Theorema: Towards Computer-Aided
Mathematical Theory Exploration

Bruno Buchberger #, Adrian Craciun?, Tudor Jebelean ?,
Laura Kovéacs®, Temur Kutsia®*, Koji Nakagawa?,
Florina Piroi®, Nikolaj Popov?, Judit Robu?,
Markus Rosenkranz®, Wolfgang Windsteiger ®
& Research Institute for Symbolic Computation, Johannes Kepler University,

Altenbergerstrafie 69, A-4040 Linz, Austria

b Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, Altenbergerstrafie 69, A-4040 Linz, Austria

Abstract

Theorema is a project that aims at supporting the entire process of mathematical
theory exploration within one coherent logic and software system. This survey paper
illustrates the style of Theorema-supported mathematical theory exploration by a
case study (the automated synthesis of an algorithm for the construction of Grébner
Bases) and gives an overview on some reasoners and organizational tools for theory
exploration developed in the Theorema project.

Key words: Mathematical assistant, automated reasoning, theory exploration,
“Lazy Thinking”, Theorema

1 Introduction

1.1 Aims of Theorema: A Brief Ouverview

Theorema is a project and a software system that aims at supporting the en-
tire process of mathematical theory exploration: invention of mathematical
concepts, invention and verification (proof) of propositions about concepts,

* Corresponding author.
Email address: Temur .Kutsia@risc.uni-linz.ac.at (Temur Kutsia).

Preprint submitted to Elsevier Science 1 July 2005

invention of problems formulated in terms of concepts, invention and verifi-
cation (proof of correctness) of algorithms solving problems, and storage and
retrieval of the formulae invented and verified during this process. This inte-
gral objective was already formulated at the very beginning of the Theorema
project; see, e.g. [9]. In particular, we emphasize

a holistic view of the mathematical theory exploration process [11] as op-
posed to proving individual, isolated theorems;

proof presentation in a “natural”, mathematical textbook style that should
make it easy for human readers to understand and check the proofs gener-
ated automatically;

the presentation of logic formulae in a natural two-dimensional syntax easily
changeable by the user without changing the internal abstract syntax;

the view and usage of higher-order equational logic as a programming lan-
guage internal to predicate logic, which makes it possible to execute verified
algorithms within the same system in which the verification was done;
automated proof generation as opposed to automated proof checking;
efficient proof generation in special theories—like geometry, analysis, com-
binatorics—using algebraic algorithms as black box inference rules; (this
links past research expertise of the Theorema group, notably in the area of
Grobner Bases theory [7,8], to the current logic-oriented research goals.)
automatically proving the algebraic methods that are later used as a part
of special theory inferencing;

the user-controlled linkage of mathematical knowledge bases to the logic
system;

the usage of an advanced front end (including publishing, graphics, and
web-tools) of a mathematical software system (namely, Mathematica [93]).

In the Theorema project we developed methods, system components and tools
that cover parts of the entire research plan. In particular, we have

— A basic implementation frame: a symbolic computation software system

Mathematica. Note that we do not rely on the mathematical algorithms
library of such a system but only on the programming language frame. The
user can call the Mathematica algorithms in Theorema in a controlled way.
A mathematical language as a common frame for both nonalgorithmic and
algorithmic mathematics. Basically, it is a higher order logic language ex-
tended with sequence variables (i.e., variables that can be instantiated with
finite, possibly empty sequences of terms; see [53]). The interpreter of the al-
gorithmic part of the language that consists of “executable formulae” (func-
tion definitions using induction and bounded quantifiers) is readily available
within Mathematica. The semantics of the algorithmic part consists of com-
putation rules and basic operations on numbers, sets, and tuples. For arith-
metic operations on natural, integer, and rational numbers the Theorema
semantics may access the arithmetic rules from Mathematica, if told to.

— Various reasoners: “internal” ones, implemented within Theorema, and “ex-
ternal” ones, linked to the system. All the “internal” reasoners follow a com-
mon design: They are composed of individual rules applicable to certain rea-
soning situations (goals and knowledge bases). The rules are grouped into
special modules that can be combined into a reasoner using various strate-
gies. The actual generation of the output is guided by the common search
procedure. The output is represented by a global reasoning object that fol-
lows a common structure in order to allow a homogeneous display of the
output independent of which reasoner generated it. Note that a particular
reasoner need not understand the whole Theorema syntax.
A general facility that allows the presentation of reasoner outputs in nat-
ural language. All the Theorema “internal” reasoners produce output that
imitate “natural” reasoning styles of human mathematicians.
— Mechanisms for the automatic generation of complicated knowledge bases
from the algebraic properties of given domains and the definition of functors.

For a more detailed account and the bibliography roadmap on these issues we
refer to the survey papers [20,19].

The current paper is another survey that concentrates on methods and tools
for theory exploration in Theorema which have been developed in the last four
years and, hence, are not contained in [20,19]. Here we only give an overview
and give references to the articles and reports where these methods and tools
are described in detail.

1.2 Methods and Tools for Theory Exploration in Theorema

An example of a theory exploration method is Lazy Thinking [13-15] that
relies on algorithm schemata and the automated analysis of failing correctness
proofs. It is used in algorithm synthesis—a stage in theory exploration when
one tries from a given knowledge base and algorithm schemata to derive an
algorithm that fulfils a given specification. The method turns out to be pow-
erful enough to synthesize not only toy examples like sorting algorithms [28§]
but also nontrivial algorithms like the usual algorithm for computing Grébner
Bases of polynomial ideals [8,15].

A user (working mathematician) who intends to explore a theory using The-
orema interacts with three blocks of system components: reasoners, organiza-
tional tools, and knowledge bases; see Fig. 1. For instance, she may construct
theories and add them to the knowledge bases with the management tools;
invent new concepts, propositions, problems, and algorithms using the schema
libraries; prove propositions and verify algorithms with the reasoners; display
proofs using the presentation tools, etc.

| Provers | | Solvers ‘ |Simpliﬁers‘

Theories

Reasoners
Knowledge
()
Organizational

| Presentation tools ‘ | Management tools ‘

Fig. 1. Theorema components for theory exploration.

The core part of mathematical theory exploration is reasoning: proving, com-
puting, and solving. All these activities are done either in the general frame
of “pure” (higher-order) predicate logic or in various special theories specified
by suitable axioms (in the same logic). For example, resolution is a universal
proving method, [-reduction is a universal computing engine, and syntactic
unification can be understood as a solver with no special knowledge. The rea-
soning activities can be “custom-tailored” to particular theories. For example:
in the domain of naturals, any induction prover can be understood as a spe-
cial prover; a canonical reduction system induced by a given equational theory
provides a mechanism of computation in the given theory; Collins’s algorithm
for cylindrical algebraic decomposition (CAD) is a special solver over the the-
ory of real closed fields. Theorema aims at providing a uniform (logic and
software) frame for these activities. Reasoners are accessed by the call

Action|entity, using — knowledge-base, by — reasoner, options|,

where Action is the desired action that the reasoner should perform, i.e., Prove,
Compute, or Solve; entity is the mathematical entity, to which the action
should apply, e.g. a proposition in the case of proving or just an expression
in the case of computing; knowledge-base is the knowledge base with respect
to which the action should be performed; reasoner is the concrete reasoner
that should perform the action; options are possible options to be given to the
reasoner in order to influence its behavior.

Currently Theorema contains (or is linked with) about 30 (automatic or semi-
automatic) reasoners. We describe in this paper only the recent developments:
the basic reasoner, the equational prover, proving by S-decomposition, the spe-
cial solver and simplifier for the theory of differential equations, the geometry
prover, the verification condition generators for imperative and functional pro-
grams, and the interface to external systems. The other Theorema reasoners
that have been implemented earlier, documented in [20,19], include: the prover

for classical predicate logic that implements a sequent calculus with meta-
variables; the PCS (Prove-Compute-Solve) prover that extends the predicate
logic prover with a special method that, essentially, reduces proving to solving
(the method was successfully used in proving problems in elementary analysis
where proving was reduced to solving real constraints by Collins’s CAD algo-
rithm [26]); the prover for Zermelo-Fraenkel set theory that extends the PCS
prover by special inference rules for reasoning with sets; induction provers
for natural numbers, lists, and sequence variables; the Grobner Bases prover
for boolean combinations involving polynomial equalities and inequalities; the
Gosper-Zeilberger prover for problems involving combinatorial identities over
integers, and other reasoners. We do not discuss them in this paper.

Traditional automated provers have no integrated mathematical knowledge.
It makes it difficult to use them in mathematical problem solving. A system
that assists mathematicians must have access to mathematical knowledge. In
Theorema the user can build mathematical domains using functors, define
and manipulate theories, access external knowledge bases, and build and use
concept, theorem, problem and algorithm schema libraries.

A special remark should be made about using types and sorts in Theorema.
The language of Theorema is untyped. Therefore, if a type or sort informa-
tion is needed, it is in general handled by unary predicates or sets (in case
one decides to work within a set theory). However, particular reasoners can
implement rules to deal with such an information in a special way.

The user-friendliness of a mathematical assistant is important for its accep-
tance and performance. Theorema organizational tools are designed for this
purpose. This concerns not only the graphical-user interface, but also compo-
nents that help users in managing (accessing, updating, browsing) mathemat-
ical knowledge bases, developing and presenting proofs in a human-oriented
way, using traditional mathematical notation, and extending syntax. In this
paper we describe three such tools: focus windows for displaying mathematical
proofs, label management for organizing knowledge bases, and logicographic
symbols as a powerful extension of conventional mathematical syntax.

The paper is organized as follows: First, in Section 2 we introduce Lazy Think-
ing as a particular method of theory exploration, which combines reasoners and
organizational tools in a certain way and show its power on a synthesis of the
usual algorithm for constructing Grobner Bases. Next, we describe various
new tools for theory exploration available in Theorema: reasoners in Section 3
and organizational tools in Section 4. Related work is discussed in Section 5
and conclusions are given in Section 6.

The Theorema system and publications are available to download from the
project web page: http://www.theorema.org/.

2 The Lazy Thinking Method
2.1 General Idea

We recently proposed in [14] a model for theory exploration based on schemata
that represent condensed mathematical knowledge of various types (defini-
tions, propositions, problems, algorithms). In this model, given a theory ez-
ploration situation, that is,

— a knowledge base K (a structured collection of logic formulae that describe
notions—predicates and functions—and their properties)
— and a library of schemata L (conceptually, higher-order formulae),

one step of theory exploration expands the knowledge base by

— inventing new notions (by using definition schemata);

— inventing (by proposition schemata) and proving or disproving (using the
available proving mechanisms) propositions about the new notions;

— inventing problems (by problem schemata) that involve the notions;

— inventing and verifying methods (algorithms) to solve the problems.

