
McCarthy-Kleene fuzzy automata and MSO logics∗

Manfred Droste1, Temur Kutsia2, George Rahonis3†, Wolfgang Schreiner2
1Institut für Informatik

Universität Leipzig
D-04109 Leipzig, Germany

droste@informatik.uni-leipzig.de
2Research Institute for Symbolic Computation (RISC)

Johannes Kepler University
A-4040 Linz, Austria

{Temur.Kutsia,Wolfgang.Schreiner}@risc.jku.at
3Department of Mathematics

Aristotle University of Thessaloniki
54124 Thessaloniki, Greece

grahonis@math.auth.gr

Abstract

We introduce McCarthy-Kleene fuzzy automata (MK-fuzzy automata) over a bimonoid K which

is related to the fuzzification of the McCarthy-Kleene logic. Our automata are inspired by, and

intend to contribute to, practical applications being in development in a project on runtime network

monitoring based on predicate logic. We investigate closure properties of the class of recognizable

MK-fuzzy languages accepted by MK-fuzzy automata as well as of deterministically recognizable

MK-fuzzy languages accepted by their deterministic counterparts. Moreover, we establish a Nivat-

like result for recognizable MK-fuzzy languages. We introduce an MK-fuzzy MSO logic and show

the expressive equivalence of a fragment of this logic with MK-fuzzy automata, i.e., a Büchi type

theorem.

Keywords: Bimonoids, McCarthy-Kleene logic, MK-fuzzy automata, MK-fuzzy MSO logics

∗Supported by the Austrian Research Promotion Agency (FFG) in the frame of the BRIDGE program 846003
“LogicGuard II”.
†Corresponding author

Preprint submitted to Information and Computation February 16, 2018

1. Introduction

Fuzzy automata constitute a special model of weighted automata but historically have been

defined and studied separately, mostly inspired by fuzzy logic theory. The original fuzzy automaton

model assigned to words values from the lattice [0, 1] with the usual max and min operations. Later

on, fuzzy automata were investigated also over more general structures like for instance lattices,5

residuated lattices, and l-monoids. Several real world applications are modelled by fuzzy automata.

We refer the reader to [20] for fuzzy automata theory and applications, to [22] for a generalization of

them and their connection to weighted automata, and to [1] for fuzzy semirings related to automata.

For weighted automata theory, the interested reader should consult for instance [7, 8, 10].

On the other hand, McCarthy-Kleene logic (MK-logic for short), a combination of three-valued10

logics of McCarthy [19] and Kleene [13], has been introduced in [14, 2] to reason about computation

errors. The original idea, according to [2], was to distinguish between two types of errors: critical

ones, which make the whole computation stop and cause a total failure of the program, and non-

critical ones, which stop only part of the computation and can be fixed or circumvented by a

success in some other part. MK-logic is a four-valued logic, where alongside the truth values t15

(true) and f (false) there are also u (undefined, which originates from Kleene’s logic) and e (error,

which comes from McCarthy’s logic). In this combination, ‘undefined’ is intended to represent

non-critical errors, while ‘error’ is reserved for critical ones. As in McCarthy’s logic, interpretation

of binary connectives is asymmetric, which means, for instance, that the disjunction of t and e is

t, while the disjunction of e and t gives e. In the combination it is assumed that e prevails u in20

whatever order they appear.

MK-logic has found an application in the LogicGuard project [17, 18, 15, 4] which pursues

research on network security, developing a specification and verification formalism and tool for

runtime network monitoring based on predicate logic. A monitor, which is a logical formula (usually

with quantifiers), is interpreted over a network (an infinite stream of messages). The goal is to

check whether the property specified in the monitor is satisfied by the stream, and report violating

messages, if any. For instance, the following monitoring formula

monitor x : p(x)⇒ exists y with x ≤ y ≤ x+ T : q(x, y)

investigates for every stream position x that satisfies p(x) whether there exists some position y in

range [x, x+ T] such that property q(x, y) holds. Operationally, the monitor formula is translated

2

into a program, which accepts stream messages one after the other, keeps evaluating the monitored

property on the known part of the stream, and if it is violated (i.e., its truth value becomes f),

reports the message that caused the violation. At each moment, the monitor observes only a finite

initial part of the stream. Hence, it is not always possible to decide whether the property holds

or not (‘not enough’ messages have arrived). In this case, a new copy of the current instance of

the monitoring formula is created. Its truth value is u: undefinedness here really corresponds to

‘unknown’, not to a non-critical error. The copy is added to the pile of copies of some previous

instances, which also wait to be decided. Each of these copies will be evaluated for the incoming

messages and will be removed from consideration if its truth value becomes t or f . In the latter

case, the violated message is reported. If something causes an error (i.e., if the truth value e is

generated for some reason), monitoring stops. The LogicGuard framework has met the expectations

of the developers, being successfully used for runtime network monitoring. As the next step, it is

planned to deploy it for new application scenarios such as, for instance, “Internet of Things”. Such

applications pose new challenges, related to the difficulties with quantification of decisions, or to

the fact that it is not a priori clear what the expectations of a correct execution of a system are. To

deal with such problems, reasoning with some kind of probabilistic or fuzzy knowledge is required.

As the first step towards this direction, we envisage the extension of the LogicGuard specification

language to a fuzzy quantified logic that is able to handle specifications including uncertainty and

vagueness. On this strand, and for the development of the fuzzification of the MK-logic and relative

models, we introduce MK-fuzzy automata, and this paper is a first attempt to study these models.

Our MK-fuzzy automata assign, to words, values from the bimonoid

K = {(t, f, u, e) ∈ [0, 1]4 | t+ f + u+ e = 1}

where its operations, called MK-disjunction and MK-conjunction, are inspired by the fuzzification

of the MK-logic. Formal series with values in K are called MK-fuzzy languages.

Classical operations in formal series over semirings cannot be defined in the usual way over

bimonoids due to the lack of commutativity and distributivity properties. Notable examples are25

the Cauchy product and the star operation. If the weight structure is weaker than a semiring,

for instance a bimonoid like in our case, then the lack of commutativity, distributivity, and mul-

tiplicative zero properties has a serious impact on the automata models considered over such a

weight structure. For instance the value assigned by the automaton to a word cannot be defined

3

in the usual way. Due to these difficulties, and since no interesting bimonoid structures have been30

considered so far, there is a lack of work on weighted automata over bimonoids. According to our

best knowledge, the most relative works deal with automata and transducers over strong bimonoids

where the first operation is commutative and there is a multiplicative zero [5, 11, 16]. For our

MK-fuzzy automata, where a multiplicative zero is missing from the bimonoid K, we consider a

set of initial states, a set of transitions, and a set of final states and define on these sets the initial35

distribution, the mapping assigning truth values to the transitions of the automaton, and the ter-

minal distribution, respectively. Our model is nondeterministic. Since the MK-disjunction is not

commutative, we require the state set of the MK-fuzzy automaton to be linearly ordered. Then the

paths of the automaton over any word can be ordered according to lexicographic order, and hence

we can define the value of K assigned by the MK-fuzzy automaton to the given word.40

We show that the class of recognizable MK-fuzzy languages accepted by MK-fuzzy automata is

closed under MK-disjunction, strict alphabetic homomorphisms and inverse strict alphabetic homo-

morphisms. Moreover, we establish a Nivat-like decomposition result [21] showing that recognizable

MK-fuzzy languages can be obtained from very particular MK-fuzzy automata (in fact, with only

one state), restriction to recognizable languages and strict alphabetic homomorphisms. We intro-45

duce also the deterministic counterpart of our model and show that the class of MK-fuzzy languages

accepted by these automata, called deterministically recognizable, is closed under MK-disjunction

with scalars from the right. MK-disjunction with scalars form the left results to recognizable MK-

fuzzy languages. The Cauchy product of two deterministically recognizable MK-fuzzy languages is

a recognizable MK-fuzzy language. Due to the structure of the bimonoid K, we can define several50

notions of supports of MK-fuzzy languages. We show that the strong support, related to the first

component of the elements in K, of a deterministically recognizable MK-fuzzy language is a recog-

nizable language. Furthermore, we introduce an MK-fuzzy MSO logic and determine a fragment

of sentences which is expressively equivalent to the class of MK-fuzzy automata, i.e., a Büchi type

theorem.55

A preliminary version of this paper appeared in [9]. The present version contains detailed

proofs and further explanations. In addition we proved a normalization result (Proposition 16) for

nondeterministic MK-fuzzy automata, needed for the proofs and being of independent value due to

the differences of the notions of normalization for weighted automata and our models.

