
Anti-unification and Generalization: A Survey

David M. Cerna1∗ , Temur Kutsia2

1Czech Academy of Sciences Institute of Computer Science (CAS ICS), Prague, Czechia
2Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

dcerna@cs.cas.cz, kutsia@risc.jku.at

Abstract

Anti-unification (AU) is a fundamental operation
for generalization computation used for inductive
inference. It is the dual operation to unification, an
operation at the foundation of automated theorem
proving. Interest in AU from the AI and related
communities is growing, but without a systematic
study of the concept nor surveys of existing work,
investigations often resort to developing application-
specific methods that existing approaches may cover.
We provide the first survey of AU research and its ap-
plications and a general framework for categorizing
existing and future developments.

1 Introduction
Anti-unification (AU), also known as generalization, is a fun-
damental operation used for inductive inference. It is ab-
stractly defined as a process deriving from a set of symbolic
expressions a new symbolic expression possessing certain
commonalities shared between its members. It is the dual
operation to unification, an operation at the foundation of mod-
ern automated reasoning and theorem proving [Baader and
Snyder, 2001]. AU was introduced by Plotkin [1970] and
Reynolds [1970] and may be illustrated as follows:

f

a g

g

c a

h

a

AU

f

a g

c h

a

=

f

a g

X h

a

Figure 1: Illustration of anti-unification between two terms.

where f(a, g(g(c, a), h(a))) and f(a, g(c, h(a))) are two first-
order terms we want to anti-unify and f(a, g(X,h(a))) is the
resulting generalization; mismatched sub-terms are replaced
by variables. Note that f(a, g(X,h(a))) captures the common

∗Contact Author

structure, and through substitution, either input term is deriv-
able. Additionally, f(a, g(X,h(a))) is commonly referred to
as the least general generalization as there does not exist a
more specific term capturing all common structure. The term
f(a,X) is more general; partly covers common structure.

Early inductive logic programming (ILP) [Cropper et al.,
2022] approaches exploited the relationship between general-
izations to learn logic programs [Muggleton, 1995]. Modern
ILP approaches, such as Popper [Cropper and Morel, 2021],
use this mechanism to simplify the search iteratively. The
programming by example (pbe) [Gulwani, 2016] paradigm in-
tegrates syntactic anti-unification methods to find the least gen-
eral programs satisfying the input examples. Recent work con-
cerning library learning and compression [Cao et al., 2023]
exploits equational anti-unification to find suitable programs
efficiently and outperforms Dreamcoder [Ellis et al., 2021],
the previous state of the art approach.

Applications outside the area of inductive synthesis typi-
cally exploit the following observation: “Syntactic similarity
often implies semantic similarity”. A notable example is au-
tomatic parallel recursion scheme detection [Barwell et al.,
2018] where templates are developed, with the help of AU,
allowing the replacement of non-parallelizable recursion by
parallelized higher-order functions. Other uses are learning
program repairs from repositories [de Sousa et al., 2021], pre-
venting misconfigurations [Mehta et al., 2020], and detecting
software clones [Vanhoof and Yernaux, 2019].

There is growing interest in anti-unification, yet much of
the existing work is motivated by specific applications. The
lack of a systematic investigation has led to, on occasion,
reinvention of methods and algorithms. Illustratively, the
authors of Babble [Cao et al., 2023] developed an E-graph
anti-unification algorithm motivated solely by the seminal
work of Plotkin [1970]. Due to the fragmentary nature of
the anti-unification literature, the authors missed relevant
work on equational [Burghardt, 2005] and term-graph anti-
unification [Baumgartner et al., 2018] among others. The
discovery of these earlier papers could have probably sped up,
improved, and/or simplified their investigation.

Unlike its dual unification, there are no comprehensive sur-
veys, and little emphasis is put on developing a strong theoret-
ical foundation. Instead, practically oriented topics dominate
current research on anti-unification. This situation is unsur-
prising as generalization, in one form or another, is an essen-

tial ingredient within many applications: reasoning, learning,
information extraction, knowledge representation, data com-
pression, software development, and analysis, in addition to
those already mentioned.

New applications pose new challenges. Some require study-
ing generalization problems in a completely new theory, while
others may be addressed adequately by improving existing
algorithms. Classifying, analyzing, and surveying the known
methods and their applications is of fundamental importance
to shape the field and help researchers to navigate the current
fragmented state-of-the-art on generalization.

In this survey, we provide (i) a general framework for the
generalization problem, (ii) an overview of existing theoretical
results, (iii) an overview of existing application domains, and
(iv) an overview of some future directions of research.

2 Generalization Problems: an Abstract View
The definitions below are parameterized by a set of syntactic
objects O, typically consisting of expressions (e.g., terms,
formulas, . . .) in some formal language. Additionally, we
consider a class of mappingsM from O to O. We say that
µ(O) is an instance of the object O with respect to µ ∈ M.
In most cases, variable substitutions are instances of such
mappings. We call elements ofM generalization mappings.

Our definition of the generalization problem requires two
relations: The base relation defining what it means for an
object to be a generalization of another, and the preference
relation, defining a notion of rank between generalizations.
These relations are defined abstractly, with minimal require-
ments. We provide the concrete instances of the base and
preference relations and generalization mappings for each con-
crete generalization problem. One ought to consider the base
relation as describing what we mean when we say an object
is a generalization of another and the preference relation as
describing the quality of generalizations with respect to one
another. The mappings can be thought of as describing what
the generalization of the objects means over the given base
relation.
Definition 1. A base relationB is a binary reflexive relation on
O. An object G ∈ O is a generalization of the object O ∈ O
with respect to B and a class of mappingsM (briefly, BM-
generalization) ifB(µ(G),O) holds for some mapping µ ∈M.
A preference relation P is a binary reflexive, transitive relation
(i.e., a preorder) on O. We write P(O1,O2) to indicate that
the object O1 is preferred over the object O2. It induces
an equivalence relation ≡P : O1 ≡P O2 iff P(O1,O2) and
P(O2,O1).

We are interested in preference relations that relate to gen-
eralizations in the following way:
Definition 2 (Consistency). Let B and P be, respectively,
base and preference relations defined on a set of objects O
and M be a class of generalization mappings over O. We
say that B and P are consistent on O with respect to M
or, shortly, M-consistent, if the following holds: If G1 is a
BM-generalization of O and P(G1,G2) holds for some G2,
then G2 is also a BM-generalization of O. In other words, if
B(µ1(G1),O) for some µ1 ∈ M and P(G1,G2), then there
should exist µ2 ∈M such that B(µ2(G2),O).

G1 G2

P

O

B µ1 Bµ2

Figure 2: Consistency

Consistency is an important property since it relates other-
wise unrelated base and preference relations in the context of
generalizations. The intuition being that, forM-consistent
B and P , G1 is “better” than G2 as a (BM,P)-generalization
of O because it provides more information: not only G1 is a
generalization of O, but also any object G2 that is “dominated”
by G1 in the preference relation. From now on, we assume that
our base and preference relations are consistent with respect
to the considered set of generalization mappings.

We focus on characterizing common BM-generalizations
between multiple objects, selecting among them the “best”
ones with respect to the preference relation P .

Definition 3 (Most preferred common generalizations).
An object G is called a most P-preferred common BM-
generalization of objects O1, . . . ,On, n ≥ 2 if

• G is a BM-generalization of each Oi, and

• for any G′ that is also a BM-generalization of each Oi, if
P(G′,G), then G′ ≡P G (i.e., if G′ is P-preferred over
G, then they are P-equivalent).

For O, B,M, and P , the (BM,P)-generalization prob-
lem over O is specified as follows:

Given: Objects O1, . . . ,On ∈ O, n ≥ 2.

Find: An object G ∈ O that is a most P-preferred
common BM-generalization of O1, . . . ,On.

This problem may have zero, one, or more solutions. There
can be two reasons why it has zero solutions: either the ob-
jects O1, . . . ,On have no common BM-generalization at all
(i.e, O1, . . . ,On are not generalizable, for an example see
[Pfenning, 1991]), or they are generalizable but have no most
P-preferred common BM-generalization.