As a particular contribution to the invention of methods (algorithms) that
solve problems based on algorithm schemata we introduced the method of
Lazy Thinking. (Here we can only summarize the main ideas of the method,
all details are given in [13-15].) The method proceeds as follows: We start
from

— an exploration situation, i.e., a knowledge base K and a library of algorithm
schemata L (formulae that define algorithms in terms of auxiliary unknown
subalgorithms, together with an appropriate inductive proof strategy), and

— aproblem P, i.e., a formula of the form V Q[z, Alz]], where Q[z, y] describes

the relation between input = and output y, and A is the algorithm to be
synthesized. (@ can be any predicate logic formula. In the example in the
next subsection () is defined by

. Q[F, G] & is-finite[G] A is-Grobner-basis[G] A ideal[F] = ideal[G].)

The algorithm A that fulfills the specification P is determined as follows:

(1) Select a new schema from L, add it to the knowledge base and try to
prove the correctness theorem, using the proof strategy indicated by the
algorithm schema. The proof is likely to fail because the properties of the
unknown auxiliary algorithms introduced by the algorithm schema are

yet unknown.

(2) A specification generation algorithm described in [13] analyzes the failing
proof and generates specifications of the unknown auxiliary algorithms
that allow the proof to get over the failing point. This specification gener-
ation algorithm is an essential part of the method. It identifies, analyzes
and generalizes temporary assumptions and goals in a specific way.

(3) Add the specifications to the knowledge base and repeat the previous
step until the proof succeeds. If the proof does not succeed, go back to
step (1).

(4) Once the proof is completed, the result of the Lazy Thinking method is
the proof that the algorithm A, as defined by the algorithm schema, fulfills
the specification P provided that the auxiliary algorithms introduced by
the schema meet the specifications generated.

In order to complete the synthesis process, we have to find the auxiliary algo-
rithms. We have two possibilities: Either appropriate algorithms are already
available in the knowledge base, or we have to apply the method of Lazy
Thinking again for synthesizing the auxiliary algorithms. Of course, there is
no guarantee that the recursive application of the Lazy Thinking will always
terminate, i.e., Lazy Thinking is not an algorithm. However, it terminates on
many interesting examples. One such example is described below.

2.2 Ezxample: Synthesizing an Algorithm for Grobner Bases by Lazy Thinking

The Lazy Thinking method is powerful enough to deal with the synthesis of
nontrivial algorithms, such as an algorithm for the construction of Grébner
Bases [7,8] as we have shown in [15]. Below we give the input and output for
this case study in order to illustrate the style in which Theorema supports the
mathematical exploration process. The full implementation of this case study
has still to overcome a couple of technical problems.

The problem consists in finding, automatically, an algorithm GB that satisfies
the specification
Problem[“Grobner Bases”,
is-finite[GB[F]
Yw/ A { is-Grobner-basis[GB[F]]]
ideal[F'] = ideal|GB|[F]

(In order not to distract from the main flow of the exploration, we omit here
all type specifications, e.g. that F' should range over finite sets of multivariate

polynomials.) Of course, we have to know a lot about the ingredient auxil-
iary notions like “is-Grobner-basis”, “is-finite”, etc. This knowledge can be
compiled, for example, by the construct

Theory|“Grébner Bases prerequisites”,

v is-Grobner-basis[G] < is-confluent[—¢]

1 Iplh
G hv , hi —¢ hy & €E|G plo] | o)]
1, ho g hy = hy — (Im[hy]/Im[g])g

In fact, this theory can be structured hierarchically by grouping theories within
theories, e.g. the theory of polynomial rings, reduction theory and ideal theory.

The Lazy Thinking method proceeds now by trying out algorithm schemata
(taken from a library of algorithm schemata): An algorithm schema that
is appropriate for this particular synthesis problem is the so-called “critical
pair/completion” schema, that describes the unknown algorithm GB in terms
of unknown auxiliary algorithms lc and df:

GBI[F] = GBIF, pairs[F]
GBIF, ()] = F
GB[F, ({91, 92),D)] =
where[f = lc[g1, o], hn = trd[rd[f, g1], F], ho = txd[rd[f, go], F,
GBIF, (5)] <y = hy
GBIF ~ df[h1, hy), (p) = <<Fk, I >] < otherwise

In the schema a couple of known algorithms appear, like “pairs” (forming
all pairs of objects in F), “rd” (one reduction step), “trd” (total reduction),
“~7” (append), “<” (concatenate), etc. Note that we use the sequence variable
D, for which any finite number of terms can be substituted. In fact, the “critical
pair/completion” schema is a quite general one that incorporates, for instance,

Knuth-Bendix type or resolution type procedures.

Here, “trying out” means to start an (automated) proof of the correctness of
GB as a candidate for the unknown algorithm to be synthesized. In our case
the Theorema prover suitable for this task is a relatively simple rewrite prover
(since the necessary induction is already contained in Newman’s lemma). This
proof will, of course, fail because nothing is known about [c and df. The core of
the method is an algorithm that analyzes the failing proof, and automatically
generates conditions on [c and df under which the correctness proof will suc-

ceed. These conditions can now be viewed as specifications for the unknown
auxiliary algorithms lc and df: If we manage to find algorithms satisfying
these specifications then the above algorithm schema becomes an algorithm
that satisfies the initial specification, i.e., constructs a Grobner basis for any
input F'. Note that, along with the synthesis of the algorithm, the system also
provides a proof of its correctness. In the given example, the automatically
generated specifications of lc and df are

Ip[g1] | lc[gn, o]

Ip[ga] | Ic[g1, go] .
W /\ and hhvh2 hl *J/df[hhhg] hg.

g1,92,pP 1
ploi] | p = (elgr. aa] |)

Iplg] | p

It is now very easy (and can again be done automatically by Lazy Thinking,
using the available knowledge on the theory of polynomials) to find appropriate
algorithms “l¢” and “df” that satisfy these specifications. Namely,

le[g1, g2] = least-common-multiple[lp[g:], ip[ga]],
df[hl, hg] = hl - hQ.

The algorithm GB together with the algorithms for “l¢” and “df” is now
executable within Theorema. Note that the algorithm “l¢” synthesized auto-
matically by the Lazy Thinking method constitutes the essential part of the
algorithmic Grobner Bases theory. It has not been synthesized so far by any
other method or system and, hence, constitutes a major example of the theory
exploration potential of Theorema.

3 Reasoners

In this section we describe reasoners developed recently in the Theorema
project. We start first with general purpose reasoners (the basic reasoner,
the S-decomposition method, and the equational prover), then describe some
special ones (the solver and simplifier for a special theory of differential equa-
tions, the geometry prover, and the reasoners for program verification), and
finally show how Theorema can interface external reasoning systems. All these
reasoners, together with the other provers, solvers, and simplifiers of the The-
orema system, can be combined under the user control in various ways for the-
ory exploration and applied either completely automatically, or interactively
using a special mechanism that guides the reasoning process. This mechanism
is a handy tool since most of the mathematical theorems are hard to prove
completely automatically. Using it, one can choose between fully automatic

and interactive, stepwise proof development, can easily navigate through the
proof object, can inspect proof situations, can provide various hints to the
prover (e.g. suitable instantiations), can add formulae to and remove formu-
lae from the temporary knowledge base of the proof, can choose a different
reasoner, add or remove branches in the proof, etc. Details of this mechanism
are described in [67].

3.1 The Theorema Basic Reasoner

The Theorema Basic Reasoner combines special features already available in
the PCS prover and the set theory prover [92]. From the PCS prover it uses
the standard inference rules for first-order predicate logic and the rules that
use quantified equalities, equivalences, and implications in the knowledge base
for rewriting. In addition, the reasoner is extended with special inference rules
for language constructs like the “such-that”- or the “the-unique”-quantifier.
From the set theory prover it uses the interface for incorporating computations
into proofs. The interface applies the Theorema computation engine for the
algorithmic fragment of the Theorema language in order to simplify parts
of formulae. The resulting Basic Reasoner is a general purpose prover that
understands almost the entire language available in the Theorema syntax.
With its access to computation facilities we find it to be appropriate for the
type of undergraduate proving exercises that often rely on simplification by
arithmetic computations combined with predicate logic reasoning. To illustrate
this point of view, we describe the key steps of the proof of the irrationality
of v/2. We assume the positive reals as the universe and we want to prove

Proposition[“y/2 irrational”, = rat[v/2]]
using the knowledge about positive real numbers

a

Definition[“rational”, any|[r], rat[r] ;< 3 (r = § A coprimela, b]) |
nat[a,b]

Definition|[“sqrt”, any[z,y|, vz =y & y*> = v |

Lemmal|“coprime”, any|a, b], with[nat|a] A nat|[b]],

2b? = a* = — coprime[a, b) |
by the Theorema Basic Reasoner. This is done by executing the command:

Prove[Proposition[“sqrt2”], using — (Lemmal“coprime”], ...},
built-in — Built-in[“Rational Numbers”], by — BasicReasoner,
ProverOptions — {SimplifyFormula—True, RWCombine—True}|.

10

We remark that nat[a, b] above abbreviates nat[a] A nat[b]. Also, in order the

implicit definition of square root to be consistent, it is assumed that V 3! y? =
Ty

x holds over the positive real numbers.

The first steps in the proof transform formulae in the knowledge base. The
definition “rational” is expanded and the result is simplified using built-in
knowledge available in the semantics of the Theorema language. Further, the
negated goal, rat[y/2], is assumed. After several other basic predicate logic
reasoning steps we arrive at the following assumption

(6) coprime[ag, bo] A nat[ag] A nat[be] A V2 = %
0

for arbitrary but fixed ag and by. Now, nat[ag] and nat[bg] are used to instanti-
ate Lemma “coprime”, and v/2 = ﬁ—g is simplified using built-in knowledge from
the Theorema language semantics. In the example, the option built-in— Built-
in[“Rational Numbers”] allows the prover to explicitly use built-in rules for
operations on rational numbers that rely on Mathematica algorithms. In addi-
tion, on explicit user request, the Theorema Basic Reasoner is allowed to access
special simplification algorithms from Mathematica for performing computa-
tional simplification. Specifying the prover option SimplifyFormula—True (de-
fault value is False) tells the prover to postprocess any formula obtained from
a computation by Mathematica’s FullSimplify function. FullSimplify is a
black box simplifier for Mathematica expressions, which uses powerful simpli-
fication rules, in particular for arithmetic expressions.

To continue our example proof, using the definition of square root, the sim-
plification of /2 = b results in

(9) 2% bg? = ay?,
from which we can infer, by an instantiated version of Lemma “coprime”,
(10) = coprimelag, bo],

which contradicts the first conjunct in formula (6).

To complete the proof, the Basic Reasoner can, again, be used to prove the
auxiliary Lemma “coprime”. This lemma can be proved in the universe of
natural numbers, which is reflected in the Prove-call by using Built-in[“Natural
Numbers”] instead of rational numbers.

11

3.2 FEquational Prover

Many problems that arise during theory exploration process have an equa-
tional form. Equational reasoning belongs to a very long tradition in mathe-
matics and plays an important role in formalizing maths. Here we describe one
of the tools Theorema provides for equational reasoning: the general equational
prover.

