
Proximity-Based Unification and Matching for
Fully Fuzzy Signatures

Cleo Pau
Research Institute for Symbolic Computation

Johannes Kepler University Linz
ipau@risc.jku.at

Temur Kutsia
Research Institute for Symbolic Computation

Johannes Kepler University Linz
kutsia@risc.jku.at

Abstract—We consider the problem of solving approximate
equations between logic terms. The approximation is expressed
by proximity relations. They are reflexive and symmetric (but not
necessarily transitive) fuzzy binary relations. The equations are
solved by variable substitutions that bring the sides of equations
“close” to each other with respect to a predefined degree. We
consider unification and matching equations in which mismatches
in function symbol names, arity, and in the argument order are
tolerated (i.e., the approximate equations are formulated over so
called fully fuzzy signatures). This work generalizes on the one
hand, class-based proximity unification to fully fuzzy signatures,
and on the other hand, unification with similarity relations over
a fully fuzzy signature by extending similarity to proximity.

Index Terms—Unification, matching, proximity relations, ap-
proximate inference, fully fuzzy signatures.

I. INTRODUCTION

Unification and matching are central computational mech-
anisms in automated reasoning, rewriting, and declarative
programming. In the first-order syntactic case, these tech-
niques fail when there is no match between two corresponding
function symbols of the terms to be unified. While in many
situations this is the desired outcome, there are cases when
some tolerance regarding the mismatches would offer a better
result. The type of the accepted differences can vary, and
some mismatches were already explored in the fuzzy context,
concerning reasoning with imprecise, vague information.

Mismatch between symbol names under similarity. Similar-
ity is a fuzzy equivalence relation. Similarity-based unification
is a relatively well-studied technique, developed for approx-
imate reasoning and fuzzy logic programming. Some early
works in this area include [1], [2]. Sessa’s weak unification
algorithm [3] extends first-order unification by allowing simi-
larity between function symbols of the same arity. Later, weak
unification has been extended and generalized in various ways:
to multiple similarity relations [4], similarities in fully fuzzy
signatures [5], extensions of similarity to proximity [6], [7].

Similarity-based unification to fully fuzzy signatures. In fully
fuzzy signatures one allows mismatches not only in symbol
names, but also in their arities. Function symbols of different
arities are allowed to be similar. Unification in such languages
was studied in [5], where the similarity relation between
arguments of different-arity function symbols is assumed to
be given by injective mappings.

Supported by Austrian Science Fund (FWF) under project 28789-N32.

Extending similarity to proximity. In [6] and later in [8], the
authors relaxed similarity to proximity: reflexive, symmetric,
but not necessarily transitive fuzzy binary relations. The prox-
imity relation has been considered between function symbols
of the same arity and a so-called block-based approach to
unification has been proposed. Blocks are cliques in undirected
graphs that are induced by proximity relations. Two symbols
are considered proximal if they belong to the same clique in
some fixed clique partition of such graphs. The first, restricted
attempt of extending block-based proximity unification to fully
fuzzy signatures was reported in [9].

Yet another approach to proximity-based unification was
introduced in [7]. It is based on proximity classes, which corre-
spond to node neighborhoods in graphs generated by proximity
relations. Two symbols of the same arity are proximal if
they belong to the same class. The algorithm is presented as
a constraint solving procedure, suitable for constraint-based
inferences such as, e.g., constraint logic programming.

Our contribution: generalizing proximity-based unification
to fully fuzzy signatures. In this paper, we make a step further
and consider proximity relations between function symbols of
different arities. It leads to the development of proximity-based
unification in fully fuzzy signatures which generalizes, on the
one hand, the proximity-based unification from [7] and, on
the other hand, the similarity-based unification in fully fuzzy
signatures from [5]. We develop two algorithms, for unification
and for matching, and prove their termination, soundness, and
completeness. Our approach is class-based. Proximity between
arguments of different-arity function symbols is given by
relations, which are not required to be functional, although for
unification we consider correspondence relations. It is a very
flexible approach, which opens a way to extending proximity-
based unification towards special equational theories.

II. PRELIMINARIES

A. Proximity relations

We define the basic notions about proximity relations ac-
cording to [6]. For a set S, a mapping from S × S to the
real interval [0, 1] is called a binary fuzzy relation on S.
By fixing a number λ, 0 ≤ λ ≤ 1, we can define the
crisp counterpart of R, named the λ-cut of R on S, as
Rλ := {(s1, s2) | R(s1, s2) ≥ λ}. We take the minimum

978-1-6654-4407-1/21/$31.00 © 2021 IEEE

as the T-norm ∧. A proximity relation on a set S is a reflexive
and symmetric fuzzy relation R on S.

B. Terms and substitutions

We consider first-order terms defined over a set of variables
V and a set of function symbols F : t := x | f(t1, . . . , tn),
where x ∈ V is a variable and f ∈ F is an n-ary function
symbol with n ≥ 0. We denote arbitrary function symbols
by f, g, h, p, q, constants (0-ary function symbols) by a, b, c,
variables by x, y, z, u, v, and terms by s, t, r. The head of a
term is defined as head(x) := x and head(f(t1, . . . , tn)) :=
f . The set of all variables appearing in t is denoted by var(t) .
If var(t) = ∅, we call t a ground term. The notions of position
and term depth are defined in the standard way, see, e.g. [10].