To characterize “informative” sets of possible solutions, we
introduce two notions: P-complete and P-minimal complete
sets of common BM-generalizations of multiple objects:

Definition 4. A set of objects G is called a P-complete set of
common BM-generalizations of the given objects O1, . . . ,On,
n ≥ 2, if the following properties are satisfied:

• Soundness: every G ∈ G is a common BM-generali-
zation of O1, . . . ,On, and

• Completeness: for each common BM-generalization G′

of O1, . . . ,On there exists G ∈ G such that P(G,G′).

The set G is called P-minimal complete set of com-
mon BM-generalizations of O1, . . . ,On and is denoted by
mcsgBM,P(O1, . . . ,On) if, in addition, the following holds:

• Minimality: no distinct elements of G are P-comparable:
if G1,G2 ∈ G and P(G1,G2), then G1 = G2.

Note that the minimality property guarantees that if G ∈
mcsgBM,P(O1, . . . ,On), then no G′, differing from G, in the
≡P -equivalence class of G belongs to this set.

In the notation, we may skip BM, P , or both from
mcsgBM,P when it is clear from the context.
Definition 5 (Generalization type). We say that the type of the
(BM,P)-generalization problem between the generalizable
objects O1, . . . ,On ∈ O is

• unitary (1): mcsgBM,P(O1, . . . ,On) is a singleton,

• finitary (ω): mcsgBM,P(O1, . . . ,On) is finite and con-
tains at least two elements,

• infinitary (∞): mcsgBM,P(O1, . . . ,On) is infinite,

• nullary (0): mcsgBM,P(O1, . . . ,On) does not exist (i.e.,
minimality and completeness contradict each other).

The type of (BM,P)-generalization over O is
• unitary (1): each (BM,P)-generalization problem be-

tween generalizable objects from O is unitary,
• finitary (ω): each (BM,P)-generalization problem be-

tween generalizable objects from O is unitary or finitary,
and there exists a finitary problem,

• infinitary (∞): each (BM,P)-generalization problem
between generalizable objects from O is unitary, finitary,
or infinitary, and there exists an infinitary problem,

• nullary (0): there exists a nullary (BM,P)-generali-
zation problem between generalizable objects from O.

The basic questions to be answered in this context are,
• Generalization type: What is the (BM,P)-generali-

zation type over O?
• Generalization algorithm/procedure: How to compute

(or enumerate) a complete set of generalizations (prefer-
ably, mcsgBM,P) for objects from O.

If the given objects O1, . . . ,On (resp. the desired object
G) are restricted to belong to a subset S ⊆ O, then we talk
about an S-fragment (resp. S-variant) of the generalization
problem. It also makes sense to consider an S1-variant of
an S2-fragment of the problem, where S1 and S2 are not
necessarily the same.

When O is a set of terms, the linear variant is often consid-
ered: the generalization terms do not contain multiple occur-
rences of the same variable.

The following sections show how some known generaliza-
tion problems fit into this schema. For simplicity, when it does
not affect generality, we consider generalization problems with
only two given objects. Also, we skip the word “common”
when discussing common generalizations.

Due to space constraints, we do not discuss anti-unification
for feature terms [Aı̈t-Kaci and Sasaki, 2001; Armengol and
Plaza, 2000], for term-graphs [Baumgartner et al., 2018], nom-
inal [Baumgartner et al., 2015; Schmidt-Schauß and Nantes-
Sobrinho, 2022] and approximate anti-unification [Aı̈t-Kaci
and Pasi, 2020; Kutsia and Pau, 2022; Pau, 2022]. These
generalization problems all fit in our general framework.

Generic Concrete (FOSG)
O The set of first-order terms
M First-order substitutions
B .

= (syntactic equality)
P ⪰ (more specific, less general):

s ⪰ t iff s .
= tσ for some σ

≡P Equi-generality: ⪰ and ⪯
Type Unitary
Alg. [Huet, 1976; Plotkin, 1970; Reynolds, 1970]

Table 1: First-order syntactic generalization.

3 Generalization in First-Order Theories
3.1 First-Order Syntactic Generalization (FOSG)
Plotkin [1970] and Reynolds [1970] introduced FOSG, the
simplest and best-known among generalization problems in
logic. The objects are first-order terms, and mappings are
substitutions that map variables to terms such that all but
finitely many variables are mapped to themselves. Applica-
tion of a substitution σ to a term t is denoted by tσ, which
is the term obtained from t by replacing all variable occur-
rences by their images under σ. Table 1 specifies the con-
crete instances of the abstract parameters, and consistency
follows from the transitivity of ⪰. The relation ≡P holds
between terms that are obtained by variable renaming from
each other (e.g. f(x1, g(x1, y1)) and f(x2, g(x2, y2)). The
most ⪰-preferred .

=-generalizations are called least general
generalizations (lggs). Two terms always have an lgg unique
up to variable renaming. Plotkin [1970], Reynolds [1970], and
Huet [1976] introduced algorithms for computing lggs.
Example 1. Let s1 = f(a, g(a, b)) and s2 = f(c, g(c, d)).
Their lgg is t = f(x, g(x, y)), which is unique up to variable
names. Substitutions σ1 = {x 7→ a, y 7→ b} and σ2 =
{x 7→ c, y 7→ d} give s1 and s2 from t: tσi = si, i = 1, 2.
Note that s1 and s2 have other generalizations as well, e.g.,
f(x, g(y, z)) or x, but they are not the ⪰-preferred ones.

3.2 First-Order Equational Generalization (FOEG)
FOEG requires extending syntactic equality to equality mod-
ulo a given set of equations. Many algebraic theories are
characterized by axiomatizing properties of function symbols
via (implicitly universally quantified) equalities. Some well-
known equational theories include

• commutativity, C({f}), f(x, y) ≈ f(y, x).
• associativity, A({f}), f(f(x, y), z) ≈ f(x, f(y, z)).
• associativity and commutativity, AC({f}), above equali-

ties for the same function symbol f .
• unital symbols, U({(f, e)}), f(x, e) ≈ x and f(e, x) ≈
x (e is both left and right unit element for f).

• idempotency, I({f}), f(x, x) ≈ x.
Given a set of axioms E, the equational theory induced

by E is the least congruence relation on terms containing E
and closed under substitution application. (Slightly abusing
the notation, it is also usually denoted by E.) When a pair of
terms (s, t) belongs to such an equational theory, we say that
s and t are equal modulo E and write s

.
=E t.

Generic Concrete (FOEG)
O The set of first-order terms
M First-order substitutions
B .

=E (equality modulo E)
P ⪰E (more specific, less general modulo E)

s ⪰E t iff s .
=E tσ for some σ

≡P Equi-generality modulo E: ⪰E and ⪯E

Type Depends on E, fragments, and variants
Alg. Depends on E, fragments, and variants

Table 2: First-Order equational generalization.

In a theory, we may have several symbols that satisfy the
same axiom. For instance, C({f, g}) denotes the theory where
f and g are commutative; AC({f, g})C({h}) denotes the the-
ory where f and g are associative-commutative and h is com-
mutative; U({(f, ef), (g, eg)}) denotes the theory where ef
and eg are the unit elements for f and g, respectively. We fol-
low the convention that if the equational theory is denoted by
E1(S1) · · ·En(Sn), then Si∩Sj = ∅ for each 1 ≤ i ̸= j ≤ n.

Some results depend on the number of symbols that satisfy
the associated equational axioms. We use a special notation for
that: For a theory E, the notation E1 stands for E(S), where
the set S contains a single element; E>1 stands for E(S) where
S contains finitely many, but at least two elements. When we
write only E, we mean the equational theory E(S) with a finite
set of symbols S that may contain one or more elements.

We can extend this notation to combinations: for instance,
(AU)>1 stands for a theory that contains at least two function
symbols, e.g., f and g, that are associative and unital (with
unit elements ef and eg).

Table 2 shows how FOEG fits into our general framework.
Example 2. Consider a theory E and terms s and t.