The equational prover of Theorema [51] is designed for unit equality prob-
lems in first-order or higher-order form. A (restricted) usage of Mathematica
built-in functions is allowed, if the user explicitly requires it. The input prob-
lem can contain sequence variables that are used together with flexible arity
symbols and make the language more expressive and flexible. For instance,
with sequence variables the idempotence and flatness properties of a flexible

arity function f can be expressed in a very concise way: Hvzu flz,u,g,u,z] =

flZ,u,7,z] for idempotence and Eg’g flz, fly), z] = flz,v,z] for flatness. (The

overbarred letters are sequence variables.)

The prover has two proving modes: completion and simplification (rewri-
ting /narrowing). The completion proving mode is based on the unfailing com-
pletion procedure [2]. The input in the higher-order form is first transformed
into the first-order form using Warren’s translation method [89]. Then the
proving procedure runs on the translated problem and finally the output is
translated back into the higher-order form. The user sees only the higher-order
input and output.

Mathematica built-in functions can be used in the proving task in the follow-
ing way: First, the user should state explicitly if she wants a certain function in
the proving problem to be interpreted as some Mathematica built-in function.
(It is not enough the function in the problem to coincide with a Mathematica
function syntactically.) Moreover, such an interpretation is used only for func-
tion occurrences in the goal, not in the assumptions. After normalization, the
goal is checked for joinability modulo its functions built-in meaning, but the
built-ins are not used to derive new goals. After a built-in function is identi-
fied, it is trusted and the result of computation is not checked. In this case,
the corresponding warning is issued.

We extended the unfailing completion allowing flexible arity functions and
sequence variables in equalities. Such problems arise, for example, in the ex-
ploration of the theory of tuples [17]. The main difficulty in reasoning with
sequence variables is the infinitary unification [52]. However, under certain re-
strictions it can be made finitary, or even unitary. The equational prover deals

12

exactly with such cases. The unfailing completion is extended for equalities
where sequence variables occur only in the last argument positions in the sub-
terms. This restriction, still covering quite a wide range of interesting cases,
makes unification unitary. In the simplification mode this restriction is lifted
but existential goals for problems with sequence variables are not allowed. In
this case matching with sequence variables is sufficient. It is finitary.

Proofs are described by the Proof Communication Language PCL [31]. They
are structured into lemmata/propositions. Proofs of universally closed theo-
rems are displayed as equational chains, while those of existential theorems
represent sequences of equations. In failing proofs, on the one hand, the theo-
rems which have been proved during completion are given. On the other hand,
failed propositions whose proving would lead to proving the original goal are
displayed, if there are any. They are obtained from descendants of the goal
and certain combinations of their left- and right-hand sides.

To summarize, the strengths of the prover are: the ability to handle sequence
variables and problems in the higher-order form, to interface with Mathemat-
ica functions, and to generate proofs in a human-oriented style.

3.8 The Proof Method by S-Decomposition

Numerous interesting mathematical notions are defined by formulae that con-
tain a sequence of “alternating quantifiers”, i.e., the definitions have the struc-

ture plx, y] &V % YV ...q[z,y,a,b, c]. Many notions introduced, for example, in
a C

elementary analysis text books (limit, continuity, function growth order, etc.)
fall into this class. Therefore, it is highly desirable that mathematical assistant
systems support the exploration of theories about such notions. It is not an
easy task: The automation of so-called “epsilon-delta” proofs, typical for the
propositions in analysis about notions defined using alternating quantifiers,
was since long time considered a practically important challenge for tradi-
tional provers; see, e.g. [5,61].

The S-decomposition method is particularly suitable both for proving theo-
rems (when the auxiliary knowledge is rich enough) as well as conjecturing
propositions (similar to Lazy Thinking) during the exploration of theories
about notions with alternating quantifiers. It can be seen as a further refine-
ment of the Prove-Compute-Solve method implemented in the Theorema PCS
prover. Essentially, the S-decomposition method is a certain strategy for de-
composing the proof into simpler subproofs, based on the structure of the main
definition involved. The method proceeds recursively on a group of assump-
tions together with the quantified goal, until the quantifiers are eliminated,
and produces some auxiliary lemmata as subgoals.

13

(fi® f2) = (a1 +a2)
(1) f1—a
fa = az

‘v’(e>0=>i‘Z(n2m=>|(f1@f2)[n]—(a1+a2)|<e))

€

V(e>0=3AY (n>m=|fi[n] — a1| <e¢))

€ mn

V(e>0=3AY (n>m=|fa[n] —az| <¢€))

€ mn

e >0=3IV(n>m=|(fi® f2)n] — (a1 + a2)| < &)

(3) €>0=3V(n>m=|filn] — a1] <€)
mn
€ >0=3IV(n>m=|fon] — as| <€)
mn
(4) eg>0=¢€¢>0 AV(n>m=|(f1d f2)n] — (a1 + a2)| < €)
mn
(5) AV (n>m=|fi[n] —a1]| <€)
14) € >0 2> 0 mr
(14) >0 af IV (0 >m = |foln] — as] < €)
mn

(15) A4 (60 >0= 60/2 > 0)

€0

n

V(n2>2m*=|(f10 f)ln] — (a1 +az)| < &)

(6) V(n2m1:»|f1[n]—a1| <€*)

n

n

Y (n > mg = |faln] — ag| < €¥)

Fig. 2. S-Decomposition: First part of the proof tree.

We present the method using an example from elementary analysis: limit of
a sum of sequences; see [40] for a detailed description of the method. The

definition of “f converges to a” is:

(=) f—a e V(e>0=>3Y(n>m=|fln]—a <0)).

For brevity, the type information is not included.

The proof tree is presented in Fig. 2 and Fig. 3. Boxes represent proof situa-
tions (with the goal on top), unboxed formulae represent auxiliary subgoals,
and boxes with double sidebars represent substitutions for the metavariables.
The nodes of the proof tree are labeled in the order they are produced.

The first inference expands the definition of “limit”, generating the proof sit-

14

V(n2>m*=|(fi® f2)ln] — (a1 +a2)| <€)

n

(6) Z(n2m1=>|f1[n]fa1|<e*)
v (n > mg = |f2[n] — a2| < 6*)

n

ng > m* = [(f1 & fo)lno] — (a1 +az)| < e
(7) n* > mp = |filn*] —a1| < €
n* > mg = | fa[n*] —az| < €*

m* = |(f18 f2)[no] — (a1 + a2)| < €0 |
> Mg (9) |fi[n*] — a1| < €*
| fo[n*] — ag| < €

m* < max [mq,ms) ‘
n* < ng (10) (|fi[n*] —a1] < € A
|fo[n*] — as| < €*) =
|(f1[n0] + falno]) — (a1 + a2)| < €

(11)

(12) (lfa[no] — ar] <€ A
| f2[no] — az| < €*) =
|((f1[mo] + fa[no]) — (@1 + a2)| < €

(13) [€ «eo/2]

Fig. 3. S-Decomposition: Second part of the proof tree.

uation (2). S-decomposition is designed for proof situations in which the goal
and the main assumptions have exactly the same structure. In the example
they differ only in the instantiations of f and a. S-decomposition proceeds by
modifying these formulae together, such that the similarity of the structure is
preserved, until all the quantifiers and logical connectives are eliminated. The
method is specified as a collection of four transformation rules (inferences) for
proof situations and a rule for composing auxiliary lemmata. The transforma-
tion rules are described below together with their concrete application to this
particular proof.

The inference that transforms (2) to (3) eliminates the universal quantifier
and has the general formulation below. (Here, for simplicity, we formulate the
inferences for two assumptions only, but extending them to use an arbitrary
number of assumptions is straightforward.)

V Pz],V Blz] F VYV Plz] —— Pa}], Blzs] B Polxo] (V)

x x T

15

Like the existential rule, specified later in this section, this rule combines the
well-known techniques for introducing Skolem constants and metavariables.
However, S-decomposition comes with a strategy of applying them in a certain
order. The Skolem constant z is introduced before the metavariables (names
for yet unknown terms) z7, x3. In the example we use a simplified version of this
rule in which the metavariables do not differ. For other examples (e.g. quotient
of sequences) this will not work.

The inference from (3) to (4) and (5) eliminates the implication, and has the
general formulation:

=P, Q=P F Q=F — Qo= QA (=)

PP F F

In contrast to the previous rule, this one is not an equivalence transforma-
tion (the proof of the right-hand side might fail even if the left-hand side is
provable). This rule is applied in the situations when Q}’s are the “condi-
tions” associated with a universal quantifier (as in the example). The formula
Qo = Q1 N Qs is a candidate for an auxiliary lemma, as is formula (4).

The proof proceeds further with the transformation (5)—(6) (formula (14) will
be produced later in the proof) given by the following rule:

3P [z],3 Pfz] F I Pa] — Pz, Plzs] F Polz] (3)

xX x xX
where z; and x5 are Skolem constants introduced before the metavariable x*.

Usually, existential quantifiers are associated with conditions upon the quan-
tified variables. In such a case one would obtain conjunctions (analogous to
the situation in formula (3), where one obtains implications). The rule for
decomposing conjunctions is:

AP, QNP = QoANPy +— Q1@ = Qo (N)

PP+ F

Similarly to the rule (=), this rule produces an auxiliary lemma as a “side
effect”, using the Q);’s which are, typically, the conditions associated with an
existential quantifier. In fact, in the implementation of the method, the rules
(3), (A) are applied in one step, as are also the rules (V), (=).

However, in this example there is no condition associated to the existential
quantifier, therefore this rule is not used.

The proof proceeds by applying rule (V) to (6), and then the rule (=) to (7).
Note that the transformation rules proceed from the assumptions towards the

16

goal for existential formulae, and the other way around for universal formulae.
If one would illustrate this process by drawing a line on the formulae in proof
situation (2), one obtains an S-shaped curve—thus the name of the method.

Finally, S-decomposition transforms a proof situation having no quantifiers
into an implication, thus (9) is transformed into (10), and this finishes the
application of S-decomposition to this example. In this moment the original
proof situation is decomposed into the formulae (4), (8), and (10). (Obtaining
(10) needs an additional inference step, not shown in the figure, which consists
in expanding the subterm (f; @& f2)[no] by the definition of &.)

The continuation of the proof is outside the scope of the S-decomposition
method. For completing the proof, one needs to find appropriate substitutions
for the metavariables, such that the Skolem constants used in each binding
are introduced earlier than the corresponding metavariable. For the sake of
completeness, we give here a possible follow up (produced automatically by
Theorema): We assume that the formulae

(21) ¥ (k= maxfi,j) =k =i Ak 2),

(22) v (|x—a|<§/\|y—b|<§:>|(m+y)—(a+b)|<e>

w’y?“”b’e

are present in the available knowledge as auxiliary assumptions. The prover
first tries to “solve” (8), and by matching against (21) obtains the substitu-
tion (11). This substitution is applied to (10) producing (12), and by matching
the latter against (22), the prover obtains the substitution (13). The substi-
tutions are then applied to the formula (4), which is then generalized (by
universal quantification of the Skolem constants) into (15). The latter is pre-
sented to the user as suggestions for auxiliary lemmata needed for completing
the proof. Of course this subgoal would be also solved if the appropriate as-
sumption was available, however the situation described above demonstrates
that the method is also useful for generating conjectures.