4

2. Preliminaries60

Let A be an alphabet, i.e., a finite nonempty set. As usually, we denote by A∗ the set of all

finite words over A and define A+ = A∗ \ {ε}, where ε is the empty word. The length of a word w,

i.e., the number of the letters of w is denoted as usual by |w|. A word w = a0 . . . an−1 over A, with

a0, . . . , an−1 ∈ A, is written also as w = w(0) . . . w(n − 1) with w(i) = ai for every 0 ≤ i ≤ n − 1.

Assume now that ≤ is a linear order on A. The lexicographic order ≤lex on A∗ is defined as follows:

w ≤lex w′ iff ((w′ = wv with v ∈ A∗) or (w = v1av2, w
′ = v1bv

′
2, v1 ∈ A∗, a, b ∈ A with a < b))

for every w,w′ ∈ A∗. Let now A and B be linearly ordered sets, respectively by ≤A and ≤B . Then,

the Cartesian product A × B is linearly ordered by ≤ which is defined, as usual, in the following

way:

(a, b) ≤ (a′, b′) iff ((a <A a
′) or (a = a′ and b ≤B b′))

for every (a, b), (a′, b′) ∈ A × B. In a similar way, the linear orders of three sets induce a linear

order on their Cartesian product. If no confusion arises, we shall use the same symbol ≤ to denote

every linear order considered in the sequel.

Throughout the paper A will denote an alphabet.

A bimonoid (K,+, ·, 0, 1) (cf. [11]) consists of a set K, two binary operations + and · and two65

constant elements 0 and 1 such that (K,+, 0) and (K, ·, 1) are monoids. If the monoid (K,+, 0) is

commutative and 0 acts as a multiplicative zero, i.e., k · 0 = 0 · k = 0 for every k ∈ K, then the

bimonoid is called strong. The bimonoid is denoted simply by K if the operations and the constant

elements are understood. A semiring is a strong bimonoid where multiplication distributes over

addition. A bimonoid K is called zero-sum free if k + k′ = 0 implies k = k′ = 0, and it is called70

zero-divisor free if k · k′ = 0 implies k = 0 or k′ = 0, for every k, k′ ∈ K.

In this paper we deal with a new type of fuzzy sets with values in the Cartesian product

[0, 1]4 = [0, 1] × [0, 1] × [0, 1] × [0, 1], such that their components are summing up to 1. This

type of fuzzy sets is inspired by McCarthy-Kleene logic (MK-logic for short). MK-logic which is a

combination of three-valued logics of McCarthy [19] and Kleene [13], has been introduced in [14, 2]75

to reason about computation errors. It is a four-valued logic, where alongside the truth values t

(true) and f (false) there are also u (undefined, which originates from Kleene’s logic) and e (error,

which comes from McCarthy’s logic). In this combination, ‘undefined’ is intended to represent

5

non-critical errors, while ‘error’ is reserved for critical ones. For the reader’s convenience we recall

the truth tables of MK-logic:80

or t f u e

t t t t t

f t f u e

u t u u e

e e e e e

not t f u e

f t u e

and t f u e

t t f u e

f f f f f

u u f u e

e e e e e

implies t f u e

t t f u e

f t t t t

u t u u e

e e e e e

For the fuzzification of the MK-logic we assign to t, f, u, e values from the interval [0, 1] with the

restriction that they are summing up to 1. Therefore, our fuzzy sets get their values in the subset

K of the Cartesian product [0, 1]4 which is defined as follows:

K = {(t, f, u, e) ∈ [0, 1]4 | t+ f + u+ e = 1}.

Due to practical applications, by which our theory is motivated (cf. [15]), we refer to the four

components of the elements of K to as the true, false, unknown, and error value, respectively. We

shall denote the elements of K with bold symbols and we shall call them the truth values of our85

fuzzy sets. For k = (t, f, u, e) ∈ K we shall write sometimes x(k) for x ∈ {t, f, u, e}, to denote

the x value of k. For every k1 = (t1, f1, u1, e1),k2 = (t2, f2, u2, e2) ∈ K we let k3 = k1 t k2 and

k4 = k1 u k2 where k3 = (t3, f3, u3, e3) and k4 = (t4, f4, u4, e4) are defined by the relations

t3 = t1 + (f1 + u1)t2 t4 = t1t2

f3 = f1f2 f4 = f1 + (t1 + u1)f2

u3 = f1u2 + u1(f2 + u2) u4 = t1u2 + u1(t2 + u2)

e3 = e1 + (f1 + u1)e2 e4 = e1 + (t1 + u1)e2.

It is not difficult to see that k3,k4 ∈ K, therefore t and u are well-defined operations on K.

Indeed, let us present the proof for k4; the proof for k3 is similar. By standard computations we

6

get 0 ≤ t4, f4, u4, e4 ≤ 1. Furthermore, we calculate

t4 + f4 + u4 + e4 = t1t2 + f1 + (t1 + u1)f2 + t1u2 + u1(t2 + u2) + e1 + (t1 + u1)e2

= t1t2 + f1 + t1f2 + u1f2 + t1u2 + u1t2 + u1u2 + e1 + t1e2 + u1e2

= t1(t2 + f2 + u2 + e2) + f1 + u1(f2 + t2 + u2 + e2) + e1

= t1 + f1 + u1 + e2 = 1

as wanted. We call t the MK-disjunction (disjunction for simplicity) and u the MK-conjunction90

(conjunction for simplicity). The result of the empty MK-conjunction equals 1. MK-disjunction

and MK-conjunction correspond to the fuzzification of the connectives ‘or’, ‘and’ of the MK-logic,

respectively. To clarify this, we preserve the above notations for k1,k2,k3, and k4 and construct

the following multiplication table:

t2 f2 u2 e2

t1 t1t2 t1f2 t1u2 t1e2

f1 f1t2 f1f2 f1u2 f1e2

u1 u1t2 u1f2 u1u2 t1e2

e1 e1t2 e1f2 e1u2 e1e2

(1)

For y = t, f, u, e, we compute every component y3 ∈ {t3, f3, u3, e3} of k3 by summing up the95

values of the cells in table (1) above, such that the corresponding cells in the truth table of ‘or’

contain the value y. Similarly, for k4 we compute every component y4 ∈ {t4, f4, u4, e4} of k4 by

summing up the values of the cells in table (1) above, such that the corresponding cells in the truth

table of ‘and’ contain the value y. For instance t3 = t1t2 + t1f2 + t1u2 + t1e2 + f1t2 + u1t2 =

t1(t2 + f2 + u2 + e2) + (f1 + u1)t2 = t1 + (f1 + u1)t2 and t4 = t1t2.100

Proposition 1. The disjunction and conjunction operations on K are associative with unit ele-

ments 0 = (0, 1, 0, 0) and 1 = (1, 0, 0, 0), respectively.