If E = AC({f}), s = f(f(a, a), b), and t = f(f(b, b), a),
then mcsgE(s, t) = {f(f(x, x), y), f(f(x, a), b)}. If we had
variables instead of a and b, e.g., if s = f(f(z, z), v) and
t = f(f(v, v), z), then mcsgE(s, t) = {f(f(x, x), y)}, be-
cause f(f(x, z), v) (the counterpart of f(f(x, a), b)) is more
general (less preferred) than f(f(x, x), y).

If E = U({(f, e)}), s = g(f(a, c), a), t = g(c, b), then
mcsgE(s, t) = {g(f(x, c), f(y, x)), g(f(x, c), f(x, y))}. To
see why, e.g., g(f(x, c), f(y, x)) from this set is a U-gene-
ralization of s and t, consider substitutions σ = {x 7→ a,
y 7→ e} and ϑ = {x 7→ e, y 7→ b}. Then g(f(x, c), f(y,
x))σ = g(f(a, c), f(e, a))

.
=U s and g(f(x, c), f(y, x))ϑ =

g(f(e, c), f(b, e))
.
=U t.

If E = U({(f, ef), (g, eg)}), s = ef , and t = eg, then
mcsgE(s, t) does not exist: Any complete set of generaliza-
tions of s and t contains elements g and g′ such that g ≻U g′

(where ≻U is the strict part of ⪰U) [Cerna and Kutsia, 2020c].
If E = I({h}), s = h(a, b), t = h(b, a), then mcsgE(s,

t) = S∞, where S∞ is the limit of the following construction:

S0 = {h(h(x, b), h(a, y)), h(h(x, a), h(b, y))}
Sk = {h(s1, s2) | s1, s2 ∈ Sk−1, s1 ̸= s2} ∪ Sk−1, k > 0.

Alpuente et al. [2014] study anti-unification over A, C,
and AC theories in a more general, order-sorted setting and
provide the corresponding algorithms. In [Alpuente et al.,

2022], they also consider combining these theories with U in
a particular order-sorted signature that guarantees finitary type
and completeness of the corresponding algorithms.

Burghardt [2005] proposed a grammar-based approach to
the computation of equational generalizations: from a regular
tree grammar that describes the congruence classes of the
given terms t1 and t2, a regular tree grammar describing a
complete set of E-generalizations of t1 and t2 is computed.
This approach works for equational theories that lead to regular
congruence classes. Otherwise, one can use some heuristics to
approximate the answer, but completeness is not guaranteed.

Baader [1991] considers anti-unification over so-called
commutative theories, a concept covering commutative mo-
noids (ACU), commutative idempotent monoids (ACUI), and
Abelian groups. The object set is restricted to terms built us-
ing variables and the algebraic operator. Anti-unification over
commutative theories in this setting is always unitary.

Results for some theory types are summarized as follows:

• A, C, AC: type ω [Alpuente et al., 2014];

• U1, (AU)1, (CU)1, (ACU)1: type ω. U>1, (ACU)>1,
(CU)>1, (AU)>1, (AU)(CU): type 0 (but their linear vari-
ants have type ω) [Cerna and Kutsia, 2020c];

• I, AI, CI: type∞ [Cerna and Kutsia, 2020b];

• (UI)>1, (AUI)>1, (CUI)>1, (ACUI)>1, semirings: type
0 [Cerna, 2020];

• Commutative theories: type 1 [Baader, 1991].

3.3 First-Order Clausal Generalization (FOCG)
Clauses are disjunctions of literals (atomic formulas or their
negations). Generalization of first-order clauses can be seen as
a special case of FOEG, with one ACUI symbol (disjunction)
that appears only as the top symbol of the involved expressions.
It is one of the oldest theories for which generalization was
studied (see, e.g., [Plotkin, 1970]). Clausal generalization
(with various base relations) has been successfully used in
relational learning. Newer work uses rigidity functions to
construct generalizations and is used for clone detection in
logic programs [Yernaux and Vanhoof, 2022b].

An important notion to characterize clausal generalization
is θ-subsumption [Plotkin, 1970]: It can be defined by treat-
ing disjunction as an ACUI symbol, but a more natural def-
inition considers a clause L1 ∨ · · · ∨ Ln as the set of liter-
als {L1, . . . , Ln}. Then we say the clause C θ-subsumes
the clause D, written C ⪯ D, if there exists a substitution
θ such that Cθ ⊆ D (where the notation Sθ is defined as
{sθ | s ∈ S} for a set S). The base relation B is ⊆, general-
ization mappings inM are first-order substitutions, and the
preference relation P is the inverse of θ-subsumption ⪰.

Clausal generalization problem is unitary: a finite set of
clauses always possesses a unique lgg up to θ-subsumption
equivalence ≡P . Its size can be exponential in the number of
clauses it generalizes.

Example 3. [Idestam-Almquist, 1995] Let D1 = (p(a) ←
q(a), q(b)) and D2 = (p(b) ← q(b), q(x)). Then both C1 =
(p(y) ← q(y), q(b)) and C2 = (p(y) ← q(y), q(b), q(z),
q(w)) are lggs of D1 and D2. It is easy to see that C1 ≡P C2.

Plotkin generalized the notion of θ-subsumption to relative
θ-subsumption, taking into account background knowledge.
Given knowledge T as a set of clauses and a clause C, we
write Res(C, T) = R if there exists a resolution derivation
of the clause R from T using C exactly once.1 The notion
of relative θ-subsumption can be formulated in the following
way: A clause C θ-subsumes a clause D relative to a theory
T , denoted C ⪯T D, iff there exists a clause R such that
Res(C, T) = R and R ⪯ D. To accommodate this case
within our framework, we modify mappings inM to be the
composition of a resolution derivation and substitution appli-
cation, and use P = ⪰T . The minimal complete set of relative
generalizations of a finite set of clauses can be infinite.

Idestam-Almquist [1995] introduced another variant of
clausal generalization, proposing a different base relation:
T-implication⇒T . Due to space limitations, we refrain from
providing the exact definition. It is a reflexive non-transitive
relation taking into account a set T of ground terms extending
generalization under θ-subsumption to generalization under a
special form of implication. Unlike implication, it is decidable.
Note that Plotkin introduced θ-subsumption as an incomplete
approximation of implication. Idestam-Almquist [1997] lifted
relative clausal generalization to T-implication.

Idestam-Almquist [2009] introduced a modification of rela-
tive clausal generalization, called asymmetric relative minimal
generalization, implementing it in ProGolem. Kuželka et
al. [2012] studied a bounded version of clausal generalization
motivated by practical applications in clause learning. Yer-
naux and Vanhoof [2022a] consider different base relations
for generalizing unordered logic program goals.

3.4 Unranked First-Order Generalization (UFOG)
In unranked languages, symbols do not have a fixed arity.
They are often referred to as variadic, polyadic, flexary, or
flexible arity symbols. To take advantage of such variadicity,
unranked languages contain hedge variables (which stand for
hedges: finite, possibly empty sequences of terms) together
with individual variables (which stand for single terms). In this
section, individual variables are denoted by x, y, z, and hedge
variables by X,Y, Z. Terms of the form f() are written as f .
Hedges are usually put in parentheses, but a singleton hedge (t)
is written as t. Substitutions map individual variables to terms
and hedge variables to hedges, flattening after application.
Example 4. Let H = (X, f(X), g(x, Y)) be a hedge and
σ = {x 7→ f(a, a), X 7→ (), Y 7→ (x, g(a, Z))} be
a substitution where () is the empty hedge. Then Hσ =
(f, g(f(a, a), x, g(a, Z))).

We provide concrete values for UFOG with respect to the
parameters of our general framework in Table 3.

Kutsia et al. [2014] studied unranked generalization and
proposed the rigid variant forbidding neighboring hedge vari-
ables within generalizations. Moreover, an extra parameter
called the rigidity function is used to select a set of common
subsequences of top function symbols of hedges to be gen-
eralized. The most natural choice for the rigidity function
computes the set of longest common subsequences (lcs’s) of

1In Plotkin’s original definition, the derivation uses C at most
once. Here we follow the exposition from [Idestam-Almquist, 1997].

Generic Concrete (UFOG)
O Unranked terms and hedges
M Substitutions (for terms and for hedges)
B .

= (syntactic equality)
P ⪰ (more specific, less general)

s ⪰ t iff s .
= tσ for some σ.