The reader may notice that the process of guessing the right order in which
the subgoals (4), (8), and (10) should be solved is nondeterministic and may
involve some backtracking. This search is implemented in Theorema using the
principles described in [47].

The auxiliary lemmata can either be proved by domain-specific provers (e.g.
CAD within the PCS prover) or can be retrieved from a mathematical knowl-
edge base.

17

3.4 Solver and Simplifier for a Special Theory of Differential Equations

The tools we considered so far can be classified as general purpose reasoners.
Now we describe a component of Theorema that is designed for domain-specific
reasoning: It supports solving and computing in a special theory of differential
equations. More precisely, it deals with linear two-point boundary value prob-
lems (BVPs). Before going into details, we give a practically relevant example
that describes damped oscillations; see [50, page 109] for details: Given a forc-
ing function f € C'*°[0, 7], we want to find the uniquely determined function
u € C*[0, 7] fulfilling u” + 2u' +u = f and u(0) = u(1) = 0.

The idea of our method is to reformulate this problem stated “on the functional
level” as an equivalent problem posed “on the level of operators”. On this level,
it turns out that we can model the operators by noncommutative polynomials
and solve for the relevant operator (called the Green’s operator) by a new
symbolic technique. The result is then translated back to the functional level,
where the solution is traditionally specified via the so-called Green’s function
gasu= [y1lg(x,&) f(£)d¢. In the above example, one has

(r—z)€et if 0<¢&E<a<m,

3=

g9(z, &) =
(r—&wet™= if 0<z<E<T.

3 =

We will come back to this problem at the end of this subsection.

For the general problem formulation, let [a,b] be a finite interval in R and
T a linear differential operator with constant coefficients (the method has
been extended to cover also operators with variable coefficients as described
in [78], but we want to keep things simple in this presentation) given by T'u =
cou™ 44,1 U +c, u, where ¢ is nonzero. We view T as a linear operator
on the vector space C*[a,b]. The boundary operators By, ..., B, are defined
on the same domain; for each ¢ = 1,...,n we have B; u = p; u™ D (a) -+
Pin—1u(a) + pinula) + gipo u (b)) + -+ Qin—1 U (b) + i u(b), where the
coefficients p; ;,¢;; are real numbers. Now the BVP for T" and B;,..., B, is
to find for each forcing function f € Cfa,b] a function u € C"[a, b] such that

e 0
Biu=---=B,u=0.

Since we have to find v in dependence on f, what we are really searching
for is an operator GG that maps each forcing function f to the correspond-
ing solution u; such an operator is usually called the Green’s operator of the
BVP (i); see [84] for a detailed treatment. Note that we presuppose regular
BVPs, meaning the solution u exists uniquely for each forcing function f. See
Section 3.5 of [77] for some first results about nonregular BVPs.

18

The Green’s operator can be defined analogously for many other types of BVPs
for ODEs and PDEs, and it can often be described as an integral operator
having a so-called Green’s function g as its kernel. In the case of (i), this is
indeed possible [25], leading to the Green’s operator

b

G f(x) = [glx.€) £(6) de. (i)
Thus one can reduce the search for the operator G to the search of the bivariate
function g, and there is a solution method going along these lines [42]. However,
working directly on the operator level seems more natural to us since the
actual solution of any boundary value problem is always an operator no matter
whether it is given through a kernel function (which is only possible for linear
problems), so we have developed a new method for determining the Green’s
operator (G in a suitable polynomial setting; see the journal article [77].

One crucial idea in our method is to model the key operators of differentia-
tion, integration and boundary values as the indeterminates of a new polyno-
mial ring whose multiplication should be interpreted as operator composition.
Obviously this involves noncommutative polynomials. We need the following
key operators as indeterminates: The differentiation u +— u’ is represented
by the indeterminate D, the antiderivative operator u +— (z — [Fu(&)d§)
by A, its dual u — (z — ff u(§)d€) by B, the left boundary operator
u +— (z — u(a)) by L, and the right counterpart v +— (z — u(b)) by R.
Moreover, we have a parametrized family of multiplication operators M rep-
resenting u — (x — f(x)u(x)). The functions f are assumed to range over an
algebra § of functions; see [75].

Based on a given analytic algebra, we can now introduce the noncommutative
polynomial ring An(F) = C(A, B,D,L, R, M; | f € §), which we have called

the ring of analytic polynomials.
The algorithm for solving a BVP of the type (i) proceeds in four phases:

(1) We compute a projector P € 2n(F) onto the nullspace of T' by using
some trivial linear algebra on the fundamental system of T (the latter is
typically presupposed when solving a BVP).

(2) Employing some Moore-Penrose theory [63], we reduce (i) to the right-
inversion problem GT = 1 — P, which can be solved immediately by
factoring the characteristic polynomial of 7.

(3) We rewrite the resulting expression (1 — P)T* (with 7% € An being
the right inverse) with respect to a carefully selected system of 36 poly-
nomial equations (e.g. Fundamental Theorem of Calculus, product rule,
integration by parts). More precisely, the noncommutative polynomials
represented by the right-hand side of these equations form a noncommu-
tative Grobner basis; see [10,21].

19

(4) The result is a polynomial in An(F) in a normal form that allows to read
off the Green’s function (ii) immediately.

Note the transition of special reasoners: We start with a solving situation in
the theory of inhomogeneous differential equations. Extracting the essential
relations between the key operators, we move to a solving situation in the
theory of noncommutative polynomials—a typical process of algebraization as
described in [76]. Finally, the operator obtained through right inversion is nor-
malized by a special rewrite system, this now being an instance of computing
in the special theory of reducing modulo noncommutative polynomial ideals.

As an example, let us come back to the problem mentioned at the beginning of
this section: solving the boundary value problem for the differential operator
T = D2+ 2D + 1 for the boundary conditions Lu = 0 and Ru = 0 on the
interval [0, 7]. Using the Theorema command

Compute[Green[D2 + 2D + 1, (L, R), by — GreenEvaluator]
we get the output

(1 —a Hfe*x]Ale”] — [e ™ Ale*x] + 7 [e "2] Ale"z]
— 7 e "z B[e"] + 7 e “z] B[e*z].

The multiplication operators My are denoted by [f] for the sake of readability
(in the input and output as well). Note that one can immediately read off the
corresponding term g(z,&) for the Green’s function (ii), which is typically
defined by a case distinction on £ < x and £ > x: The summands with A go
into the first case, those with B into the second; the multiplication operators
before A and B yield terms in x, those after yield terms in £. Proceeding in this
way, one arrives immediately at the Green’s function given in the beginning
of the description of the method.

3.5 Automated Prover for Geometry

Geometric reasoning is another traditional mathematical activity that Theo-
rema supports by providing a domain-specific reasoner. The Theorema geom-
etry prover [73] is designed for constructive geometry problems. Besides the
known proving methods such as Wu'’s characteristic set method [94,23], Gréb-
ner Bases method [8,43,55], and area method [24] we have also included two
new approaches: systematic exploration of geometric configurations and a new
method for proving nontrivial geometry theorems involving order relations,
which we will describe here.

As a first step in the proving process we visualize the geometry statement to

20

be proved using the Mathematica graphical tools. The graphic representation
can use either random or user-specified coordinates for the free points of the
statement. A numerical check of the validity of the statement is performed for
the actual coordinates of the points. To be able to use the proving methods,
the problem has to be transformed from its external form into a specific inter-
nal form. When the algebraic methods are used we separate the coordinates
into independent and dependent variables and find an appropriate coordinate
system by a heuristic algorithm. The obtained polynomials are simplified as
much as possible. When the area method is used the constructions have to be
expressed using simpler constructions for which elimination lemmata exist.

The area method is very convenient for computing expressions involving geo-
metric quantities relative to a specified construction. Using this method we
can explore given geometric configurations [12,72]. Namely, starting from a
knowledge base that specifies some constructions many theorems concerning
parallel and perpendicular lines, segments with proportional length, and trian-
gles with proportional areas are automatically obtained. Further constructions
can be specified in a new knowledge base and the exploration may continue
without recomputing the results already obtained. The results of the inter-
mediate steps can be displayed on request. To prove geometry theorems that
involve order relation (i.e., their algebraic forms contain polynomial inequali-
ties besides polynomial equalities) we combined Collins’s CAD algorithm with
the area method. By this new method (AreaCad method) we first compute
the expressions involved in the inequalities using the area method. This way
we obtain a new problem, equivalent to the original one, which is expressed
only in terms of the independent points of the original constructions. Then, by
applying the CAD method we obtain the result in a reasonable time even for
rather complicated problems. Below we give an example on how the geometry
prover proceeds.

Example 1 We want to prove the proposition: “If r is the radius of the in-
circle and R is the radius of the circumcircle of a triangle then r < R/2.”

We prepare the following input to Theorema:

Proposition[“Tri”, any|O, A, B,C, P, X, Y, O],
incircle[O, A, B, C, P] A midpoint[X, A, B] A midpoint[Y, A, C|A
inter[Oy, tline[X, A, B], tline[Y, A, C]] A circle[Oy, 4] J.
= 4 - seglength[O, P)? < seglength[O;, AJ?]

By the command

Simplify[Proposition[“Tri”], by — GraphicSimplifier]

21

Fig. 4. Example problem for geometry prover.

we obtain a graphical representation and a numerical check of the conclusion.
For this configuration of the points (Fig. 4) the relation 4P0O? < A0, holds.
Now, we invoke the prover:

Prove[Proposition[“Tri”], by — GeometryProver,
ProverOptions — {Method — AreaCAD}|.

The prover translates the proposition into a form that is expressed by special
constructions. For these constructions the prover has built-in eltmination lem-
mata. The lemmata are proved once and for all (by elementary reasoning) and
are used by the prover for the particular construction generated. We used [(p,
vp, ap, and alp to denote the auziliary points needed to express the construc-
tion for a point P. We get the following equivalent problem statement:

{A, B, O} free points

asB L AO, ay € AO (nondegenerate condition A # O)
alaB || Bay B‘D‘Tl: =2 (ndg. cond. B # aa)
agpA 1L BO, ag € BO (ndg. cond. B # O)
algA | Aag, % =2 (ndg. cond. A # ap)

C =AalyNBalg, (ndg. cond. A+# ala, B # alg, Aals }f Balg)

PO 1 AB, Pe AB (ndg. cond. A # B)
acO L AC, ac € AC (ndg. cond. A # C)
XA| AB, AB:% (ndg. cond. A # B)
YA| AC, f‘gy_ : (ndg. cond. A # C)
Y70, L YA, %1 = rog (ndg. cond. Y # A)
XGo, L XA, X)fjl = o9 (ndg. cond. X # A)

Ol - XﬁO1 N Y701 (l’ldg cond. X 7é alA/BOUY 7£ 7017501)('H/ Y0,)

with additional constraints AB° — AP’ > 0, AB*-BP’ > 0, AC? - Aag 7S
0, and AC? — Cac” imply that —A0; - + 4P0O° < 0.
Next, the area method is used to obtain simpler forms of the constraints and of

the conclusion. Finally, we get a new problem equivalent to the original one,
expressed in terms of lengths of segments and oriented areas of triangles, which

22

depends only on the free points. We rewrite the lengths of segments and areas of
triangles using the coordinates of the points in a Cartesian coordinate system
having the z-azes {A, O}. Applying the CAD algorithm to this expression we
obtain that the proposition is true.