Proof. Let k1 = (t1, f1, u1, e1),k2 = (t2, f2, u2, e2),k3 = (t3, f3, u3, e3) ∈ K. We show firstly, the

associativity property for the disjunction operation. For this we let (k1 tk2)tk3 = (t, f, u, e) and

k1 t (k2 t k3) = (t′, f ′, u′, e′). By definition, we have105

k1 t k2 = (t1 + (f1 + u1)t2, f1f2, f1u2 + u1(f2 + u2), e1 + (f1 + u1)e2)

and

7

k2 t k3 = (t2 + (f2 + u2)t3, f2f3, f2u3 + u2(f3 + u3), e2 + (f2 + u2)e3).

Furthermore, we get

t = t1 + (f1 + u1)t2 + (f1f2 + f1u2 + u1(f2 + u2))t3

= t1 + (f1 + u1)t2 + f1f2t3 + f1u2t3 + u1f2t3 + u1u2t3

= t1 + (f1 + u1)t2 + (f1 + u1)f2t3 + (f1 + u1)u2t3

= t1 + (f1 + u1)(t2 + (f2 + u2)t3)

= t′,

f = (f1f2)f3

= f2(f2f3)

= f ′,

u = f1f2u3 + (f1u2 + u1(f2 + u2))(f3 + u3)

= f1f2u3 + f1u2f3 + f1u2u3 + u1f2f3 + u1f2u3 + u1u2f3 + u1u2u3

= f1(f2u3 + u2(f3 + u3)) + u1(f2f3 + f2u3 + u2(f3 + u3))

= u′,

e = e1 + (f1 + u1)e2 + (f1f2 + f1u2 + u1(f2 + u2))e3

= e1 + (f1 + u1)e2 + f1f2e3 + f1u2e3 + u1f2e3 + u1u2e3

= e1 + (f1 + u1)e2 + (f1 + u1)f2e3 + (f1 + u1)u2e3

= e1 + (f1 + u1)(e2 + (f2 + u2)e3)

= e′

which implies that (k1 t k2) t k3 = k1 t (k2 t k3).

Next we proceed with the associativity of conjunction. For this we let (k1 u k2) u k3 = (t̃, f̃ , ũ, ẽ)110

and k1 u (k2 u k3) = (t̃′, f̃ ′, ũ′, ẽ′). By definition, we have

k1 u k2 = (t1t2, f1 + (t1 + u1)f2, t1u2 + u1(t2 + u2), e1 + (t1 + u1)e2)

and

8

k2 u k3 = (t2t3, f2 + (t2 + u2)f3, t2u3 + u2(t3 + u3), e2 + (t2 + u2)e3).

Then we get

t̃ = (t1t2)t3

= t1(t2t3)

= t̃′,

f̃ = f1 + (t1 + u1)f2 + (t1t2 + t1u2 + u1(t2 + u2))f3

= f1 + (t1 + u1)f2 + t1t2f3 + t1u2f3 + u1t2f3 + u1u2f3

= f1 + (t1 + u1)f2 + (t1 + u1)t2f3 + (t1 + u1)u2f3

= f1 + (t1 + u1)f2 + (t1 + u1)(t2 + u2)f3

= f1 + (t1 + u1)(f2 + (t2 + u2)f3)

= f̃ ′,

ũ = t1t2u3 + (t1u2 + u1(t2 + u2))(t3 + u3)

= t1t2u3 + t1u2t3 + t1u2u3 + u1t2t3 + u1t2u3 + u1u2t3 + u1u2u3

= t1(t2u3 + u2t3 + u2u3) + u1(t2t3 + t2u3 + u2t3 + u2u3)

= t1(t2u3 + u2(t3 + u3)) + u1(t2t3 + t2u3 + u2(t3 + u3))

= ũ′,

ẽ = e1 + (t1 + u1)e2 + (t1t2 + t1u2 + u1(t2 + u2))e3

= e1 + t1e2 + u1e2 + t1t2e3 + t1u2e3 + u1t2e3 + u1u2e3

= e1 + (t1 + u1)e2 + (t1 + u1)t2e3 + (t1 + u1)u2e3

= e1 + (t1 + u1)(e2 + t2e3 + u2e3)

= e1 + (t1 + u1)(e2 + (t2 + u2)e3)

= ẽ′

and hence (k1 u k2) u k3 = k1 u (k2 u k3), as required.115

9

We show now that 0,1 are the unit elements of disjunction and conjunction, respectively. Indeed,

we have k1 t 0 = (t1 + (f1 + u1)0, f11, f10 + u1(1 + 0), e1 + (f1 + u1)0) = (t1, f1, u1, e1) and

0 t k1 = (0 + (1 + 0)t1, 1f1, 1u1 + 0(f1 + u1), 0 + (1 + 0)e1) = (t1, f1, u1, e1). Finally, k1 u 1 =

(t11, f1 + (t1 + u1)0, t10 + u1(1 + 0), e1 + (t1 + u1)0) = (t1, f1, u1, e1) and 1 u k1 = (1t1, 0 + (1 +

0)f1, 1u1 + 0(t1 + u1), 0 + (1 + 0)e1) = (t1, f1, u1, e1), and we are done.120

The result of the empty MK-conjunction equals 1. By Proposition 1, we immediately get the

next corollary.

Corollary 2. The structure (K,t,u,0,1) is a bimonoid.

Nevertheless, by the following proposition we conclude that the bimonoid (K,t,u,0,1) is not

strong.125

Proposition 3. Both the disjunction and conjunction operations on K are not commutative and

not idempotent. Furthermore, for every k = (t, f, u, e) ∈ K we get 0 u k = 0 and k u 0 =

(0, t+ f + u, 0, e).

Proof. Consider the elements k = (0.3, 0.2, 0.4, 0.1),k′ = (0.9, 0.05, 0.03, 0.02) of K. Then we get

ktk′ = (0.84, 0.01, 0.038, 0.112), k′tk = (0.924, 0.01, 0.038, 0.028), kuk′ = (0.27, 0.235, 0.381, 0.114),130

k′ uk = (0.27, 0.236, 0.381, 0.113), ktk = (0.48, 0.04, 0.32, 0.16), and kuk = (0.09, 0.34, 0.4, 0.17).

The remaining part of our proposition is proved by a standard calculation.

Proposition 4. Both the disjunction and conjunction on K do not distribute over each other.

Proof. Let k = (t, f, u, e) be an arbitrary element in K. Then we can easily show that ku(0t1) 6=

(k u 0) t (k u 1) and (1 t k) u 0 6= (1 u 0) t (k u 0), which imply that conjunction is neither left135

nor right distributive over disjunction. Similarly, we get k t (0 u 1) 6= (k t 0) u (k t 1) and

(0uk)t1 6= (0t1)u (kt1), i.e., disjunction is neither left nor right distributive over conjunction.

Proposition 5. The bimonoid K is zero-sum free and zero-divisor free.