A substitution is a mapping from variables to terms, which
is the identity almost everywhere. We use the Greek letters
σ, ϑ, ϕ to denote substitutions, except for the identity substitu-
tion which is written as Id . We represent substitutions with the
usual set notation: σ is represented as {x 7→ σ(x) | x 6= σ(x)}.
The restriction of a substitution σ on a set of variables V ,
denoted by σ|V , is the substitution defined as σ|V (x) := σ(x)
when x ∈ V and σ|V (x) := x otherwise.

The application of a substitution σ to a term t, denoted
by tσ, is defined as xσ := σ(x) and f(t1, . . . , tn)σ :=
f(t1σ, . . . , tnσ). Substitution composition is defined as a com-
position of mappings, and we write σϑ for the composition of
σ with ϑ. The operation is associative but not commutative.

The notion of more generality for substitutions is defined
with the help of syntactic equality: σ is more general than ϑ,
written σ � ϑ, if there exists ϕ such that σϕ = ϑ.1 The strict
part of � is denoted by ≺.

C. Argument relations

Given two sets N = {1, . . . , n} and M = {1, . . . ,m}, a
binary argument relation over N ×M is a (possibly empty)
subset of N ×M . We denote argument relations by ρ.

Given a proximity relation R over F , we assume that for
any pair of function symbols f and g with R(f, g) = α > 0,
where f is n-ary and g is m-ary, there is an argument relation ρ
over {1, . . . , n}×{1, . . . ,m}. We use the notation f ∼ρ

R,α g.
Note that ρ is the empty relation if f or g is a constant, and the
identity relation if f = g. Moreover, f ∼ρ

R,α g iff g ∼ρ−1

R,α f ,
where ρ−1 is the inverse of ρ.

D. Proximity relations over terms

Each proximity relation R considered in this paper is
defined on F ∪ V such that R(f, x) = 0 for all f ∈ F
and x ∈ V , and R(x, y) = 0 for all x 6= y, x, y ∈ V . It
is assumed that for each f ∈ F , its (R, λ)-proximity class
{g | R(f, g) ≥ λ} is finite for any R and λ.

We then extend such an R to terms: (i) R(s, t) := 0 if
R(head(s), head(t)) = 0; (ii) R(s, t) := 1 if s = t, s, t ∈ V;
(iii) R(s, t) := R(f, g) ∧ R(si1 , tj1) ∧ · · · ∧ R(sik , tjk), if

1Note that we did not use proximity in the definition of more generality,
in order to guarantee that � is a quasi-order, preserving good properties of
unifiers. See Remark 1 in [7].

s = f(s1, . . . , sn), t = g(t1, . . . , tm), f ∼ρ
R,λ g, and ρ =

{(i1, j1), . . . , (ik, jk)}.

E. Unification problems, unifiers

We write (R, λ)-equations between terms as t '?
R,λ s, with

the question mark indicating that they are supposed to be
solved, i.e., the terms t and s to be (R, λ)-unified. A solution
(unifier) of such an equation is a substitution σ such that
tσ 'R,λ sσ. We say that R(tσ, sσ) ≥ λ is the approximation
degree of (R, λ)-solving t '?

R,λ s by σ.
An (R, λ)-unification problem (or, briefly, a unification

problem) is a finite set of (R, λ)-equations. A solution (unifier)
of a unification problem P is a substitution that solves all the
equations in P . We say that σ is a most general unifier (mgu)
of P if no other unifier of P is strictly more general than
σ. The approximation degree of the unification of P by σ,
denoted by deg(Pσ), is ∧eq∈P deg(eqσ), where deg(eqσ) is
the approximation degree of solving eq ∈ P by σ.

F. Matching problems, matchers

An equation with a ground side is called a matching
equation. We write t -?

R,λ s for an (R, λ)-matching equation
between t and s, where s is the ground side. A solution
(matcher) of such an equation is a substitution σ that matches
t to s with respect to R and λ, i.e., tσ 'R,λ s. The number
R(tσ, s) ≥ λ is the corresponding approximation degree.

A peculiarity of matching for proximity relations with
arity mismatch is that matchers do not have to be ground
substitutions. For instance, if f is binary, and g and h are
unary symbols with f ∼{(2,1)}R,0.7 g and f ∼{(2,1)}R,0.6 h, then σ =
{x 7→ f(y, a)} is a matcher of f(x, x) -R,0.5 f(g(a), h(a))
with the degree 0.6. In fact, σ is more general than any other
solution of this problem. Analogously to unification, we will
use the notion of most general solution for matching problems
and write (R, λ)-mgm for most general (R, λ)-matchers.

III. UNIFICATION

In this section we assume that in proximity relations, all
argument relations are of a special form: they are both left-
and right-total. A relation ρ ⊆ N × M is (i) left-total if
for all i ∈ N there exists j ∈ M such that (i, j) ∈ ρ;
(ii) right-total if for all j ∈ M there exists i ∈ N such
that (i, j) ∈ ρ. Relations that are both left-and right-total are
called correspondence relations. Hence, all argument relations
we consider for unification are correspondence relations.

Lemma 1. If all argument relations in R are correspondence
relations, then for any λ-cut: (a) t 'R,λ s implies var(t) =
var(s); (b) no term is (R, λ)-close to its proper subterm.