3.6 Verification of Imperative Programs

Verification of algorithms and programs is an important part of the theory
exploration process. For instance, the user might want to verify algorithms
or programs she developed before adding them into the library. They can
be written in different styles. In this section we describe the Theorema tools
to generate verification conditions for imperative programs. Similar tools for
functional programs are described in Subsection 3.7.

In the Theorema system we provide a set of commands for defining imper-
ative programs and reasoning about them [45]. The programming syntax is
illustrated by the following example:

Program|“Division”, Div[| x, | y, T rem, T quo],

quo := 0; rem := x; while[y < rem, rem :=rem — y; quo := quo + 1]).

Further information on the program can be given in the “while” construct by
the optional arguments “Invariant” and “TerminationTerm”. Additionally, one
may express the specification of the program in the usual Theorema syntax:

Specification[“Division”, Div[| z, | y, T rem, T quo],

Pre — ((z > 0) A (y > 0)), .

Post — ((quoxy+rem =x) A (0 < rem < y))

The verification condition generator that we provide uses for such programs
Hoare Logic and the weakest precondition strategy [32]. The formulae pro-
duced are stored in a form directly understood by the reasoners of Theorema.
Therefore, both the formulae and the proofs (generated by Theorema) are
shown in a style meant to ease the understanding of correctness arguments.
Failed proofs can give useful hints for modifying the program or the specifica-
tion, or for adding appropriate knowledge. Furthermore, one can use Theorema
reasoners with implicit knowledge about the used domain (see Subsection 3.1,
for example). This makes proofs more compact and readable, in contrast to
proving in pure predicate logic with explicit assumptions.

While the work outlined above is practical and experimental, we are making
progress on a more challenging aspect by approaching the problem of generat-

23

ing invariants of while-loops. We believe that the effectiveness of automated
verification of (imperative) programs is sensitive to the ease with which invari-
ants, even trivial ones, can be (partially) automatically deduced, thus relieving
the programmer (or the maintainer) of many tedious low-level tasks.

Our approach to solving this problem combines the weakest precondition strat-
egy with combinatorial and algebraic methods for detecting properties of the
variables modified in the loop. Although pioneered quite early in the commu-
nity [33], this idea has not received much attention until recently in works
investigating possible uses of Grobner Bases techniques [74]. Our implementa-
tion [41,48] proceeds as follows: First, the recurrence equations expressing the
values of the variables are extracted from the body of the loop. In the example,
these are quoy = 0, quog1 — quog = 1, remg = x, and remy1 — remy = —y,
where k is a new variable representing the current iteration of the loop. Next, if
the equations are independent (as in our example) or not mutually dependent,
they are solved by geometric series manipulations or by the Gosper-Zeilberger
algorithm; see, e.g. [36]. In the latter case we use the Theorema version of the
Paule-Schorn implementation of this algorithm [64] to produce the closed-form
quog = 04k, remy = x—k=y. We then eliminate k by a call to an appropriate
routine, obtaining rem = x — quo x y as an invariant for the loop. In addition
to the generated invariants, there might be other invariant properties (linear
inequalities, modular expressions, etc.) that still have to be given by the user.
The generated and user-asserted invariants are then used together with other
information obtained in the verification process to be able to apply the weakest
precondition strategy. Moreover, from the explicit expressions of the variables,
one is able to detect the termination term rem — y, and also to actually com-
pute the number of iterations, by solving on k. If the equations are mutually
dependent (as in a recursive program for computing the Fibonacci numbers),
we apply a more sophisticated technique of generating functions [85] which is
also able to generate the explicit expression of the values of the variables.

These techniques allow the automatic generation of loop invariants and ter-
mination terms for a large class of examples. We are currently investigating
the extension of our system with techniques that use Grobner Bases and with
methods for handling nested loops [48].

3.7 Verification of Recursive Functional Programs

We present here (on the basis of an example) a practical approach to the auto-
matic generation of verification conditions for functional recursive programs,
which complements the work on the synthesis of functional programs and on
the verification of imperative programs described above.

24

Consider the following program schema:

Sl < Q]
Clz, F[R[z]]] < otherwise

Flz] =

with the precondition Ir[x] and the postcondition Op|x, y| as specification. To
verify such a program we can use one of the theories that model the notion
of computation; see [57] for a survey. However, in the context of automatic
reasoning, one needs the theory of computation formalized as available knowl-
edge for the used automatic reasoning system. The method presented here
aims at generating first-order verification conditions which depend only on
the knowledge relevant to the domain of the functions and predicates used
in the program (we call this the local theory). The correctness proof of the
method itself requires (only once) the use of a theory of computation—in our
case the Scott fixpoint theory [29].

The first group of the generated verification conditions ensures that the inputs
to each function satisfy the respective precondition:

o] (Q[z] = Is[z]) o (—Qlx] = Ir[R[z]))
o] (—Qlz] = Iglz]) ot] (=Qlz] = Y (Or[Rlz],y] = Iclz,y]))

The second group of the generated verification conditions ensures that the
produced output satisfies the postcondition of F"

(Qlz] = Orlz, Slal])

z:Ip|z]

(=Qlz] =V (Or[R[z],y] = Orlz,Clz,y]]))

z:Ip|z]

In fact, using the Scott induction principle, one can prove that the conditions
above are sufficient for the partial correctness of F', under the assumption that

S, C, and R are totally correct; see [70]. Finally, the condition IV[} (F' | z)
TR |T

ensures the totality of F', where F’ is defined as

0 < Q[x]

F'la] =
F'[R[z]] < otherwise

and F’ | x means that F' terminates on x and has to be expressed using the

fixpoint theory of functions. Note that the totality condition is not expressed

in the local theory alone. However, it only depends on () and R, and, hence,

can be used for an entire class of programs. We are studying the possibility of

25

expressing this condition in the local theory (see [41]), as well as the application
of this principle to more complex recursive schemata.

3.8 Interface to External Systems

Theory exploration gives rise to different reasoning tasks that normally require
the application of different techniques. Therefore it is handy to have access
to several systems that are specialized in different, complementary reasoning
methods. Besides its “internal” provers, solvers, and simplifiers, Theorema can
use “external” automated reasoning systems via a special interface. The inter-
face links Theorema with the external provers Bliksem [30], EQP [59], E [80],
Gandalf [87], Otter [58], Scott [38], Setheo [56], Spass [90], Vampire [71], Wald-
meister [6], and with the finite model and counterexample searcher Mace [60].
Scott, Setheo, and Waldmeister are linked to Theorema indirectly: The prov-
ing problem given in Theorema syntax is first translated into the TPTP for-
mat [86], and then, by the tptp2X converter, into the syntax of the external
prover. The link with the other provers is direct, translating the proving prob-
lem from Theorema to the external system format without any intermediate
routine. Indirect links are easy to establish while direct links are more flexible
and give the user more control. The output of the external systems is, nor-
mally, not translated back to the Theorema syntax. (The only exception is the
call to Otter.) Instead, the user is given the information whether the external
system succeeded in finding a proof for the given problem, or, as in the case of
calls to Mace, whether a countermodel was found. The output of the external
provers can still be seen, in the respective prover’s own format, by a click on
a hyperlink in the Theorema proof notebook ! .

The design of the interface allows combining various external systems with
each other or with internal Theorema provers in a similar way the internal
provers are combined with each other. From the user’s point of view, within
a Theorema session, there is no difference between calling an internal prover
or an external system.

Besides the external deduction systems, Theorema is linked to TPTP [86]
which is a comprehensive library of the automated theorem proving test prob-
lems that are available today. The TPTP2Theorema converter, written in
Mathematica, translates the library problems into Theorema format. The con-
verter works in an interactive mode. Upon calling, it opens a notebook with
the description of steps necessary to convert TPTP problems into the Theo-
rema format. The user has just to follow the corresponding links for each step.
It is possible to translate the entire library, or separate files or directories.

I Notebooks are part of Mathematica front end. They are complete interactive
documents combining text, tables, graphics, calculations, and other elements.

26

The translated problems are stored as Mathematica notebooks. The structure
of such a notebook follows the structure of the original problem files, having
sections for the header, theory (the axioms from the original file, the included
axioms and assumptions) and conjectures. The notebooks also contain a title
part with links to the TPTP web page and documentation; a description of
the problem name, form and domain; a section with conjectures formulated in
Theorema syntax, problem status explanation, and the corresponding Prove
statement. In addition, a separate TPTP browser notebook is created. It shows
the contents of translated TPTP library, with the directory and file names and
hyperlinks to their locations, and brief explanations of each problem or axiom
file. Detailed description of the interface can be found in [54].

4 Organizational Tools

This section gives an overview of new Theorema tools that help the user to or-
ganize the theory exploration process. These tools do not explicitly contribute
to the reasoning power of the system, but drastically improve its usability. We
describe here the focus windows technique for proof presentation, the label
management tool to organize knowledge bases, and “logicographic symbols”
tool that allows the user to introduce arbitrary new mathematical symbols.

4.1 Focus Windows

Understanding the outcome of a reasoner is an important step in theory ex-
ploration. For this reason (from the outset), Theorema emphasized attractive
proof presentation. Theorema proofs are designed to resemble proofs done by
humans, i.e., they contain formulae and explanatory text in English. Usually
in textbooks, mathematical proofs are presented as linear sequences of proof
steps. In long proofs the formulae used in a proof step occur, typically, a cou-
ple of lines, paragraphs, or even pages distant from the place in the text where
the proof step is executed. Reference to the formulae used is traditionally done
by labels and the reader has to jump back and forth between the formulae
referenced and the proof step in which they are needed. This is unpleasant
and makes understanding of proofs quite difficult even when the proofs are
nicely structured and well presented.

Theorema provides various tools to help the reader browse the proofs: nested
brackets at the right-hand window margin make it possible to contract entire
subproofs to just one line; various color codes distinguish (temporary) proof
goals from formulae in the (temporary) knowledge base; references to formulae
are hyperlinks which will display the formulae referenced in small auxiliary

27

& Transformation Window

Y

Tree representation]
[J

® & 0 0000 060 00

New assumptions:

Ooe e
Current goal:]
(18.2) (alg, alg) € Rq]
Assumptions:]
(2) is-reflexive[Rg]] -
(Definition (is reflexive)) ; (is-reflexive [R] 1o V¥ (xeX=>(x, x) ¢ R))]
X

(25) v (xeX>(x, x) €Rp)

All assumptions]]

Next | [Previocus | | Done |

Fig. 5. A Focus Window

windows; etc. By using hyperlinks as references to formulae, the readers of
Theorema proofs can avoid back and forth jumps in the proof to understand
the validity of a specific step. Still, reading and understanding linear proofs
may be difficult even with these tools and similar tools (e.g. LQui [82]).