≡P Equi-generality: ⪰ and ⪯
Type Finitary (also for the rigid variant)
Alg. [Kutsia et al., 2014]

Table 3: Unranked first-order generalization.

its arguments. However, there are other interesting rigidity
functions (e.g., lcs’s with the minimal length bound, a single
lcs chosen by some criterion, longest common substrings, etc.).
The rigid variant is also finitary. Its minimal complete set is
denoted by mcsgR. Kutsia et al. [2014] describe an algorithm
that computes this set. We use the lcs rigidity function below.
Example 5. Consider singleton hedges H1 = g(f(a), f(a))
and H2 = g(f(a), f). For the unrestricted generalization
case, mcsg(H1, H2) = {g(f(a), f(X)), g(f(X,Y), f(X)),
g(f(X,Y), f(Y))}. To see why, e.g., g(f(X,Y), f(Y)) is
a generalization of H1 and H2, consider substitutions σ =
{X 7→ (), Y 7→ a} and ϑ = {X 7→ a, Y 7→ ()}. Then
g(f(X,Y), f(Y))σ = H1 and g(f(X,Y), f(Y))ϑ = H2.

For a rigid variant, mcsgR(H1, H2) = {g(f(a), f(X))}.
The other two elements contained in the unrestricted mcsg
are now dropped because they contain hedge variables next to
each other, which is forbidden in rigid variants.
Example 6. Let H1 = (f(a, a), b, f(c), g(f(a), f(a)) and
H2 = (f(b, b), g(f(a), f)). Then mcsgR(H1, H2) =
{(f(x, x), X, g(f(a), f(Y))), (X, f(Y), g(f(a), f(Z))}.

The elements of this set originate from two longest common
subsequences of symbols at the top level: In both cases the lcs
is f followed by g, but in the former we match the top symbols
of f(a, a) and g(f(a), f(a)) from H1 to top symbols of H2,
while in the latter we match f(c) and g(f(a), f(a)) from H1.

For the rigidity function computing longest common sub-
strings, mcsgR(H1, H2) = {(X, f(Y), g(f(a), f(Z)))}.

Unranked terms and hedges can be used to model semi-
structured documents, program code, execution traces, etc. Ya-
mamoto et al. [2001] investigated unranked anti-unification in
the context of inductive reasoning over hedge logic programs.
They consider a special case (without individual variables),
where hedges do not contain duplicate occurrences of the same
hedge variable and any set of sibling arguments contains at
most one hedge variable. Such hedges are called simple ones.
Note that this problem as well as other related problems such
as word generalization [Biere, 1993] or AU-generalization can
be also solved by the algorithms from [Kutsia et al., 2014].

Anti-unification for unranked first-order terms was general-
ized to unranked second-order terms [Baumgartner and Kutsia,
2017] and to unranked term-graphs [Baumgartner et al., 2018].
Both problems are finitary and fit into our general framework.

3.5 Description Logics
Description logics (DLs) are important formalisms for knowl-
edge representation and reasoning. They are decidable frag-

ments of first-order logic. The basic syntactic building blocks
in DLs are concept names (unary predicates), role names (bi-
nary predicates), and individual names (constants). Starting
from these constructions, complex concepts and roles are built
using constructors, which determine the expressive power of
the DL. For DLs considered in this section, we show how
concept descriptions (denoted by C and D) are defined in-
ductively over the sets of concept names NC and role names
NR. Below we provide definitions for the description logics
EL, FLE , ALE , and ALEN , where P ∈ NC is a primitive
concept, r ∈ NR is a role name, and n ∈ N.

EL: C,D := P | ⊤ | C ⊓D | ∃r.C.
FLE : C,D := P | ⊤ | C ⊓D | ∃r.C | ∀r.C.
ALE : C,D := P | ⊤ | C ⊓D | ∃r.C | ∀r.C | ¬P | ⊥.
ALEN : C,D := P | ⊤ | C ⊓D | ∃r.C | ∀r.C | ¬P | ⊥

| (≥ n r) | (≤ n r)

An interpretation I = (∆I , ·I) consists of a non-empty
set ∆I , called the interpretation domain, and a mapping ·I ,
called the extension mapping. It maps every concept name
P ∈ NC to a set P I ⊆ ∆I , and every role name r ∈ NR to a
binary relation rI ⊆ ∆I×∆I . The other concept descriptions
are defined as follows: ⊤I = ∆I ; (C ⊓ D)I = CI ∩ DI ;
(∃r.C)I = {d ∈ ∆I | ∃e. (d, e) ∈ rI ∧ e ∈ CI}; (∀r.C)I =
{d ∈ ∆I | ∀e. (d, e) ∈ rI ⇒ e ∈ CI}; (R n r)I = {d ∈
∆I | #{e | (d, e) ∈ rI}Rn} where R ∈ {≥,≤}.

Like in FOCG, subsumption is important for defining the
generalization problem. A concept description C is subsumed
by D, written C ⊑ D, if CI ⊆ DI holds for all interpretations
I. (We write C ≡ D if C and D subsume each other.) A
concept description D is called a least common subsumer of
C1 and C2, if (i) C1 ⊑ D and C2 ⊑ D and (ii) if there exists
D′ such that C1 ⊑ D′ and C2 ⊑ D′, then D ⊑ D′.

The problem of computing the least common subsumer of
two or more concept descriptions can be seen as a version of
the problem of computing generalizations in DLs. It has been
studied, e.g., in [Cohen and Hirsh, 1994; Baader et al., 1999;
Küsters and Molitor, 2001; Baader et al., 2007].
Example 7 ([Baader et al., 1999]). Assume the DL is EL,
C = P ⊓∃r.(∃r.(P ⊓Q)⊓∃s.Q)⊓∃r.(P ⊓∃s.P), and D =
∃r.(P⊓∃r.P⊓∃s.Q). Then ∃r.(∃r.P⊓∃s.Q)⊓∃r.(P⊓∃s.⊤)
is the least common subsumer of C and D.
Example 8 ([Küsters and Molitor, 2001]). Assume the DL
is ALEN , C = ∃r.(P ⊓ A1) ⊓ ∃r.(P ⊓ A2) ⊓ ∃r.(¬P ⊓
A1) ⊓ ∃r.(Q ⊓A3) ⊓ ∃r.(¬Q ⊓A3) ⊓ (≤ 2 r), and D = (≥
3 r)⊓∀r.(A1⊓A2⊓A3). Then (≥ 2 r)⊓∀r : (A1⊓A3)⊓∃r :
(A1 ⊓A2 ⊓A3) is the least common subsumer of C and D.

Table 4 shows how results for EL, FLE ,ALE , andALEN
fit into our framework. Some other results about generaliza-
tions in DLs include the computation of the least common
subsumer with respect to a background terminology [Baader et
al., 2007], computation of the least common subsumer and the
most specific concept with respect to a knowledge base [Jung
et al., 2020], and anti-unification [Konev and Kutsia, 2016].

4 Higher-Order Generalization
Higher-Order generalization mainly concerns generalization
in simply-typed lambda calculus, although it has been studied

Generic Concrete (DL)
O Concept descriptions
M Contains only the identity mapping
B ⊒
P ⊑
≡P ≡: ⊑ and ⊒

Type Unitary for all four DLs
Alg. [Baader et al., 1999] for EL, FLE , ALE ,

[Küsters and Molitor, 2001] for ALEN

Table 4: Generalization (least common subsumer) in DLs EL, FLE ,
ALE , and ALEN .

in other theories of Berendregt’s λ-cube [Barendregt et al.,
2013] and related settings (see [Pfenning, 1991]).

We consider lambda terms defined by the grammar t ::=
x | c | λx.t | (t t), where x is a variable and c is a constant. A
simple type τ is either a basic type δ or a function type τ→ τ.
We use the standard notions of λ-calculus such as bound and
free variables, subterms, α-conversion, β-reduction, η-long
β-normal form, etc. (see, e.g., [Barendregt et al., 2013]).
Substitutions are (type-preserving) mappings from variables
to lambda terms. They form the setM. In this section, x, y, z
are used from bound variables and X,Y, Z for free ones.

