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Abstract

Finitary matching problems are those that have finitely many solutions. Pat-
tern calculi generalize the lambda-calculus, replacing the abstraction over
variables by an abstraction over terms that are called patterns. Consequently,
reduction requires solving a pattern matching problem. The framework de-
scribed in this paper considers the case when such problems are finitary. It is
parametrized by the solving function, which is responsible for computing so-
lutions to the matching problems. A concrete instance of the function gives a
concrete version of the pattern calculus. We impose conditions on the solving
function, obtaining a generic confluence proof for a class of pattern calculi
with finitary matching. Instances of the solving function are presented.

Keywords: Lambda calculus, pattern calculus, finitary matching,
confluence, functional programming.

1. Introduction

Pattern matching plays a central role in functional programming lan-
guages such as, e.g., Haskell and the ML family. It is intensively used in
proof assistants as well (Agda, Coq, HOL, Isabelle, Theorema, etc.). More
recently, it has been adopted in multi paradigm languages with a broad use
(see the example of Scala, for instance). New pattern matching algorithms
have been applied in several situations (XHaskell, Mathematica, XCentric,
constraint logic programming languages).

The main formal models for pattern matching-based programming lan-
guages are known by the general name of pattern calculi. They extend the
λ-calculus with pattern matching capabilities, replacing the abstraction over
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variables by an abstraction over terms that are called patterns. For example,
λ(f x y). (g x) is a valid term of a pattern calculus, where f and g are function
symbols and the pattern is (f x y). Intuitively, it stands for a function whose
argument should have the form of (f x y). The application (λ(f x y). (g x))Q
can be reduced if (f x y) matches Q: for instance, if Q = (f a b), then the
reduction gives (g a). In some pattern calculi, not all variables in the pat-
tern are allowed to be replaced by matching. In such cases, the matchable
ones are explicitly indicated. For example, in λ{x}(f x y). (g x), only x can be
matched. Then this term can not be applied to (f a b), but can be applied
to, e.g., (f a y). Variations on the permitted patterns, operations over them,
and of the used matching algorithms gave rise to various versions of pattern
calculi, see, e.g., the λ-calculus with first-order constructor patterns (Pey-
ton Jones, 1987), the λ-calculus with patterns (van Oostrom, 1990; Klop
et al., 2008), ρ-calculus (Cirstea and Kirchner, 2001), or the pure pattern
calculus (Jay and Kesner, 2006).

Although pattern calculi are expressive, there is a price to pay for that:
confluence of reduction is lost and various restrictions have to be imposed to
recover it. Some restrictions concern the form of patterns, some others per-
mit arbitrary patterns but restrict matching, etc. Cirstea and Faure (2007)
proposed an elegant generic approach to proving confluence, which has been
applied to various calculi, including the λ-calculus with patterns (van Oost-
rom, 1990), ρ-calculus (Cirstea and Kirchner, 2001), and a simplified version
of the pure pattern calculus (Jay and Kesner, 2006).

Jay and Kesner (2009) went further in developing such a general frame-
work. Their idea was to allow each symbol x to appear as either a variable
symbol x or a matchable symbol x̂. It helps to free the reduction relation
from using a context that would be needed to keep track of binding symbols
and distinguish them from the non-binding ones, i.e., it helps the reduction
relation to become context-free. Variables can be instantiated by substitu-
tions. Matchables are used to match. Patterns are first-class citizens: They
can be passed as parameters, evaluated, and returned as results. The frame-
work is parametrized by the matching function, as in (Cirstea and Faure,
2007), and gives a generic confluence proof for various expressive pattern
calculi, including the original pure pattern calculus (Jay and Kesner, 2006)
and all other pattern calculi in which successful matching is limited to closed
patterns (these are patterns that are protected from substitution by their
enclosing binder).

The approaches mentioned above consider unitary matching: each solv-
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able pattern matching problem has a unique solution. A different setting is
the one of finitary matching, e.g., when matching is performed modulo some
equational theory, which leads to finitely many matchers. For instance, if
f is commutative, the pattern (f x y) matches (f a b) in two different ways
with the substitutions {x 7→ a, y 7→ b} and {x 7→ b, y 7→ a}. Hence, ap-
plying a function with a pattern-abstraction may return different results:
(λ{x,y}(f x y).(g x)).(f a b) can give either (g a) or (g b).

Some well-known examples of finitary matching theories include matching
modulo associativity (A), commutativity (C), associativity with the unit ele-
ment (AU), associativity and commutativity (AC), AC with the unit element
(ACU), second-order matching, string, hedge, context matching, etc. There
are programming languages and tools that use finitary matching in various
forms. For instance, A, C, and AC matchings are used in Maude (Clavel
et al., 2007), Elan (Borovanský et al., 1996), and OBJ (Goguen et al., 2000;
Diaconescu and Futatsugi, 1998); A and AU matchings in ASF-SDF (van den
Brand et al., 2001) and Tom (Balland et al., 2007); A, C, AC, and hedge
matchings in Wolfram (the programming language of the symbolic computa-
tion system Mathematica (Wolfram, 2003)); restricted higher-order matching
in the program transformation language MAG (de Moor and Sittampalam,
2001); hedge matching in the hedge transformation tool PρLog (Dundua
et al., 2009, 2017), in the XML processing language XCentric (Coelho and
Florido, 2007), in the CLP language for hedges CLP(H) (Dundua et al.,
2016), in various XML query languages, etc.

Computing finitely many matchers makes the resulting calculus non-
deterministic, but rather than having a purely non-deterministic evaluation,
we define a reduction that introduces a formal sum of terms, representing all
possible results of a non-deterministic computation. For instance, we reduce
(λ{x,y}(f x y).(g x)).(f a b) to (g a) + (g b), if f is commutative. The idea of
transforming a non-deterministic calculus into a deterministic one with such
a technique is not new. It has been exploited in a way or another in, e.g., the
differential λ-calculus (Ehrhard and Regnier, 2003), the linear-algebraic λ-
calculus (Arrighi and Dowek, 2008; Dı́az-Caro and Petit, 2012), the resource
calculus (Pagani and Ronchi Della Rocca, 2010), etc. In our calculus, sums
originate from sets of different matchers. Hence, besides being associative
and commutative, + is also idempotent. Moreover, abstraction distributes
over sum from the left, and application distributes from the right.

Extending confluence results from unitary to finitary matching is syntac-
tically and semantically a non-trivial problem and opens new challenges, as
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underlined in (Cirstea and Faure, 2007). This is the problem we address in
this paper. Our approach is based on the one from (Jay and Kesner, 2009),
permitting arbitrary terms in patters, syntactically distinguishing between
variables and matchables, and making the reduction relation context-free.

When trying to reduce a term (λχP.N)Q, the following alternatives exist
(cf. those from (Jay and Kesner, 2009)): First, the pattern P may match Q
in multiple ways, returning finitely many matchers σ1, . . . , σn. In this case
the reduct is the sum of instances of N under these substitutions: Nσ1+· · ·+
Nσn. Second, the attempt of matching P to Q fails. In the case the reduct
is the identity function. Such a reduction can help to model conditionals and
pattern patching functions, see (Jay and Kesner, 2009). Third, matching
between P and Q is not defined. In this case reduction is not made. One
should wait, hoping that some reductions and instantiations may change P
or Q so that matching between them succeeds or fails.

We use the matching function as a parameter and formulate conditions
on it, which we then prove are sufficient for confluence. They ensure that no
fresh free variable appears during reduction, and that reductions are stable
both by substitution and by parallel reduction. Hence, in this way, we obtain
a generic confluence proof for pattern calculi with finitary matching, which
satisfy the formulated conditions. Our results generalize those of (Jay and
Kesner, 2009): If our conditions are restricted to unitary matching, they
imply the Rigid Matching Condition of Jay and Kesner, which is sufficient
for confluence for the unitary case. We also give concrete examples of the
matching function that satisfy the sufficient conditions.

Overview. The rest of the paper is organized as follows: In Section 2 we
present our finitary pattern calculus and a general notion of reduction para-
metrized by a pattern matching function. In Section 3 we define conditions
on the pattern matching function and prove confluence of the calculus when
the matching function satisfies the conditions. In Section 4 we provide spe-
cific instances of the pattern matching function that fulfill the confluence
conditions. Concluding remarks are given in Section 5.

2. Finitary Pattern Calculus

In this section we define the syntax and the operational semantics of the
finitary pattern calculus.
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2.1. Syntax

The alphabet A of the pattern calculus consists of the sets V of variables
and F of function symbols. They are disjoint and countably infinite. The
set F includes special constants + and .̂

Definition 2.1. Terms are defined by the following grammar:

M,N ::= x (variable)

| x̂ (matchable)

| f (function symbol from F \ {+, }̂)
|M N (application)

| λχM.N (abstraction)

|M +N (sum)

In the abstraction λχM.N , the term M is called a pattern, and χ is a finite
set of variables, called binding variables.

The set of binding variables χ in λχM.N helps to specify which variables
and matchables are bound by the abstraction. We define this notion formally
a bit later. The variables are used for substitution, while matchables are used
for matching.

We will use x, y, z, v for variables, x̂, ŷ, ẑ, v̂ for matchables, f, g, h, a, b, c
for function symbols from F \ {+, }̂, and M,N,P,Q,W for terms, where P
is usually reserved for patterns.

As usual, applications associate to the left and abstractions to the right.
Application binds stronger than abstraction and +. Abstraction binds stron-
ger than +. When there is no ambiguity, parentheses are omitted.

Example 2.2. Due to the conventions above, we write

• ((f x̂) a)x as fx̂ax,

• λ{x} x̂. (g x) as λ{x} x̂. gx,

• λ{x,y} x.((g x) + y) as λ{x,y} x. (gx+ y),

• (λ{x,z}((f x̂) ŷ). (x̂ x)) z as (λ{x,z}fx̂ŷ. x̂x) z,

• λ{x,z}(((f x̂)+(g x̂)) ẑ). ((f x) ((g y)+(g z)+(g y))) as λ{x,z}(fx̂+gx̂)ẑ.
fx (gy + gz + gy).
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Notation: Given a set of variable χ, the set χ̂ is defined as χ̂ := {x̂ | x ∈ χ}.

Definition 2.3. The sets of free variables, free matchables, bound variables,
and bound matchables of a term Q, denoted by fv(Q), fm(Q), bv(Q), and
bm(Q) respectively, are defined inductively as follows:

fv(x) = {x} fv(f) = ∅ fm(x) = ∅ fm(f) = ∅
fv(x̂) = ∅ fm(x̂) = {x̂}
fv(M N) = fv(M) ∪ fv(N) fm(M N) = fm(M) ∪ fm(N)

fv(λχP.N) = fm(λχP.N) =

(fv(N) \ χ) ∪ fv(P ) (fm(P ) \ χ̂) ∪ fm(N)

fv(M +N) = fv(M) ∪ fv(N) fm(M +N) = fm(M) ∪ fm(N)

bv(x) = ∅ bv(f) = ∅ bm(Q) = {x̂ | x ∈ bv(Q)}
bv(x̂) = ∅
bv(M N) = bv(M) ∪ bv(N)

bv(λχP.N) = bv(P ) ∪ χ ∪ bv(N)

bv(M +N) = bv(M) ∪ bv(N)

We say that in a term λχP.N , for each binding variable x ∈ χ the quan-
tifier λχ binds all free variable occurrences of x in N and all free matchable
occurrences of x̂ in P .

Example 2.4. Now we illustrate the introduced notions on examples:

• Let Q = λ{x,y} x. gxy. Then

fv(Q) = {x}, fm(Q) = ∅, bv(Q) = {x, y}, bm(Q) = {x̂, ŷ}.

The x in fv(Q) is taken from the pattern x, while x ∈ bv(Q) because it
belongs to the set of binding variables. Note also that bm(Q) = {x̂, ŷ},
although neither x̂ nor ŷ appear in the term explicitly.

• Let Q = (λ{x,z}fx̂ŷ. x̂x) z. Then

fv(Q) = {z}, fm(Q) = {x̂, ŷ},
bv(Q) = {x, z}, bm(Q) = {x̂, ẑ}.
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Here x̂ ∈ fm(Q) because it appears freely in the subterm (x̂ x), ŷ ∈
fm(Q) because it appears freely in the pattern fx̂ŷ, and bv(Q) = {x, z}
and bm(Q) = {x̂, ẑ} because {x, z} is the set of all binding variables
that appear in Q. Note that ẑ does not appear in the term explicitly,
z appears both in fv(Q) and bv(Q), and x̂ appears both in fm(Q) and
bm(Q).

Definition 2.5. A partial operation of renaming of a variable x by a variable
y is defined as follows:

x[x := y] = y

z[x := y] = z if z 6= x

ẑ[x := y] = ẑ

(M N)[x := y] = M [x := y]N [x := y]

(λχP.N)[x := y] = λχP [x := y].N [x := y] if x, y 6∈ χ
(M +N)[x := y] = M [x := y] +N [x := y]

A partial operation of renaming of a matchable x̂ by a matchable ŷ is
defined as follows:

z[x̂ := ŷ] = z

x̂[x̂ := ŷ] = ŷ

ẑ[x̂ := ŷ] = ẑ if z 6= x

(M N)[x̂ := ŷ] = M [x̂ := ŷ]N [x̂ := ŷ]

(λχP.N)[x̂ := ŷ] = λχP [x̂ := ŷ].N [x̂ := ŷ] if x, y 6∈ χ
(M +N)[x̂ := ŷ] = M [x̂ := ŷ] +N [x̂ := ŷ]

Next, we introduce axioms that define certain properties of terms. The
first one is an axiom schema which helps to identify terms that differ only in
the names of bound variables and matchables:

(α) (λχP.N) = λ(χ\{x})∪{y}P [x̂ := ŷ].N [x := y],

where x ∈ χ, y 6∈ χ ∪ fv(N), and ŷ 6∈ fm(P ).
The other axioms characterize the function symbol +, stating its associa-

tivity, commutativity, and idempotence:

(A) (M1 +M2) +M3 = M1 + (M2 +M3).
(C) M1 +M2 = M2 +M1.
(I) M +M = M.
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By ≈, we denote the least congruence relation on terms generated by the
axioms (α), (A), (C), and (I).

Example 2.6. Here we give a couple of examples of ≈-equal terms:

• λ{x}(x̂+ x̂).(a+ (x+ z)) ≈ λ{y}ŷ.((z + y) + (a+ z)).

• λ{x}x̂.((x+ a) + x) + λ{y}ŷ.(a+ y) ≈ λ{z}ẑ.(z + a).

An equational theory is given by a set of equational axioms. For an
equational theory E , we write M ≈E N if M and N are equal modulo ≈ and
E . For instance, if E asserts commutativity of f , we have λ{x,y}fx̂aŷ.fxy +
fab+ λ{x,z}f ẑx̂a.fxz ≈E fba+ λ{y,z}faŷẑ.fyz, because

• fab ≈E fba due to commutativity of f ,

• λ{x,y}fx̂aŷ.fxy ≈E λ{x,z}f ẑx̂a.fxz ≈E λ{y,z}faŷẑ.fyz due to α-rena-
ming and commutativity of f ,

• λ{y,z}faŷẑ.fyz + fba+ λ{y,z}faŷẑ.fyz ≈E fba+ λ{y,z}faŷẑ.fyz due to
associativity, commutativity, and idempotence of +.