Focus windows provide a new proof presentation technique to overcome this
problem. This technique can be viewed as a systematic extension of the idea
of using hyperlinks to reference formulae. It can be implemented for any proof
assistant system that uses formal objects for proofs, i.e., a data structure that
contains information on which formulae are used and which are produced in
a given step, for each step in the proof. This means that also systems that
do proof checking could make use of this technique. We emphasize that The-
orema’s focus windows technique is not a reasoning tool. It is a presentation
method: the successful or unsuccessful proof attempts are showed to the user
in a style that helps her gain mathematical insight and knowledge.

The idea of the focus windows technique is simple but quite efficient: Given
a proof step in a proof, the focus windows tool analyzes which formulae are
used and which are produced in the respective step (the “relevant” formulae).
Correspondingly, a window is composed that shows exactly these formulae.
The window also contains buttons for moving to and analyzing the next or
previous step in the proof. For the steps that branch to two or more subproofs
the subsequent windows are displayed in contracted form and the user can
decide which one to open next. The focus windows method allows to study
proofs in a stepwise manner. Each step of the proof is shown to the user in
two phases: an attention phase and a transformation phase. The focus window
corresponding to an attention phase (the Attention Window) does not show
the user the formulae inferred at the inspected proof step. These are shown in
the focus window after the transformation phase (the Transformation Window,
see example in Fig. 5). This window has

28

— a “goal area” in which the current goals are shown,

— an “assumptions area” in which the “relevant” assumptions are shown,

— a “proof tree area” in which the entire proof tree is displayed in a schematic,
simplified form,

— an area that presents all the assumptions that are available (the “all as-
sumptions area”),

— and a “navigation area” that helps the user navigate in the proof by clicking
on various buttons.

The focus windows presentation technique can be used also for incomplete or
incorrect proofs, making it also a useful tool for prover debugging. Details of
the technique can be found in [67].

4.2 Label Management

Theory exploration usually involves a large number of formulae. In the build-
up of completely formalized mathematical knowledge bases, the systematic de-
sign and processing of structured labels (i.e., individual labels like “(1)”, “(2)”
or “(associativity)” etc., hierarchical section headings, key words like “defin-
ition” and “theorem”, names of files, etc.) becomes vital to the automated
structuring and restructuring of collections of formulae as input to formal rea-
soning tools like provers, simplifiers, algorithm verifiers, model checkers, etc.
Consequently, we need algorithmic tools that handle all types of labels and
allow us to partition and combine, structure and restructure mathematical
knowledge bases according to the structural information provided by the hi-
erarchical labels.

We emphasize that, in our view, labels do not intend to have any logical
meaning or functionality. This is in contrast to the goal of “annotations”, etc.
as, for example, in [22,46,79], which convey at least part of the semantics. In
our view, the semantics of formulae (in particular predicate logic formulae)
is exclusively defined by their inclusion into the context of collection of other
formulae (mathematical knowledge bases). The functionality of labels is purely
organizational.

The Theorema system provides tools for the automatic assignment of labels
to formulae and collections of formulae which are stored into notebooks cre-
ated with respect to a set of few, simple, and intuitive rules. We call such
notebooks “Theorema notebooks”. Furthermore, the users can identify and
combine, in various ways, mathematical knowledge stored in Theorema note-
books, without going into the “semantics” of the formulae [67-69]. The labels
assigned to knowledge accumulated in a Theorema notebook are automati-
cally generated in a hierarchical way. From the information provided by the

29

{3 LenghtOfTuples.nb

Length of Tuples

LenTpl]
Description

Having the notions of Tuples and Natural Numbers we investigate the properties of the
length of tuples

LenTpl1
Included Blocks
We need the Peano axioms ("0’ and "successor’), and the definition of '+ and its properties:]
Include ["NN:Basic.1", "NN:Basic.2", "NN:Basic.4.2"] j
‘We need all the knowledge in the "Basic Notions: Tuples” notebook.]
Include ["BN:Tuples”]]
LenTpl.2
The Definition of Tuple Length
LenTpl.2.1
1<>t=0
¥ D=1t
XX, ¥
LenTpl.3
Propositions
1

Tuple Length and Concatenation
LenTpl.3.1
Y LR D=1 @I+ ®D
%, ¥
Length of a tuple counted from right

LenTpla.2
Y OUCER p =@
R, ¥

Tuple Length and Prepend

Fig. 6. A Theorema notebook.

user (section headings, notebook title, etc.) the tool automatically generates
composite labels for each section, subsection, etc., and individual formula in
the notebook. These composite labels are generated in three variants which
we call long, short, and decimal composite labels, respectively.

For example, Fig. 6 shows a Theorema notebook that collects formulae ex-
pressing knowledge about length of tuples. The formulae in this notebook are
part of the theory exploration about tuples. Individual formulae and groups
of formulae have certain labels attached to them. In the figure we can see
their digital variant: the group of formulae with the header “Propositions” ob-
tain automatically the label “LenTpl.3”, while the individual formulae in the
group obtain the labels “LenTpl.3.17, “LenTpl.3.2”, etc. The long variant of,
e.g. “LenTpl.2.1”7 is “LenTpl.The Definition of TupleLength.1”. The user can
also assign explicit labels to (groups of) formulae. The notebook in Fig. 6 also
refers to (parts of) other Theorema notebooks, namely parts of the Theorema
notebook collecting formulae about natural numbers (Include[“NN:Basic.1”,
“NN:Basic.2”, “NN:Basic.4.2”]) and the notebook that contains basic notions
about tuples (Include[“BN:Tuples”]).

The label management tools operate on libraries (collections) of Theorema
notebooks. The tools are realized such that labels assigned to (groups of)
formulae are guaranteed to be unique within a library of Theorema notebooks.
Knowledge stored in Theorema notebooks can now be referenced by labels and
used, for example, for calling reasoners:

30

Prove[“LenTpl.3.1”, using — (“BN:Tuples”, “NN:Basic”), by — ...].
4.3 Logicographic Symbols

Two-dimensional syntax in Theorema is very flexible: By the use of the front
end of the Mathematica system, which is the programming environment for
the implementation of Theorema, programmable syntax comes for free (to a
certain extent). However, the arsenal of mathematical symbols is limited by
what Mathematica offers. The new Theorema tool of “logicographic symbols”
goes a significant step further: With this tool we are now able to design any new
symbol—even complicated ones—with arbitrary arity and slots for arguments
at arbitrary position in a two-dimensional grid. These symbols can be nested
to arbitrary depth. With an appropriate design, these symbols may convey the
intuitive meaning of mathematical concepts. As an example, take the notion
of limit[f, a, §, M| (or similar notions that occurred in previous sections). This
notion can be defined in Theorema by

limit[f, a, 0, M] @}Z(n > M = |f[n] —a] <9).

In Theorema, we may now design a new graphical symbol for this notion by
using the graphics tools of Mathematica (or just by taking a hand-drawing
and making it a Mathematica object) and equip it with slots (boxes) for the
arguments, like, for example, the new symbol

6 ..

Now, by the following declaration

Logicographic-Declaration|“limit symbol”, any|f, a, o, M],
1] ~

a

= limit[f, a, 0, M]]

this graphical symbol can interchangeably be used instead of the 4-ary pred-
icate symbol “limit” and will now be available for both input and output

31

of formulae (for example within proofs generated by the Theorema provers).
Internally, formulae with such “logicographic symbols” are just ordinary The-
orema (i.e., predicate logic) formulae with the logicographic symbols replaced
by the respective function or predicate constants that appear in the declara-
tion. For example, one can substitute arbitrary terms for the four arguments
of the symbol:

a+b

f+'g

max[M, N]

In other words, formulae with logicographic symbols are completely “logical”
as far as their meaning within a mathematical knowledge base is concerned
but, at the same time, they also convey the intuitive (“graphical”) meaning of
the formulae. Hence the name “logicographic”. Although logicographic sym-
bols do not add anything to the logical expressiveness of the system, they
may enhance readability and ease understanding of mathematical texts signif-
icantly. The implementation in the frame of Theorema, together with exam-
ples and other tools for enhancing the readability of formulae (e.g. a method
of shading two-dimensional subformulae of formulae instead of using nested
parentheses) is described in [62].

5 Related Work

In this section we first compare Lazy Thinking with other approaches to pro-
gram/algorithm synthesis. Next, we give a brief overview of some other sys-
tems that, like Theorema, are designed as mathematical assistants.

The survey paper [3] considers three methods of program synthesis: construc-
tive/deductive, schema-based, and inductive synthesis. Lazy thinking is similar
to the deductive synthesis, which uses deduction to synthesize programs by
solving unknowns during the applications of rules. In the context of inductive
proof planning in [49], a proof of the correctness of an algorithm is set up, and
the unknown parts of the algorithm are replaced with metavariables, which
will be instantiated as the proof planning progresses. Proof critics [39] are
used to overcome failure of proofs and generate new lemmata, by analyzing
the failure of rippling (a method to guide rewriting that tries to eliminate
the structural differences between the induction hypothesis and the induction
conclusion). Lazy thinking is similar to this approach in that it also attempts
to prove the correctness conjecture, and it uses the failure of the proof to

32

generate conjectures and complete the proof. However, Lazy Thinking takes
into consideration failing proof situations (temporary assumptions and cur-
rent goal) to generate its conjectures. In the context of Lazy Thinking the
algorithm schemata are similar to those in the schema-based synthesis meth-
ods, with a template that captures the flow of the program and specifications
(constraints) on the ingredients of the template.

In [34] the authors use a notion of generic correctness of schemata (modulo
correctness of subalgorithms in the schema)—steadfastness—and programs
are synthesized by transforming steadfast schemata into correct programs.
Similarly, the preprocessing of Lazy Thinking, as described in [18], ensures a
notion of correctness of a schema.

One of the most successful approaches to schema-based synthesis is that of
Smith [83], who uses a category theory framework to represent schemata and
transformations. This setting ensures that transformations are correct. More-
over, a large library (hierarchy) of algorithm schemata is available and used to
guide the synthesis. Preprocessing Lazy Thinking gives a similar transforma-
tional flavor to our method. It allows to take offline some of the more difficult
proof obligations: We apply once and for all Lazy Thinking and then we just
have to show that the concrete problem and algorithm schema selected are
instances of a problem and an algorithm schema that have been preprocessed.

A distinctive feature of the Lazy Thinking method (for algorithm synthesis)
is that it is applied in the context of systematic, computer-supported theory
exploration, being one of the tools available for theory exploration. Therefore,
the programs/algorithms are expressed in the Theorema language frame and
the implementation of the Lazy Thinking mechanism is integrated with the
Prove-call of Theorema.