Proof. We prove (a) by structural induction for terms. If both
t and s are variables, then t 'R,λ s implies t = s. If they
are nonvariable terms t = f(t1 . . . , tn) and s = g(s1, . . . , sn)
with f ∼ρ

R,λ g, then the correspondence property of ρ implies
the following: for each ti there is sj such that ti 'R,λ sj
and, hence, by the induction hypothesis var(ti) = var(sj),
and vice versa: for each sj there is ti such that sj 'R,λ ti

and, hence, by the induction hypothesis var(sj) = var(ti).
Therefore, var(t) = ∪ni=1var(ti) = ∪mj=1var(sj) = var(s).

To prove (b), by the definition of correspondence relations,
a non-constant term cannot be (R, λ)-close to a constant.
According to the definition of proximity, no nonvariable term
is (R, λ)-close to a variable. By structural induction over terms
we get that no term is (R, λ)-close to its proper subterm.

A set of (R, λ)-equations {x '?
R,λ s}] P contains an

occurrence cycle for x if s /∈ V and there exist term-pairs
(x0, s0), (x1, s1), . . . , (xn, sn) such that x0 = x, s0 = s, and
for each 0 ≤ i ≤ n the set P contains an equation xi '?

R,λ si
or si '?

R,λ xi with xi+1 ∈ var(si), where xn+1 = x0.

Lemma 2. Let all argument relations in R be correspon-
dence relations. If a set of (R, λ)-equations P contains an
occurrence cycle for some variable, then P has no solution.

Proof. By Lemma 1, no term can be (R, λ)-close to its proper
subterm. Therefore, equations containing an occurrence cycle
cannot have an solution.

Now we formulate a unification algorithm in a rule-based
way. The rules work on triples P ;σ;α, called unification
configurations, where P is a unification problem, σ is the
substitution computed so far, and α is the approximation
degree, also computed so far. The symbol⊥ is a special config-
uration, indicating failure. The rules transform configurations
into configurations (R and λ are given,] is disjoint union):

Tri-U: Trivial
{x '?

R,λ x}] P ;σ;α =⇒ P ;σ;α.

Dec-U: Decomposition
{f(t1, . . . , tn) '?

R,λ g(s1, . . . , sm)}] P ;σ;α =⇒
P ∪ {ti '?

R,λ sj | (i, j) ∈ ρ};σ;α ∧ β,

where n,m ≥ 0, f ∼ρ
R,β g, and β ≥ λ.

Cla-U: Clash
{f(t1, . . . , tn) '?

R,λ g(s1, . . . , sm)}] P ;σ;α =⇒ ⊥,
if R(f, g) < λ.

Ori-U: Orient
{t '?

R,λ x}] P ;σ;α =⇒ P ∪ {x '?
R,λ t};σ;α,

if t is not a variable.
Occ-U: Occurrence check

{x '?
R,λ g(s1, . . . , sn)}] P ;σ;α =⇒ ⊥,

if {x '?
R,λ g(s1, . . . , sn)}]P has an occurrence cycle for x.

Var-E-U: Variable elimination
{x '?

R,λ g(s1, . . . , sn)}] P ;σ;α =⇒
Pϑ ∪ {vi '?

R,λ sj | (i, j) ∈ ρ};σϑ;α ∧ β,

where {x '?
R,λ g(s1, . . . , sn)}] P does not contain an

occurrence cycle for x, ϑ = {x 7→ f(v1, . . . , vm)} with fresh
variables v1, . . . , vm, f ∼ρ

R,β g with β ≥ λ, and n,m ≥ 0.

Given a unification problem P , we create the initial system
P ; Id ; 1 and start applying the unification rules in all possible

ways, generating a complete tree of derivations in the standard
way. The Var-E-U rule causes branching, since there can be
multiple f ’s satisfying the condition there. No rule applies to
⊥ or to a configuration of the form {x1 '?

R,λ y1, . . . , xn '?
R,λ

yn};σ;α, n ≥ 0, called variables-only configuration. In the
latter case we say that α is the computed approximation
degree, σ|var(P) is the computed substitution, and {x1 '?

R,λ
y1, . . . , xn '?

R,λ yn} is the computed constraint. We denote
the obtained unification algorithm by U.

In the examples below it is assumed that R(sym1, sym2) =
0 for any pair of distinct symbols sym1 and sym2 except those
for which the proximity is explicitly given.

Example 1. Assume p is a unary function symbol, q, g, and
h are binary, f is ternary, and a, b, c are constants such that
p ∼{(1,1),(1,2)}R,0.7 q, f ∼{(1,1),(2,2),(3,1)}R,0.6 g, f ∼{(1,2),(2,1),(3,2)}R,0.5
h, and b ∼∅R,0.4 c. Consider the unification problem P =

{p(x) '?
R,0.4 q(g(u, y), h(z, u))}. Then U stops with the

configuration S;σ;α where S = {v1 '?
R,0.4 u, v2 '?

R,0.4 y,

v2 '?
R,0.4 z, v3 '?

R,0.4 u}, σ = {x 7→ f(v1, v2, v3)}, and
α = 0.5. For illustration, we take three unifiers of P : ϑ1, ϑ2,
and ϑ3 together with their approximation degrees β1, β2, and
β3, and show how they can be obtained from S;σ:

1) ϑ1 = {x 7→ f(u, z, u), y 7→ z} and β1 = 0.5.