We adopt Barendregt’s variable name convention (Barendregt, 1984), i.e.,
free variables are distinct from bound variables and free matchables differ
from bound ones. It can be proved that every term is equivalent modulo α
(and, hence, equivalent modulo ≈E) to such a term.

Usually, we do not distinguish between terms that are equal modulo ≈E .

Definition 2.7. A substitution is a mapping from variables to terms such
that all but finitely many variables are mapped to themselves.

Substitutions will be denoted by Greek letters σ, ϑ, ρ, and ϕ. The identity
substitution is represented by Id . We will use the set notation, writing
{x 7→ σ(x) | x 6≈E σ(x)} for a substitution σ.

The sets dom(σ) = {x | x 6≈E σ(x)} and ran(σ) = {σ(x) | x ∈ dom(σ)}
are called the domain and the range of σ, respectively. The sets of free
variables, free matchables, and variables of a substitution σ are defined
respectively as fv(σ) = fv(ran(σ)), fm(σ) = fm(ran(σ)), and var(σ) =
dom(σ) ∪ fv(σ).

The≈E relation extends to substitutions in a straightforward way: σ ≈E ϑ
iff xσ ≈E xϑ for any x.
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Definition 2.8. The application of a substitution σ to a term M , denoted
Mσ, is defined inductively in the following way:

xσ = σ(x). (M N)σ = MσNσ.

x̂σ = x̂. (M +N)σ = Mσ +Nσ.

fσ = f. (λχP.N)σ = λχPσ.Nσ.

In the substitution application to an abstraction term, it is assumed that
var(σ) ∩ χ = ∅ and fm(σ) ∩ χ̂ = ∅. This is achieved by variable convention,
which helps to properly rename bound symbols.

The term Mσ is called the instance of M under σ.

The composition of substitutions is defined in the standard way, as the
composition of two mappings. We use juxtaposition to denote it, writing σϑ
for the composition of σ and ϑ. For all M , we have Mσϑ = (Mσ)ϑ.

The restriction of a substitution σ to a set of variables X, denoted σ|X ,
is defined as σ|X(x) = σ(x) if x ∈ X, and σ|X(x) = x otherwise.

Definition 2.9. Let M be a term and Θ be a finite set of substitutions.
Application of Θ to M , denoted M [Θ], is defined as follows:

• If Θ = {σ1, . . . , σn}, n > 0, then M [Θ] = Mσ1 + · · ·+Mσn.

• If Θ = ∅, then M [Θ] = λ{x}x̂.x.

Definition 2.10. The hatted application of a substitution σ to a term M ,
denoted Mσ̂, is defined inductively in the following way:

x̂σ̂ = σ(x). (M N)σ̂ = Mσ̂Nσ̂.

xσ̂ = x. (M +N)σ̂ = Mσ̂ +Nσ̂.

fσ̂ = f. (λχP.N)σ̂ = λχPσ̂.Nσ̂.

As in Definition 2.8, here also we assume that var(σ)∩χ = ∅ and fm(σ)∩
χ̂ = ∅ in the hatted application of a substitution to an abstraction term. Mσ̂
is called the hatted instance of M under σ.

An equational matching equation is a quadruple of a pattern term P , a
data term Q, a finite set of variables χ, and an equational theory E , written
as P�EχQ. Its solution (a matcher) is a substitution σ such that dom(σ) = χ
and Pσ̂ ≈E Q.
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2.2. Operational semantics

The operational semantics of the finitary pattern calculus is given by a
set of reduction rules.

Definition 2.11. We define reduction (or evaluation) in the pattern calculus
by the following binary relations βp, λld, and Ard on terms, written in the form
of reduction rules:

βp : (λχP.N)Q→ N [solve(P �Eχ Q)].

λld : λχP.(N1 +N2)→ λχP.N1 + λχP.N2.

Ard : (M1 +M2)N →M1N +M2N.

The relation βp defines the way how pattern-abstractions are applied. It
is parametrized by a pattern matching function solve, which takes as input a
pair of terms, a finite set of variables, and an equational theory E (the input
written above in the form of an E-matching equation P �Eχ Q) and returns a
finite set of substitutions that are solutions of P �Eχ Q. Note that solve is a
partial function, i.e., for some P , Q, χ, and E it might not be defined. In that
case βp does not apply. The relation λld defines left-distributivity of abstrac-
tion over + and the relation Ard defines right-distributivity of application
over +.

The term finitary pattern calculus is related to the fact that solve in the
definition above returns a finite set of substitutions.

A property of solve that we assume in this paper is that it preserves ≈E -
equivalence, producing equivalent results for equivalent inputs. This property
can be defined more precisely: For any terms P0, Q0, P1, Q1, a finite set of
variables χ, and an equational theory E , let (λχP0.N)Q0 ≈E (λχP1.N)Q1 for
an arbitrary N . Then either both solve(P0 �Eχ Q0) and solve(P1 �Eχ Q1) are
undefined, or solve satisfies solve(P0 �Eχ Q0) ≈E solve(P1 �Eχ Q1), where the
≈E relation between two sets S0 and S1 is understood as follows: (a) ∅ ≈E ∅;
(b) for each σ0 ∈ S0 there exists σ1 ∈ S1 such that σ0 ≈E σ1 and vice versa:
for each σ1 ∈ S1 there exists σ0 ∈ S0 such that σ0 ≈E σ1.

A reducible expression, or redex, is any expression to which βp, λld, or Ard

can be applied.

Definition 2.12. A binary relation→R on terms is compatible if it is defined
by the following inference rules below:

M →R M
′

MN →R M ′N

M →R M
′

NM →R NM ′
M →R M

′

M +N →R M ′ +N
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P →R P
′

λχP.N →R λχP ′.N

N →R N
′

λχP.N →R λχP.N ′

Because of commutativity of +, one rule for the sum is sufficient.

In what follows, _ denotes the compatible closure of the union of the
relations βp, λld and Ard. The relation _∗ denotes the reflexive and transitive
closure of _.

Definition 2.13. We say that _ is confluent, if for all terms M,N , and Q,
M _∗ N and M _∗ Q imply that there exists a term W such that N _∗ W
and Q _∗ W . Confluence of a calculus means confluence of the relation _
for that calculus.

Remark 2.14. Confluence above is, actually, confluence modulo ≈E , which
means that for all terms M1,M2, N , and Q, if M1 ≈E M2, M1 _∗ N and
M2 _∗ Q, then there exist terms W1 and W2 such that N _∗ W1, Q _∗ W2,
and W1 ≈E W2. But since we identify ≈E -equal terms, we could formulate it
in a simpler way as above, with terms actually standing for ≈E -equivalence
classes.

Remark 2.15. In Definition 2.1, we did not impose restrictions on the set of
binding variables χ in λχP.N . This differs from the definition of abstraction
terms in (Cirstea and Faure, 2007), where χ is supposed to be a subset of
the set of free variables of P . Note that matchables and variables are not
distinguished in (Cirstea and Faure, 2007). This restriction has a consequence
that the set of terms is not closed under reduction. Had we imposed the
analogous condition, which in our case would be χ̂ ⊆ fm(P ), we would also
reduce some terms to expressions that are not terms. For instance, consider
a term λ{x}((λ{y} ŷ. z) x̂).M . If we assume that the βp rule is applicable by
the substitution {y 7→ x̂}, we would get λ{x}z.M . However, {x̂} ⊆ fm(z)
does not hold, since fm(z) = ∅. Hence, λ{x}z.M would not be a term.

Note that Jay and Kesner (2009) do not consider the restriction χ ⊆
fv(P ) either.

Our goal is to study confluence of the finitary pattern calculus. It is
tempting to leave out χ from λχP.N and assume that the abstraction binds
all variables in the pattern. However, it causes a serious problem, since bound
variables can be freed and confluence does not hold even for the following
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simple (unitary) case:

λ(λx̂.a)ŷ.y _ λa.y.

λ(λx̂.a)ŷ.y ≈ λ(λx̂.a)ẑ.z _ λa.z.

In comparison, having χ explicit, the term λ{y}(λ{x}x̂.a)ŷ.y reduces to
two ≈-equivalent terms:

λ{y}(λ{x}x̂.a)ŷ.y _ λ{y}a.y.

λ{y}(λ{x}x̂.a)ŷ.y ≈ λ{z}(λ{x}x̂.a)ẑ.z _ λ{z}a.z ≈ λ{y}a.y.

Remark 2.16. Jay and Kesner (2009) proposed explicit distinction between
matching success (given by a matching substitution), failure (denoted there
by fail), and waiting match (denoted by wait). The reduction in case of
successful matching is standard. With fail, every term is reduced to the
identity function. We also followed this idea in reduction, via Definition 2.9.
As Jay and Kesner (2009) show, such an interpretation of matching failure
provides a natural branching mechanism. Waiting matching does not lead to
a reduction.

In comparison, we distinguish between successful and failing matches by
the result of the solve function: If it is nonempty, the match is successful,
otherwise fails. We do not consider waiting matches explicitly. Instead, out
solving function is partial. When it is not defined, the βp rule is not fired.

3. Confluence

In this section we show that the reduction relation defined in the previous
section is confluent, provided that the function solve satisfies the conditions
C1 and C2 defined below. These are sufficient conditions: For each solve that
satisfies them, the calculus will be confluent. This requires some additional
definitions.

The confluence proof will be based on the method due to Tait and Martin-
Löf (Barendregt, 1984), using parallel reductions. They were first used by
Tait and Martin-Löf to prove the Church-Rosser theorem for β-reduction in
the λ-calculus. Intuitively, parallel reductions mean that a term is reduced
by simultaneous reduction of some redexes.

After the conditions on solve are formulated, the confluence proof follows
as expected: We first show that the transitive closures of both the original and
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parallel reductions are the same relation (Corollary 3.6 of Lemma 3.5). Then
we prove that parallel reduction satisfies the diamond property (Lemma 3.8)
and, hence, is confluent, which finally implies that the original reduction
is also confluent (Theorem 3.9). Note that proving confluence of parallel
reductions is done only by induction. Parallelism avoids to take care of
residuals explicitly and to add extra auxiliary syntax to the original calculus.

Now we define the notions and formulate the sufficient conditions.

Definition 3.1. The notion of parallel reduction, denoted by ⇒, is induc-
tively defined in the following way:

M ⇒M

M ⇒M ′ N ⇒ N ′

M N ⇒M ′N ′
P ⇒ P ′ N ⇒ N ′

λχP.N ⇒ λχP ′.N ′

M ⇒M ′ N ⇒ N ′

M +N ⇒M ′ +N ′
P ⇒ P ′ N1 ⇒ N ′1 N2 ⇒ N ′2

λχP.(N1 +N2)⇒ λχP ′.N ′1 + λχP ′.N ′2

M1 ⇒M ′1 M2 ⇒M ′2 N ⇒ N ′

(M1 +M2)N ⇒M ′1N
′ +M ′2N

′
P ⇒ P ′ N ⇒ N ′ Q⇒ Q′

(λχP.N)Q⇒ N ′[solve(P ′ �Eχ Q′)]
.

The definition is extended to substitutions having the same domain:

Definition 3.2. Let σ, σ′ be substitutions such that dom(σ) = dom(σ′). We
say that σ ⇒ σ′ if and only if xσ ⇒ xσ′ for all x ∈ dom(σ).

The following proposition easily follows from the definitions of compatible
relation and parallel reduction:

Proposition 3.3. ⇒ is a compatible relation.

The notion of parallel reduction on substitutions (having the same do-
main) can be further extended to the sets of substitutions (having the same
domain):

Definition 3.4. Let Θ and Θ′ be two sets of substitutions all having the
same domain. We say that Θ⇒ Θ′ if and only if

(a) for all σ ∈ Θ there exists σ′ ∈ Θ′ such that σ ⇒ σ′ and

(b) for all σ′ ∈ Θ′ there exists σ ∈ Θ such that σ ⇒ σ′.

Note that it is not necessary Θ and Θ′ to have the same number of elements.
The definition also implies that if Θ⇒ Θ′, then Θ = ∅ iff Θ′ = ∅.
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Now we define the conditions for solve.

C1: If solve(P �Eχ Q) = {σ1, . . . , σn}, n ≥ 0, then for all ϑ with fm(ϑ)∩ χ̂ =
∅, we have solve(Pϑ�Eχ Qϑ) = {(σ1ϑ)|χ, . . . , (σnϑ)|χ}.

C2: If solve(P �Eχ Q) = Θ, P ⇒ P ′, and Q ⇒ Q′, then there exists a finite
set of substitutions Θ′ such that solve(P ′ �Eχ Q′) = Θ′ and Θ⇒ Θ′.

These conditions correspond stability by substitution and stability by
reduction in the finitary matching case. We briefly explain the intuition
behind them:

• Stability by substitution: When we have an application (λχP.N)Q, it
may happen that fv(Q) ∪ (fv(P ) \ χ) is nonempty. Either we wait
until those variables get instantiated and then perform reduction, or
we reduce (λχP.N)Q and then instantiate the variables that come from
the set fv(Q) ∪ (fv(P ) \ χ). The results in both cases should be the
same. This is what C1 requires.1 Intuitively, this property can be
visualized by the commutative diagram below:

P �Eχ Q {σ1, . . . , σn}

Pϑ�Eχ Qϑ {(σ1ϑ)|χ, . . . , (σnϑ)|χ}

substitute

solve

solve

substitute

• Stability by reduction: When the application term (λχP.N)Q is re-
duced, it is not necessary for P and Q to be in a normal form. One can
either reduce the application immediately, or first transform P and Q
into P ′ and Q′ and only afterwards try to reduce the application. This
subsequent reduction of application should not fail. Even more, each
substitution in solve(P ′ �Eχ Q′) should be derivable from a substitution
in solve(P �Eχ Q), and each substitution in solve(P �Eχ Q) should be

1Note that C1 does not require solve(P �E
χ Q) and solve(Pϑ�E

χ Qϑ) to have the same
number of elements. See, e.g., examples 4.20 and 4.21 below.
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reducible to a substitution in solve(P ′ �Eχ Q′). It is not necessary for
these two sets to contain the same number of elements.2 Stability of
reduction is required by C2. The intuition behind it can be visualized
by the commutative diagram, where n,m ≥ 0:

P �Eχ Q {σ1, . . . , σn}

P ′ �Eχ Q′ {σ′1, . . . , σ′m}

parallel reduction

solve

solve

parallel reduction

The properties P1 and P2 from (Jay and Kesner, 2009)3 are very similar to
C1 and C2, respectively. The only difference is that P1 and P2 are formulated
for unitary matching, while C1 and C2 consider finitary matching. Hence,
taking in C1 and C2 the number of solutions to be 1, we get restrictions
equivalent to P1 and P2, respectively. In a similar way, C1 and C2 generalize
the hypotheses H1 and H2 from (Cirstea and Faure, 2007).

Moreover, like Jay and Kesner (2009), we also require the substitutions
that solve computes for P �Eχ Q to have χ as the domain, and match P to
Q. In case of Jay and Kesner (2009), matching is done modulo α (which
corresponds to the unitary matching case),4 while in our case it is performed
modulo ≈E (since we have the finitary case).