Proof. We show firstly thatK is zero-sum free. For this let k1 = (t1, f1, u1, e1),k2 = (t2, f2, u2, e2) ∈140

K and assume that k1 t k2 = 0. Hence, we get

(t1 + (f1 + u1)t2, f1f2, f1u2 + u1(f2 + u2), e1 + (f1 + u1)e2) = (0, 1, 0, 0),

i.e.,

10

- t1 + (f1 + u1)t2 = 0,

- f1f2 = 1,145

- f1u2 + u1(f2 + u2) = 0,

- e1 + (f1 + u1)e2 = 0.

Since 0 ≤ f1, f2 ≤ 1 the second equality implies that f1 = f2 = 1, which in turn means that

k1 = k2 = 0, as required.

Next assume that k1 u k2 = 0, i.e.,150

(t1t2, f1 + (t1 + u1)f2, t1u2 + u1(t2 + u2), e1 + (t1 + u1)e2) = (0, 1, 0, 0)

and hence,

- t1t2 = 0,

- f1 + (t1 + u1)f2 = 1,

- t1u2 + u1(t2 + u2) = 0,155

- e1 + (t1 + u1)e2 = 0.

The first equality implies that t1 = 0 or t2 = 0.

i) Let t1 = 0. Then, we get

- f1 + u1f2 = 1,

- u1t2 = u1u2 = 0,160

- e1 = u1e2 = 0.

By the second relation we get u1 = 0 or u2 = 0. If u1 = 0 since also e1 = 0, by our assumption

we get f1 = 1, i.e., k1 = 0.

Assume that u1 6= 0. Then by the second and third relations we get respectively, t2 = u2 = 0

and e2 = 0, which implies f2 = 1, i.e., k2 = 0.165

ii) Let t1 6= 0 and t2 = 0. Then we have

- f1 + (t1 + u1)f2 = 1,

- t1u2 = u1u2 = 0,

11

- e1 = t1e2 = u1e2 = 0.

By the second equality we get u2 = 0 and by the third one e2 = 0. Taking into account our170

assumption, we conclude that f2 = 1, and hence k2 = 0.

Therefore, in every case k1 = 0 or k2 = 0, and our proof is completed.

An MK-fuzzy language over A and K is a mapping s : A∗ → K. The strong support of s is

the language stgsupp(s) = {w ∈ A∗ | t(s(w)) 6= 0}. For every w ∈ A∗ the MK-fuzzy language w

is determined by w(v) = 1 if v = w, and w(v) = 0 otherwise. The constant MK-fuzzy language175

k̃ (k ∈ K) is defined, for every w ∈ A∗, by k̃(w) = k. We shall denote by K 〈〈A∗〉〉 the class

of all MK-fuzzy languages over A and K. The characteristic MK-fuzzy language 1L ∈ K 〈〈A∗〉〉

of a language L ⊆ A∗ is defined by 1L(w) = 1 if w ∈ L and 1L(w) = 0 otherwise. Let s, r ∈

K 〈〈A∗〉〉 and k ∈ K. The MK-disjunction (or simply disjunction) s t r, the MK-conjunction

(or simply conjunction) s u r, and the MK-conjunctions with scalars (simply scalar conjunctions)180

k u s and s u k are defined as follows: (s t r)(w) = s(w) t r(w), (s u r)(w) = s(w) u r(w), and

(kus)(w) = kus(w), (suk)(w) = s(w)uk for every w ∈ A∗. Since the disjunction and conjunction

operations among MK-fuzzy languages are defined elementwise, we can easily show that properties

of the structure
(
K 〈〈A∗〉〉 ,t,u, 0̃, 1̃

)
are inherited by the properties of the structure (K,t,u,0,1),

hence
(
K 〈〈A∗〉〉 ,t,u, 0̃, 1̃

)
is a bimonoid. The Cauchy product rs of r, s ∈ K 〈〈A∗〉〉 is defined as185

follows. For every w = a0 . . . an−1 ∈ A∗ with a0, . . . , an−1 ∈ A we let

rs(w) = (r(ε) u s(a0 . . . an−1)) t (r(a0) u s(a1 . . . an−1)) t . . . t (r(a0 . . . an−1) u s(ε)) .

Since disjunction and conjunction are not commutative, and they do not distribute over each other,

the Cauchy product is not associative as we state in the next proposition.

Proposition 6. The Cauchy product operation is not associative.190

Proof. Let k = (t, f, u, e) ∈ K. By Proposition 3 we get k u 0 = (0, t + f + u, 0, e) and we can

easily see that the false value of the element in K resulting by applying n-times the disjunction

operation on k u 0 with itself, is (t + f + u)n+1. Consider the constant MK-fuzzy languages k̃, 0̃,

and 1̃, and the word w = a0a1 ∈ A∗. Then we have

k̃(0̃1̃)(w) =
(
k̃(ε) u 0̃1̃(a0a1)

)
t
(
k̃(a0) u 0̃1̃(a1)

)
t
(
k̃(a0a1) u 0̃1̃(ε)

)
=
(
k̃(ε) u

((
0̃(ε) u 1̃(a0a1)

)
t
(
0̃(a0) u 1̃(a1)

)
t
(
0̃(a0a1) u 1̃(ε)

)))

12

t
(
k̃(a0) u

((
0̃(ε) u 1̃(a1)

)
t
(
0̃(a1) u 1̃(ε)

)))
t
(
k̃(a0a1) u

(
0̃(ε) u 1̃(ε)

))
= (k u (0 t 0 t 0)) t (k u (0 t 0)) t (k u 0)

= (k u 0) t (k u 0) t (k u 0)

=
(
. . . , (t+ f + u)3, . . . , . . .

)
.

On the other hand, we get

(k̃0̃)1̃(w) =
(
k̃0̃(ε) u 1̃(a0a1)

)
t
(
k̃0̃(a0) u 1̃(a1)

)
t
(
k̃0̃(a0a1) u 1̃(ε)

)
=
((

k̃(ε) u 0̃(ε)
)
u 1̃(a0a1)

)
t
(((

k̃(ε) u 0̃(a0)
)
t
(
k̃(a0) u 0̃(ε)

))
u 1̃(a1)

)
t
(((

k̃(ε) u 0̃(a0a1)
)
t
(
k̃(a0) u 0̃(a1)

)
t
(
k̃(a0a1) u 0̃(ε)

))
u 1̃(ε)

)
= (k u 0) t ((k u 0) t (k u 0)) t ((k u 0) t (k u 0) t (k u 0))

=
(
. . . , (t+ f + u)6, . . . , . . .

)
.

Hence, we get k̃(0̃1̃)(w) 6= (k̃0̃)1̃(w) which implies that k̃(0̃1̃) 6= (k̃0̃)1̃, and our proof is completed.

We assume now that the alphabet A is linearly ordered and let B be another alphabet. Then a

homomorphism h : A∗ → B∗ is extended to a mapping h : K 〈〈A∗〉〉 → K 〈〈B∗〉〉 in the following

way. For every s ∈ K 〈〈A∗〉〉 and v ∈ B∗ we let h(s)(v) =
⊔
w∈h−1(v) s(w) where in the definition195

of the disjunction we take into account the lexicographic order of the words w ∈ h−1(v). Finally,

we assume that h : A∗ → B∗ is a strict alphabetic homomorphism, i.e., h(a) ∈ B for every

a ∈ A. Then, for every r ∈ K 〈〈B∗〉〉 the MK-fuzzy language h−1(r) ∈ K 〈〈A∗〉〉 is determined by

h−1(r)(w) = r(h(w)) for every w ∈ A∗. We should note that for h−1 we do not require any order

on the alphabet A.200

3. MK-fuzzy automata

In this section we introduce the model of MK-fuzzy automata over A and K and investigate

closure properties of the class of their behaviors. Moreover, we prove a Nivat-like theorem for

recognizable MK-fuzzy languages.