The instance of S;σ under ϕ = {y 7→ z, v1 7→ u, v2 7→
z, v3 7→ u}: Sϕ = {u '?

R,0.4 u, z '?
R,0.4 z} and σϕ =

{x 7→ f(u, z, u), y 7→ z, v1 7→ u, v2 7→ z, v3 7→ u}.

Sϕ is solved and (σϕ)|var(P) = ϑ1. Besides, α ≥ β1.

2) ϑ2 = {x 7→ f(u, b, u), y 7→ b, z 7→ b} and β2 = 0.5.

The instance of S;σ under ϕ = {y 7→ b, z 7→ b, v1 7→ u,
v2 7→ b, v3 7→ u}: Sϕ = {u '?

R,0.4 u, b '?
R,0.4 b} and

σϕ = {x 7→ f(u, b, u), y 7→ b, z 7→ b, v1 7→ u, v2 7→ b,
v3 7→ u}.

Sϕ is solved and (σϕ)|var(P) = ϑ2. Besides, α ≥ β2.

3) ϑ3 = {x 7→ f(u, c, u), y 7→ b, z 7→ c} and β3 = 0.4.

The instance of S;σ under ϕ = {v1 7→ u, v2 7→ c, y 7→
b, z 7→ c, v3 7→ u}: Sϕ = {u '?

R,0.4 u, c '?
R,0.4 b,

c '?
R,0.4 c} and σϕ = {x 7→ f(u, c, u), v1 7→ u, v2 7→ c,

y 7→ b, z 7→ c, v3 7→ u}.

Sϕ is solved, and (σϕ)|var(P) = ϑ3. Besides, α ≥ β3.

This example explains why U stops at variables-only config-
uration. If it went further from S;σ;α as usual and eliminated
y, v1, v2, v3 by {y 7→ z, v1 7→ u, v2 7→ z, v3 7→ u}, we would
end up with the configuration ∅; {x 7→ f(u, z, u), y 7→ z,
v1 7→ u, v2 7→ z, v3 7→ u}, computing the unifier ϑ1 as above,
but it would not be more general than the unifier ϑ3. (Recall:
more generality is defined by equality, not by proximity.)

Theorem 1. The decision problem of (R, λ)-unifiability with
arity mismatch is NP-hard.

Proof. By reduction from positive 1-in-3-SAT. Consider the
argument correspondence relations2 ρ1 = {(1, 1), (2, 2),
(3, 3)}, ρ2 = {(1, 3), (2, 1), (3, 2)}, ρ3 = {(1, 2), (2, 3),
(3, 1)}, and assume hi 'ρ1

R,λ f and hi 'ρi

R,λ g for each
1 ≤ i ≤ 3. Then each positive 3-SAT clause x1 ∨ x2 ∨ x3 can
be encoded as two proximity equations y '?

R,λ f(x1, x2, x3)

and y '?
R,λ g(1, 0, 0), where 1 and 0 are constants. Their

unifiers force exactly one x to be mapped to 1, and the other
two to 0 ({y 7→ h1(1, 0, 0), x1 7→ 1, x2 7→ 0, x3 7→ 0}, {y 7→
h2(0, 1, 0), x1 7→ 0, x2 7→ 1, x3 7→ 0}, and {y 7→ h3(0, 0, 1),
x1 7→ 0, x2 7→ 0, x3 7→ 1}). The reduction is polynomial and
preserves solvability in both directions.

Below we state the properties of the algorithm U.

Theorem 2. U terminates for any input.

Proof. According to [11], for a syntactic unification problem
P , the maximal depth of terms in an mgu of P does not exceed
the size of P (i.e., the number of symbols in P , denoted by
size(P)). Due to the definition of proximity between terms, no
proximal mgu can be deeper than a syntactic mgu. Therefore,
the same bound applies to (R, λ)-unification problems.

Given a variable v and a substitution σ, let mdσ(v) be the
natural number that denotes the maximal depth at which this
variable occurs in the range of σ. If v does not appear in the
range of σ, then mdσ(v) = 0.

To an (R, λ)-unification configuration Pi;σi;αi, we asso-
ciate the multiset Mi := {{mdσi

(v) | v ∈ var(Pi)}}. Then, for
the initial configuration P0;σ0;α0, where σ0 = Id , we have
M0 = {{0, . . . , 0}} with |M0| = |var(P0)|. These multisets are
ordered by the multiset extension <mul of the standard natural
number ordering [12].

When Var-E-U transforms Pi;σi;αi into Pi+1;σi+1;αi+1

with σi+1 = σi{x 7→ f(v1, . . . , vm)}, we get var(Pi+1) =(
var(Pi) \ {x}

)
∪ {v1, . . . , vm} and mdσi+1

(v1) = · · · =
mdσi+1(vm) = 1+mdσi(x). Hence, we have Mi+1 =

(
Mi \

{{mdσi
(x)}}

)
∪ {{mdσi+1

(v1), . . . ,mdσi+1
(vm)}}. Therefore,

Mi <mul Mi+1 after the application of Var-E-U.
On the other hand, occurrence cycle check in Var-E-U

prevents an uncontrolled growth of the multisets. Thus, with
each derivation we get the chain M0 = · · · = Mi1 <mul

Mi1+1 = · · · =Mi2 <mul Mi2+1 = · · · <mul {{size(P)+1}},
where i1, i2 . . . are the steps when Var-E-U is used. Since the
chain is bounded, Var-E-U cannot be applied infinitely often.