Now we will show that C1 and C2 are sufficient for proving confluence
of our calculus. We assume that the relations _ and ⇒ in the lemmas and
in the theorem below use a solve that satisfies C1 and C2. The equational
theory is E . The notation Σn

i=1Mi abbreviates M1 + · · ·+Mn.

Lemma 3.5. The following inclusions hold: _ ⊆⇒ ⊆_∗.

Proof. First we prove _ ⊆⇒.

2See, e.g., examples 4.20 and 4.21 below.
3These two properties imply the Rigid Matching Condition, which is sufficient for

confluence of the context-free reduction relation from (Jay and Kesner, 2009) for unary
matching.

4This matchability requirement of Jay and Kesner (2009) implies the hypothesis H0 of
Cirstea and Faure (2007).
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When the reduction occurs at the top position, the inclusion follows from
the definition of ⇒. Indeed, assume M = (λχM1.M2)M3 reduces by βp to
N = M2[solve(M1 �Eχ M3)]. Then M ⇒ N follows from the definition of
⇒, since by reflexivity we have M1 ⇒ M1, M2 ⇒ M2, and M3 ⇒ M3. If
M = λχM1.(M2 + M3) reduces to N = λχM1.M2 + λχM1.M3 by λld or if
M = (N1 + N2)M reduces to N = N1M + N2M by Ard, then again by the
same reasoning with reflexivity of ⇒ we get M ⇒ N . If the reduction does
not occur at the top position, the inclusion follows from compatibility of ⇒
(Proposition 3.3).

Now we prove⇒ ⊆_∗, that is we show thatW1 ⇒ W2 impliesW1 _∗ W2

by induction on the derivation length of W1 ⇒ W2.

• Let W1 = M ⇒ W2 = M . Then the result follows from reflexivity of
_∗.

• Let W1 = M1M2 ⇒ W2 = N1N2 with M1 ⇒ N1 and M2 ⇒ N2. Then
by the induction hypothesis (IH) we have M1 _∗ N1 and M2 _∗ N2.
By compatibility of _∗ we also have M1M2 _∗ N1M2 and N1M2 _∗

N1N2. By transitivity of _∗ we finally get M1M2 _∗ N1N2.

• Let W1 = (λχM1.M2)M3 ⇒ W2 = N2[solve(N1 �Eχ N3)] with M1 ⇒
N1, M2 ⇒ N2, and M3 ⇒ N3. By the IH, we have M1 _∗ N1, M2 _∗

N2, M3 _∗ N3. Compatibility and transitivity of _∗ give λχM1.M2 _∗

λχN1.N2 and, hence, (λχM1.M2)M3 _∗ (λχN1.N2)N3. By βp we have
(λχN1.N2)N3 _ N2[solve(N1 �Eχ N3)]. Therefore, (λχM1.M2)M3 _∗

N2[solve(N1 �Eχ N3)].

• Let W1 = (M1 + M2)M3 ⇒ W2 = N1N3 + N2N3 with M1 ⇒ N1,
M2 ⇒ N2 and M3 ⇒ N3. Then by IH we have M1 _∗ N1, M2 _∗ N2

and M3 _∗ N3. By compatibility of _∗ we have (M1 + M2)M3 _∗

(N1 +N2)N3. By Ard, (N1 +N2)N3 reduces to N1N3 +N2N3 and, hence,
we conclude that (M1 +M2)M3 _∗ N1N3 +N2N3.

• The case W1 = λχM1.M2 ⇒ W2 = λχN1.N2 with M1 ⇒ N1 and
M2 ⇒ N2 is similar to the case W1 = M1M2 and W2 = N1N2.

• Let W1 = λχM1.(M2 + M3) ⇒ W2 = λχN1.N2 + λχN1.N3 with M1 ⇒
N1, M2 ⇒ N2 and M3 ⇒ N3. Then by the IH we have M1 _∗ N1,
M2 _∗ N2 and M3 _∗ N3. By compatibility of _∗ we get λχM1.(M2 +
M3) _∗ λχN1.(N2 +N3). By λld we have that λχN1.(N2 +N3) reduces
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to λχN1.N2 + λχN1.N3 and, hence, we conclude λχM1.(M2 + M3) _∗

λχN1.N2 + λχN1.N3.

• The case W1 = M1+M2 ⇒ W2 = N1+N2 with M1 ⇒ N1 and M2 ⇒ N2

is also similar to the case W1 = M1M2 and W2 = N1N2 above.

From this lemma, we immediately get that the relations _∗ and ⇒∗ are
the same:

Corollary 3.6. _∗ =⇒∗.

Lemma 3.7 (Fundamental Lemma). For all terms M,M ′ and substitutions
ϑ, ϑ′ with dom(ϑ) = dom(ϑ′), if M ⇒M ′ and ϑ⇒ ϑ′, then Mϑ⇒M ′ϑ′.

Proof. By induction on the length of the derivation of M ⇒M ′.

Case M = M ′. We can proceed by structural induction on M , using the
definitions of substitution application (Definition 2.8) and parallel reduction
(Definitions 3.1 and 3.2).

• Let M = x and x ∈ dom(ϑ). By Definition 3.2 we have xϑ⇒ xϑ′.

• Let M = y and y 6∈ dom(ϑ). By the assumption, y 6∈ dom(ϑ′). By
Definition 2.8 and reflexivity of ⇒ we get yϑ′ = y ⇒ y = yϑ′.

• The cases when M = x̂ or M = f are analogous to the previous one.

• Let M = M1M2 with M1 ⇒ M1 and M2 ⇒ M2. By the IH, we have
M1ϑ⇒M1ϑ

′ and M2ϑ⇒M2ϑ
′. By Definition 3.1, we get M1ϑM2ϑ⇒

M1ϑ
′M2ϑ

′. By Definition 2.8, we conclude (M1M2)ϑ⇒ (M1M2)ϑ′.

• The cases M = λχM1.M2 or M = M1 + M2 with M1 ⇒ M1 and
M2 ⇒M2 are analogous to the previous one.
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Case M 6= M ′. We consider cases depending on the rules of parallel reduc-
tion.

• Let M = (λχM1.M2)M3 ⇒ M ′ = M ′
2[solve(M ′

1 �Eχ M ′
3)] with M1 ⇒

M ′
1, M2 ⇒ M ′

2, M3 ⇒ M ′
3. By the IH, we have M1ϑ⇒ M ′

1ϑ
′, M2ϑ⇒

M ′
2ϑ
′, M3ϑ ⇒ M ′

3ϑ
′. By Definition 3.1, we have (λM1ϑ.M2ϑ)M3ϑ ⇒

(M ′
2ϑ
′)[solve(M ′

1ϑ
′ �Eχ M ′

3ϑ
′)].

First, assume that solve(M ′
1 �Eχ M ′

3) = ∅. Then by C1 we also have
solve(M ′

1ϑ
′ �Eχ M ′

3ϑ
′) = ∅. Hence, we get M ′

2[solve(M ′
1 �Eχ M ′

3)]ϑ′ ≈E
λ{x}x̂.x ≈E (M ′

2ϑ
′)[solve(M ′

1ϑ
′ �Eχ M ′

3ϑ
′)].

Now assume solve(M ′
1 �Eχ M ′

3) = {σ1, . . . , σn}, n > 0, solve(M ′
1ϑ
′ �Eχ

M ′
3ϑ
′) = {ρ1, . . . , ρk}, k > 0, and show (Σn

i=1M
′
2σi)ϑ

′ ≈E Σk
i=1(M ′

2ϑ
′)ρi.

Since solve(M ′
1 �Eχ M ′

3) = {σ1, . . . , σn}, by C1 we have solve(M ′
1ϑ
′ �Eχ

M ′
3ϑ
′) = {(σ1ϑ

′)|χ, . . . , (σnϑ
′)|χ} (one can always guarantee fm(ϑ′) ∩

χ̂ = ∅, renaming bound variables). Since solve(M ′
1ϑ
′ �Eχ M ′

3ϑ
′) =

{ρ1, . . . , ρk}, we have {(σ1ϑ
′)|χ, . . . , (σnϑ

′)|χ} ≈E {ρ1, . . . , ρk} (set equal-
ity modulo ≈E) and, hence, n ≥ k. So, if we manage to prove that
σiϑ
′ ≈E ϑ′(σiϑ′)|χ holds for all 1 ≤ i ≤ n, we will get Σn

i=1M
′
2σiϑ

′ ≈E
Σn
i=1M

′
2ϑ
′(σiϑ

′)|χ ≈E Σk
i=1M

′
2ϑ
′ρi, which, by Definition 2.8, would imply

(Σn
i=1M

′
2σi)ϑ

′ ≈E Σk
i=1(M ′

2ϑ
′)ρi.

Proving σiϑ
′ ≈E ϑ′(σiϑ′)|χ means to prove xσiϑ

′ ≈E xϑ′(σiϑ′)|χ for all
x. There are two cases:

– x ∈ χ. Then x ∈ dom(σi), since dom(σi) = χ. We show
xϑ′(σiϑ

′)|χ ≈E xσiϑ
′. Since we can assume dom(ϑ′) ∩ χ = ∅,

by the substitution application we have xϑ′(σiϑ
′)|χ ≈E x(σiϑ

′)|χ.
Since dom(ϑ′)∩dom(σi) = ∅ (it can always be guaranteed through
renaming of bound matchables and variables), and since x ∈
dom(σi), by the substitution composition we get x(σiϑ

′)|χ ≈E
xσiϑ

′.

– x /∈ χ. Then x 6∈ dom(σi), since dom(σi) = χ. We show
xϑ′(σiϑ

′)|χ ≈E xσiϑ′. By the substitution application, xσiϑ
′ ≈E

xϑ′. Since dom(σiϑ
′)|χ = χ, we can rename bound variables so

that dom(σiϑ
′)|χ ∩ fv(ϑ′) = ∅. By substitution application and

composition, we get xϑ′(σiϑ
′)|χ ≈E xϑ′.

• Let M = M1M2 ⇒ M ′ = M ′
1M

′
2 with M1 ⇒ M ′

1 and M2 ⇒ M ′
2. By
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the IH, we have M1ϑ ⇒ M ′
1ϑ
′ and M2ϑ ⇒ M ′

2ϑ
′. By Definitions 3.1

and 2.8, we conclude (M1M2)ϑ = M1ϑM2ϑ⇒M ′
1ϑ
′M ′

2ϑ
′ = (M ′

1M
′
2)ϑ′.

• The cases when M = λχM1.M2 ⇒M ′ = λχM
′
1.M

′
2 or M = M1 +M2 ⇒

M ′ = M ′
1 + M ′

2 with M1 ⇒ M ′
1 and M2 ⇒ M ′

2 are analogous to the
previous one.

• Let M = λχM1.(M2 + M3) ⇒ M ′ = λχM
′
1.M

′
2 + λχM

′
1.M

′
3 with

M1 ⇒ M ′
1,M2 ⇒ M ′

2 and M3 ⇒ M ′
3. By the IH, we have M1ϑ ⇒

M ′
1ϑ
′, M2ϑ ⇒ M ′

2ϑ
′, M3ϑ ⇒ M ′

3ϑ
′. By Definitions 3.1 and 2.8, we

get (λχM1.(M2 + M3))ϑ = λχM1ϑ.(M2ϑ + M3ϑ) ⇒ λχM
′
1ϑ
′.M ′

2ϑ
′ +

λχM
′
1ϑ
′.M ′

3ϑ
′ = (λχM

′
1.M

′
2 + λχM

′
1.M

′
3)ϑ′.

• When M = (M1 + M2)M3 ⇒ M ′ = M ′
1M

′
3 + M ′

2M
′
3 with M1 ⇒

M ′
1,M2 ⇒ M ′

2 and M3 ⇒ M ′
3, the reasoning is similar to the previ-

ous case.

Lemma 3.8 (Diamond Property). For all M , N , and Q, if M ⇒ N and
M ⇒ Q, then there exists W such that N ⇒ W and Q⇒ W .

Proof. We prove the lemma by induction on the structure of M .

Case 1. M is a variable, matchable, or a function symbol. In this case M =
N = Q, and the lemma holds trivially.

Case 2. M is an abstraction.

2.1. First, we consider the case, when

M = λχM1.M2, N = λχN1.N2, Q = λχQ1.Q2

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, and M2 ⇒ Q2. Applying the IH
to M1 and to M2, we get that there exist two terms W1 and W2 such that
N1 ⇒ W1, Q1 ⇒ W1, N2 ⇒ W2, and Q2 ⇒ W2. Taking W = λχW1.W2,
by Definition 3.1, we can conclude N ⇒ W and Q⇒ W .

2.2. Now assume M = λχM1.(M2 + M3). We have four cases depending on
the forms of N and Q:
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2.2.1. Let first

N = λχN1.N2 + λχN1.N3, Q = λχQ1.Q2 + λχQ1.Q3

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, M2 ⇒ Q2, M3 ⇒ N3, and
M3 ⇒ Q3. By the IH, there exist terms W1, W2, and W3, such
that N1 ⇒ W1, Q1 ⇒ W1, N2 ⇒ W2, Q2 ⇒ W2, N3 ⇒ W3, and
Q3 ⇒ W3. Taking W = λχW1.W2 + λχW1.W3, by Definition 3.1,
we can conclude N ⇒ W and Q⇒ W .

2.2.2. Let now

N = λχN1.(N2 +N3), Q = λχQ1.Q2 + λχQ1.Q3

again with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, M2 ⇒ Q2, M3 ⇒ N3,
and M3 ⇒ Q3. The reasoning goes exactly like in the previous
case, with the only difference that we need another ⇒-rule from
Definition 3.1 to conclude N = λχN1.(N2 + N3) ⇒ λχW1.W2 +
λχW1.W3 = W .

2.2.3. With a reasoning similar to above, we can prove the lemma, when

N = λχN1.N2 + λχN1.N3, Q = λχQ1.(Q2 +Q3).

2.2.4. Finally, the case with

N = λχN1.(N2 +N3), Q = λχQ1.(Q2 +Q3)

is included in case 2.1.

Case 3. M is an application.

3.1. First, we consider the case, when

M = M1M2, N = N1N2, Q = Q1Q2

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, and M2 ⇒ Q2. Applying the
IH to M1 and M2, we get that there exist terms W1 and W2 such that
N1 ⇒ W1, Q1 ⇒ W1, N2 ⇒ W2, and Q2 ⇒ W2. Taking W = W1W2, by
Definition 3.1, we conclude that N ⇒ W and Q⇒ W .

3.2. Now, we assume that M = (M1 + M2)M3. We have the following four
cases depending on the forms of N and Q.
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3.2.1. Let first

N = N1N3 +N2N3, Q = Q1Q3 +Q2Q3

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, M2 ⇒ Q2, M3 ⇒ N3, and
M3 ⇒ Q3. By the IH, there exist terms W1, W2, and W3, such
that N1 ⇒ W1, Q1 ⇒ W1, N2 ⇒ W2, Q2 ⇒ W2, N3 ⇒ W3, and
Q3 ⇒ W3. Taking W = W1W2 +W1W3, by Definition 3.1, we can
conclude N ⇒ W and Q⇒ W .