As a mathematical assistant, Theorema shares its research goals with systems
designed for supporting formalization of mathematics, like Coq [4], HELM [1],
Mizar [88], Nuprl [27], and Qmega [81], just to name a few. Of them the Qmega
system 1is closest to Theorema. {dmega is a mixed-initiative system with the
ultimate purpose of supporting theorem proving in mathematics and mathe-
matics education. It contains a proof-planner based on an extended STRIPS
algorithm. Furthermore, like Theorema, 2mega aims at integrating computer
algebra support into proving. In the integration {2mega uses the mathemati-
cal knowledge implicit in the computer algebra system to extract proof plans
that correspond to the mathematical computation in the computer algebra
system. The proof-search engine in Qmega uses methods which fully spec-
ify the input/output behavior of the tactics they are associated with, to the
point where it is possible to automatically generate the tactic from its speci-
fication (method). This is a very elegant approach, which has the advantage
that the proof-planning mechanism may manipulate methods (i.e., adapting

33

general ones to special mathematical domains) and the corresponding tactics
will then be automatically generated from the methods thus “synthesized”.
However, the situation in Theorema is quite different: grouped inference rules
have a heuristic of their own, which can be modified in order to enable them
to handle specific classes of proofs. They perform the parts of the proof which
“they know how to handle”. Hence, Theorema emphasizes more on automated
proving while (2mega basically proceeds with goal transformation using tactics.
They differ also on the type systems of the underlying logic that is untyped
in Theorema, and has decidable nondependent types in {2mega.

Coq and Nuprl implement variants of intuitionistic type theory: calculus of
inductive constructions in Coq, and computational type theory in Nuprl. Both
systems have a proof checking kernel, and use tactics to transform goals. Coq
and Nuprl, based on constructive logic, are very well suited for reasoning about
computation because they provide as primitive notions ways of constructing
primitive recursive functions. However, doing mathematics in such a system is
most of the time quite different from the mathematics one reads in textbooks.
Both Coq and Nuprl come with a large mathematical library. Theorema in
its own does not have such a large collection, but it can access the algorithm
library of Mathematica and the proving problem library TPTP.

As a proof-checking system, Mizar offers mathematicians the possibility to
develop theories by defining new concepts and proving theorems in a strictly
formalized manner, where each step of the formalization is checked by the
system. It has the largest library by far: more than 40 thousand theorems.

The HELM project aims at creating electronic library of mathematics. It tries
to integrate the current tools for the automation of formal reasoning and the
mechanization of mathematics (proof assistants and logical frameworks) with
the most recent technologies for the development of web applications and
electronic publishing, eventually passing through XML. The final goal is the
development of a suitable technology for the creation and maintenance of a
virtual, distributed, hypertextual library of formal mathematical knowledge.

A more detailed comparison of systems for formalization of mathematics can
be found in [91] where fifteen such systems are compared: HOL, Mizar, PVS,
Coq, Otter, Isabelle, Agda, ACL2, PhoX, IMPS, Metamath, Theorema, Lego,
Nuprl, and Q2mega.

6 Conclusion and Future Work

We presented our view on mathematical theory exploration and described
methods and tools developed in the Theorema project to assist mathemati-

34

cians in exploring theories. As an example of a method we presented Lazy
Thinking that is used in the algorithm synthesis stage of theory exploration.
The tools comprise reasoners (provers, simplifiers, solvers) for general and spe-
cial theories, and the tools to organize and reorganize the exploration process.
We gave a general overview, details can be found in the cited publications of
the Theorema group.

Currently we are working on a major redesign of the Theorema system that
takes into account the experience we gained by using the system for the ex-
perimental exploration of various theories. A main lesson we learned from this
is that typical users of Theorema (“working mathematicians”) do not only
want to use the reasoners of the system as “black boxes” (although most of
these reasoners provide various options to influence the way they work on con-
crete problems). Rather, typical users want to modify or extend the available
reasoners or even want to implement their own ideas for computer-supported
reasoning while they are working on the exploration of particular theories.
For making this possible, the code of the reasoners must be open and, ideally,
they should be programmed in the same language in which the mathemati-
cal theories are presented. Moreover, it also should be possible to prove the
correctness of new reasoners within the system. This means that the object
language should be represented in the meta-language, i.e., in the case of The-
orema, in (the Theorema version of) predicate logic. It is clear that this needs
the implementation of a kind of logical “reflection”. Theoretically, it is known
how this can be done; see, e.g. [37]. However, it is a nontrivial task to provide
reflection in an attractive and user-friendly way that allows to migrate easily
between object and meta level during a theory exploration session. We did
not yet find a satisfactory answer for this problem.

At the same time, we are undertaking a couple of major case studies of theory
exploration: the build-up of a verified knowledge base for Grobner Bases the-
ory that combines the nonalgorithmic and algorithmic aspects of the theory:;
a systematic exploration of the theory of Hilbert spaces of which the work on
the symbolic solution of differential equations described in this paper is only
one part; the exploration of the theory of tuples for which the work on the
algorithmic synthesis of sorting algorithms is a first step; and using Theorema,
in particular the PCS and S-decomposition provers, in the undergraduate cal-
culus education in analysis. In order to avoid misunderstandings we want to
emphasize that the goal of the Theorema system is computer support for the
(95% of) “easy” reasoning during the exploration of mathematical theories
and not the automated invention of “difficult” or ingenious points in a theory
or in a proof. Of course, the notion of “easy” and “difficult” is relative: What
seemed difficult twenty years ago, by new reasoning techniques, is easy now
and what seems to be difficult now may become easy in twenty years’ time.
For example, the new method in Subsection 3.4, based on noncommutative
Grobner Bases, allows to “invent” Green theorems just by one computation

35

modulo a Grobner basis for operator equalities, where each of the inventions
needed human ingenuity so far.

Acknowledgements

Theorema was supported by the Austrian Science Foundation (FWF) un-
der the projects SFB F1302 and SFB F1322, the EU “Calculemus” project
(HPRN-CT-2000-00102), the regional government of Upper Austria under
the “Prove” project, and the Johannes Kepler University of Linz under the
“CreaComp” project. The program verification project within Theorema is
supported by the Austrian Ministry of Education, Science, and Culture, the
Austrian Ministry of Economy and Work, and by the Romanian Ministry of
Education and Research in the frame of the project “e-Austria Timigoara”.

References

[1] A. Asperti, L. Padovani, C. Sacerdoti Coen, F. Guidi, and I. Schena.
Mathematical knowledge management in HELM. Annals of Mathematics and
Artificial Intelligence, 38(1):27-46, 2003.

[2] L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure.
In H. Ait-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic
Structures, volume 2, pages 1-30. Elsevier Science, 1989.

[3] D. Basin, Y. Deville, P. Flener, A. Hamfelt, and J. F. Nilsson. Synthesis of
programs in computational logic. In M. Bruynooghe and K.-K. Lau, editors,
Program Development in Computational Logic, volume 3049 of LNCS, pages
30-65. Springer, 2004.

[4] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2004.

[5] W. Bledsoe. Challenge problems in elementary analysis. J. Automated
Reasoning, 6:341-359, 1990.

[6] A. Buch and T. Hillenbrand. Waldmeister: Development of a high preformance
completion based theorem prover. SEKI-report SR-96-01, University of
Kaiserslautern, Germany, 1996.

[7] B. Buchberger. An Algorithm for Finding the Basis Elements in the Residue
Class Ring Modulo a Zero Dimensional Polynomial Ideal. PhD thesis,
Mathematical Institute, University of Innsbruck, Austria, 1965. in German.

36

[8] B. Buchberger. Grobner-bases: An algorithmic method in polynomial ideal
theory. In N. K. Bose, editor, Multidimensional Systems Theory, pages 184—
232. Reidel Publishing Company, Dodrecht, 1985.

[9] B. Buchberger. Symbolic computation: Computer algebra and logic. In
F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems, volume 3
of Applied Logic Series, pages 193-219. Kluwer Academic Publishers, 1996.

[10] B. Buchberger. Introduction to Grobner Bases. In [21], pages 3-31, 1998.

[11] B. Buchberger. Theory exploration versus theorem proving. In A. Armando and
T. Jebelean, editors, Proc. of Calculemus’99, volume 23 of ENTCS. Elsevier,
1999.

[12] B. Buchberger. Theory exploration with Theorema. Analele Universitatii din
Timisoara, Ser. Matematica-Informatica, XXXVIII(2):9-32, 2000.

[13] B. Buchberger. Algorithm invention and verification by Lazy Thinking. In [65],
pages 2-26, 2003.

[14] B. Buchberger. Algorithm-supported mathematical theory exploration: A
personal view and strategy. In [16], pages 236-250, 2004.

[15] B. Buchberger. Towards the automated synthesis of a Grobner bases algorithm.
RACSAM (Review of the Spanish Royal Academy of Sciences), 98(1):65-75,
2004.

[16] B. Buchberger and J. A. Campbell, editors. Proc. of the 7th Int. Conf. on
Artificial Intelligence and Symbolic Computation, AISC’04, volume 3249 of
LNAI Hagenberg, Austria, 2004. Springer.

[17] B. Buchberger and A. Craciun. Algorithm synthesis by Lazy Thinking:
Examples and implementation in Theorema. In F. Kamareddine, editor, Proc.
of the Mathematical Knowledge Management Workshop, Edinburgh, volume 93
of ENTCS, pages 24-59. Elsevier, 2003.

[18] B. Buchberger and A. Craciun. Algorithm synthesis by Lazy Thinking: Using
problem schemes. In [66], pages 90-106, 2004.

[19] B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru,
and W. Windsteiger. The Theorema project: A progress report. In [44], pages
98-113, 2000.

[20] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru.
A survey of the Theorema project. In W. Kichlin, editor, Proc. of the Int.
Symposium on Symbolic and Algebraic Computation ISSAC’97, pages 384—-391.
ACM Press, 1997.

[21] B. Buchberger and F. Winkler. Grébner Bases and Applications. Cambridge
University Press, Cambridge, UK, 1998. Proc. of the Int. Conf. “33 Years of
Grobner Bases”, 1998, RISC, Austria, London Mathematical Society Lecture
Note Series, Vol. 251.

37

[22] O. Caprotti and D. Carlisle. OpenMath and MathML: Semantic mark up for
mathematics. ACM Crossroads, Special Issue on Markup Languages, 6(2), 1999.
ACM Press.

[23] S. C. Chou. Mechanical Geometry Theorem Proving. Reidel, Dordrecht Boston,
1975.

[24] S. C. Chou, X. S. Gao, and J. Z. Zhang. Automated production of traditional
proofs in euclidian geometry. In Proc. of 8th IEEE Symposium on Logic in
Computer Science, pages 48-56. IEEE Computer Society Press, 1993.

[25] E. A. Coddington and N. Levinson. Theory of Ordinary Differential Equations.
McGraw—Hill Book Company, New York, 1955.

[26] G. E. Collins. Quantifier elimination for real closed fields by cylindrical
algebraic decomposition. In Second GI Conf. on Authomata Theory and Formal
Languages, volume 33 of LNCS, pages 134-183. Springer, 1975.

[27] R. Constable. Implementing Mathematics Using the Nuprl Proof Development
System. Prentice Hall, 1986.

[28] A. Craciun and B. Buchberger. Preprocessed Lazy Thinking: Synthesis of
sorting algorithms. Technical Report 04—-17, RISC, Linz, Austria, 2004.

[29] J. W. de Bakker and D. Scott. A theory of programs. In IBM Seminar, Vienna,
Austria, 1969.