From the other rules, Tri-U and Dec-U do not affect the
multisets and strictly decrease size(P). Var-E-U may increase
the size but, as we said above, it may be applied only finitely
many times. Therefore, Tri-U and Dec-U cannot be applied
infinitely often. Ori-U does not change the multisets and the
size, but strictly decreases the number of equations of the form
t '?

R,λ x, where t is not a variable. The number of such
equations may grow after the application of Dec-U or Var-
E-U, but it can happen only finitely many times. Therefore,
Ori-U cannot be applied infinitely often either. The failure
rules stop immediately. Hence, U is terminating.

2Actually, these relations are total bijective functions.

Lemma 3. Given R, λ, and an (R, λ)-unification problem P :
1) If P ;σ;α =⇒ ⊥ in U, then P has no solution.
2) If P ;σ;α =⇒ P ′;σϑ;α ∧ β in U and ϕ is a solution of

P ′ with the approximation degree γ, then ϑϕ is a solution
of P with the approximation degree β ∧ γ.

Proof. In 1), if the step is made by the Cla-U rule, then it
is obvious that P has no solution. If the Occ-U rule is used,
then the theorem follows from Lemma 2.

To prove 2), we shall consider each non-failing rule. The
nontrivial cases are Dec-U and Var-E-U.

In Dec-U, the transformation is {f(t1, . . . , tn) '?
R,λ

g(s1, . . . , sm)}] P ;σ;α =⇒ P ∪ {ti '?
R,λ sj | (i, j) ∈ ρ};

σ;α ∧ β, where n,m ≥ 0, f ∼ρ
R,β g, and β ≥ λ. If ϕ

is a solution of P ∪ {ti '?
R,λ sj | (i, j) ∈ ρ}, we have

deg(Pϕ)∧
∧

(i,j)∈ρR(tiϕ, sjϕ) = γ ≥ λ. But then deg(Pϕ)∧
R(f(t1, . . . , tn)ϕ, g(s1, . . . , sm)ϕ) = β ∧ γ. Hence, ϕ is a
solution of {f(t1, . . . , tn) '?

R,λ g(s1, . . . , sm)}] P with the
approximation degree β ∧ γ ≥ λ.

In Var-E-U, the step is {x '?
R,λ g(s1, . . . , sn)}] P ;

σ;α =⇒ Pϑ ∪ {vi '?
R,λ sj | (i, j) ∈ ρ}; σϑ;α ∧ β, where

ϑ = {x 7→ f(v1, . . . , vm)} with v1, . . . , vm fresh variables,
and f ∼ρ

R,β g with β ≥ λ. If ϕ solves Pϑ ∪ {vi '?
R,λ sj |

(i, j) ∈ ρ}, we have deg(Pϑϕ) ∧
∧

(i,j)∈ρR(viϕ, sjϕ) =
γ ≥ λ. But then deg(Pϑϕ) ∧ R(xϑϕ, g(s1, . . . , sn)ϑϕ) =
deg(Pϑϕ)∧R(f(v1, . . . , vm)ϕ, g(s1, . . . , sn)ϕ) = β∧γ, and
thus, ϕ is a solution of {x '?

R,λ g(s1, . . . , sn)}] P with the
approximation degree β ∧ γ ≥ λ.

Theorem 3 (Soundness of U). Let P ; Id ; 1 =⇒∗ S;σ;α be a
derivation in U where S;σ;α is a variables-only configuration.
Let ϕ be a unifier of S with the approximation degree β. Then
σϕ is a unifier of P with the approximation degree α ∧ β.

Proof. Induction on the derivation length, using Lemma 3.

Theorem 4 (Completeness of U). Let P be a (R, λ)-unifi-
cation problem and ϑ be its unifier with the approximation de-
gree β. Then there exists a derivation P ; Id ; 1 =⇒∗ S;σ;α in
U, where S;σ;α is a variables-only configuration with α ≥ β
and there is a unifier ϕ of S such that (σϕ)|var(P) = ϑ|var(P).

Proof. The existence of a derivation in U that ends in a
variables-only configuration follows from Lemma 3 and from
the assumption that P is solvable.

We now construct recursively the desired derivation and the
substitution ϕ using ϑ. For the initial configuration P ; Id ; 1 we
take σ = Id , α = 1, ϕ = ϑ. Then α ≥ β and (σϕ)|var(P) =
ϑ|var(P) hold. Next, we take C0 = {t '?

R,λ s}] P0;σ0;α0

and assume that ϕ0 is a unifier of {t '?
R,λ s}] P0 such that

(σ0ϕ0)|var(P) = ϑ|var(P) and α0 ≥ β. We prove that there
exists a configuration C1 = P1;σ1;α1 and a unifier ϕ1 of P1

such that C0 =⇒ C1, (σ1ϕ1)|var(P) = ϑ|var(P) and α1 ≥ β.
From the four non-failing rules that can perform the step

C0 =⇒ C1 only Var-E-U with t = x and s = g(s1, . . . , sn)
is non-trivial. Since ϕ0 solves {x '?