3.2.2. Let now

N = (N1 +N2)N3, Q = Q1Q3 +Q2Q3

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, M2 ⇒ Q2, M3 ⇒ N3,
and M3 ⇒ Q3. The reasoning goes exactly like in the previous
case, with the only difference that we need another ⇒-rule from
Definition 3.1 to conclude N = (N1 +N2)N3 ⇒ W1W2 +W1W3 =
W .

3.2.3. With a reasoning similar to the previous case, we can prove the
lemma, when

N = N1N3 +N2N3, Q = (Q1 +Q2)Q3.

3.2.4. The case, when

N = (N1 +N2)N3, Q = (Q1 +Q2)Q3

is included in the case 3.1.

3.3. Now assume M = (λχM1.M2)M3. We have the following four cases
depending on the forms of N and Q.

3.3.1. First, let N be obtained from (λχN1.N2)N3 by solve(N1 �Eχ N3) =
{σ1, . . . , σn}, n ≥ 0, and Q be obtained from the (λχQ1.Q2)Q3 by
solve(Q1 �Eχ Q3) = {ϑ1, . . . , ϑk}, k ≥ 0:

N = N2[{σ1, . . . , σn}], Q = Q2[{ϑ1, . . . , ϑk}]

where M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, M2 ⇒ Q2, M3 ⇒ N3, and
M3 ⇒ Q3. Applying the IH to M1, M2, and M3 we get that there
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exist such W1, W2, and W3 that N1 ⇒ W1, Q1 ⇒ W1, N2 ⇒ W2,
Q2 ⇒ W2, N3 ⇒ W3, and Q3 ⇒ W3.

Now, we apply C2 with N1 ⇒ W1 and N3 ⇒ W3, getting (by
Definition 3.4) that there exist ρ1, . . . ρm such that solve(W1 �Eχ
W3) = {ρ1, . . . , ρm}, m ≥ 0, where each σi ⇒-reduces to some ρj,
and each ρj is a parallel reduction of some σi. If n = 0 then m = 0
and we get N ≈E λ{x}x̂.x ≈E W2[{ρ1, . . . , ρm}]. If n > 0, then
also m > 0. By Lemma 3.7 we get that each N2σi ⇒-reduces
to some W2ρj, and each W2ρj is a parallel reduction of some
N2σi (1 ≤ i ≤ n, 1 ≤ j ≤ m). From this, Definition 3.1 gives
Σn
i=1N2σi ⇒ Σm

i=1W2ρi. But n > 0 and m > 0, by Definition 2.9,
imply N = Σn

i=1N2σi and W2[{ρ1, . . . , ρm}] = Σm
i=1W2ρi. Hence,

we got N ⇒ W2[{ρ1, . . . , ρm}].
We can reason in the same way, applying C2 to Q1 ⇒ W1 and
Q3 ⇒ W3 to obtain Q⇒ W2[{ρ1, . . . , ρm}].
Taking W = W2[{ρ1, . . . , ρm}], we get N ⇒ W and Q ⇒ W ,
which proves this case.

3.3.2. Let now N be obtained from (λχN1.N2)N3 by solve(N1 �Eχ N3) =
{σ1, . . . , σn}, n ≥ 0:

N = N2[{σ1, . . . , σn}], Q = (λχQ1.Q2)Q3

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2, M2 ⇒ Q2, M3 ⇒ N3 and
M3 ⇒ Q3. Applying the IH to M1, M2, and M3 we get that there
exist such W1, W2, and W3 that N1 ⇒ W1, Q1 ⇒ W1, N2 ⇒ W2,
Q2 ⇒ W2, N3 ⇒ W3, and Q3 ⇒ W3.

Reasoning in the same way as in the previous case, we can show
that N ⇒ W2[{ρ1, . . . , ρm}], where {ρ1, . . . , ρm} = solve(W1 �Eχ
W3).

On the other hand, by Definition 3.1, from Q1 ⇒ W1, Q2 ⇒ W2,
Q3 ⇒ W3, and solve(W1 �Eχ W3) = {ρ1, . . . ρm} we get Q ⇒
W2[{ρ1, . . . , ρm}].
Taking W = W2[{ρ1, . . . , ρm}], we get N ⇒ W and Q ⇒ W ,
which proves this case.

3.3.3. With a reasoning similar to the previous case, we can prove the
lemma, when

N = (λχN1.N2)N3 Q = Q2[{ϑ1, . . . , ϑk}].
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3.3.4. The case when

N = (λχN1.N2)N3 Q = (λχQ1.Q2)Q3

is included in the case 3.1.

Case 4. M is a sum. Let

M = M1 +M2, N = N1 +N2, Q = Q1 +Q2

with M1 ⇒ N1, M1 ⇒ Q1, M2 ⇒ N2 and, M2 ⇒ Q2. Applying the IH to M1

and M2, we get that there exist two terms W1 and W2 such that N1 ⇒ W1,
Q1 ⇒ W1, N2 ⇒ W2, and Q2 ⇒ W2. Taking W = W1 +W2, by Definition 3.1
we conclude that N ⇒ W and Q⇒ W .

Theorem 3.9. The pattern calculus with finitary matching is confluent if
solve satisfies C1 and C2.

Proof. We need to show that the relation _∗ is confluent. From Corollary 3.6
of Lemma 3.5 we have _∗ = ⇒∗. By Lemma 3.8, the relation ⇒ has the
diamond property and, therefore, ⇒∗ is confluent. Hence, _∗ is confluent.

4. Instantiations of the Finitary Pattern Calculus

In this section we define instances of the solve function that satisfy the
conditions C1 and C2.

First, a generic definition of solve is given, which uses (as a parameter)
an algorithm that solves matching problems modulo some equational theory.
Then we consider two concrete equational theories, for commutative and flat
symbols, and give the corresponding rule-based matching algorithms. Both
are examples of finitary matching, described in a rule-based way. In this way,
we obtain concrete instances of solve for commutative and flat theories. For
the commutative theory, we also consider a polymorphic version. We then
prove that each of these instances satisfy C1 and C2.

Matching equations that are passed to solve arise from terms during re-
duction. Since our terms follow the variable name convention, we can be
sure that in P�EχQ we always have fm(Q) ∩ χ̂ = ∅ and fv(Q) ∩ χ = ∅. We
call this assumption the binding variable separation convention. Due to this
convention, solution of matching problems considered in this section will be
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idempotent. Composition of two domain-disjoint idempotent substitutions
can be obtained by just taking the union of their set representations. This
observation justifies the use of substitution union instead of their composition
in the definitions below.

A match µ is either a substitution, a special constant fail or a special
constant wait. A match is positive if it is a substitution; it is decided if it is
either positive or fail.

The disjoint union of two matches is an operation that plays very impor-
tant role in pattern calculi. In the literature, there are two ways of defining
it, see, e.g., (van Oostrom and van Raamsdonk, 2015): the strict approach,
where wait is dominant over fail, and the non-strict approach, where fail
dominates over wait. Strict approach is taken, for instance, in (Jay and
Kesner, 2006; Jay, 2009), while the non-strict approach has been followed by
Jay and Kesner (2009) and Bonelli et al. (2012).

Definition 4.1 (Strict and non-strict disjoint union of matches). Given two
matches µ1 and µ2, their disjoint union µ1]µ2 is a match defined as follows:

In the strict approach:

• If µ1 and µ2 are substitutions with dom(µ1) ∩ dom(µ2) = ∅, then µ1 ]
µ2 = µ1 ∪ µ2.

• If µ1 or µ2 is wait, then µ1 ] µ2 = wait.

• Otherwise, µ1 ] µ2 = fail.

In the non-strict approach:

• If µ1 and µ2 are substitutions with dom(µ1) ∩ dom(µ2) = ∅, then µ1 ]
µ2 = µ1 ∪ µ2.

• If µ1 or µ2 is wait and none of them is fail, then µ1 ] µ2 = wait.

• Otherwise, µ1 ] µ2 = fail.

Hence, in the strict approach, the following equality holds:

fail ]wait = wait ] fail = wait,

while in the non-strict approach we have

fail ]wait = wait ] fail = fail.
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We assume that ] associates left and omit parentheses: µ1 ] µ2 ] µ3 will
stand for ((µ1]µ2)]µ3). Note that non-strict disjoint union is not associative:
wait ] {x 7→M} ] {x 7→ N} = wait, but wait ] ({x 7→M} ] {x 7→ N}) =
fail.

The operation of disjoint union extends to sets of matches M1 and M2

as follows: M1 ]M2 = {µ1 ] µ2 | µ1 ∈ M1 and µ2 ∈ M2}. This definition
implies that ∅ ]M =M] ∅ = ∅.

An E-matching problem is defined by the following grammar:

Γ ::= {{P �Eχ Q}} | µ | Γ1 ] Γ2.

An equational matching rule (briefly, E-matching rule) transforms an E-
matching problem of the form of an equation {{P �Eχ Q}} into an E-matching
problem. We use the notation {{P �Eχ Q}} Γ for matching rules.

It can happen that a matching equation is transformed by matching rules
in multiple ways. We assume that we have finitely many matching rules,
they are all terminating, and for any equation there is at least one rule that
applies to it.

Definition 4.2. The matching function solve is a partial function from the
quadruple P,Q, χ, E to a finite set of substitutions. With E , the correspond-
ing E-matching rules are assumed to be given. Then the matching function
is written as solveE(P �Eχ Q) and is defined as follows:

• The initial problem {{P �Eχ Q}} is created and the matching rules are
applied as long as possible. If the same equation can be transformed in
multiple ways, it is done concurrently. The process ends with a finite
set M of matches.

• If wait ∈M, then solveE(P �Eχ Q) is not defined.

• Otherwise, solveE(P �Eχ Q) is defined as

solveE(P �Eχ Q) =M\
(
{fail} ∪ {σ | dom(σ) 6= χ or Pσ̂ 6≈E Q}

)
.

The last item of this definition needs an explanation: WhenM does not
contain wait, we will collect successful matches from it, i.e., we ignore fail.
Moreover, from those successful matches the interesting ones are only those
substitutions whose domain coincides to χ and which match P to Q modulo
E , as the definition of solve requires.
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Sequence of rule applications in Definition 4.2 form a derivation. Note
that while computing solve, it is not always necessary to develop derivations
till the end, until all the ingredients are matches. For instance, one may stop
the derivation with µ, if the matching problem µ ] Γ or Γ ] µ is reached,
where µ = wait for the strict ] and µ = fail for the non-strict ].

One can see that solveE that uses non-strict disjoint union is defined (i.e.,
gives a definite answer) more often than the one with strict disjoint union.

A matching equation P �Eχ Q is called linear, if no matchable from χ̂
appears in P more than once. Otherwise it is nonlinear.

In the next sections we will need terms in a special form, called matchable-
sum form. Following the similar idea from (Jay and Kesner, 2009), the
motivation is to have terms sufficiently reduced for matching to be defined.
Data structures D and matchable forms M are defined via the grammar

D ::= x̂ | f | DN
M ::= D | λχP.N

Matchable-sum forms M+ are matchable forms or their sums:

M+ ::= M |M+ + M+

An equational theory E is over D (resp. over M, over M+) iff for each
axiom N1 = N2 of E , both N1 and N2 are data structures (resp. matchable
forms, matchable-sum forms).

It is interesting to see that these special kinds of terms have the following
closure properties:

Lemma 4.3. The set of data structures is closed under substitution applica-
tion and reduction for equational theories over D.

The set of matchable-sum forms is closed under substitution application
and reduction for equational theories over M+.

The set of matchable forms is closed under substitution application for
equational theories over M.

Proof. Since matchables and function symbols are not affected by substitu-
tion application and reduction and the equational theory equates data struc-
tures to data structures, it is obvious that the set data structures is closed
under these operations. As for matchable forms (and for their sums), closure
under substitution application follows from the fact that besides data struc-
tures, abstractions are also closed under this operation and the equational
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theory equates terms from the same class (matchable forms to matchable
forms, matchable-sum forms to matchable-sum forms). Matchable forms
are not closed under reduction: λχP.(N1 + N2) is a matchable form, but
its reduct by λld, the term λχP.N1 + λχP.N2 is not. In general, reduction
reduces matchable terms to matchable-sums, when the equational theories
keeps equal terms within M or M+. Hence, we have closure of matchable-
sums under reduction for equational theories over M+.

Note that if we remove the condition about equational theories, the lemma
does not hold anymore. For instance, if E is defined by the axiom f(gx)x =
λ{y}y.y (i.e., it is defined over M but not over D), then f(ga)((λ{y}.y)a) is a
data structure, but f(ga)((λ{y}.y)a) _ f(ga)a ≈E λ{y}y.y and the reduct is
not a data structure anymore.

From this lemma and Lemma 3.5 we have the following corollary:

Corollary 4.4. The set of data structures is closed under parallel reduction
for equational theories over D. The set of matchable-sum forms is closed
under parallel reduction for equational theories over M+.

Below we will need a restricted form of terms as well, which we call
values. They contain no free variables, no subterms of the form (λχP.N)Q,
no subterms of the form λχP. (N1 +N2), and no subterms of the form (M1 +
M2)N . All values are matchable-sum forms.

Definition 4.5. The head of a term M , denoted by head(M), is the head
symbol of M , defined as follows:

• If M is a variable, matchable, or a function symbol, then head(M) =
M .

• If M is an abstraction, then head(M) = λ.

• If M is a sum, head(M) = +.

• If M is an application M1M2, then head(M) = head(M1).

From the definition of data structures it is clear that each data structure
has either a matchable or a function symbol as its head. The head of a
matchable form can be either a matchable, a function symbol, or λ.

In the coming sections, we will consider equational theories over D.
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4.1. An Instance of solve with Commutative Matching

The equational theory for a commutative function symbol f is specified by
the axiom schema fx1 · · ·xn = fxπ(1) · · ·xπ(n), n ≥ 2, for each non-identity
permutation π of (1, . . . , n). We denote this theory by C.

Definition 4.6. Let M+ = M1 + · · · + Mm be a matchable-sum such that
no two Mi and Mj, i 6= j, are ≈C-equivalent. We say that M+ is ≈C-rigid,
if at least one of the following conditions are fulfilled:

• m = 1, or

• Mi is an abstraction for some 1 ≤ i ≤ m, or

• Mi and Mj have different heads for some 1 ≤ i, j ≤ m, or

• Mi and Mj are values for some 1 ≤ i, j ≤ m, i 6= j.

To make use of this definition, below we assume that in sums, nested
occurrences of + are flattened out and all ≈C-equivalent summands are iden-
tified. That means, whenever a matchable sum occurs is matching problems,
no two summands are ≈C-equivalent.

Example 4.7. Let f be a commutative function symbol. Then the following
matchable sums are ≈C-rigid:

fab+ gx, fab+ fac, f(a+ b) + f(a+ c), λ∅y.b+ λ∅a.b,

fab+ fax+ λχP.N, f(λ{x,y}(x̂+ ŷ).gxy) + f(λ{x,y}(x̂+ ŷ).gyx).

The following matchable-sums are not ≈C-rigid:

fab+ fax, fa+ f((λ{x}x̂.x)a), f((g + h)a) + f(ga+ ha),

faa+ fbx, f(λ∅y.b) + f(λ∅a.b), f(λ∅(a+ b)c.b) + f(λ∅(ac+ bc).b),

fa(λ{x}x̂.(x+ b)) + f(λ{x}x̂.x+ λ{x}x̂.b)a

Lemma 4.8. ≈C-rigid matchable-sum forms are closed under substitution
application and reduction.

