97, Leuven, Belgium, July
10-12, 1997, Proceedings. Vol. 1463 of Lecture Notes in Computer Science.
Springer.
URL https://doi.org/10.1007/3-540-49674-2

Hamana, M., 1997. Term rewriting with sequences. In: Proceedings of the
First International Theorema Workshop. No. 97-20 in RISC Technical Re-
port series. Hagenberg, Austria.

Horozal, F., Rabe, F., Kohlhase, M., 2014. Flexary operators for formalized
mathematics. In: Watt, S. M., Davenport, J. H., Sexton, A. P., Sojka,
P., Urban, J. (Eds.), Intelligent Computer Mathematics - International
Conference, CICM 2014, Coimbra, Portugal, July 7-11, 2014. Proceedings.
Vol. 8543 of Lecture Notes in Computer Science. Springer, pp. 312–327.
URL https://doi.org/10.1007/978-3-319-08434-3_23

Horozal, F. F., 2014. A framework for defining declarative languages. Ph.D.
thesis, Jacobs University Bremen.

49

https://doi.org/10.1007/978-3-030-23250-4_6
https://doi.org/10.1007/978-3-319-51676-9_3
https://doi.org/10.1023/A:1020122610698
https://doi.org/10.1007/3-540-44881-0_3
https://doi.org/10.1016/0304-3975(86)90175-1
https://doi.org/10.1007/3-540-49674-2
https://doi.org/10.1007/978-3-319-08434-3_23

Hosoya, H., Pierce, B. C., 2003. Regular expression pattern matching for
XML. J. Funct. Program. 13 (6), 961–1004.
URL https://doi.org/10.1017/S0956796802004410

Hullot, J., 1979. Associative commutative pattern matching. In: Buchanan,
B. G. (Ed.), Proceedings of the Sixth International Joint Conference on
Artificial Intelligence, IJCAI 79, Tokyo, Japan, August 20-23, 1979, 2
Volumes. William Kaufmann, pp. 406–412.
URL http://ijcai.org/proceedings/1979-1

International Organization for Standardization, 2018. Information technol-
ogy — Common Logic (CL) — a framework for a family of logic-based
languages. International Standard ISO/IEC 24707:2018(E). Available on-
line at https://www.iso.org/standard/66249.html.

Krebber, M., Barthels, H., Bientinesi, P., 2017. Efficient pattern matching
in Python. In: Proceedings of the 7th Workshop on Python for High-
Performance and Scientific Computing, PyHPC@SC 2017, Denver, CO,
USA, November 12, 2017. ACM, pp. 2:1–2:9.
URL https://doi.org/10.1145/3149869.3149871

Kutsia, T., 2002a. Solving and proving in equational theories with sequence
variables and flexible arity symbols. RISC Report Series 02-09, RISC, Jo-
hannes Kepler University Linz.

Kutsia, T., 2002b. Unification with sequence variables and flexible arity sym-
bols and its extension with pattern-terms. In: Calmet, J., Benhamou, B.,
Caprotti, O., Henocque, L., Sorge, V. (Eds.), Artificial Intelligence, Auto-
mated Reasoning, and Symbolic Computation, Joint International Confer-
ences, AISC 2002 and Calculemus 2002, Marseille, France, July 1-5, 2002,
Proceedings. Vol. 2385 of Lecture Notes in Computer Science. Springer,
pp. 290–304.
URL https://doi.org/10.1007/3-540-45470-5_26

Kutsia, T., 2003. Equational prover of Theorema. In: Nieuwenhuis (2003),
pp. 367–379.
URL https://doi.org/10.1007/3-540-44881-0_26

Kutsia, T., 2004. Solving equations involving sequence variables and sequence
functions. In: Buchberger, B., Campbell, J. A. (Eds.), Artificial Intel-
ligence and Symbolic Computation, 7th International Conference, AISC

50

https://doi.org/10.1017/S0956796802004410
http://ijcai.org/proceedings/1979-1
https://www.iso.org/standard/66249.html
https://doi.org/10.1145/3149869.3149871
https://doi.org/10.1007/3-540-45470-5_26
https://doi.org/10.1007/3-540-44881-0_26

2004, Linz, Austria, September 22-24, 2004, Proceedings. Vol. 3249 of Lec-
ture Notes in Computer Science. Springer, pp. 157–170.
URL https://doi.org/10.1007/978-3-540-30210-0_14

Kutsia, T., 2007. Solving equations with sequence variables and sequence
functions. J. Symb. Comput. 42 (3), 352–388.
URL https://doi.org/10.1016/j.jsc.2006.12.002

Kutsia, T., 2008. Flat matching. J. Symb. Comput. 43 (12), 858–873.
URL https://doi.org/10.1016/j.jsc.2008.05.001

Kutsia, T., Marin, M., 2005. Can context sequence matching be used for
querying XML? In: Vigneron, L. (Ed.), Proceedings of the 19th Interna-
tional Workshop on Unification (UNIF’05). Nara, Japan, pp. 77–92.