R,λ g(s1, . . . , sn)}] P0,
we have xϕ0 = f(r1, . . . , rm) for an f with f ∼ρ

R,β1
g

and ri 'R,λ sj for all (i, j) ∈ ρ. Note that β1 ≥ β. Then

P1 = {vi '?
R,λ sj | (i, j) ∈ ρ} ∪ P0ψ, σ1 = σ0ψ where ψ =

{x 7→ f(v1, . . . , vm)}, and α1 = α0 ∧ β1. Take ϕ1 = νϕ0,
where ν = {vi 7→ ri | 1 ≤ i ≤ m}. Then ϕ1 solves P1, since
(i) yϕ1 = yϕ0 for all y ∈ var(P0)\{x}; (ii) vkϕ1 = rk for all
1 ≤ k ≤ m; and (iii) viϕ1 'R,λ sj for those vi’s for which
(i, j) ∈ ρ. Moreover, (σ1ϕ1)|var(P) = (σ0ψνϕ0)|var(P) =
(σ0{x 7→ xϕ0}νϕ0)|var(P) = (σ0{x 7→ xϕ0}ϕ0ν)|var(P) =
(σ0ϕ0ν)|var(P) = (σ0ϕ0)|var(P) = ϑ|var(P). Finally, α1 ≥ β,
because α0 ≥ β, β1 ≥ β, and α1 = α0 ∧ β1.

IV. MATCHING

In this section, there are no restrictions on argument rela-
tions. To solve a matching problem t -?

R,λ s, we create the
triple {t -?

R,λ s}; ∅; 1 and apply the rules below. They work
on triples M ;S;α, where M is a set of matching equations to
be solved, S is the set of solved equations of the form x ≈ s,
and α is the approximation degree computed so far.

In the rule Var-E-M, we need the (R, λ)-proximity class
pcR,λ(s) of a term s, defined as follows:

pcR,λ(x) = {x}.
pcR,λ(g(s1, . . . , sm)) :=

{
f(t1, . . . , tn)

∣∣ g ∼ρ
R,β f,

β ≥ λ, f is n-ary, and for each 1 ≤ j ≤ n,
tj ∈ pcR,λ(si), if (i, j) ∈ ρ, or
tj = v, if for no i, 1 ≤ i ≤ m, (i, j) ∈ ρ,

where v is a fresh variable
}
.

In the rule Mer-M, we need the operation e of merging two
terms, defined as (i) xe t = te x = t for any variable x and
term t; (ii) f(t1, . . . , tn)ef(s1, . . . , sn) := f(t1es1, . . . , tne
sn), n ≥ 0; (iii) t e s is undefined in any other case.

The matching rules are the following:

Dec-M: Decomposition
{f(t1, . . . , tn) -?

R,λ g(s1, . . . , sm)}]M ;S;α =⇒
M ∪ {ti -?

R,λ sj | (i, j) ∈ ρ};S;α ∧ β,

if n,m ≥ 0 and f ∼ρ
R,β g with β ≥ λ.

Var-E-M: Variable elimination
{x -?

R,λ s}]M ;S;α =⇒M ;S ∪ {x ≈ t};α ∧ β,

where t ∈ pcR,λ(s) and R(t, s) = β ≥ λ.

Mer-M: Merging
M ; {x ≈ t, x ≈ s}] S;α =⇒M ;S ∪ {x ≈ t e s};α,
if t e s is defined.

Cla-M: Clash
{f(t1, . . . , tn) -?

R,λ g(s1, . . . , sm)}]M ;S;α =⇒ ⊥,
if R(f, g) < λ.

Inc-M: Inconsistency
M ; {x ≈ t, x ≈ s}] S;α =⇒ ⊥, if t e s is undefined.

The matching algorithm M uses these rules to transform
triples as long as possible, returning either ⊥ (indicating
failure), or ∅;S;α (indicating success). In the latter case, each
variable occurs in S at most once. Therefore, from S one can
obtain a substitution σS := {x 7→ s | x ≈ s ∈ S}. We call it
the computed substitution.

We call a substitution σ an (R, λ)-solution of an M ;S pair,
iff σ is an (R, λ)-matcher of M and for all x ≈ t ∈ S, we
have xσ = t. We also assume that ⊥ has no solution.

Example 2. Assume p, g and h are unary symbols, q is
binary, f is ternary, and a, b, and c are constants such that
p ∼{(1,1),(1,2)}R,0.7 q, f ∼{(1,1)}R,0.6 g, f ∼{(3,1)}R,0.5 h, and b ∼∅R,0.4 c.
We consider the matching problem p(x) -R,0.4 q(g(a), h(c))
and show only the successful derivations. They start with

{p(x) -?
R,λ q(g(a), h(c))}; ∅; 1 =⇒Dec-M

{x -?
R,λ g(a), x �?

R,λ h(c)}; ∅; 0.7 =⇒Var-E-M

{x �?
R,λ h(c)}; {x ≈ f(a, v1, v2)}; 0.6

and then continue by Var-E-M in two different ways:

1: ∅; {x ≈ f(a, v1, v2), x ≈ f(v3, v4, c)}; 0.5 =⇒Mer-M

∅; {x ≈ f(a, v1, c)}; 0.5.
2: ∅; {x ≈ f(a, v1, v2), x ≈ f(v3, v4, b)}; 0.4 =⇒Mer-M

∅; {x ≈ f(a, v1, b)}; 0.4.

The computed substitutions {x 7→ f(a, v1, c)} and {x 7→
f(a, v1, b)} are matchers of the original problem with the
approximation degrees 0.5 and 0.4, respectively.