Proof. Let M = M1 + · · ·+ Mm be a ≈C-rigid matchable-sum and consider
all the cases of the definition to show that both Mϑ (for some ϑ) and M′

with M _ M′ are ≈C-rigid matchable-sums:
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• m = 1: Then Mϑ has also exactly one summand. As for M′, it has one
or more, where more is possible only if M has the form λχP.(N1 +N2),
which gives M′ = λχP.N1 + λχP.N2 by the λld rule. But then, by
Definition 4.6, M′ is also ≈C-rigid.

• Mi is an abstraction form some 1 ≤ i ≤ m: Miϑ is again an abstrac-
tion, therefore, Mϑ is ≈C-rigid. The reduct of Mi can be either an
abstraction or a sum of abstractions. In both cases M′ is ≈C-rigid.

• Mi and Mj have different heads for some 1 ≤ i, j ≤ m: Substitution
application does not affect heads: Miϑ and Mjϑ will have also different
ones. For reduction, it is sufficient to consider the case when Mi and
Mj are data structures. By Lemma 4.3, their reducts are also data
structure with different heads, because reduction does not affect heads
of data structures. Hence, M′ is again ≈C-rigid.

• Mi and Mj are values for some 1 ≤ i, j ≤ m, i 6= j: Neither substitu-
tion application nor reduction affects values.

From this lemma and Lemma 3.5, we have the following corollary:

Corollary 4.9. ≈C-rigid matchable-sum forms are closed under parallel re-
duction.

The commutative matching rules are the following ones: function symbol
deletion (Del-F), matchable deletion (Del-M), matchable elimination (ME),
matchable elimination under a commutative symbol (ME-C), application de-
composition (Dec-App), decomposition under a commutative symbol (Dec-C),
sum decomposition (Dec-Sum), fail (Fail), and the rule for wait (Wait). Rules
are applied modulo ≈-equivalence.

Del-F: {{f �C
χ f}} Id .

Del-M: {{x̂�C
χ x̂}} Id , where x /∈ χ.

ME: {{x̂�C
χ Q}} {x 7→ Q}, where x ∈ χ.

ME-C: {{x̂ P1 · · ·Pm �C
χ fQ1 · · ·Qn}} ϑ]

⊎m
i=1{{Pi �C

χ Qπ(n−m+i)}}, where
f is a commutative function symbol, n ≥ m > 0, π is a permutation of
(1, . . . , n), x ∈ χ, and ϑ = {x 7→ fQπ(1) · · ·Qπ(n−m)}.
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Dec-App: {{P1P2 �C
χ Q1Q2}}  {{P1 �C

χ Q1}} ] {{P2 �C
χ Q2}}, where P1 P2

and Q1Q2 are matchable forms and head(Q1Q2) is not a commutative
function symbol.

Dec-C: {{fP1 · · ·Pn �C
χ fQ1 · · ·Qn}}  

⊎n
i=1{{Pi �C

χ Qπ(i)}}, where f is
a commutative function symbol, n > 0, and π is a permutation of
(1, . . . , n).

Dec-Sum: {{P1 + · · · + Pm �C
χ Q1 + · · · + Qn}}  

⊎m
i=1{{Pi �C

χ

∑
Q∈Qi

Q}},
where m > 1, n ≥ 1, P1, . . . , Pm are matchable forms, Q1, . . . , Qn are
data structures, and each Qi is a nonempty subset of {Q1, . . . , Qn} such
that Q1 ∪ · · · ∪ Qm = {Q1, . . . , Qn}.

Fail: {{P �C
χ Q}} fail if P and Q are matchable-sum forms such that if P

is a data structure, then Q is a ≈C-rigid matchable-sum form, and no
rule above is applicable.

Wait: {{P �C
χ Q}} wait, if no other rule applies.

One can notice that the rules ME-C, Dec-C, and Dec-Sum can transform
the same equation in multiple ways. On the other hand, no two rules apply
to the same equation.

Definition 4.10. The instance of solve for a commutative theory, denoted
solveC, is defined by the construction from Definition 4.2, based on the rules
for commutative matching as described above. Before solveC applies to P
and Q, it is assumed that in P and Q all nested occurrences of + are flat-
tened out and ≈C-equivalent summands are identified, and the results of rule
applications are simplified analogously.

Unless explicitly mentioned the opposite, the results below remain true
for both strict and non-strict disjoint unions.

Lemma 4.11. Let P �C
χ Q be a nonlinear commutative matching equation.

Then solveC(P �C
χ Q) = ∅ or solveC(P �C

χ Q) is undefined.

Proof. For simplicity, assume that P contains two occurrences of x̂ with
x ∈ χ. By analyzing the rules, one can see that unless Fail or Wait rules
apply, at every branch of the derivation tree eventually a problem Γ will
be generated, where Γ may contain at least one of the following forms of
equation pairs:
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• {{x̂�C
χ Q}} and {{x̂�C

χ N}},

• {{x̂P1 · · ·Pp �C
χ fQ1 · · ·Qq}} and {{x̂�C

χ N}} for a commutative f ,

• {{x̂P1 · · ·Pp �C
χ fQ1 · · ·Qq}} and {{x̂M1 · · ·Mm �C

χ fN1 · · ·Nn}} for a
commutative f .

Then, in the first case, applying the ME rule twice will give fail. In the
second case it will happen after applying ME-C and ME rules, and in the third
case after applying ME-C twice. Then, if the Wait rule does not interfere,
it is guaranteed that in the computed set of matches consists of fail only.
Otherwise it can be either fail or wait. In any case, there will be no positive
match.

This lemma says that matching with nonlinear patterns does not succeed.
This is a pretty common requirement when proving confluence.

Theorem 4.12. solveC is terminating and sound.

Proof. Termination of solveC follows from the fact that every rule strictly
decreases the multiset of sizes (number of symbols) of the left hand sides of
matching equations.

Soundness is a straightforward consequence of Definition 4.10, since we
retain only those substitutions that are solution of the matching problem.

The function solveC, obviously, is not complete. For instance, it can not
compute the solution {x 7→ a} of the equation λ∅x̂.x̂�C

{x} λ∅a.a.
It is also obvious that some matching problems may have finitely many

solutions. fx̂ŷ �C
{x,y} fab, with commutative f , is an example where solveC

returns two substitutions {x 7→ a, y 7→ b} and {x 7→ b, y 7→ a}. Due to the
termination shown above, we can not have an infinitary case.

Since all nested occurrences of + are flattened out and ≈C-equivalent
summands are identified in the input, and the order of summands does not
matter in the matching rules, solveC preserves ≈C-equivalence: Equivalent
problems have equivalent solutions.

We note that for terms that do not contain function symbols and +, a
pattern calculus with solveC as the matching function coincides to the pure
pattern calculus with matchable symbols as defined by Jay and Kesner (2009).
Indeed, for such terms the only applicable rules are Del-M, ME, Dec-App, Fail,
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and Wait, which correspond exactly to the rules of compound matching from
(Jay and Kesner, 2009). The non-strict version of ] should be used. The
condition of Fail in such a case degenerates into a simple check whether P
and Q are matchable forms.

Below we give several examples that illustrate solveC. They show specific
features of not only commutative symbols, but also of +.

Example 4.13. solveC(x̂ŷ �C
{x,y} (λ{z,u}f ẑû.fzu)(fab)) is undefined, be-

cause the right hand side is not a matchable form and can not be decom-
posed. However, if we reduce it, then the obtained problem is solvable. If
f is commutative, there are even two solutions: solveC(x̂ŷ �C

{x,y} fab) =

{{x 7→ fa, y 7→ b}, {x 7→ fb, y 7→ a}}.

Example 4.14. solveC(fx+ fa�C
∅ fa) is undefined, because after applying

the Dec-Sum and Dec-App rules we will get an equation {{x�C
∅ a}}, to which

only the Wait applies. If we replace x by a in the original equation, then
there is a single solution, the identity substitution.

If we reverse the sides of the problem, solveC(fa �C
∅ fx + fa) is still

undefined, because the Fail rule does not apply: Q is not a rigid matchable-
sum. If we did not put this requirement in the condition of Fail, then we would
have solveC(fa�C

∅ fx+fa) = ∅, solveC(fa{x 7→ a} �C
∅ (fx+fa){x 7→ a}) =

solveC(fa�C
∅ fa) = {Id}, and C1 would be violated.

Example 4.15. solveC(fx̂�C
{x} Q) is undefined in the following cases:

• Q = f((λ∅b.a)b) + fa,

• Q = f(λ∅y.b) + f(λ∅a.b),

• Q = f(λ∅b.(a+ b)) + f(λ∅b.a+ λ∅b.b),

• Q = f((g + h)a) + f(ga+ ha),

• Q = f(λ∅(a+ b)c.b) + f(λ∅(ac+ bc).b).

A common feature of these Q’s is that none of them is a ≈C-rigid matchable-
sum. If we did not require ≈C-rigid matchable-sum right hand sides in the
Fail rule, solveC would be the empty set for all these problems and it would
violate C1 or C2. For instance, instantiating y by a in f(λ∅y.b) + f(λ∅a.b)
gives a solvable problem solveC(fx̂ �C

{x} f(λ∅a.b)) = {{x 7→ λ∅a.b}} and

C1 is violated. Reducing f(λ∅b.(a + b)) + f(λ∅b.a + λ∅b.b) gives a solvable
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problem solveC(fx̂ �C
{x} f(λ∅b.a + λ∅b.b)) = {{x 7→ λ∅b.a + λ∅b.b}} and C2

is violated.

Example 4.16. solveC(x̂ + ŷ �C
{x,y} λ{z}ẑ.(a + b)) = ∅. Dec-Sum does not

apply, because λ{z}ẑ.(a+b) is not a data structure. No other rule, except Fail,
matches the form of the equation. Fail applies because x̂+ ŷ is a matchable-
sum form and λ{z}ẑ.(a + b) is a (rigid) matchable-sum form. That means,
there is only one branch in its derivation tree, which ends with fail and,
hence, no substitutions are collected.

If we reduce the right hand side of the equation, we again get a matching
problem on which solveC is defined and returns the empty set of substitutions:
solveC(x̂+ ŷ �C

{x,y} λ{z}ẑ.a+ λ{z}ẑ.b) = ∅. Note that Dec-Sum rule does not
apply.

Example 4.17. solveC(x̂ + fŷ �C
{x,y} (h + g)a) is undefined: Neither Dec-

Sum nor Fail rules apply, since (h + g)a is not even a matchable-sum form.
If we reduce the right hand side of the equation, we get a matching problem
on which solveC returns the empty set of substitutions: solveC(x̂+ fŷ �C

{x,y}
ha+ ga) = ∅. All five derivations end with fail.

Example 4.18. solveC(x̂ + fŷ �C
{x,y} z) is undefined: Neither Dec-Sum nor

Fail rules apply, because z is not a matchable form. The other rules do not
match the form of the equation.

If we instantiate z, say, with a+fv, then the obtained problem is solvable:
solveC(x̂+ fŷ �C

{x,y} a+ fv) = {{x 7→ a, y 7→ v}, {x 7→ a+ fv, y 7→ v}}.
If we instantiate z with a, then the obtained problem has the empty

set of solutions: solveC(x̂ + fŷ �C
{x,y} a) = ∅, because there is only one

branch in the derivation, eventually the problem {x 7→ a}]{{fŷ �C
{x,y} a}} is

obtained, which is transformed by the Fail rule, giving the only final match
fail. The same result will be returned if z is instantiated by λ{v}v̂.(a+ b)) or
by ga+ gb+ hv (note that both terms are rigid matchable-sums).

solveC remains undefined if we instantiate z by a matchable-sum form
that is not rigid (e.g., fa + fv), or by a term that is not a matchable-sum
form (e.g., (f + g)a).

Example 4.19. solveC(fx̂ŷ �C
{x,y} fz) = ∅. Note that in whatever way we

instantiate the free variable z in this example, solveC will always return the
empty set.
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Example 4.20. Let P and Q be respectively the terms fx̂ŷ and faW for
some W , where f is commutative. Then solveC(P �C

{x,y} Q) = {σ1, σ2},
where

σ1 = {x 7→ a, y 7→ W},
σ2 = {x 7→ W, y 7→ a}.

Let first W be a variable z and let ϑ = {z 7→ a}. Then solveC((Pϑ�C
{x,y}

Qϑ) = solveC(fx̂ŷ �C
{x,y} faa) = {{x 7→ a, y 7→ a}}. Hence, the number of

solutions decreases, but we do have

{(σ1ϑ)|{x,y}, (σ2ϑ)|{x,y}} = {{x 7→ a, y 7→ a}}.

Now let W be (λ{z}ẑ
.z)a. Then P ⇒ P ′ = P , Q ⇒ Q′ = faa and we

get solveC((P ′ �C
{x,y} Q

′) = solveC(fx̂ŷ �C
{x,y} faa) = {{x 7→ a, y 7→ a}}.

Hence, the number of solutions decreases, but we do have

{σ1, σ2}⇒ {{x 7→ a, y 7→ a}}.

Example 4.21. Let P and Q be respectively the terms x̂+ ŷ and fa+ fW
for some W . Then solveC(P �C

{x,y} Q) consists of the following substitutions:

σ1 = {{x 7→ fa, y 7→ fW}},
σ2 = {{x 7→ fa, y 7→ fa+ fW}},
σ3 = {{x 7→ fW, y 7→ fa}},
σ4 = {{x 7→ fW, y 7→ fa+ fW}},
σ5 = {{x 7→ fa+ fW, y 7→ fa}},
σ6 = {{x 7→ fa+ fW, y 7→ fW}},
σ7 = {{x 7→ fa+ fW, y 7→ fa+ fW}}.

Let first W be a variable z and let ϑ = {z 7→ a}. Then solveC((Pϑ�C
{x,y}

Qϑ) = solveC(x̂ + ŷ �C
{x,y} fa) = {{x 7→ fa, y 7→ fa}}. Hence, the number

of solutions decreases, but we do have

{(σiϑ)|{x,y} | 1 ≤ i ≤ 7} = {{x 7→ fa, y 7→ fa}}.

Let now W be (λ{z}ẑ
.z)a. Then P ⇒ P ′ = P , Q ⇒ Q′ = fa and we

get solveC((P ′ �C
{x,y} Q

′) = solveC(x̂ + ŷ �C
{x,y} fa) = {{x 7→ fa, y 7→ fa}}.

Hence, the number of solutions decreases, but we do have

{σ1, . . . , σ7}⇒ {{x 7→ fa, y 7→ fa}}.
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Example 4.22. Let P = fab and Q = fcz for a commutative f . If ] is
strict, then solveC(P �C

{x} Q) is undefined, because we have a derivation

{{fab�C
{x} fcz}} {{fa�C

{x} fc}} ] {{b�C
{x} z}} + fail ]wait = wait. If

] is non-strict, then the above derivation ends with fail and so does the other
one: {{fab�C

{x} fcz}} {{fa�C
{x} fz}}]{{b�C

{x} c}} + wait] fail = fail.

Hence, in this case solveC(P �C
{x} Q) = ∅.