Definition 7. An MK-fuzzy automaton over A and K is a seven-tuple A = (Q, I, T, F, in, wt, ter)205

where Q is the finite state set which is assumed to be linearly ordered, I is the set of initial states,

13

T ⊆ Q × A × Q is the set of transitions, F is the set of final states, in : I → K is the initial

distribution, wt : T → K is a mapping assigning truth values to the transitions of the automaton,

and ter : F → K is the final distribution.

Let w = a0 . . . an−1 be a word over A with a0, . . . , an−1 ∈ A. A path P
(A)
w (or simply Pw if the

automaton is understood) of A over w is a sequence of transitions P
(A)
w := ((qi, ai, qi+1))0≤i≤n−1,

(qi, ai, qi+1) ∈ T for every 0 ≤ i ≤ n− 1, with q0 ∈ I and qn ∈ F . The weight of P
(A)
w is the truth

value

weight
(
P (A)
w

)
= in(q0) u

l

0≤i≤n−1

wt (qi, ai, qi+1) u ter(qn).

The set of paths of A over w can be linearly ordered in the following way. For two paths Pw =

((qi, ai, qi+1))0≤i≤n−1 and P ′w =
((
q′i, ai, q

′
i+1

))
0≤i≤n−1 we let

Pw ≤ P ′w iff q0 . . . qn−1 ≤lex q′0 . . . q′n−1.

The behavior of A is the MK-fuzzy language ‖A‖ : A∗ → K and it is defined as follows. Let

w ∈ A+ and {Pw,1, . . . , Pw,m} be the set of all paths of A over w. Furthermore, assume that

Pw,1 ≤ . . . ≤ Pw,m. Then, we set

‖A‖(w) = weight(Pw,1) t . . . t weight(Pw,m).

If there are no paths of A over w, then we let ‖A‖(w) = 0. If w = ε, then

‖A‖(ε) = (in(qi1) u ter(qi1)) t . . . t (in(qim) u ter(qim))

where I ∩ F = {qi1 , . . . , qim} and qi1 ≤ . . . ≤ qim . If I ∩ F = ∅, then we set ‖A‖(ε) = 0. An210

MK-fuzzy language s : A∗ → K is called recognizable if there is an MK-fuzzy automaton A over

A and K such that s = ‖A‖. We denote by Rec(K,A) the class of all recognizable MK-fuzzy

languages over A and K.

Remark 8. By our definition above, we get that weight
(
P

(A)
w

)
= 0 whenever in(q0) = 0 for every

path P
(A)
w = ((qi, ai, qi+1))0≤i≤n−1 of A over w = a0 . . . an−1. Hence, in the sequel, we assume that215

in : I → K \ {0} for every MK-fuzzy automaton A = (Q, I, T, F, in, wt, ter) over A and K.

Example 9. Let k ∈ K. Then the constant MK-fuzzy language k̃ is recognizable. Indeed, we

consider the MK-fuzzy automaton Ak = ({q}, {q}, T, {q}, in, wt, ter) with T = {(q, a, q) | a ∈ A}

and in(q) = k, ter(q) = 1, and wt(q, a, q) = 1 for every a ∈ A. We trivially get ‖A‖ = k̃.

14

Proposition 10. Let L ⊆ A∗ be a recognizable language. Then 1L ∈ Rec(K,A).220

Proof. We consider a deterministic finite automaton A = (Q,A, q0, T, F) accepting L, and

construct the MK-fuzzy automaton A′ = (Q, {q0}, T, F, in, wt, ter) where the weight mappings

in, wt, ter assign the value 1 to every element of their domain. Then, for every w ∈ L there is a

unique successful path Pw of A over w. By construction of A′, Pw is also the unique path of A′

over w and weight(Pw) = 1, hence ‖A′‖(w) = 1. If w /∈ L, then there is no successful path of A225

over w which in turn implies that there is no path of A′ over w. Therefore ‖A′‖(w) = 0, and we

are done.

Theorem 11. The class Rec(K,A) is closed under disjunction.

Proof. Let A1 = (Q1, I1, T1, F1, in1, wt1, ter1), A2 = (Q2, I2, T2, F2, in2, wt2, ter2) be two MK-

fuzzy automata over A and K. Without loss of generality, we assume that Q1 ∩Q2 = ∅. We define230

a linear order on Q1 ∪ Q2 by preserving the orders of Q1 and Q2 and letting maxQ1 ≤ minQ2.

We consider the MK-fuzzy automaton A = (Q,T, I, F, in, wt, ter) with Q = Q1 ∪Q2, I = I1 ∪ I2,

T = T1 ∪ T2, F = F1 ∪ F2, and in, wt, ter are defined respectively by

- in(q) =

 in1(q) if q ∈ I1
in2(q) if q ∈ I2

for every q ∈ I,235

- wt(q, a, q′) =

 wt1(q, a, q′) if (q, a, q′) ∈ T1
wt2(q, a, q′) if (q, a, q′) ∈ T2

for every (q, a, q′) ∈ T , and

- ter(q) =

 ter1(q) if q ∈ F1

ter2(q) if q ∈ F2

for every q ∈ F .

Consider a word w = a0 . . . an−1 ∈ A∗ and a path P
(A)
w = ((qi, ai, qi+1))0≤i≤n−1 of A over w.

By definition of T , the transitions of P
(A)
w belong either to T1 or to T2, hence P

(A)
w is either a path

of A1 over w or a path of A2 over w. Conversely, every path of A1 (resp. of A2) over w is also a

path of A over w. Taking into account the order of Q, we get

‖A‖(w) = ‖A1‖(w) t ‖A2‖(w).

15

Hence, ‖A‖ = ‖A1‖ t ‖A2‖ which implies that ‖A1‖ t ‖A2‖ ∈ Rec(K,A), as required.240

Theorem 12. Let s ∈ Rec(K,A) and L ⊆ A∗ be a recognizable language. Then 1Lus ∈ Rec(K,A).

Proof. Let A1 =
(
Q1, A, q

(0)
1 , T1, F1

)
be a deterministic finite automaton accepting L and A2 =

(Q2, I2, T2, F2, in2, wt2, ter2) an MK-fuzzy automaton over A and K accepting s. We define an

arbitrary linear order ≤ on Q1 and consider the MK-fuzzy automaton

A =
(
Q1 ×Q2,

{
q
(0)
1

}
× I2, T, F1 × F2, in, wt, ter

)
with T = {((q1, q2), a, (q′1, q

′
2)) | (q1, a, q′1) ∈ T1 and (q2, a, q

′
2) ∈ T2} and

- in
(
q
(0)
1 , q2

)
= in2(q2) for every q2 ∈ I2,

- wt((q1, q2), a, (q′1, q
′
2)) = wt2(q2, a, q

′
2) for every ((q1, q2), a, (q′1, q

′
2)) ∈ T ,

- ter(q1, q2) = ter2(q2) for every (q1, q2) ∈ F1 × F2.245

The state set Q1 ×Q2 is linearly ordered by

(q1, q2) ≤ (q′1, q
′
2) iff ((q2 < q′2) or (q2 = q′2 and q1 ≤ q′1))

for every (q1, q2), (q′1, q
′
2) ∈ Q1 ×Q2.