4.1 Higher-Order αβη-Generalization (HOGαβη)
Syntactic anti-unification in simply-typed lambda calculus is
generalization modulo α, β, η rules (i.e., the base relation is
equality modulo αβη, which we denote by ≈ in this section).
Terms are assumed to be in η-long β-normal form. The pref-
erence relation is ≿: s ≿ t iff s ≈ tσ for a substitution σ. Its
inverse is denoted by ≾. Cerna and Buran [2022] show that
unrestricted generalization in this theory is nullary:

Example 9. Let s = λxλy.f(x) and t = λxλy.f(y). Then
any complete set of generalizations of s and t contains ≾-
comparable elements. For instance, if such a set contains a
generalization r = λx.λy.f(X(x, y)), there exists an infinite
chain of less and less general generalizations rσ ≾ rσσ ≾ . . .
with σ = {X 7→ λx.λy.X(X(x, y), X(x, y))}.

Cerna and Kutsia [2019] proposed a generic framework
that accommodates several special unitary variants of gener-
alization in simply-typed lambda calculus. The framework
is motivated by two desired properties of generalizations: to
maximally keep the top-down common parts of the given
terms (top-maximality) and to avoid the nesting of general-
ization variables (shallowness). These constraints lead to the
top-maximal shallow (tms) generalization variants that allow
some freedom in choosing the subterms occurring under gen-
eralization variables. Possible unitary variants are as follows:
projective (pr: entire terms), common subterms (cs: maximal
common subterms), other cs-variants where common subterms
are not necessarily maximal but satisfy restrictions discussed
in [Libal and Miller, 2022] such as (relaxed) functions-as-
constructors (rfc,fc), and patterns (p). The time complexity of
computing pr and p variants is linear in the size of input terms,
while for the other cases, it is cubic.

Example 10. For terms λx. f(h(g(g(x))), h(g(x)), a) and
λx. f(g(g(x)), g(x), h(a)), various top-maximal shallow lggs

Generic Concrete (HOGαβη)
O The set of simply-typed λ terms
M Higher-order substitutions
B ≈ (equality modulo αβη)
P ≿ (more specific, less general modulo αβη)

s ≿ t iff s ≈ tσ for a substitution σ.
≡P Equi-general (≿ and ≾) modulo αβη

Type 0, general [Cerna and Buran, 2022]
1, tms variant [Cerna and Kutsia, 2019]

Alg. tms variant [Cerna and Kutsia, 2019],
patterns [Baumgartner et al., 2017]

Table 5: Higher-order αβη-generalization.

Generic Concrete (HOEG)
O The set of simply-typed λ terms
M Higher-order substitutions
B ≈E (equality modulo αβη and E)
P ≿E (more specific, less general modulo αβη and E)

s ≿E t iff s ≈E tσ for a substitution σ.
≡P Equi-general (≿E and ≾E) modulo αβη

Type Depends on E
[Cerna and Kutsia, 2020a]

Alg. Depends on E
[Cerna and Kutsia, 2020a]

Table 6: Higher-order equational generalization.

are pr-lgg: λx.f(X(h(g(g(x))), g(g(x))),X(h(g(x)),g(x)),
X(a,h(a))), cs-lgg: λx.f(X(g(g(x))),X(g(x))),Z(a)), rfc-
lgg: λx.f(X(g(g(x))),X(g(x)),Z), fc-lgg: λx.f(X(g(x)),
Y (g(x)),Z), and p-lgg: λx.f(X(x), Y (x), Z).

Table 5 relates HOGαβη to the general framework.
The linear variant of αβη-Generalization over higher-order

patterns was used by [Pientka, 2009] to develop a higher-order
term-indexing algorithm based on substitution trees. Insertion
into the substitution requires computing the lgg of a given
higher-order pattern and a higher-order pattern already in the
substitution tree. Feng and Muggleton [1992] consider αβδ0η-
Generalization over a fragment of simply-typed lambda terms
they refer to as λM , where δ0 denotes an additional decom-
position rule for constructions similar to if-then-else. Similar
to top-maximal shallow lambda terms, λM allows constants
within the arguments to generalization variables. Due to space
constraints, we refrain from discussing in detail [Pfenning,
1991] work on anti-unification in the calculus of constructions,
where he describes an algorithm for the pattern variant. This
work fits our general framework by adjusting the parameters
used for αβη-Generalization over higher-order patterns.

4.2 Higher-Order Equational Generalization
Cerna and Kutsia [2020a] studied the pattern variant of
higher-order equational generalization (HOEG) in simply-
typed lambda calculus involving A, C, U axioms and their
combinations (Table 6). In addition, they investigated frag-
ments for which certain optimal generalizations may be com-
puted fast. It was shown that pattern HOEG in A, C, AC
theories is finitary. The same is true for the linear pattern
variant of HOEG in A, C, U theories and their combinations.

The generalization problem for the considered fragments
is unitary when only optimal solutions are considered. Opti-
mality means that the solution should be at least as good as
the αβη-lgg. Fragments allowing fast computation of optimal
solutions (in linear, quadratic, or cubic time) were identified.

4.3 Polymorphic Higher-Order Generalization
Lu et al. [2000] consider generalization within the polymor-
phic lambda calculus, typically referred to as λ2 (Table 7).
Unlike αβη-Generalization presented above, terms are not
required to be of the same type to be generalizable. While
similar holds regarding [Pfenning, 1991], Lu et al. [2000] do
not restrict themselves to the pattern variant but instead re-
strict the preference relation. They use a restricted form of the

application order, i.e. s ≿ t iff there exists terms and types
r1, . . . , rn such that sr1 · · · rn ≈ t, in other words, sr1 · · · rn
β-reduces to t. They restrict r1, . . . , rn to subterms of t and
introduce variable-freezing to deal with bound variable order.
Mappings are also based on β-reduction.

4.4 Second-Order Combinator Generalization
Hasker [1995] considers an alternative representation of se-
cond-order logic using combinators instead of lambda abstrac-
tions (Table 8). Unlike lambda terms, where the application of
one term to another is performed via substitution, combinators
are special symbols, each associated with a precise axiomatic
definition of their effect on the input terms. Note that here
substitution concerns term normalization and not the general-
ization problem. The generalization problems and algorithms
from [Hasker, 1995] still require second-order substitutions.
He considers monadic combinators, which take a single argu-
ment, and cartesian combinators, which generalize monadic
combinators by allowing multiple arguments via a pairing
function. Cartesian combinator generalization is nullary as the
pairing function can act as a storage for irrelevant construc-
tions. The author addresses this by introducing a concept of
relevance resulting in finitary generalization problem.

5 Applications
Typical applications fall into one of the following areas: learn-
ing and reasoning, synthesis and exploration, and analysis and
repair. Below we briefly discuss the state of the art in these
areas and, when possible, the associated type of generalization.

5.1 Learning and Reasoning
Inductive logic programming systems based on inverse
entailment, such as ProGolem [Muggleton et al., 2009],
Aleph [Srinivasan, 2001] and Progol [Muggleton, 1995] used
(relative) θ-subsumption, or variants of it, to search for general-
izations of the most specific clause entailing a single example
(the bottom clause). The ILP system Popper, developed by
Cropper and Morel [2021] uses θ-subsumption-based con-
straints to iteratively simplify the search space. Recent exten-
sions of this system, such as Hopper [Purgal et al., 2022], and
NOPI [Cerna and Cropper, 2023] consider similar techniques
over a more expressive hypothesis space.

Several authors have focused on generalization for ana-
logical reasoning. Krumnack et al. [2007] use a restricted

Generic Concrete (PHOG)
O λ2 terms
M Based on β-reduction
B ≈ (equality modulo αβη)
P ≿SF (application ordering restricted subterms

and modulo variable-freezing)
≡P ≿SF and ≾SF

Type 1 [Lu et al., 2000]
Alg. [Lu et al., 2000]

Table 7: Polymorphic higher-order generalization.