If z is instantiated by a term that is not a matchable-sum, then solveC
remains undefined for the strict ] and empty for the non-strict one.

If z is instantiated by a matchable-sum, them solveC is the empty set for
both strict and non-strict ].

Example 4.23. If P = fx̂(ga) and Q = f(ga)(hz) for a commutative f ,
then with strict ], solveC(P �C

{x} Q) is undefined due to {{ga �C
{x} hz}},

which will lead to wait. With non-strict ], the same {{ga �C
{x} hz}} will

go to fail and we get solveC(P �C
{x} Q) = {{x 7→ hz}}. Replacing z with b

gives solveC(P �C
{x} Q) = {{x 7→ hb}} for both strict and non-strict ].

Example 4.24. Let P = fx̂x̂W and Q = faab for a commutative f , where
W is not a matchable-sum. Assume ] is strict. Then solveC(P �C

{x} Q) is

undefined, because we have a derivation, where W �C
{x} a appears and it

ends with wait. If ] is non-strict, then there are six derivations altogether
and substitutions with non-disjoint domains appear in each of them: two
contain {{x 7→ a}}] {{x 7→ a}}, two other {{x 7→ a}}] {{x 7→ b}}, and two more
{{x 7→ b}} ] {{x 7→ a}}. Due to non-strictness, all these derivations end with
fail and, therefore, solveC(P �C

{x} Q) = ∅.
If W reduces (or instantiates) into a matchable-sum form, then solveC is

the empty set both for strict and non-strict disjoint union.

The following lemma plays the crucial role in proving that solveC makes
the calculus confluent.

Lemma 4.25. Let P and Q be two terms and χ be a finite set of variables
such that solveC(P �C

χ Q) is defined. Then:

1. If ϑ is a substitution such that fm(ϑ) ∩ χ̂ = ∅, then solveC(Pϑ�C
χ Qϑ)

is defined and σ ∈ solveC(P �C
χ Q) iff (σϑ)|χ ∈ solveC(Pϑ�C

χ Qϑ).

2. If P ′ and Q′ are terms with P ⇒ P ′ and Q ⇒ Q′, then solveC(P ′ �C
χ

Q′) is defined and solveC(P �C
χ Q)⇒ solveC(P ′ �C

χ Q
′).
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Proof. Proofs of both statements are very similar to each other. The first
one is a bit simpler than the second one. Therefore, we present the latter
below.

We proceed by induction on the term structure for P . We do not con-
sider the case when P is a variable, because it would make solveC(P �C

χ Q)
undefined, which contradicts our assumption.

P is a function symbol f . If Q ≈ f , then solveC(P �C
χ Q) = {Id}, P ⇒ f =

P ′, Q ⇒ f = Q′, and solveC(P ′ �C
χ Q

′) = {Id}. If Q 6≈ f , then Q must be
an ≈C-rigid matchable-sum form, since solveC(P �C

χ Q) is defined. In this
case solveC(P �C

χ Q) = ∅. By Corollary 4.9, Q′ is an ≈C-rigid matchable-
sum form. Besides, from reduction of matchable-sum forms we can observe
that when Q 6≈ f and Q ⇒ Q′, then Q′ 6≈ f . Hence, Q′ is an ≈C-rigid
matchable-sum, different from f . Therefore, only the Fail rule applies and
solveC(P ′ �C

χ Q
′) = ∅.

P is a matchable x̂. If x ∈ χ, then solveC(x̂ �C
χ Q) = {{x 7→ Q}} for

any Q. By definition of parallel reduction, P = x̂ ⇒ P ′ = x̂. Therefore
solveC(P ′ �C

χ Q
′) = {{x 7→ Q′}} for any Q⇒ Q′. The case when x /∈ χ can

be proved similarly to the case P = f above.

P is an abstraction. Since solveC is defined, Q is a matchable-sum form and
solveC(P �C

χ Q) = ∅. By definition of parallel reduction, an abstraction
can be reduced to a finite sum of abstractions P ′ = P ′1 + · · · + P ′m, m ≥
1, where each P ′ is an abstraction. Q′ is a matchable-sum form. When
m = 1, the matching problem {{P ′ �C

χ Q
′}} can be transformed by Fail rule

(hence, defined) and therefore solveC(P ′ �C
χ Q′) = ∅. When m > 1, the

matching problem {{P ′ �C
χ Q

′}} is transformed by Dec-Sum rule to a set of
matching problems, where the left hand side of each matching equation is an
abstraction. Therefore, Fail rule applies to each problem, which implies that
solveC(P ′ �C

χ Q
′) is defined and, moreover, solveC(P ′ �C

χ Q
′) = ∅.

P is an application. Since solveC(P �C
χ Q) is defined, both P and Q are

matchable forms.
First, assume Q is not an application. In this case, {{P �C

χ Q}} can be
transformed by the Fail rule only (since solveC(P �C

χ Q) is defined), and
solveC(P �C

χ Q) = ∅. When P is a matchable form and application, P
is actually a data structure. Therefore, Q must be an ≈C-rigid matchable-
sum form in order the Fail rule to apply. Let P ⇒ P ′ and Q ⇒ Q′. By

36



Corollary 4.4, P ′ is again a data structure. By Corollary 4.9, Q′ is an ≈C-rigid
matchable-sum form. Therefore, only the Fail rule applies and solveC(P ′ �C

χ

Q′) = ∅.
Now assume Q is an application. Hence, P and Q have forms P = P1P2

andQ = Q1Q2. Let χ1 = fv(P1)∪(χ\(fv(P2)) and χ2 = fm(P2)∪(χ\(fv(P1))
be two sets of matchables. Obviously, χ1 ∪ χ2 = χ. We distinguish between
the cases whether head(Q) is a commutative symbol or not.

Case 1. head(Q) is not a commutative symbol. Then Dec-App applies
to P �C

χ Q and by definition of solveC, we can conclude solveC(P �C
χ Q) =

(solveC(P1 �C
χ1
Q1)]solveC(P2 �C

χ2
Q2))\{fail}. Besides, solveC(P1 �C

χ1
Q1)

and solveC(P2 �C
χ2
Q2)) are defined. Let P ⇒ P ′ and Q⇒ Q′. By definition

of matchable forms and parallel reduction, we have P ′ = P ′1P
′
2 andQ′ = Q′1Q

′
2

with P1 ⇒ P ′1, P2 ⇒ P ′2, Q1 ⇒ Q′1 and Q2 ⇒ Q′2. Moreover, since reduction
does not affect the heads of matchable forms, head(Q′) is not a commutative
symbol and again Dec-App applies to P ′ �C

χ Q′. Therefore, by definition
of solveC, we have solveC(P ′ �C

χ Q
′) = (solveC(P ′1 �C

χ1
Q′1) ] solveC(P ′2 �C

χ2

Q′2)) \ {fail}. The induction hypothesis (IH) gives that solveC(P ′i �C
χi
Q′i),

i = 1, 2, is defined and solveC(Pi �C
χi
Qi) ⇒ solveC(P ′i �C

χi
Q′i). Then

definedness of solveC(P ′i �C
χi
Q′i), i = 1, 2, implies that solveC(P ′ �C

χ Q
′) is

also defined.
If χ1 ∩ χ2 6= ∅, then both solveC(P �C

χ Q) = solveC(P ′ �C
χ Q′) = ∅.

Assume χ1 ∩ χ2 = ∅. If solveC(P �C
χ Q) = ∅, then solveC(P1 �C

χ Q1) = ∅
or solveC(P2 �C

χ Q2) = ∅. By the IH, we get solveC(P ′1 �C
χ Q′1) = ∅ or

solveC(P ′2 �C
χ Q

′
2) = ∅, implying solveC(P ′ �C

χ Q
′) = ∅. If solveC(P �C

χ Q) 6=
∅, then we take σ ∈ solveC(P �C

χ Q). It has a form of union σ1 ∪ σ2, where
σ1 ∈ solveC(P1 �C

χ1
Q1) and σ2 ∈ solveC(P2 �C

χ2
Q2). By Definition 3.4, there

exist σ′1 ∈ solveC(P ′1 �C
χ1
Q′1) and σ′2 ∈ solveC(P ′2 �C

χ2
Q′2) such that σ1 ⇒ σ′1

and σ2 ⇒ σ′2. Because of the binding variable separation convention, all
these substitutions are idempotent. We also have dom(σ1) = dom(σ′1) = χ1,
dom(σ2) ∪ dom(σ′2) = χ2. Since χ1 ∩ χ2 = ∅, the disjoint union of these
substitutions is just the union of their set representations. Therefore, if we
take σ′ = σ′1 ∪ σ′2 ∈ solveC(P ′ �C

χ Q
′), then σ ⇒ σ′. In the same way we

can prove that for each σ′ ∈ solveC(P ′ �C
χ Q

′) there exists σ ∈ solveC(P �C
χ

Q) such that σ ⇒ σ′. By Definition 3.4, it implies solveC(P �C
χ Q) ⇒

solveC(P ′ �C
χ Q

′).
Case 2. head(Q) is a commutative symbol f , i.e., Q ha s a form Q =

fQ1 · · ·Qn. If head(P ) /∈ χ∪{f}, then head(P ′) /∈ χ∪{f} and solveC(P �C
χ

Q) = solveC(P ′ �C
χ Q

′) = ∅.
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Assume head(P ) = x̂ for some x ∈ χ, i.e., P has a form P = x̂P1 · · ·Pm.
Assume also that n ≥ m > 0. (Otherwise solveC(P �C

χ Q) = solveC(P ′ �C
χ

Q′) = ∅.) Then the ME-C rule applies to P �C
χ Q. Let χi, 1 ≤ i ≤ m, be

the set of matchables defined as

χi := fm(Pi) ∪
(
χ \

⋃
1≤j≤m, i 6=j

fm(Pj)

)
.

Clearly {x̂}∪
⋃m
i=1 χi = χ. For each permutation π of (1, . . . , n), the solution

set of equations obtained by the ME-C rule is(
σπ ]

m⊎
i=1

solveC(Pi �C
χi
Qπ(n−m+i))

)
\ {fail},

where σπ = {x 7→ fQπ(1) · · ·Qπ(n−m)}. Since ME-C is the only rule that
applies to P �C

χ Q, solveC(P �C
χ Q) is the union of these sets, i.e.,

solveC(P �C
χ Q) = solveC(x̂P1 · · ·Pm �C

χ fQ1 · · ·Qn) =⋃
π∈Π(1,...,n)

((
σπ ]

m⊎
i=1

solveC(Pi �C
χi
Qπ(n−m+i))

)
\ {fail}

)
,

where Π(1, . . . , n) is the set of all permutations of (1, . . . , n). From defined-
ness of solveC(P �C

χ Q) it follows that each solveC(Pi �C
χi
Qπ(n−m+i)) is

defined for all 1 ≤ i ≤ m.
Since P and Q are matchable forms, by definition of parallel reduction we

have P = x̂P1 · · ·Pm ⇒ x̂P ′1 · · ·P ′m = P ′, where Pi ⇒ P ′i for 1 ≤ i ≤ m, and
Q = fQ1 · · ·Qn ⇒ fQ′1 · · ·Q′n = Q′, where Qi ⇒ Q′i for 1 ≤ i ≤ n. Then for
solveC(P ′ �C

χ Q
′) we get

solveC(P ′ �C
χ Q

′) = solveC(x̂P ′1 · · ·P ′m �C
χ fQ

′
1 · · ·Q′n) =⋃

π∈Π(1,...,n)

((
σ′π ]

m⊎
i=1

solveC(P ′i �C
χi
Q′π(n−m+i))

)
\ {fail}

)
,

where σ′π = {x 7→ fQ′π(1) · · ·Q′π(n−m)} and Π is the same as above. Obviously,

we have σπ ⇒ σ′π. Besides, by the IH, solveC(P ′i �C
χi
Q′π(n−m+i)) is defined

for all 1 ≤ i ≤ m, which implies definedness of solveC(P ′ �C
χ Q

′). The IH
also gives solveC(Pi �C

χi
Qπ(n−m+i))⇒ solveC(P ′i �C

χi
Q′π(n−m+i)).
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Assume all χi’s are pairwise disjoint and do not contain x̂. (Otherwise,
by Lemma 4.11 and definedness of solveC(P �C

χ Q) and solveC(P ′ �C
χ Q

′) we
have solveC(P �C

χ Q) = solveC(P ′ �C
χ Q

′) = ∅ and the lemma holds.) Take
ϑ ∈ solveC(P �C

χ Q). It must have a form σπ ∪ σ1 ∪ · · · ∪ σm, where σi ∈
solveC(Pi �C

χi
Qπ(n−m+i)). By the IH, we have σ′i ∈ solveC(P ′i �C

χi
Q′π(n−m+i))

such that σi ⇒ σ′i. Take ϑ′ = σ′π ∪ σ′1 ∪ · · · ∪ σ′m ∈ solveC(P ′ �C
χ Q′).

Then σπ ⇒ σ′π and σi ⇒ σ′i by Definition 3.2 imply ϑ ⇒ ϑ′. With the
same reasoning we can prove that for each ϑ′ ∈ solveC(P ′ �C

χ Q′) there
exists ϑ ∈ solveC(P �C

χ Q) such that ϑ ⇒ ϑ′. Hence, solveC(P �C
χ Q) ⇒

solveC(P ′ �C
χ Q

′)

The case when P = fP1 · · ·Pm and Q is fQ1 · · ·Qn for a commutative f can
be proved similarly.

P is a sum. Assume P has a form P1+· · ·+Pm, m > 1. Since solveC(P �C
χ Q)

is defined, both P and Q are matchable-sums.
If at least one Pi is an abstraction, then it is easy to see that in this

case solveC(P �C
χ Q) = solveC(P ′ �C

χ Q′) = ∅. Below we assume no Pi
is an abstraction, i.e., all Pi’s are data structures. The proof proceeds by
distinguishing two cases depending on the form of Q.

Case 1. Q = Q1 + · · ·+Qn, n ≥ 1, and all Qi’s are data structures. Let Θ
be the set of m-tuples of non-empty subsets of Q1, . . . , Qn, defined as follows:

Θ := {〈Q1, . . . ,Qm〉 | Q1 ∪ · · · ∪ Qm = {Q1, . . . , Qn}
and for all 1 ≤ i ≤ m, Qi 6= ∅}.

Then P �C
χ Q is rewritten by Dec-Sum rule, giving m new equations

Pi �C
χ

∑
N∈Qi

N , 1 ≤ i ≤ m. Such equations are obtained for each possible
selection 〈Q1, . . . ,Qm〉 ∈ Θ.

Let χi, 1 ≤ i ≤ m, be the set of matchables defined as

χi := fm(Pi) ∪
(
χ \

⋃
1≤j≤m, i 6=j

fm(Pj)

)
.

Since Dec-Sum is the only matching rule that can be used for {{P �C
χ Q}},
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solveC(P �C
χ Q) is

solveC(P �C
χ Q) = solveC

( m∑
i=1

Pi �C
χ

n∑
i=1

Qi

)
=

⋃
〈Q1,...,Qm〉∈Θ

(( m⊎
i=1

solveC(Pi �C
χi

∑
N∈Qi

N)
)
\ {fail}

)
.