[30] H. de Nivelle. Bliksem resolution prover. Available to download from
http://wuw.mpi-sb.mpg.de/ " nivelle/software/bliksem/, 1999.

[31] J. Denzinger and S. Schulz. Analysis and representation of equational proofs
generated by a distributed completion based proof system. SEKI-report SR-
94-05, University of Kaiserslautern, Germany, 1994.

[32] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[33] B. Elspas, M. W. Green, K. N. Lewitt, and R. J. Waldinger. Research in
interactive program——proving techniques. Technical report, Stanford Research
Institute, Menlo Park, California, USA, May 1972.

[34] P. Flener, K.-K. Lau, M. Ornaghi, and J. D. C. Richardson. An abstract
formalization of correct schemas for program synthesis. J. of Symbolic
Computation, 30(1):93-127, 2000.

[35] H. Ganzinger, editor. Proc. of the 16th Int. Conf. on Automated Deduction,
CADE’99, volume 1632 of LNAI, Trento, Italy, 1999. Springer.

[36] R. W. Gosper. Decision procedures for indefinite hypergeometric summation.
Proc. of the National Academy of Science, USA, 75(5-6):40-42, 1978.

[37] J. Harrison. Metatheory and reflection in theorem proving: A survey and
critique. Technical Report CRC-053, SRI Cambridge, UK, 1995.

38

[38] K. Hodgson and J. Slaney. Semantic guidance for saturation-based theorem
proving. TR-ARP 04-2000, Automated Reasoning Project, Australian National
University, Canberra, Australia, 2000.

[39] A. Ireland and A. Bundy. Productive use of failure in inductive proof.
J. Automated Reasoning, 16(1-2):79-111, 1996.

[40] T. Jebelean. Natural proofs in elementary analysis by S-Decomposition.
Technical Report 01-33, RISC, Linz, Austria, 2001.

[41] T. Jebelean, L. Kovécs, and N. Popov. Experimental program verification in
Theorema. In Proc. of the 1st Int. Symposium on Leveraging Applications of
Formal Methods, ISOLA 04, 2004.

[42] E. Kamke. Differentialgleichungen und Losungsmethoden, volume 1. Teubner,
Stuttgart, 10th edition, 1983.

[43] D. Kapur. Using Grobner Bases to reason about geometry problems. J. Symbolic
Computation, 2:399-408, 1986.

[44] M. Kerber and M. Kohlhase, editors. Proc. of Calculemus’2000, St. Andrews,
UK, 2000.

[45] M. Kirchner. Program verification with the mathematical software system
Theorema. Technical Report 99-16, RISC, Linz, Austria, 1999.

[46] M. Kohlhase. OMDoc: An infrastructure for OpenMath content dictionary
information. ACM SIGSAM Bulletin, 34(2):43-48, 2000.

[47] B. Konev and T. Jebelean. Using meta-variables for natural deduction in
Theorema. In [44], pages 160-175, 2000.

[48] L. Kovécs and T. Jebelean. Automated generation of loop invarinats by
recurrence solving in Theorema. In [66], 2004.

[49] I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and
induction. J. Automated Reasoning, 16(1-2):113-145, 1996.

[50] A. M. Krall. Applied Analysis. D. Reidel Publishing Company, Dordrecht, 1986.

[51] T. Kutsia. Equational prover of Theorema. In R. Nieuwenhuis, editor, Proc. of
the 14th Int. Conf. on Rewriting Techniques and Applications, RTA’03, volume
2706 of LNCS, pages 367-379, Valencia, Spain, 2003. Springer.

[52] T. Kutsia. Solving equations involving sequence variables and sequence
functions. In [16], pages 157-170, 2004.

[53] T. Kutsia and B. Buchberger. Predicate logic with sequence variables and
sequence function symbols. In A. Asperti, G. Bancerek, and A. Trybulec,
editors, Proc. of the 3rd Int. Conf. on Mathematical Knowledge Management,
volume 3119 of LNCS, pages 205-219. Springer, 2004.

[54] T. Kutsia and K. Nakagawa. An interface between Theorema and external
automated deduction systems. Technical Report 00-29, RISC, Linz, 2000.

39

[55] B. Kutzler and S. Stifter. On the application of Buchberger’s Algorithm to
automated geometry theorem proving. J. Symbolic Computation, 2:389-397,
1986.

[56] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. Setheo: A high-performance
theorem prover. J. Automated Reasoning, 8(2):183-212, 1992.

[57] J. Loeckx and K. Sieber. The Foundations of Program Verification. Teubner,
second edition, 1987.

[58] W. McCune. Otter 3.0 reference manual and guide. ANL-TR 94/6, Argonne
National Laboratory, Argonne, USA, 1994.

[59] W. McCune. EQP. Available from http://www.mcs.anl.gov/AR/eqp/, 1999.

[60] W. McCune. Mace 2.0 user manual and guide. Technical memorandum
ANL/MCS-TM 249, Argonne National Laboratory, Argonne, USA, 2001.

[61] E. Mellis and J. Siekmann. Knowledge-based proof planning. Artificial
Intelligence, 115(1):65-105, 1999.

[62] K. Nakagawa. Supporting User-Friendliness in the Mathematical Software
System Theorema. PhD thesis, RISC, Johannes Kepler University, Linz,
Austria, 2002.

[63] M. Z. Nashed, editor. Generalized Inverses and Applications, Proc. of an
Advanced Seminar Sponsored by the Mathematics Research Center, New York,
1976. Academic Press.

[64] P. Paule and M. Schorn. A Mathematica version of Zeilberger’s algorithm for
proving binomial coefficient identities. J. Symbolic Computation, 20(5—6):673—
698, 1995.

[65] D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, editors. Proc. of
SYNASC’03, 5th Int. Workshop on Symbolic and Numeric Algorithms for
Scientific Computing, Timigoara, Romania, 2003. Mirton.

[66] D. Petcu, V. Negru, D. Zaharie, and T. Jebelean, editors. Proc. of SYNASC’04,
6th Int. Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, Timigoara, Romania, 2004. Mirton.

[67] F. Piroi. Tools for Using Automated Provers in Mathematical Theory
Ezxploration. PhD thesis, RISC, Johannes Kepler University, Linz, Austria,
August 2004.

[68] F. Piroi and B. Buchberger. An environment for building mathematical
knowledge libraries. In C. Benzmiiller and W. Windsteiger, editors, Proc. of
the first Workshop on Computer-Supported Mathematical Theory Development,
1JCAR’04, pages 19-29, Cork, Ireland, 2004.

[69] F. Piroi and B. Buchberger. Label management in mathematical theories.
Technical Report 2004-16, RICAM, Linz, Austria, 2004.

40

[70] N. Popov. Verification of simple recursive programs: Sufficient conditions.
Technical Report 04-06, RISC, Linz, Austria, 2004.

[71] A. Riazanov and A. Voronkov. Vampire. In [35], pages 292-296, 1999.

[72] J. Robu. Systematic exploration of geometric configurations using Theorema
based on Mathematica. In Proc. of 3rd Int. Workshop on Symbolic and Numeric
Algorithms for Scientific Computing, SYNASC’01, pages 209-216, Timigoara,
Romania, 2001.

[73] J. Robu. Automated Geometric Theorem Proving. PhD thesis, RISC, Johannes
Kepler University, Linz, Austria, 2002.

[74] E. Rodriguez-Carbonell and D. Kapur. Automatic generation of polynomial
loop invariants: Algebraic foundations. In Proc. of the Int. Symposium on
Symbolic and Algebraic Computation, ISSAC’04, pages 266-273, Santander,
Spain, 2004. ACM Press.

[75] M. Rosenkranz. A Polynomial Approach to Linear Boundary Value Problems.
PhD thesis, RISC, Johannes Kepler University, Linz, Austria, September 2003.

[76] M. Rosenkranz. The algorithmization of physics: Math between science and
engineering. In [16], pages 1-8, 2004. Invited talk.

[77] M. Rosenkranz. A new symbolic method for solving linear two-point boundary
value problems on the level of operators. J. Symbolic Computation, 39(2):171—
199, 2005.

[78] M. Rosenkranz, B. Buchberger, and H. W. Engl. A symbolic algorithm for
solving two-point BVPs on the operator. SFB Report 2003-41, Johannes Kepler
University, Linz, Austria, 2003.

[79] P. Sandhu. The MathML Handbook. Charles River Media, 2002.

[80] S. Schulz. E—a brainiac theorem prover. J. AI Communications, 15(2/3):111—
126, 2002.

[81] J. Siekmann and C. Benzmiiller. Omega: Computer supported mathematics.
In S. Biundo, T. Frihwirth, and G. Palm, editors, Proc. of the 27th German
Conf. on Artificial Intelligence, KI’04, volume 3238 of LNCS, pages 3-28, Ulm,
Germany, 2004. Springer.

[82] J. Siekmann, S. Hess, C. Benzmiiller, L. Cheikhrouhou, A. Fiedler, H. Horacek,
M. Kohlhase, K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUI:
Lovely Omega User Interface. Formal Aspects of Computing, 11(3):326-342,
1999.

[83] D. R. Smith. Mechanizing the development of software. In M. Broy and
R. Steinbrueggen, editors, Calculational System Design, Proc. of the NATO
Advanced Study Institute, pages 251-292, Amsterdam, 1999. IOS Press.

[84] I. Stakgold. Green’s Functions and Boundary Value Problems. John Wiley &
Sons, New York, 1979.

41

[85] R. P. Stanley. Differentiably finite power series. Furopean Journal of
Combinatorics, 1(2):175-188, 1980.

[86] G. Sutcliffe and C. Suttner. The TPTP problem library: CNF Release v1.2.1.
J. Automated Reasoning, 21(2):177-203, 1998.

[87] T. Tammet. Gandalf. J. Automated Reasoning, 18(2):199-204, 1997.

[88] A. Trybulec and H. A. Blair. Computer aider reasoning. In R. Parikh, editor,
Proc. of the Conf. Logic of Programs, volume 193 of LNCS, pages 406—412.
Springer, 1985.

[89] D. H. D. Warren. Higher-order extensions to Prolog: are they needed? In
Machine Intelligence, volume 10, pages 441-454. Edinburgh University Press,
Edinburgh, UK, 1982.

[90] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, T. Engel, E. Keen,
C. Theobalt, and D. Topic. System abstract: Spass version 1.0.0. In [35],
pages 378-382, 1999.

[91] F. Wiedijk. Comparing mathematical provers. In A. Asperti, B. Buchberger,
and J. H. Davenport, editors, Proc. of the Second Int. Conf. on Mathematical
Knowledge Management, pages 188-202, Bertinoro, Italy, 2003. Springer.

[92] W. Windsteiger. A Set Theory Prover in Theorema: Implementation and
Practical Applications. PhD thesis, RISC, Johannes Kepler University, Linz,
Austria, May 2001.

[93] S. Wolfram. The Mathematica Book. Wolfram Media Inc., 5th edition, 2003.

[94] W. T. Wu. Basic principles of mechanical theorem proving in elementary
geometries. J. Automated Reasoning, 2:221-252, 1986.

42