Generic Concrete (SOCG)
O Combinators
M Substitutions
B ≈ (equality modulo α and combinator reduction)
P ≿ (more specific modulo α and combinator reduction)

s ≿ t iff s ≈ tσ.
≡P ≿ and ≾

Type Monadic: ω, Cartesian: 0, Relevant: ω [Hasker, 1995]
Alg. [Hasker, 1995]

Table 8: Second-order combinator generalization.

form of higher-order generalization to develop useful analo-
gies. Weller and Schmid [2006] use the equational gener-
alization method introduced by Burghardt [2005] to solve
proportional analogies, i.e. “A is to B as C is to ?”. Sotoudeh
and Thakur [2020] discuss generalization as an tool for ana-
logical reasoning about programs. Generalization is used in
case-based reasoning [Ontañón and Plaza, 2007] literature as
a method to encode coverage of cases by a prediction.

Related research concerning concept blending and mathe-
matical reasoning builds upon Heuristic-Driven Theory Pro-
jection, using a form of higher-order anti-unification [Schwer-
ing et al., 2009]. Example works in this area include [Guhe
et al., 2011] and [Martı́nez et al., 2017]. Learning reasoning
rules using anti-unification from quasi-natural language sen-
tences is discussed in [Yang and Deng, 2021]. Learning via
generalization of linguistic structures has found applications
in the development of industrial chatbots [Galitsky, 2019].

5.2 Synthesis and Exploration
The programming by example (pbe) paradigm is an inductive
synthesis method concerned with the generation of a pro-
gram within a domain-specific language (dsl) that generalizes
input-output examples [Raza et al., 2014]. Efficient search
through the dsl exploits purpose-built generalization meth-
ods [Mitchell, 1982]. Foundational work in this area include
[Gulwani, 2011] and [Polozov and Gulwani, 2015]. Recent
developments include [Dong et al., 2022], where the authors
specifically reference unranked methods for synthesis within
robotic process automation, and [Feser et al., 2015], where
functional transformations of data structures are synthesized.
An earlier tool on inductive synthesis of functional programs
is IGOR II [Hofmann, 2010]. It is based on [Kitzelmann and
Schmid, 2006] and exploits the basic syntactic generalization
methods [Plotkin, 1970]. Johansson et al. [2011] use a form
of generalization for conjecture synthesis.

Babble [Cao et al., 2023] is a method for theory exploration
and compression exploiting FOEG and term-graph represen-
tations to find functions that compress the representation of
other functions in a library. Bowers et al. [2023] focus on the
learning aspects of the problem. Singher and Itzhaky [2021]
use generalizing templates as part of the synthesis process.

5.3 Analysis and Repair
Bulychev and Minea [2008] introduced anti-unification as a
method to detect clones in software and repositories (see also
[Bulychev et al., 2009]). This research was further developed
for specific use cases: Li and Thompson [2010] investigated

clone detection in Erlang, and Yernaux and Vanhoof [2022b]
studied clone detection in constraint logic programs.

Sinha [2008] and Arusoaie and Lucanu [2022], use anti-
unification to implement efficient symbolic execution, a type
of software analysis . Hasker [1995] used SOCG to develop a
derivation replay approach to automate some aspects of pro-
gramming through templating. Related to derivation replay
is the work of Barwell et al. [2018] concerning parallel re-
cursion scheme detection. Maude [Clavel et al., 2002] is a
declarative programming language useful for software verifi-
cation tasks. It has been extended by order-sorted, equational,
and syntactic anti-unification methods.

As discussed by Winter et al. [2022], recent investigations
exploit anti-unification to provide program repair and bug
detection capabilities. Sakkas et al. [2020] use variants of
unranked hedge anti-unification as a templating mechanism
for providing repairs based on type errors. This approach is
also taken by the authors of Getafix, [Bader et al., 2019], and
REVISAR, [de Sousa et al., 2021]. Rex, developed by Mehta
et al. [2020], takes a similar approach for repairing misconfig-
ured services, while [Siddiq et al., 2021] uses unranked hedge
anti-unification to detect and repair SQL injection vulnera-
bilities. Zhang et al. [2022] use generalization techniques to
develop edit templates from edit sequences in repositories.

6 Future Directions
Although research on anti-unification has a several decades-
long history, most of the work in this area was driven by
practical applications, and the theory of anti-unification is rela-
tively less developed (in comparison to, e.g., its dual technique
of unification). To address this shortcoming, we list some in-
teresting future work directions which, in our opinion, can
significantly contribute to improving the state-of-the-art.

• Characterization of anti-unification over equational theo-
ries based on the function symbols allowed in problems
alongside variables (only equational symbols, equational
symbols+free constants, or equational, etc.). This choice
might influence e.g., generalization type.

• Developing methods for combining anti-unification algo-
rithms for disjoint equational theories.

• Characterization of equational theories exhibiting similar
behavior and properties for generalization problems.

• Studying the influence of the preference relation choice
on the type and solution set of generalization problems.

• Studying computational complexity and optimizations.

Acknowledgments
Supported by Czech Science Foundation Grant No. 22-
06414L, Austrian Science Fund project P 35530, and Cost
Action CA20111 EuroProofNet.

References
[Aı̈t-Kaci and Pasi, 2020] Hassan Aı̈t-Kaci and Gabriella

Pasi. Fuzzy lattice operations on first-order terms over
signatures with similar constructors: A constraint-based
approach. Fuzzy Sets and Systems, 391:1–46, 2020.

[Aı̈t-Kaci and Sasaki, 2001] Hassan Aı̈t-Kaci and Yutaka
Sasaki. An axiomatic approach to feature term general-
ization. In EMCL. Springer, 2001.

[Alpuente et al., 2014] Marı́a Alpuente, Santiago Escobar,
Javier Espert, and José Meseguer. A modular order-sorted
equational generalization algorithm. Inf. Comput., 235:98–
136, 2014.

[Alpuente et al., 2022] Marı́a Alpuente, Santiago Escobar,
José Meseguer, and Julia Sapiña. Order-sorted equational
generalization algorithm revisited. Ann. Math. Artif. Intell.,
90(5):499–522, 2022.

[Armengol and Plaza, 2000] Eva Armengol and Enric Plaza.
Bottom-up induction of feature terms. Mach. Learn.,
41(3):259–294, 2000.

[Arusoaie and Lucanu, 2022] Andrei Arusoaie and Dorel Lu-
canu. Proof-carrying parameters in certified symbolic ex-
ecution: The case study of antiunification. In FROM,
EPTCS, 2022.

[Baader and Snyder, 2001] Franz Baader and Wayne Snyder.
Unification theory. In Handbook of Automated Reasoning.
Elsevier, 2001.

[Baader et al., 1999] Franz Baader, Ralf Küsters, and Ralf
Molitor. Computing least common subsumers in descrip-
tion logics with existential restrictions. In IJCAI. Morgan
Kaufmann, 1999.

[Baader et al., 2007] Franz Baader, Baris Sertkaya, and Anni-
Yasmin Turhan. Computing the least common subsumer
w.r.t. a background terminology. J. Appl. Log., 5(3):392–
420, 2007.

[Baader, 1991] Franz Baader. Unification, weak unification,
upper bound, lower bound, and generalization problems. In
RTA, LNCS, 1991.

[Bader et al., 2019] Johannes Bader, Andrew Scott, Michael
Pradel, and Satish Chandra. Getafix: learning to fix bugs
automatically. Proc. ACM Program. Lang., 3(OOPSLA),
2019.

[Barendregt et al., 2013] Hendrik Pieter Barendregt, Wil
Dekkers, and Richard Statman. Lambda Calculus with
Types. Perspectives in logic. Cambridge University Press,
2013.

[Barwell et al., 2018] Adam D. Barwell, Christopher Brown,
and Kevin Hammond. Finding parallel functional pearls:
Automatic parallel recursion scheme detection in Haskell
functions via anti-unification. Future Gener. Comput. Syst.,
79:669–686, 2018.

[Baumgartner and Kutsia, 2017] Alexander Baumgartner
and Temur Kutsia. Unranked second-order anti-unification.
Inf. Comput., 255:262–286, 2017.

[Baumgartner et al., 2015] Alexander Baumgartner, Temur
Kutsia, Jordi Levy, and Mateu Villaret. Nominal anti-
unification. In RTA, LIPIcs, 2015.