Remark 1. In Theorem 1, we proved the NP-hardness of
unification. It can be also shown for well-moded unification
problems. They are special unification problems in which the
equations can be ordered as t0 '?

R,λ s0, . . . , tn '?
R,λ sn, with

s0 ground and var(si) ⊆ ∪i−1j=0var(tj), 1 ≤ i ≤ n. Hence,
t0 '?

R,λ s0 is actually a matching problem t0 -?
R,λ s0. If we

solve these equations from left to right, the s’s get ground as
we move. Thus, we will encounter only matching equations.
The encoding in the proof of Theorem 1 can be expressed
as a well-moded unification problem, written as matching
equations y -?

R,λ g(1, 0, 0), f(x1, x2, x3) -
?
R,λ y. Hence, the

decision problem for well-moded proximity unification is NP-
hard.

Lemma 4. Let M1;S1;α =⇒M2;S2;α∧β be a step made by
M. If ϑ is an (R, λ)-solution of M2;S2 with the approximation
degree γ then it is an (R, λ)-solution of M1;S1 with the
approximation degree β ∧ γ.

Proof. By the definition of a matcher, the lemma holds for
Dec-M and Cla-M. The definition of e implies it for Mer-M
and Inc-M. For Var-E-M, by the definition of pc, we have
xϑ ∈ pcR,λ(s) iff R(xϑ, s) = β ≥ λ, which implies that ϑ
with xϑ = t is an (R, λ)-matcher of x -?

R,λ s with the degree
β. Since ϑ is a matcher of M2;S2 with the degree γ, it is a
matcher of M1;S1 with the degree β ∧ γ.

Theorem 5. Given an (R, λ)-matching problem t -?
R,λ s, the

matching algorithm M terminates and computes a substitution
σ that is an (R, λ)-matcher of t to s.

Proof. We prove termination and soundness separately.

Termination. The rules Dec-M and Var-E-M strictly reduce the
size of M . Mer-M does the same for S, without changing M .

Cla-M and Inc-M stop immediately. Hence, M strictly reduces
the lexicographic combination 〈size(M), size(S)〉 of sizes of
M and S, which implies termination.

Soundness. Let {t -?
R,λ s}; ∅; 1 =⇒+ ∅;S;α be the derivation

in M that computes σ. Then σ is a solution of ∅;S. By
induction on the length of the derivation, using Lemma 4,
we can prove that σ is an (R, λ)-matcher of t to s.

Theorem 6. Given an (R, λ)-matching problem M and its
solution ϑ, the algorithm M computes a substitution σ such
that xϑ e xσ = xϑ for all x in M .

Proof. This theorem essentially says that for an x occurring
in the matching problem, if r1 = xϑ and r2 = xσ, then r1
and r2 have exactly same structure (otherwise r1 e r2 would
not be defined) and they may differ from each other only at
those positions where r2 contains a variable.

We need to construct a derivation that computes σ. The only
steps in the derivation that take into account ϑ are Var-E-M
steps. When we transform {x -?

R,λ s}]M ;S;α to M ;S ∪
{x ≈ t};α∧ β, we will construct t according to xϑ: if p is a
position in t where by the definition of pcR,λ(s) we should
have a function symbol, then this symbol is chosen as the one
that appears in xϑ at position p. Otherwise t has a variable in
p and such positions do not play a role in the proximity of t
with s. All equations for the same x in S are constructed in
this way. Mer-M merges them by replacing some variables by
terms in xϑ. Therefore, if a subterm r occurring at position p
in xσ differs from the subterm at the same position p in xϑ,
then r is a variable. Hence, xϑexσ = xϑ for all x in M .

Corollary 1. Given an (R, λ)-matching problem M and its
solution ϑ, the algorithm M computes a substitution σ such
that xσ -R,λ xϑ for all x in M .

V. CONCLUDING REMARKS

We designed class-based unification and matching algo-
rithms for proximity relations in fully fuzzy signatures, where
mismatches are permitted not only in symbol names but also
in their arities, and proved their termination, soundness, and
completeness. The decision problem is NP-hard for unification
and its special well-moded case, which can be solved by
matching. Proximity between arguments of distinct function
symbols is expressed by argument relations. For unification,
we require them to be correspondence relations in order
not to have arguments skipped. For matching, there is no
restriction: we can use arbitrary argument relations. Note that
the requirement of using correspondence relations is not really
a restriction since any argument relation can be extended into a
correspondence by adding dummy arguments. Due to the lack
of space, we did not elaborate on these details in the paper.

Our results can be seen as an attempt to extend proximity-
based unification to equational theories. Our argument corre-
spondence relations can be represented as a version of regular,
collapse-free, shallow theories, which have been studied quite
intensively in first-order equational unification, e.g., [13], [14].

We did not explicitly mention whether different argument
relations are allowed between the same pair of function
symbols, or whether a function symbol can be related to
itself with a relation other than the identity. However, our
unification and matching rules do not depend on these kind
of assumptions. Such relations would be treated in the same
way as we have in the paper. However, those relations play
a role if we want to extend proximity-based unification to
equational theories, since some well-known axioms such as,
e.g., commutativity, can be encoded in them. For instance,
we can declare f ∼{(1,1),(2,2)}R,1 f and f ∼{(1,2),(2,1)}R,0.8 f to
express a fuzzy version of commutativity for f . A detailed
investigation of these and related topics is subject of future
work.