Let w = a0 . . . an−1 ∈ A∗ and P
(A)
w =

((
(q

(i)
1 , q

(i)
2), ai, (q

(i+1)
1 , q

(i+1)
2)

))
0≤i≤n−1

be a path of A over

w. By construction of A we get that P
(A1)
w =

((
q
(i)
1 , ai, q

(i+1)
1

))
0≤i≤n−1

is a successful path of

A1 over w and P
(A2)
w =

((
q
(i)
2 , ai, q

(i+1)
2

))
0≤i≤n−1

is a path of A2 over w. In fact P
(A1)
w is unique

since A1 is deterministic and moreover w ∈ L. Trivially, we get weight
(
P

(A)
w

)
= weight

(
P

(A2)
w

)
.

Let now P
(A)
w,1 , . . . , P

(A)
w,m be all the paths of A over w and assume that P

(A)
w,1 ≤ . . . ≤ P

(A)
w,m. Then

P
(A2)
w,1 , . . . , P

(A2)
w,m are all the paths of A2 over w. Moreover, by the order on Q1 × Q2, we get

P
(A2)
w,1 ≤ . . . ≤ P

(A2)
w,m . Hence, we have

‖A‖(w) = weight
(
P

(A)
w,1

)
t . . . t weight

(
P (A)
w,m

)
= weight

(
P

(A2)
w,1

)
t . . . t weight

(
P (A2)
w,m

)
= ‖A2‖(w)

= 1L(w) u ‖A2‖(w)

= (1L u ‖A2‖)(w).

16

If w /∈ L, then 1L(w) = 0 and there is not any successful path of A1 over w which in turn implies

that there is not any path of A over w. Hence, ‖A‖(w) = 0, i.e., ‖A‖(w) = (1L u ‖A2‖)(w), and

our proof is completed.

Theorem 13. Let A be a linearly ordered alphabet and h : A∗ → B∗ a strict alphabetic homomor-250

phism. Then s ∈ Rec(K,A) implies h(s) ∈ Rec(K,B).

Proof. Let A = (Q, I, T, F, in, wt, ter) be an MK-fuzzy automaton over A and K accepting s. We

consider the MK-fuzzy automaton B = (A×Q, {minA} × I, T ′, A× F, in′, wt′, ter ′) over B and K

with T ′ = {((a, q), b, (a′q′)) | (q, a′, q′) ∈ T and h(a′) = b}. The weight mappings in′, wt′, ter ′ are

defined respectively, by255

- in′(a, q) = in(q), with a = minA and every q ∈ I,

- wt′((a, q), b, (a′, q′)) = wt(q, a′, q′), for every ((a, q), b, (a′, q′)) ∈ T ′, and

- ter ′(a, q) = ter(q), for every (a, q) ∈ A× F .

Let w = a0 . . . an−1 ∈ A+ and P
(A)
w = ((qi, ai, qi+1))0≤i≤n−1 be a path of A over w. By definition

of the MK-fuzzy automaton B there is a unique path

P
(B)
h(w) = ((a, q0), h(a0), (a0, q1))((a0, q1), h(a1), (a1, q2)) . . . ((an−2, qn−1), h(an−1), (an−1, qn))

of B over h(w), and by a straightforward calculation we get weight
(
P

(B)
h(w)

)
= weight

(
P

(A)
w

)
.

Conversely, let v = b0 . . . bn−1 ∈ B+ and

P (B)
v = ((a, q0), b0, (a0, q1))((a0, q1), b1, (a1, q2)) . . . ((an−2, qn−1), bn−1, (an−1, qn))

be a path of B over v. Then, v = h(w) where w = a0 . . . an−1 ∈ A+. Moreover, P
(A)
w =

((qi, ai, qi+1))0≤i≤n−1 is a path of A over w and weight
(
P

(B)
v

)
= weight

(
P

(A)
w

)
. Hence, for

every v ∈ B+, if w1, . . . , wm are all the words in A+ such that h(wi) = v (1 ≤ i ≤ m), then there

is a one-to-one correspondence between the paths

P
(A)
w1,1

, . . . , P
(A)
w1,j1

, . . . , P
(A)
wm,1

, . . . , P
(A)
wm,jm

of A, respectively over w1, . . . , wm, and the paths

P
(B)
v,1 , . . . , P

(B)
v,j1

, P
(B)
v,j1+1, . . . , P

(B)
v,j1+j2

, . . . , P
(B)
v,k

17

of B over v, where P
(A)
wl,rl corresponds to P

(B)
v,j1+...+jl−1+rl

for every 1 ≤ l ≤ m and 1 ≤ rl ≤ jl. Then

we get weight
(
P

(A)
wl,rl

)
= weight

(
P

(B)
v,j1+...+jl−1+rl

)
. Moreover, if w1 ≤ . . . ≤ wm and

P
(A)
w1,1
≤ . . . ≤ P (A)

w1,j1
, . . . , P

(A)
wm,1

≤ . . . ≤ P (A)
wm,jm

,

then

P
(B)
v,1 ≤ . . . ≤ P

(B)
v,j1
≤ P (B)

v,j1+1 ≤ . . . ≤ P
(B)
v,j1+j2

≤ . . . ≤ P (B)
v,k .

Hence we have

h(s)(v) =
⊔

w∈h−1(v)

s(w) = s(w1) t . . . t s(wm)

=
⊔

1≤r1≤j1

weight
(
P (A)
w1,r1

)
t . . . t

⊔
1≤rm≤jm

weight
(
P (A)
wm,rm

)
=

⊔
1≤i≤k

weight
(
P

(B)
v,i

)
= ‖B‖(v).

Next let s(ε) 6= 0 and assume that I ∩ F = {qi1 , . . . , qim}. Then ({minA} × I) ∩ (A × F) =

{(minA, qi1), . . . , (minA, qim)} and by definition of in′ and ter ′ we get ‖A‖(ε) = ‖B‖(ε). Since260

h(s)(ε) = s(ε), we finally conclude that h(s) = ‖B‖, i.e, h(s) ∈ Rec(K,B), and we are done.

Theorem 14. Let h : A∗ → B∗ be a strict alphabetic homomorphism. Then s ∈ Rec(K,B) implies

h−1(s) ∈ Rec(K,A).

Proof. Let A = (Q, I, T, F, in, wt, ter) be an MK-fuzzy automaton over B and K accepting

s. We consider the MK-fuzzy automaton A′ = (Q, I, T ′, F, in, wt′, ter) over A and K, where265

T ′ = {(q, a, q′) ∈ Q × A × Q | (q, h(a), q′) ∈ T} and the mapping wt′ : T ′ → K is defined by

wt′(q, a, q′) = wt(q, h(a), q′) for every (q, a, q′) ∈ T ′.

Let w = a0 . . . an−1 ∈ A+ and P
(A)
h(w) = ((qi, h(ai), qi+1))0≤i≤n−1 be a path of A over h(w). By

construction of A′, there is a path P
(A′)
w = ((qi, ai, qi+1))0≤i≤n−1 of A over w, and vice versa.

Trivially weight
(
P

(A′)
w

)
= weight

(
P

(A)
h(w)

)
. Furthermore, if P

(A)
h(w),1, . . . , P

(A)
h(w),m are all the paths

of A over h(w) and

P
(A)
h(w),1 ≤ . . . ≤ P

(A)
h(w),m,

then for the corresponding paths P
(A′)
w,1 , . . . , P

(A′)
w,m of A′ over w, we get

P
(A′)
w,1 ≤ . . . ≤ P (A′)

w,m .