[Baumgartner et al., 2017] Alexander Baumgartner, Temur
Kutsia, Jordi Levy, and Mateu Villaret. Higher-order pat-
tern anti-unification in linear time. J. Autom. Reason.,
58(2):293–310, 2017.

[Baumgartner et al., 2018] Alexander Baumgartner, Temur
Kutsia, Jordi Levy, and Mateu Villaret. Term-graph anti-
unification. In FSCD, LIPIcs, 2018.

[Biere, 1993] Armin Biere. Normalisation, unification and
generalisation in free monoids. Master’s thesis, University
of Karlsruhe, 1993.

[Bowers et al., 2023] Matthew Bowers, Theo X. Olausson,
Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin
Ellis, and Armando Solar-Lezama. Top-down synthesis
for library learning. Proc. ACM Program. Lang., 7(POPL),
2023.

[Bulychev and Minea, 2008] Peter Bulychev and Marius
Minea. Duplicate code detection using anti-unification.
In SYRCOSE, 2008.

[Bulychev et al., 2009] Peter E. Bulychev, Egor V. Kostylev,
and Vladimir A. Zakharov. Anti-unification algorithms and
their applications in program analysis. In PSI, LNCS, 2009.

[Burghardt, 2005] Jochen Burghardt. E-generalization using
grammars. Artif. Intell., 165(1):1–35, 2005.

[Cao et al., 2023] David Cao, Rose Kunkel, Chandrakana
Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikar-
pova. Babble: Learning better abstractions with e-graphs
and anti-unification. Proc. ACM Program. Lang., 7(POPL),
2023.

[Cerna and Buran, 2022] David M. Cerna and Michal Buran.
One or nothing: Anti-unification over the simply-typed
lambda calculus. CoRR, abs/2207.08918, 2022.

[Cerna and Cropper, 2023] David M. Cerna and Andrew
Cropper. Generalisation through negation and predicate
invention. CoRR, abs/2301.07629, 2023.

[Cerna and Kutsia, 2019] David M. Cerna and Temur Kutsia.
A generic framework for higher-order generalizations. In
FSCD, LIPIcs, 2019.

[Cerna and Kutsia, 2020a] David M. Cerna and Temur Kut-
sia. Higher-order pattern generalization modulo equational
theories. Math. Struct. Comput. Sci., 30(6):627–663, 2020.

[Cerna and Kutsia, 2020b] David M. Cerna and Temur Kut-
sia. Idempotent anti-unification. ACM Trans. Comput. Log.,
21(2):10:1–10:32, 2020.

[Cerna and Kutsia, 2020c] David M. Cerna and Temur Kut-
sia. Unital anti-unification: Type and algorithms. In FSCD,
LIPIcs, 2020.

[Cerna, 2020] David M. Cerna. Anti-unification and the the-
ory of semirings. Theor. Comput. Sci., 848:133–139, 2020.

[Clavel et al., 2002] Manuel Clavel, Francisco Durán, Steven
Eker, Patrick Lincoln, Narciso Martı́-Oliet, José Meseguer,
and Jose F. Quesada. Maude: specification and program-
ming in rewriting logic. Theor. Comput. Sci., 285(2):187–
243, 2002.

[Cohen and Hirsh, 1994] William W. Cohen and Haym Hirsh.
Learning the classic description logic: Theoretical and
experimental results. In KR. Morgan Kaufmann, 1994.

[Cropper and Morel, 2021] Andrew Cropper and Rolf Morel.
Learning programs by learning from failures. Mach. Learn.,
110(4):801–856, 2021.

[Cropper et al., 2022] Andrew Cropper, Sebastijan Duman-
cic, Richard Evans, and Stephen H. Muggleton. Inductive
logic programming at 30. Mach. Learn., 111(1):147–172,
2022.

[de Sousa et al., 2021] Reudismam Rolim de Sousa, Gustavo
Soares, Rohit Gheyi, Titus Barik, and Loris D’Antoni.
Learning quick fixes from code repositories. In SBES.
ACM, 2021.

[Dong et al., 2022] Rui Dong, Zhicheng Huang, Ian Iong
Lam, Yan Chen, and Xinyu Wang. Webrobot: Web
robotic process automation using interactive programming-
by-demonstration. In PLDI. ACM, 2022.

[Ellis et al., 2021] Kevin Ellis, Catherine Wong, Maxwell
Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B. Tenen-
baum. Dreamcoder: Bootstrapping inductive program syn-
thesis with wake-sleep library learning. In PLDI. ACM,
2021.

[Feng and Muggleton, 1992] Cao Feng and Stephen H. Mug-
gleton. Towards inductive generalization in higher order
logic. In ML. Morgan Kaufmann, 1992.

[Feser et al., 2015] John K. Feser, Swarat Chaudhuri, and Isil
Dillig. Synthesizing data structure transformations from
input-output examples. In PLDI. ACM, 2015.

[Galitsky, 2019] Boris Galitsky. Developing Enterprise Chat-
bots - Learning Linguistic Structures. Springer, 2019.

[Guhe et al., 2011] Markus Guhe, Alison Pease, Alan Smaill,
Maricarmen Martinez, Martin Schmidt, Helmar Gust, Kai-
Uwe Kühnberger, and Ulf Krumnack. A computational
account of conceptual blending in basic mathematics. Cog-
nitive Systems Research, 12(3):249–265, 2011.

[Gulwani, 2011] Sumit Gulwani. Automating string process-
ing in spreadsheets using input-output examples. In POPL.
ACM, 2011.

[Gulwani, 2016] Sumit Gulwani. Programming by examples
- and its applications in data wrangling. In NATO Science
for Peace and Security Series, volume 45. IOS Press, 2016.

[Hasker, 1995] Robert W. Hasker. The Replay Of Program
Derivations. PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[Hofmann, 2010] Martin Hofmann. Igor2 - an analytical in-
ductive functional programming system: Tool demo. In
PEPM. ACM, 2010.

[Huet, 1976] Gerard Huet. Résolution d’Équations dans des
langages d’ordre 1, 2, . . . , ω. These d’État, Université de
Paris VII, 1976.

[Idestam-Almquist, 1995] Peter Idestam-Almquist. General-
ization of clauses under implication. J. Artif. Int. Res.,
3(1):467–489, 1995.

[Idestam-Almquist, 1997] Peter Idestam-Almquist. Gener-
alization of clauses relative to a theory. Mach. Learn.,
26(2-3):213–226, 1997.

[Johansson et al., 2011] Moa Johansson, Lucas Dixon, and
Alan Bundy. Conjecture synthesis for inductive theories. J.
Autom. Reason., 47(3):251–289, 2011.

[Jung et al., 2020] Jean Christoph Jung, Carsten Lutz, and
Frank Wolter. Least general generalizations in description
logic: Verification and existence. In AAAI. AAAI Press,
2020.

[Kitzelmann and Schmid, 2006] Emanuel Kitzelmann and
Ute Schmid. Inductive synthesis of functional programs:
An explanation based generalization approach. J. Mach.
Learn. Res., 7:429–454, 2006.

[Konev and Kutsia, 2016] Boris Konev and Temur Kutsia.
Anti-unification of concepts in description logic EL. In
KR. AAAI Press, 2016.

[Krumnack et al., 2007] Ulf Krumnack, Angela Schwering,
Helmar Gust, and Kai-Uwe Kühnberger. Restricted higher-
order anti-unification for analogy making. In AI, LNCS,
2007.

[Küsters and Molitor, 2001] Ralf Küsters and Ralf Molitor.
Computing least common subsumers in ALEN. In IJCAI.
Morgan Kaufmann, 2001.

[Kutsia and Pau, 2022] Temur Kutsia and Cleo Pau. A frame-
work for approximate generalization in quantitative theories.
In IJCAR, LNCS, 2022.

[Kutsia et al., 2014] Temur Kutsia, Jordi Levy, and Mateu
Villaret. Anti-unification for unranked terms and hedges. J.
Autom. Reason., 52(2):155–190, 2014.

[Kuzelka et al., 2012] Ondrej Kuzelka, Andrea Szabóová,
and Filip Zelezný. Bounded least general generalization.
In ILP, LNCS, 2012.