Definedness of solveC(P �C
χ Q) implies that solveC(Pi �C

χi

∑
N∈Qi

N) is
defined for all 1 ≤ i ≤ m and 〈Q1, . . . ,Qm〉 ∈ Θ.

Now let Pi ⇒ P ′i , Q1 ⇒ Q′1, . . . , Qn ⇒ Q′n, and Θ′ be the set

Θ′ := {〈Q′1, . . . ,Q′m〉 | Q′1 ∪ · · · ∪ Q′m = {Q′1, . . . , Q′n}
and for all 1 ≤ i ≤ m, Q′i 6= ∅}.

By Corollary 4.4, P ′ = P ′1 + · · · + P ′m is a matchable-sum form and Q′ =
Q′1 + · · · + Q′n is a sum of data structures.5 Then Dec-Sum is the only rule
that can be used for {{P ′ �C

χ Q
′}} and solveC(P ′ �C

χ Q
′) is

solveC(P ′ �C
χ Q

′) = solveC
( m∑
i=1

P ′i �C
χ

n∑
i=1

Q′i

)
=

⋃
〈Q′

1,...,Q′
m〉∈Θ′

(( m⊎
i=1

solveC(P ′i �C
χi

∑
N ′∈Q′

i

N ′)
)
\ {fail}

)
.

By the IH, solveC(P ′i �C
χi

∑
N ′∈Q′

i
N ′) is defined for all 1 ≤ i ≤ m and

〈Q′1, . . . ,Q′m〉 ∈ Θ′, and solveC(Pi �C
χi

∑
N∈Qi

N) ⇒ 〈Q′1, . . . ,Q′m〉 ∈ Θ′

holds. With the same reasoning as in the previous case (when P was an ap-
plication) we can conclude that solveC(P ′ �C

χ Q
′) is defined and solveC(P �C

χ

Q)⇒ solveC(P ′ �C
χ Q

′).
Case 2. Q = Q1 + · · · + Qn, n ≥ 1, and at least one Qi is not a data

structure, i.e., it is an abstraction, since Q is a matchable-sum form. Hence,
Q is actually an ≈C-rigid matchable-sum form and solveC(P �C

χ Q) = ∅. By
Corollary 4.4, P ′ is a matchable-sum. By Corollary 4.9, Q′ is also an ≈C-rigid
matchable-sum form, containing at least one abstraction as a summand. It
implies that solveC(P ′ �C

χ Q
′) is defined and solveC(P ′ �C

χ Q
′) = ∅.

5Because of idempotence of +, the number of distinct summands in the sums of data
structures P ′

1 + · · · + P ′
m and Q′

1 + · · · + Q′
n can be smaller than m and n, respectively,

but it does not affect the reasoning.
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The lemma we just proved is valid for both strict and non-strict ]. Its
proof did not depend on these properties.

Now we formulate the main result of this section, stating that this instance
of solve satisfies C1 and C2 (and, thus, makes the calculus confluent):

Theorem 4.26. The function solveC satisfies C1 and C2.

Proof. When solveC(P �C
χ Q) is undefined, the conditions C1 and C2 triv-

ially hold. Therefore, we assume solveC(P �C
χ Q) is defined.

Proving C1. Let ϑ be a substitution such that fm(ϑ)∩χ̂ = ∅. Then C1 follows
from the fact that σ ∈ solveC(P �C

χ Q) iff (σϑ)|χ ∈ solveC(Pϑ�C
χ Qϑ), which

is statement 1 of Lemma 4.25.

Proving C2. Let P ⇒ P ′ and Q ⇒ Q′. Then C2 follows from the fact
that Let solveC(P �C

χ Q) ⇒ solveC(P ′ �C
χ Q′), which is statement 2 of

Lemma 4.25.

This theorem is valid for both strict and non-strict ]. The following
corollary immediately follows from theorems 4.26 and 3.9:

Corollary 4.27. The finitary pattern calculus that uses solveC as the pattern
matching function is confluent.

4.2. An Instance of solve with Polymorphic Commutative Matching

The solving function considered in the previous section does not permit to
do reduction by a generic commutative symbol: One needs to know explicitly
which function symbol is commutative. However, sometimes it is desirable
to abstract from such concrete function symbols and do matching/reduction
in the abstract version, bringing in the concrete function symbol only when
necessary. In this section, we illustrate how this can be done on the example
of commutative matching, obtaining yet another extension of the pure pattern
calculus with matchable symbols to finitary matching.

First, we start with identifying a subset of variables (and, consequently,
matchables) that are restricted to be instantiated (respectively, bound) to
single symbols only, instead of arbitrary terms. Hence, if x is such a variable,
then we would like it to be instantiated by (respectively, we want x̂ to match)
a function symbol, a variable, or a matchable, but not by a more complex
term such as, e.g., fx, λ{v}v̂.v, or x + y. We call this set the set of single
symbol variables, denoted by S (resp. single symbol matchables, denoted by
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Ŝ) and assume them to be infinite, to have “enough” such variables and
matchables for α-renaming.

Note that once we have identified S, there is no need in function symbols
anymore. The elements of Ŝ can play their role, whenever needed. Therefore,
we do not consider function symbols (except +) in this section.

The set S can be split further into disjoint infinite subsets for each equa-
tional theory we would like to consider, plus an infinite subset for syntactic
symbols (syntactic in the sense of unification theory, with no equational ax-
iom associated to them). In this section we consider only two subsets: SC
for the commutative theory and SS for syntactic symbols. Respectively, we
will have two sets of matchables: ŜC and ŜS. The meta-symbols c and ĉ will
be used for the elements of SC and ŜC , respectively. We will write g and ĝ
for the elements of SS and ŜS, respectively. The letters x, y, z, v and their
hatted counterparts are still reserved for arbitrary variables and matchables.

This distinction between unrestricted variables and single symbol vari-
ables should be reflected in substitutions as well. We assume that substitu-
tions map variables from SC to symbols from SC ∪ŜC , and variables from SS
to symbols from SS ∪ ŜS, while unrestricted variables, as before, are mapped
to arbitrary terms (including commutative and syntactic symbols, since they
are terms too).

Now, the equational theory for polymorphic commutativity is specified
by the axiom schemata ĉx1 · · · xn = ĉxπ(1) · · ·xπ(n), n ≥ 2, for each ĉ ∈ ŜC
and non-identity permutation π of (1, . . . , n). We denote this theory by PC.

We can easily modify the rules for solveC to obtain the ones that define
the solving function solvePC for polymorphic commutativity. From the com-
mutative matching algorithm in Section 4.1, we take Del-M, ME, Dec-App,
Dec-Sum, Fail and Wait unchanged, and, in addition, introduce the following
new rules for commutative symbols:

ME-CS: {{x̂P1 · · ·Pm �PC
χ MQ1 · · ·Qn}}  ϑ ]

⊎m
i=1{{P1 �PC

χ Qπ(n−m+i)}},
where x ∈ χ, M ∈ SC∪ŜC , n ≥ m > 0, π is a permutation of (1, . . . , n),
and ϑ = {x 7→MQπ(1) · · ·Qπ(n−m)}.

Dec-CS: {{ĉ P1 · · ·Pn �PC
χ ĉ Q1 · · ·Qn}} 

⊎n
i=1{{Pi �PC

χ Qπ(i)}}, where c /∈ χ,
n > 0, and π is a permutation of (1, . . . , n).

These rules have quite intuitive explanations: ME-CS is almost the same
as the ME-C rule from solveC, with the only difference that the head of the
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right side is a commutative variable or matchable symbol, instead of a com-
mutative function symbol. Dec-CS is the counterpart of the Dec-C rule from
solveC, but instead of commutative function symbol, here we have a commu-
tative matchable symbol which is not bound in χ. However, one should take
into account that now x̂ can also be from ŜC or from ŜS. If x̂ ∈ ŜC , the rule
succeeds only when m = n. If x̂ ∈ ŜS, then the rule does not apply even if
m = n, since x can not be mapped to M ∈ SC ∪ ŜC . All these follow from
the assumption that the substitution ϑ in ME-CS is defined.

It should be also noted that although the ME rule is taken unchanged,
the new definition of substitution makes sure that when in the left hand
side of the rule we have x̂ ∈ ŜC (resp. x̂ ∈ ŜS), the rule succeeds only if
M ∈ SC ∪ ŜC (resp. M ∈ SS ∪ ŜS).

Example 4.28. solvePC(ĉ1x̂ŷ �PC
{c2,x,y} c2ab) = {{c1 7→ c2, x 7→ a, y 7→ b},

{c1 7→ c2, x 7→ b, y 7→ a}}. The free variable c2 ∈ SC can be instantiated only
by a symbol from SC ∪ ŜC . If ϑ is such a substitution, solvePC(ĉ1x̂ŷ �PC

{c2,x,y}
c2ϑab) = {{c1 7→ c2ϑ, x 7→ a, y 7→ b}, {c1 7→ c2ϑ, x 7→ b, y 7→ a}}.

Example 4.29. solvePC(x̂ŷ �PC
{x,y} cab) = {{x 7→ ca, y 7→ b}, {x 7→ cb, y 7→

a}}. The free variable c ∈ SC can be instantiated only by a symbol from
SC ∪ ŜC . If ϑ is such a substitution, solvePC(x̂ŷ �PC

{x,y} cϑab) = {{x 7→
cϑa, y 7→ b}, {x 7→ cϑb, y 7→ a}}.

Example 4.30. solvePC(ĝx̂ŷ �PC
{g,x,y} cab) = ∅, because the sides are match-

able forms, but the syntactic matchable ĝ ∈ ŜS can not match the commuta-
tive variable c. The answer will remain the same for any instantiation of the
right hand side, since c can be only instantiated by a symbol from SC ∪ ŜC .

Theorem 4.31. The function solvePC satisfies C1 and C2.

Proof. The theorem can be proved similarly to Theorem 4.26. We take into
account that although free commutative or syntactic variables may appear
in the active position in the right hand side of matching equations, it does
not cause a problem because any instantiation replaces them only by single
symbols.

Corollary 4.32. The finitary pattern calculus that uses solvePC as the pattern
matching function is confluent.
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4.3. An Instance of solve with Flat Patterns

The equational theory for a flat function symbol f is specified by the
axiom schema fx1 · · ·xn (fy1 · · · ym) z1 · · · zk = fx1 · · · xn y1 · · · ym z1 · · · zk,
n,m, k ≥ 0. Essentially, it says that nested occurrences of the symbol f
can be flattened out. The theory is quite similar to associativity. We denote
it by F. We have, for instance, λ{x,y}f(gx̂)(fŷ)f. xy + faf(fc) + fafc ≈F

fac+ λ{z,y}f(gẑ)ŷ. zy, provided that f is flat.
Similar to the definition of ≈C-rigid matchable-sum form (Definition 4.6),

we define ≈F-rigid matchable-sum form, which slightly differs from its com-
mutative counterpart:

Definition 4.33. Let M+ = M1 + · · ·+ Mm be a matchable-sum such that
no two Mi and Mj, i 6= j, are ≈F-equivalent. We say that M+ is ≈F-rigid,
if at least one of the following conditions are fulfilled:

• m = 1 and if M1 = fN1 · · ·Nn for a flat f (in a flattened form), then
each Ni, 1 ≤ i ≤ n, is a data structure, or

• Mi is an abstraction for some 1 ≤ i ≤ m, or

• Mi and Mj have different heads for some 1 ≤ i, j ≤ m, or

• Mi and Mj are values for some 1 ≤ i, j ≤ m, i 6= j.

Lemma 4.34. ≈F-rigid matchable-sum forms are closed under substitution
application and reduction.

Proof. Let M = M1 + · · ·+Mm be a ≈F-rigid matchable-sum and show that
both Mϑ (for some ϑ) and M′ with M _ M′ are ≈F-rigid matchable-sums.
The interesting case is m = 1. For the other cases of Definition 4.33 the
proof is similar to Lemma 4.8.

Let m = 1. Assume M1 has a (flattened) form fN1 · · ·Nn for a flat f and
data structures N1, . . . , Nn. (Otherwise the proof proceeds as in Lemma 4.8.)
Then Mϑ has again only one summand. By Lemma 4.3, Niϑ is again a data
structure and head(Niϑ) = head(Ni) 6= f for all 1 ≤ i ≤ n. Hence, by
Definition 4.33, Mϑ is ≈F-rigid. For M′ the proof is similar.

From this lemma and Lemma 3.5, we have the following corollary:

Corollary 4.35. ≈F-rigid matchable-sum forms are closed under parallel
reduction.
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The rule-based flat matching algorithm we described in this section is
inspired by the flat matching procedure from (Kutsia, 2008). The rules are
given below. Note that Del-F, Del-M, ME, and Dec-Sum are the same as in
commutative matching, Dec-App just differs from its commutative counter-
part by replacing “commutative” with “flat” in the condition, and Wait is
again the default rule. Rules are applied modulo ≈-equivalence. An impor-
tant assumption is that all nested occurrences of flat symbols in matching
equations are flattened.

Del-F: {{f �F
χ f}} Id .

Del-M: {{x̂�F
χ x̂}} Id , where x /∈ χ.

ME: {{x̂�F
χ Q}} {x 7→ Q}, where x ∈ χ.

ME-Flat-1: {{x̂P1 · · ·Pm �F
χ fQ1 · · ·Qn}}  ϑ ] {{fP1 · · ·Pm �F

χ fQi+1 · · ·
Qn}}, where f is a flat function symbol, Q1, . . . , Qn are matchable-sum
forms, m > 0, n ≥ i ≥ 0, x ∈ χ, and ϑ = {x 7→ fQ1 · · ·Qi}.

ME-Flat-2: {{f P1 · · ·Pm x̂ �F
χ f Q1 · · ·Qn}} ϑ]{{f P1 · · ·Pm �F

χ f Q1 · · ·Qi}}
where f is a flat function symbol, each of Q1, . . . , Qn is a matchable-
sum form, m ≥ 0, n ≥ i ≥ 0, x ∈ χ, and ϑ = {x 7→ fQi+1 · · ·Qn},

Dec-App: {{P1P2 �F
χ Q1Q2}}  {{P1 �F

χ Q1}} ] {{P2 �F
χ Q2}}, where P1 P2

and Q1Q2 are matchable forms and head(Q1Q2) is not a flat function
symbol.

Dec-Flat: {{f P1 · · ·Pm �F
χ f Q1 · · ·Qn}} {{f P1 · · ·Pm−1 �F

χ f Q1 · · ·Qn−1}}]
{{Pm �F

χ Qn}}, where f is a flat function symbol, m,n ≥ 1, Pm /∈ χ̂,
and Qn is a matchable-sum form.

Dec-Sum: {{P1 + · · · + Pm �F
χ Q1 + · · · + Qn}}  

⊎m
i=1{{Pi �F

χ

∑
Q∈Qi

Q}},
where m > 1, n ≥ 1, P1, . . . , Pm are matchable forms, Q1, . . . , Qn are
data structures, and each Qi is a nonempty subset of {Q1, . . . , Qn} such
that Q1 ∪ · · · ∪ Qm = {Q1, . . . , Qn}.

Fail: {{P �F
χ Q}}  fail, if P and Q are matchable-sum forms such that if

P is a data structure, then both P and Q are ≈F-rigid matchable-sum
forms, and no rule above is applicable.