18

We conclude that ‖A′‖(w) = ‖A‖(h(w)), i.e., ‖A′‖(w) = h−1(s)(w) for every word w ∈ A+. By

construction of A′, we get ‖A′‖(ε) = ‖A‖(ε) = s(ε) = h−1(s)(ε). Hence, ‖A′‖ = h−1(s), and our

proof is completed.270

The subsequent definition refers to normalized MK-fuzzy automata and differs from the corre-

sponding one of weighted automata over semirings.

Definition 15. An MK-fuzzy automaton A = (Q, I, T, F, in, wt, ter) is called normalized if I∩F =

∅, in(q) = 1 for every q ∈ I, ter(q) = 1 for every q ∈ F , (q, a, q′) /∈ T for every q ∈ Q, a ∈ A,

q′ ∈ I, and (q, a, q′) /∈ T for every q ∈ F, a ∈ A, q′ ∈ Q.275

For normalized automata, we simply write A = (Q, I, T, F, wt), and if I = {qin}, then A =

(Q, qin, T, F, wt). It should be clear that ‖A‖(ε) = 0 whenever A is a normalized MK-fuzzy au-

tomaton over A and K.

Proposition 16. For every MK-fuzzy automaton A = (Q, I, T, F, in, wt, ter) we can effectively

construct a normalized MK-fuzzy automaton A′ such that ‖A′‖(w) = ‖A‖(w) for every w ∈ A+.280

Proof. Firstly, we show that we can construct an MK-fuzzy automaton A = (Q, I, T , F , in, wt, ter)

such that I ∩ F = ∅ and ‖A‖(w) = ‖A‖(w) for every w ∈ A+. If I ∩ F = ∅, then we have

nothing to prove. Let q ∈ I ∩ F . We consider a new state q and the MK-fuzzy automaton A =

(Q, I, T , F , in, wt, ter) with Q = Q∪{q}, I = I, F = (F \q)∪{q}, T = T ∪{(p, a, q) | (p, a, q) ∈ T},

in = in, ter(p) = ter(p) for every p ∈ F \ {q}, and ter(q) = ter(q), wt(p, a, p′) = wt(p, a, p′) for285

every (p, a, p′) ∈ T , and wt(p, a, q) = wt(p, a, q) for every (p, a, q) ∈ T ′ \ T . Furthermore, the order

on Q is extended to an order on Q by letting p ≤ q ≤ q ≤ p′ whenever p ≤ q ≤ p′. By construction

of A, we get that for every w ∈ A+ and path Pw of A over w, terminating at q, there exists a

path Pw of A over w terminating at q, and vice versa. Moreover, weight(Pw) = weight(Pw) and

if Pw,1 ≤ Pw ≤ Pw,2, then Pw,1 ≤ Pw ≤ Pw,2. Hence, ‖A‖ = ‖A‖. If I ∩F 6= ∅, then we repeat the290

same process.

Therefore, we assume in the sequel that I ∩ F = ∅. We consider the MK-fuzzy automaton A′ =

(Q′, I ′, T ′, F ′, in′, wt′, ter ′) where I ′ = {q′ | q ∈ I} and F ′ = {p′ | p ∈ F} are copy states of I and F

respectively, Q′ = Q∪I ′∪F ′, and T ′ = T∪{(q′, a, p) | (q, a, p) ∈ T and q ∈ I}∪{(q, a, p′) | (q, a, p) ∈

T and p ∈ F} ∪ {(q′, a, p′) | (q, a, p) ∈ T and q ∈ I, p ∈ F}. We extend on Q′ the linear order on295

Q as follows. For every q′ ∈ I ′ (which corresponds to q ∈ I) we let q1 ≤ q′ ≤ q ≤ q2 whenever

19

q1 ≤ q ≤ q2. Similarly, for every p′ ∈ F ′ (which corresponds to p ∈ F) we let p1 ≤ p′ ≤ p ≤ p2

whenever p1 ≤ p ≤ p2. The weight mappings in′, wt′, ter ′ are defined by

- in′(q′) = 1 for every q′ ∈ I ′,

- wt′(q, a, p) =



wt(q, a, p) if (q, a, p) = (q, a, p) ∈ T

in(q) u wt(q, a, p) if (q, a, p) = (q′, a, p) with q′ ∈ I ′, p ∈ Q

wt(q, a, p) u ter(p) if (q, a, p) = (q, a, p′) with q ∈ Q, p′ ∈ F ′

in(q) u wt(q, a, p) u ter(p) if (q, a, p) = (q′, a, p′) with q′ ∈ I ′, p′ ∈ F ′

300

for every (q, a, p) ∈ T ′, and

- ter ′(p′) = 1 for every p′ ∈ F ′.

Let now w = a0 . . . an−1 ∈ A+ with n > 1, and Pw = ((qi, ai, qi+1))0≤i≤n−1 be a path of A over w.

Then, there is a path P ′w = (q′0, a0, q1) ((qi, ai, qi+1))1≤i≤n−2 (qn−1, an−1, q
′
n) of A′ over w and vice

versa. Moreover, weight(Pw) = weight(P ′w). Furthermore, the order on Q′ implies

Pw,1 ≤ . . . ≤ Pw,m

iff

P ′w,1 ≤ . . . ≤ P ′w,m

where Pw,1, . . . , Pw,m are all the paths of A over w. Hence ‖A‖(w) = ‖A′‖(w). If w = a, with a ∈ A

and Pa = (q, a, p) is a path of A over a, then P ′a = (q′, a, p′) is a path of A′ over a, and by definition

again we get weight(Pa) = weight(P ′a), hence ‖A‖(a) = ‖A′‖(a). We conclude ‖A‖(w) = ‖A′‖(w)305

for every w ∈ A+, and our proof is completed.

Next, we show a Nivat-like decomposition theorem for recognizable MK-fuzzy languages. The

fundamental Nivat’s theorem [21] states a relation among rational transductions and rational lan-

guages. A Nivat-like result was proved for weighted automata over semirings in [8]. We need some

preliminary matter. Let B be an alphabet and g : B → K a mapping. Then g can be extended to310

an MK-fuzzy language g : B∗ → K by g(b0 . . . bn−1) =
d

0≤i≤n−1 g(bi) for every b0 . . . bn−1 ∈ B+,

b0, . . . , bn−1 ∈ B, and g(ε) = 1. Then, for a language L ⊆ B+ we define the MK-fuzzy language

L ∩ g by (L ∩ g)(w) = g(w) if w ∈ L and (L ∩ g)(w) = 0 otherwise, for every w ∈ B∗. It should be

clear that L ∩ g = 1L u g. Now we are ready to state our Nivat-like theorem.

20

Theorem 17. Let A be a linearly ordered alphabet and s an MK-fuzzy language over A and K with315

s(ε) = 0. Then s is recognizable iff there is a linearly ordered alphabet B, a recognizable language

L ⊆ B+, a mapping g : B → K, and a strict alphabetic homomorphism h : B∗ → A∗ such that

s = h(L ∩ g).

Proof. We prove firstly the implication “ ⇐= ”. The MK-fuzzy language g is recognizable.

Indeed, consider the MK-fuzzy automaton G = ({q}, {q}, T, {q}, in, wt, ter) over B and K, with320

in(q) = ter(q) = 1 and wt(q, b, q) = g(b) for every b ∈ B. Trivially ‖G‖ = g. Then, by Proposition

10 and Theorem 12 the MK-fuzzy language 1Lug is recognizable and hence, h(L∩g) is recognizable

by Theorem 13.