Kutsia, T., Marin, M., 2012. Solving, reasoning, and programming in Com-
mon Logic. In: Voronkov, A., Negru, V., Ida, T., Jebelean, T., Petcu, D.,
Watt, S. M., Zaharie, D. (Eds.), 14th International Symposium on Sym-
bolic and Numeric Algorithms for Scientific Computing, SYNASC 2012,
Timisoara, Romania, September 26-29, 2012. IEEE Computer Society, pp.
119–126.
URL https://doi.org/10.1109/SYNASC.2012.27

Kutsia, T., Marin, M., 2015. Regular expression order-sorted unification and
matching. J. Symb. Comput. 67, 42–67.
URL https://doi.org/10.1016/j.jsc.2014.08.002

Marin, M., Kutsia, T., 2003. On the implementation of a rule-based pro-
gramming system and some of its applications. In: Konev, B., Schmidt, R.
(Eds.), Proceedings of the 4th International Workshop on the Implemen-
tation of Logics (WIL’03). Almaty, Kazakhstan, pp. 55–68.

Marin, M., Kutsia, T., 2006. Foundations of the rule-based system ρLog.
Journal of Applied Non-Classical Logics 16 (1-2), 151–168.
URL https://doi.org/10.3166/jancl.16.151-168

Marin, M., Tepeneu, D., 2003. Programming with sequence variables: The
Sequentica package. In: Challenging The Boundaries Of Symbolic Com-
putation. Proc. 5th Int. Mathematica Symposium. World Scientific, pp.
17–24.

51

https://doi.org/10.1007/978-3-540-30210-0_14
https://doi.org/10.1016/j.jsc.2006.12.002
https://doi.org/10.1016/j.jsc.2008.05.001
https://doi.org/10.1109/SYNASC.2012.27
https://doi.org/10.1016/j.jsc.2014.08.002
https://doi.org/10.3166/jancl.16.151-168

Nieuwenhuis, R. (Ed.), 2003. Rewriting Techniques and Applications, 14th
International Conference, RTA 2003, Valencia, Spain, June 9-11, 2003,
Proceedings. Vol. 2706 of Lecture Notes in Computer Science. Springer.
URL https://doi.org/10.1007/3-540-44881-0

Pease, A., Sutcliffe, G., 2007. First order reasoning on a large ontology. In:
Sutcliffe, G., Schulz, S. (Eds.), Proceedings of the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories. No. 257
in CEUR Workshop Proceedings. pp. 59–69.

Richardson, J., Fuchs, N. E., 1997. Development of correct transformation
schemata for Prolog programs. In: Fuchs (1998), pp. 263–281.
URL https://doi.org/10.1007/3-540-49674-2

Schaefer, T. J., 1978. The complexity of satisfiability problems. In: Lipton,
R. J., Burkhard, W. A., Savitch, W. J., Friedman, E. P., Aho, A. V.
(Eds.), Proceedings of the 10th Annual ACM Symposium on Theory of
Computing, May 1-3, 1978, San Diego, California, USA. ACM, pp. 216–
226.
URL https://doi.org/10.1145/800133.804350

Siekmann, J. H., 1989. Unification theory. J. Symb. Comput. 7 (3/4), 207–
274.
URL https://doi.org/10.1016/S0747-7171(89)80012-4

Trott, M., 2004. The Mathematica guidebook for programming (includes
DVD). Springer.
URL http://www.worldcat.org/oclc/178804217

Wolfram, S., 2003. The Mathematica book, 5th Edition. Wolfram-Media.

52

https://doi.org/10.1007/3-540-44881-0
https://doi.org/10.1007/3-540-49674-2
https://doi.org/10.1145/800133.804350
https://doi.org/10.1016/S0747-7171(89)80012-4
http://www.worldcat.org/oclc/178804217

	Introduction
	Preliminaries
	Variadic Equational Matching Problems
	Matching algorithm for linear problems
	Nonlinear matching
	Finitary fragment and variant
	Bounded fragment
	Strict variant

	Experimenting with the Mathematica variant
	Data and observations
	Imitating variadic equational matching of Mathematica

	Discussion and conclusion