Wait: {{P �F
χ Q}} wait, if no other rule applies.
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The rules ME-Flat-1, ME-Flat-2, and Dec-Sum can transform the selected
equation in multiple ways. No two rules apply to the same equation.

Definition 4.36. The instance of solve for a flat theory, denoted solveF, is
defined by the construction from Definition 4.2, based on the rules for flat
matching as described above. Before solveF applies to P and Q, it is assumed
that in P and Q all nested occurrences of + and flat symbols are flattened
out and ≈F-equivalent summands are identified.

Similarly to Lemma 4.11, we can prove that solveF(P �F
χ Q) = ∅ or

solveF(P �F
χ Q) is undefined for a nonlinear P .

Theorem 4.37. solveF is terminating and sound.

Proof. Termination follows from the fact that every rule except ME-Flat-
1 strictly decreases the multiset of sizes (number of symbols) of the left
hand sides of matching equations. The rule ME-Flat-1 does not increase
that measure, but strictly decreases the number of occurrences of matchable
symbols in the right hand sides of matching equations.

Soundness directly follows from Definition 4.2.

The function solveF preserves ≈F-equivalence in the sense that ≈F prob-
lems have ≈F-equivalent solutions. It follows from the fact that all nested
occurrences of + and flat symbols are flattened out and ≈F-equivalent sum-
mands are identified in the input, and the order of summands does not matter
in the matching rules.

For terms without function symbols and +, solveF with non-strict ] coin-
cides to the compound matching algorithm of Jay and Kesner (2009). Hence,
a pattern calculus with solveF as the matching function is yet another exten-
sion of the pure pattern calculus with matchable symbols to finitary matching.

Below we give several examples that illustrate solveF.

Example 4.38. Due to the assumption that there are no nested occurrences
of flat symbols, the algorithm gives solveF(x̂f �F

{x} f) = {{x 7→ f}} for a
flat f . This is computed by the following rule applications:

{{x̂f �F
{x} f}} (by ME-Flat-1 and flattening)

{x 7→ f} ] {{f �F
{x} f}} (by Del-F)

{x 7→ f} ] Id = {x 7→ f}.
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Example 4.39. solveF(fx̂ŷ �F
{x,y} f((λ{z}ẑ.faz)b), where f is flat, is un-

defined, because (λ{z}ẑ.faz)b is not a matchable form and ME-Flat-2 does
not apply. However, if we reduce it, then the obtained problem is solv-
able and there are six solutions: solveF(fx̂ŷ �F

{x,y} fab) = {{x 7→ f, y 7→
fab}, {x 7→ fa, y 7→ fb}, {x 7→ fab, y 7→ f}, {x 7→ a, y 7→ b}, {x 7→ fa, y 7→
b}, {x 7→ a, y 7→ fb}}.

Example 4.40. solveF(fx̂ŷ �F
{x,y} fz), where f is flat, is undefined, because

z is not a matchable form and ME-Flat-2 rule does not apply. However, if
we instantiate z by a, then the obtained problem is solvable and there are
four solutions: solveF(fx̂ŷ �F

{x,y} fa) = {{x 7→ f, y 7→ a}, {x 7→ f, y 7→
fa}, {x 7→ a, y 7→ f}, {x 7→ fa, y 7→ f}}.

Example 4.41. solveF(f(x̂ + ŷ) �F
{x,y} f(a + b) = {{x 7→ a, y 7→ b}, {x 7→

b, y 7→ a}, {x 7→ a+ b, y 7→ b}, {x 7→ a+ b, y 7→ a}, {x 7→ a, y 7→ a+ b}, {x 7→
b, y 7→ a+b}, {x 7→ a+b, y 7→ a+b}}. However, if f is flat, there is one more
substitution that would solve the problem, but the flat matching algorithm
does not compute it: {x 7→ f(a+ b), y 7→ f(a+ b)}.

Example 4.42. solveF(f �F
∅ f((λ{x}x̂.x)f) is undefined. Let f be flat.

After reducing the right hand side, we get solveF(f �F
∅ f) = {Id}. Had we

formulated the first item of ≈F-rigidity definition (Definition 4.33) with just
n = 1 as we did for ≈F-rigidity in Definition 4.6, we would have solveF(f �F

∅
f((λ{x}x̂.x)f) = ∅ and C2 would get violated. Similarly, solveF(f �F

∅ fz)
would violate C1.

Example 4.43. Reverting the sides of the equation in the previous example,
solveF(f((λ{x}x̂.x)f) �F

∅ f) is again undefined. Assume f is flat. If we did
not require P to be ≈F-rigid in the condition of the Fail rule, we would have
solveF(f((λ{x}x̂.x)f) �F

∅ f) = ∅, solveF(f �F
∅ f) = {Id} and C2 would be

violated. Similarly, solveF(fz �F
∅ f) would violate C1.

The following lemma plays the crucial role in proving that solveF makes
the calculus confluent.

Lemma 4.44. Let P and Q be two terms and χ be a finite set of variables
such that solveF(P �F

χ Q) is defined. Then:

1. If ϑ is a substitution such that fm(ϑ) ∩ χ̂ = ∅, then solveF(Pϑ�F
χ Qϑ)

is defined and σ ∈ solveF(P �F
χ Q) iff (σϑ)|χ ∈ solveF(Pϑ�F

χ Qϑ).
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2. If P ′ and Q′ are terms with P ⇒ P ′ and Q ⇒ Q′, then solveF(P ′ �F
χ

Q′) is defined and solveF(P �F
χ Q)⇒ solveF(P ′ �F

χ Q
′).

Proof. We only prove the second statement. The proof of the first one is
similar.

Let size(M) be the size of a term M , defined as follows: size(x) =
size(x̂) = size(f) = 1, size(M1M2) = size(λχM1.M2) = size(M1 + M2) =
size(M1) + size(M2) + 1. With each term M , we associate its complexity
measure cm(M) as a pair of natural numbers 〈size(M),#matchables(M)〉,
where #matchables(M) denotes the number of occurrences of free match-
ables in M . Let >lex be the lexicographic extension of the standard ordering
on natural numbers to pairs of natural numbers. Then we define the ordering
on terms M1 � M2 iff cm(M) >lex cm(M). Obviously, � is a well-founded
ordering and we prove the lemma by induction for P with respect to this
ordering.

We do not consider the case when P is a variable, because it would make
solveF(P �F

χ Q) undefined, which contradicts our assumption.
Below we only highlight those points which make this proof different from

the proof on the analogous lemma for commutative matching (Lemma 4.8).

P is a function symbol f . Let Q 6≈ f , then Q must be an ≈F-rigid matchable-
sum form, since solveF(P �F

χ Q) is defined. In this case solveC(P �C
χ Q) = ∅.

By Corollary 4.35, Q′ is an ≈F-rigid matchable-sum form. Besides, from
reduction of ≈F-rigid matchable-sum forms we can observe that when Q 6≈ f
and Q⇒ Q′, then Q′ 6≈ f . Hence, Q′ is an ≈F-rigid matchable-sum, different
from f . Therefore, only the Fail rule applies and solveF(P ′ �F

χ Q
′) = ∅.

P is a matchable x̂ or an abstraction. Similar to the analogous cases in
Lemma 4.25.

P is an application. Since solveF(P �F
χ Q) is defined, both P and Q are

matchable forms.
First, assume Q is not an application. In this case, P �F

χ Q can be
transformed by the Fail rule only (since solveF(P �F

χ Q) is defined), and
solveF(P �C

χ Q) = ∅. When P is a matchable form and application, P
is actually a data structure. Therefore, both P and Q must be ≈F-rigid
matchable-sum forms in order the Fail rule to apply. Let P ⇒ P ′ andQ⇒ Q′.
By Corollary 4.4, P ′ is again a data structure. By Corollary 4.9, P ′ and Q′
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are ≈F-rigid matchable-sum forms. Therefore, only the Fail rule applies and
solveF(P ′ �F

χ Q
′) = ∅.

Now assume Q is an application. We distinguish between the cases
whether head(Q) is a flat symbol or not. When it is not flat, the proof is the
same as for the non-commutative head in Lemma 4.25. Therefore, assume
the head of Q is a flat symbol f . Let it have a form Q = fQ1 · · ·Qn, n ≥ 0.
If head(P ) /∈ χ ∪ {f}, then head(P ′) /∈ χ ∪ {f}. Since solveF(P �F

χ Q)
is defined, both P and Q are ≈F-rigid matchable-sum forms. Then by
Corollary 4.35, so are P ′ and Q′, solveF(P ′ �F

χ Q′) is also defined, and
solveF(P �F

χ Q) = solveF(P ′ �F
χ Q

′) = ∅.
Assume head(P ) = x̂ for some x ∈ χ, i.e., P has a form P = x̂P1 · · ·Pm

for m > 0. Since solveF(P �F
χ Q) is defined, each Qi, 1 ≤ i ≤ n, is a

matchable-sum form. Then the ME-Flat-1 rule applies to P �F
χ Q and the

solution set can be represented as

solveF(P �F
χ Q) = solveF(x̂P1 · · ·Pm �F

χ fQ1 · · ·Qn) =( n⋃
i=0

σi ] solveF(fP1 · · ·Pm �F
χ\{x} fQi+1 · · ·Qn)

)
\ {fail},

(1)

where σi = {x 7→ fQ1 · · ·Qi}. From definedness of solveF(P �C
χ Q) we get

definedness of solveF(fP1 · · ·Pm �F
χ\{x} fQi+1 · · ·Qn) for all 0 ≤ i ≤ n.

By definition of parallel reduction, P = x̂P1 · · ·Pm ⇒ x̂P ′1 · · ·P ′m = P ′,
where Pi ⇒ P ′i for 1 ≤ i ≤ m, and Q = fQ1 · · ·Qn ⇒ fQ′1 · · ·Q′n = Q′,
where Qi ⇒ Q′i for 1 ≤ i ≤ n. By Corollary 4.4, each Q′i is a matchable-
sum form. Then we can use ME-Flat-1, and the set solveF(P ′ �F

χ Q
′) can be

represented as

solveF(P ′ �F
χ Q

′) = solveF(x̂P ′1 · · ·P ′m �F
χ fQ

′
1 · · ·Q′n) =( n⋃

i=0

σ′i ] solveF(fP ′1 · · ·P ′m �F
χ\{x} fQ

′
i+1 · · ·Q′n)

)
\ {fail},

(2)

where σ′i = {x 7→ fQ′1 · · ·Q′i}.
We have x̂P1 · · ·Pn � fP1 · · ·Pn. Therefore, by the induction hypoth-

esis (IH) we can conclude that solveF(fP ′1 · · ·P ′m �F
χ\{x} fQ

′
i+1 · · ·Q′n) is

defined. Since ME-Flat-1 is the only rule that applies to P ′ �F
χ Q

′, it im-
plies that solveF(P ′ �F

χ Q′) is defined. By the IH, for each 0 ≤ i ≤ n
we have solveF(fP1 · · ·Pm �F

χ\{x} fQi+1 · · ·Qn) ⇒ solveF(fP ′1 · · ·P ′m �F
χ\{x}
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fQ′i+1 · · ·Q′n). Besides, obviously, σi ⇒ σ′i. From these facts and the equal-
ities (1) and (2), by definition of ◦ we get solveF(P �F

χ Q) ⇒ solveF(P ′ �F
χ

Q′).
Assume head(P ) = f . If P has a form P = x̂P1 · · ·Pm, x̂, m ≥ 0, x ∈ χ,

the proof proceeds in the same way as above, where head(P ) ∈ χ. If P has a
form P = x̂P1 · · ·Pm, m > 1, Pm /∈ χ, then the proof is similar to the proof
of Lemma 4.25 when Dec-App applies.

P is a sum. Proof is the same as for the sum case in Lemma 4.25.

By the reasoning similar to the case of Theorem 4.26, we get the main
theorem of this section:

Theorem 4.45. The function solveF satisfies C1 and C2.

From this theorem and Theorem 3.9 we immediately get the following
corollary:

Corollary 4.46. The finitary pattern calculus that uses solveF as the pattern
matching function, is confluent.

All the results of this section are valid for both strict and non-strict
disjoint unions.

5. Concluding Remarks

We have presented a general framework for pattern calculi with finitary
matching, where patterns are first-class citizens. They can be used as param-
eters, instantiated, reduced, and returned as a result. Unrestricted reductions
for pattern calculi lead to non-confluence even in the unitary case. Nonde-
terminism introduced by finitary matching makes the situation even more
complicated.

Our goal was to study conditions under which confluence would be guar-
anteed for calculi with finitary matching. The approach we considered in this
paper builds on the general approaches to proving confluence for pattern cal-
culi with unitary matching proposed by Cirstea and Faure (2007) and Jay
and Kesner (2009). Like those works, we also consider the matching func-
tion to be a parameter of the general framework. This function is denoted
by solve in this paper. Instantiating it by concrete algorithms, one obtains
concrete versions of pattern calculi. We were interested to find conditions for
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solve, which would guarantee a general confluence result for the framework
and, thus, would ensure confluence of its concrete instantiations, provided
that the conditions are satisfied.

We formulated two such conditions in this paper, denoted by C1 and C2.
They ensure that the function solve is stable by substitution and by reduction.
These conditions generalize their counterparts from the unitary matching
(Cirstea and Faure, 2007; Jay and Kesner, 2009). The solve function is defined
in such a way that it computes solutions to matching problems and does not
free bound variables during reduction. We illustrated two concrete matching
functions that satisfy C1 and C2, one for commutative theories and the other
one for flat patterns. We also discussed a version of commutative matching,
which is polymorphic for commutative symbols and permits abstracting with
respect to them.

In another development, an interesting approach to show metatheoretical
results (confluence, standardization) of the pure pattern calculus from (Jay
and Kesner, 2009) has been proposed in (van Oostrom and van Raamsdonk,
2014). There, the calculus has been represented as a higher-order pattern
rewriting system as defined by Nipkow (1991) and Mayr and Nipkow (1998).
It was shown that by applying general higher-order rewriting results to this
rewriting system, one can obtain properties of the pattern calculus. It is
worth to investigate how this approach can be extended to calculi with fini-
tary matching, which would require reasoning with equational higher-order
rewriting, but that is beyond the scope of this paper.

Yet another direction for future work is to study normalization strate-
gies for some pattern calculi with finitary matching. Recently, Bonelli et al.
(2012) addressed this problem for pure pattern calculus of Jay and Kesner
(2009). Matching failure gives this calculus non-sequential behavior. The
question is, when matching P �?

χ Q is undecided in the term (λχP.N)Q,
which subterm (P , N , or Q) should be reduced first in order to get a nor-
mal form of (λχP.N)Q. Non-sequentiality means that for a given term M
containing redexes under a certain redex-free context, there is no redex in
M that, first, is needed (i.e., every reduction sequence from M reduces it or
its residual) and, second, its choice is independent from the other redexes.
Bonelli et al. (2012) extended the notion of needed redexes to so called nec-
essary set of redexes and proposed a normalizing strategy for pure pattern
calculus. By this strategy, a set of redexes reduces simultaneously at each
step. It generalizes the leftmost-outermost strategy for λ-calculus and is
strictly finer than parallel-outermost. It would be interesting to study how

51



this approach can be extended to pattern calculi with finitary matching.
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