[Li and Thompson, 2010] Huiqing Li and Simon J. Thomp-
son. Similar code detection and elimination for erlang
programs. In PADL, LNCS, 2010.

[Libal and Miller, 2022] Tomer Libal and Dale Miller.
Functions-as-constructors higher-order unification: ex-
tended pattern unification. Ann. Math. Artif. Intell.,
90(5):455–479, 2022.

[Lu et al., 2000] Jianguo Lu, John Mylopoulos, Masateru
Harao, and Masami Hagiyab. Higher order generaliza-
tion and its application in program verification. Ann. Math.
Artif. Intell., 28(1-4):107–126, 2000.

[Martı́nez et al., 2017] Maricarmen Martı́nez, Ahmed M. H.
Abdel-Fattah, Ulf Krumnack, Danny Gómez-Ramı́rez,
Alan Smaill, Tarek Richard Besold, Alison Pease, Martin
Schmidt, Markus Guhe, and Kai-Uwe Kühnberger. Theory

blending: extended algorithmic aspects and examples. Ann.
Math. Artif. Intell., 80(1):65–89, 2017.

[Mehta et al., 2020] Sonu Mehta, Ranjita Bhagwan, Rahul
Kumar, Chetan Bansal, Chandra Shekhar Maddila, Bala-
subramanyan Ashok, Sumit Asthana, Christian Bird, and
Aditya Kumar. Rex: Preventing bugs and misconfigura-
tion in large services using correlated change analysis. In
USENIX. USENIX Association, 2020.

[Mitchell, 1982] Tom M. Mitchell. Generalization as search.
Artificial Intelligence, 18(2):203–226, 1982.

[Muggleton et al., 2009] Stephen H. Muggleton, José Car-
los Almeida Santos, and Alireza Tamaddoni-Nezhad. Pro-
Golem: A system based on relative minimal generalisation.
In ILP, LNCS, 2009.

[Muggleton, 1995] Stephen H. Muggleton. Inverse entail-
ment and Progol. New Gener. Comput., 13(3&4):245–286,
1995.

[Ontañón and Plaza, 2007] Santiago Ontañón and Enric
Plaza. Case-based learning from proactive communica-
tion. In IJCAI. ijcai.org, 2007.

[Pau, 2022] Cleo Pau. Symbolic Techniques for Approximate
Reasoning. PhD thesis, RISC, Johannes Kepler University
Linz, 2022.

[Pfenning, 1991] Frank Pfenning. Unification and anti-
unification in the calculus of constructions. In LICS. IEEE
Computer Society, 1991.

[Pientka, 2009] Brigitte Pientka. Higher-order term index-
ing using substitution trees. ACM Trans. Comput. Log.,
11(1):6:1–6:40, 2009.

[Plotkin, 1970] Gordon D. Plotkin. A note on inductive gen-
eralization. Machine Intell., 5(1):153–163, 1970.

[Polozov and Gulwani, 2015] Oleksandr Polozov and Sumit
Gulwani. Flashmeta: A framework for inductive program
synthesis. SIGPLAN Not., 50(10):107–126, 2015.

[Purgal et al., 2022] Stanislaw J. Purgal, David M. Cerna, and
Cezary Kaliszyk. Learning higher-order logic programs
from failures. In IJCAI. ijcai.org, 2022.

[Raza et al., 2014] Mohammad Raza, Sumit Gulwani, and
Natasa Milic-Frayling. Programming by example using
least general generalizations. In AAAI. AAAI Press, 2014.

[Reynolds, 1970] John C. Reynolds. Transformational sys-
tems and the algebraic structure of atomic formulas. Ma-
chine Intell., 5(1):135–151, 1970.

[Sakkas et al., 2020] Georgios Sakkas, Madeline Endres,
Benjamin Cosman, Westley Weimer, and Ranjit Jhala. Type
error feedback via analytic program repair. In PLDI. ACM,
2020.

[Schmidt-Schauß and Nantes-Sobrinho, 2022] Manfred
Schmidt-Schauß and Daniele Nantes-Sobrinho. Nominal
anti-unification with atom-variables. In FSCD, LIPIcs,
2022.

[Schwering et al., 2009] Angela Schwering, Ulf Krumnack,
Kai-Uwe Kühnberger, and Helmar Gust. Syntactic princi-
ples of heuristic-driven theory projection. Cognitive Sys-
tems Research, 10(3):251–269, 2009.

[Siddiq et al., 2021] Mohammed Latif Siddiq, Md. Rezwa-
nur Rahman Jahin, Mohammad Rafid Ul Islam, Rifat
Shahriyar, and Anindya Iqbal. SQLIFIX: Learning based
approach to fix SQL injection vulnerabilities in source code.
In SANER. IEEE, 2021.

[Singher and Itzhaky, 2021] Eytan Singher and Shachar
Itzhaky. Theory exploration powered by deductive syn-
thesis. In CAV, LNCS, 2021.

[Sinha, 2008] Nishant Sinha. Symbolic program analysis
using term rewriting and generalization. In FMCAD. IEEE,
2008.

[Sotoudeh and Thakur, 2020] Matthew Sotoudeh and
Aditya V. Thakur. Analogy-making as a core primitive in
the software engineering toolbox. In Onward! ACM, 2020.

[Srinivasan, 2001] Ashwin Srinivasan. The ALEPH manual.
Machine Learning at the Computing Laboratory, Oxford
University, 2001.

[Vanhoof and Yernaux, 2019] Wim Vanhoof and Gonzague
Yernaux. Generalization-driven semantic clone detection
in CLP. In LOPSTR, LNCS, 2019.

[Weller and Schmid, 2006] Stephan Weller and Ute Schmid.
Solving proportional analogies by E -generalization. In KI,
LNCS, 2006.

[Winter et al., 2022] Emily Rowan Winter, Vesna Nowack,
David Bowes, Steve Counsell, Tracy Hall, Sæ-
mundur Óskar Haraldsson, John R. Woodward, Serkan
Kirbas, Etienne Windels, Olayori McBello, Abdurahman
Atakishiyev, Kevin Kells, and Matthew W. Pagano. To-
wards developer-centered automatic program repair: find-
ings from Bloomberg. In ESEC/FSE. ACM, 2022.

[Yamamoto et al., 2001] Akihiro Yamamoto, Kimihito Ito,
Akira Ishino, and Hiroki Arimura. Modelling semi-
structured documents with hedges for deduction and in-
duction. In ILP, LNCS, 2001.

[Yang and Deng, 2021] Kaiyu Yang and Jia Deng. Learn-
ing symbolic rules for reasoning in quasi-natural language.
CoRR, abs/2111.12038, 2021.

[Yernaux and Vanhoof, 2022a] Gonzague Yernaux and Wim
Vanhoof. Anti-unification of unordered goals. In EACSL,
LIPIcs, 2022.

[Yernaux and Vanhoof, 2022b] Gonzague Yernaux and Wim
Vanhoof. On detecting semantic clones in constraint logic
programs. In IWSC. IEEE, 2022.

[Zhang et al., 2022] Yuhao Zhang, Yasharth Bajpai, Priyan-
shu Gupta, Ameya Ketkar, Miltiadis Allamanis, Titus Barik,
Sumit Gulwani, Arjun Radhakrishna, Mohammad Raza,
Gustavo Soares, and Ashish Tiwari. Overwatch: Learn-
ing patterns in code edit sequences. Proc. ACM Program.
Lang., 6(OOPSLA), 2022.

	Introduction
	Generalization Problems: an Abstract View
	Generalization in First-Order Theories
	First-Order Syntactic Generalization (FOSG)
	First-Order Equational Generalization (FOEG)
	First-Order Clausal Generalization (FOCG)
	Unranked First-Order Generalization (UFOG)
	Description Logics

	Higher-Order Generalization
	Higher-Order -Generalization (HOG)
	Higher-Order Equational Generalization
	Polymorphic Higher-Order Generalization
	Second-Order Combinator Generalization

	Applications
	Learning and Reasoning
	Synthesis and Exploration
	Analysis and Repair

	Future Directions