REFERENCES

[1] F. A. Fontana and F. Formato, “A similarity-based resolution rule,” Int.
J. Intell. Syst., vol. 17, no. 9, pp. 853–872, 2002. [Online]. Available:
https://doi.org/10.1002/int.10067

[2] F. Formato, G. Gerla, and M. I. Sessa, “Similarity-based unification,”
Fundam. Inform., vol. 41, no. 4, pp. 393–414, 2000. [Online].
Available: https://doi.org/10.3233/FI-2000-41402

[3] M. I. Sessa, “Approximate reasoning by similarity-based SLD
resolution,” Theor. Comput. Sci., vol. 275, no. 1-2, pp. 389–426, 2002.
[Online]. Available: https://doi.org/10.1016/S0304-3975(01)00188-8

[4] B. Dundua, T. Kutsia, M. Marin, and C. Pau, “Constraint solving
over multiple similarity relations,” in 5th International Conference
on Formal Structures for Computation and Deduction, FSCD 2020,
June 29-July 6, 2020, Paris, France (Virtual Conference), ser.
LIPIcs, Z. M. Ariola, Ed., vol. 167. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2020, pp. 30:1–30:19. [Online]. Available:
https://doi.org/10.4230/LIPIcs.FSCD.2020.30

[5] H. Aı̈t-Kaci and G. Pasi, “Fuzzy lattice operations on first-order terms
over signatures with similar constructors: A constraint-based approach,”
Fuzzy Sets Syst., vol. 391, pp. 1–46, 2020. [Online]. Available:
https://doi.org/10.1016/j.fss.2019.03.019

[6] P. Julián-Iranzo and C. Rubio-Manzano, “Proximity-based unification
theory,” Fuzzy Sets and Systems, vol. 262, pp. 21–43, 2015. [Online].
Available: https://doi.org/10.1016/j.fss.2014.07.006

[7] T. Kutsia and C. Pau, “Solving proximity constraints,” in Logic-Based
Program Synthesis and Transformation - 29th International Symposium,
LOPSTR 2019, Porto, Portugal, October 8-10, 2019, Revised Selected
Papers, ser. Lecture Notes in Computer Science, M. Gabbrielli,
Ed., vol. 12042. Springer, 2019, pp. 107–122. [Online]. Available:
https://doi.org/10.1007/978-3-030-45260-5 7

[8] P. Julián-Iranzo and F. Sáenz-Pérez, “An efficient proximity-based
unification algorithm,” in 2018 IEEE International Conference on
Fuzzy Systems, FUZZ-IEEE 2018. IEEE, 2018, pp. 1–8. [Online].
Available: https://doi.org/10.1109/FUZZ-IEEE.2018.8491593

[9] M. E. Cornejo, J. Medina-Moreno, and C. Rubio-Manzano, “Towards
a full fuzzy unification in the Bousi Prolog system,” in 2018 IEEE
International Conference on Fuzzy Systems, FUZZ-IEEE 2018, Rio
de Janeiro, Brazil, July 8-13, 2018. IEEE, 2018, pp. 1–7. [Online].
Available: https://doi.org/10.1109/FUZZ-IEEE.2018.8491514

[10] F. Baader and T. Nipkow, Term rewriting and all that. Cambridge
University Press, 1998.

[11] J. Krajı́cek and P. Pudlák, “The number of proof lines and the size of
proofs in first order logic,” Arch. Math. Log., vol. 27, no. 1, pp. 69–84,
1988. [Online]. Available: https://doi.org/10.1007/BF01625836

[12] N. Dershowitz and Z. Manna, “Proving termination with multiset
orderings,” Commun. ACM, vol. 22, no. 8, pp. 465–476, 1979. [Online].
Available: https://doi.org/10.1145/359138.359142

[13] J. H. Siekmann, “Unification theory,” J. Symb. Comput., vol. 7, no.
3/4, pp. 207–274, 1989. [Online]. Available: https://doi.org/10.1016/
S0747-7171(89)80012-4

[14] H. Comon, M. Haberstrau, and J. Jouannaud, “Syntacticness, cycle-
syntacticness, and shallow theories,” Inf. Comput., vol. 111, no. 1, pp.
154–191, 1994. [Online]. Available: https://doi.org/10.1006/inco.1994.
1043

https://doi.org/10.1002/int.10067
https://doi.org/10.3233/FI-2000-41402
https://doi.org/10.1016/S0304-3975(01)00188-8
https://doi.org/10.4230/LIPIcs.FSCD.2020.30
https://doi.org/10.1016/j.fss.2019.03.019
https://doi.org/10.1016/j.fss.2014.07.006
https://doi.org/10.1007/978-3-030-45260-5_7
https://doi.org/10.1109/FUZZ-IEEE.2018.8491593
https://doi.org/10.1109/FUZZ-IEEE.2018.8491514
https://doi.org/10.1007/BF01625836
https://doi.org/10.1145/359138.359142
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1016/S0747-7171(89)80012-4
https://doi.org/10.1006/inco.1994.1043
https://doi.org/10.1006/inco.1994.1043

	Introduction
	Preliminaries
	Proximity relations
	Terms and substitutions
	Argument relations
	Proximity relations over terms
	Unification problems, unifiers
	Matching problems, matchers

	Unification
	Matching
	Concluding remarks
	References