Conversely, let s ∈ Rec(K,A) with s(ε) = 0 and A = (Q, I, T, in, wt, ter) be an MK-fuzzy

automaton accepting s. We set B = T and consider the finite automaton B = (Q,B, I, T ′, F)

with T ′ = {(q, (q, a, q′), q′) | (q, a, q′) ∈ T}. It can be easily seen that L(B) = {Pw | w ∈

A+ and Pw path of A over w} ∪ C, where C = {ε} if I ∩ F 6= ∅ and C = ∅ otherwise. We let

L = L(B)\{ε} and define the mapping g : B → K by g(q, a, q′) = wt(q, a, q′) for every (q, a, q′) ∈ B.

Since A and Q are linearly ordered the set Q×A×Q is also linearly ordered and thus B is linearly

ordered as well. We consider the strict alphabetic homomorphism h : B∗ → A∗ by h(q, a, q′) = a

for every (q, a, q′) ∈ B. Then, for every w ∈ A+ we get

h(L ∩ g)(w) =
⊔

v∈h−1(w)

(L ∩ g)(v) =
⊔

v∈h−1(w)

v∈L

g(v) =
⊔
Pw

weight(Pw) = ‖A‖(w),

i.e., h(L ∩ g)(w) = ‖A‖ as required, and our proof is completed.

In the sequel, we deal with the deterministic counterpart of our model. An MK-fuzzy automaton325

A = (Q, I, T, F, in, wt, ter) over A and K is called deterministic if I = {q0} and for every q ∈

Q, a ∈ A there is at most one q′ ∈ Q such that (q, a, q′) ∈ T . Then for every word w ∈ A∗

there is at most one path Pw of A over w, which in turn implies that we can relax the order

relation of Q. Nevertheless, in the sequel, sometimes we will need the state set of a deterministic

MK-fuzzy automaton to be ordered. A deterministic MK-fuzzy automaton A is simply written330

as A = (Q, q0, T, F, in, wt, ter). An MK-fuzzy language s ∈ K 〈〈A∗〉〉 is called deterministically

recognizable if there is a deterministic MK-fuzzy automaton A over A and K such that s = ‖A‖.

We denote by DRec(K,A) the class of all deterministically recognizable MK-fuzzy languages over

A and K. An MK-fuzzy automaton A = (Q, I, T, F, in, wt, ter) is called unambiguous if for every

21

word w ∈ A∗ there is at most one path Pw of A over A. Clearly, every deterministic MK-fuzzy335

automaton is unambiguous as well, but the converse is not always true.

Theorem 18. Let s ∈ DRec(K,A) and k ∈ K. Then suk ∈ DRec(K,A) and ku s ∈ Rec(K,A).

Proof. Let A = (Q, q0, T, F, in, wt, ter) be a deterministic MK-fuzzy automaton accepting s. We

consider the deterministic MK-fuzzy automatonA = (Q, q0, T, F, in, wt, ter) with ter(q) = ter(q)uk

for every q ∈ F . Trivially, ‖A‖ = s u k.340

Next we consider the MK-fuzzy automaton A′ = (Q′, I ′, T ′, F ′, in′, wt′, ter ′) with

- Q′ = Q ∪Q ∪ Q̃ ∪ {r} ∪ C where Q = {q | q ∈ Q} and Q̃ = {q̃ | q ∈ Q} are copies of Q, r is

a new state and C = {q0} if q0 /∈ F where q0 is a new state, and C = ∅ otherwise; the sets

Q,Q, Q̃, {r}, and C are considered pairwise disjoint,

- I ′ = {q0, q0, q̃0} ∪ C,345

- T ′ = T ∪ {(q, a, p) | (q, a, p) ∈ T} ∪ {(q, a, r) | q ∈ Q and there is no p such that (q, a, p) ∈

T} ∪ {(r, a, r) | a ∈ A} ∪ {(q̃, a, p̃) | (q, a, p) ∈ T},

- F ′ = F ∪ {r} ∪ C ∪ {q̃ | q ∈ Q \ F},

- in′(q′) =

 k u in(q0) if q′ = q0

k if q′ = q0 or q′ = q̃0 or (C 6= ∅ and q′ = q0)

for every q′ ∈ I ′,350

- wt′(q′, a, p′) =

 wt(q′, a, p′) if (q′, a, p′) ∈ T

1 if q′, p′ ∈ Q or (q′ ∈ Q and p′ = r) or q′ = p′ = r or q′, p′ ∈ Q̃

for every (q′, a, p′) ∈ T ′, and

- ter′(q′) =

 ter(q′) if q′ ∈ F

0 if q′ = r or (C 6= ∅ and q′ = q0) or q′ ∈ {q̃ | q ∈ Q \ F}

for every q′ ∈ F ′.

We claim that ‖A′‖(w) = k u s(w) for every w ∈ A∗. Indeed, let w = a0 . . . an−1 ∈ A+ and355

assume first that there is a unique path P
(A)
w = ((qi, ai, qi+1))0≤i≤n−1 of A over w. Then P

(A)
w

is also the unique path of A′ over w and trivially its weight in A′ equals k u weight
(
P

(A)
w

)
, i.e.,

‖A′‖(w) = k u A(w). If q0 ∈ F , then ‖A′‖(ε) = k u in(q0) u ter(q0) = k u ‖A‖(ε).

22

Next let v = b0 . . . bm−1 ∈ A+ and assume that there is not any path of A over v, i.e., ‖A‖(v) = 0.

This implies that:360

• There is an index 0 ≤ j ≤ m − 1 such that (q0, b0, q1) . . . (qj−1, bj−1, qj) is a sequence of

transitions of A over b0 . . . bj−1 and there is not any transition of the form (qj , bj , qj+1) in T .

Then, there is a unique path

P (A′)
v = (q0, b0, q1) . . . (qj−1, bj−1, qj)(qj , bj , r) . . . (r, bm−1, r)

of A′ over v and

weight
(
P (A′)
v

)
= k u 1 u . . . u 1 u 0 = k u 0,

i.e., ‖A′‖(v) = k u ‖A‖(v).

or

• There is a sequence of transitions (q0, b0, q1) . . . (qm−1, bm−1, qm) of A over v and qm /∈ F .

Then, there is a unique path

P (A′)
v = (q̃0, b0, q̃1) . . . (q̃m−1, bm−1, q̃m)

of A′ over v and

weight
(
P (A′)
v

)
= k u 1 u . . . u 1 u 0 = k u 0,

i.e., ‖A′‖(v) = k u ‖A‖(v).

Finally, let q0 /∈ F , hence ‖A‖(ε) = 0. Then C = {q0} and ‖A′‖(ε) = in′(q0) u ter′(q0) = k u 0 =

k u ‖A‖(ε), and our proof is completed.365

Corollary 19. Let L ⊆ A∗ be a recognizable language and k ∈ K. Then 1Luk ∈ DRec(K,A) and

k u 1L ∈ Rec(K,A).

Proof. The MK-fuzzy automaton accepting 1L (cf. Proposition 10) is deterministic, hence we

obtain our result by Theorem 18.

Next, we investigate the closure of the class of deterministically recognizable MK-fuzzy languages370

under Cauchy product. More precisely, we show that the Cauchy product of two deterministically

recognizable MK-fuzzy languages is a recognizable MK-fuzzy language. For this we shall need the

subsequent intermediate results.

23

Proposition 20. For every deterministic MK-fuzzy automaton A = (Q, q0, T, F, in, wt, ter) we can

effectively construct a normalized unambiguous MK-fuzzy automaton A′, with one initial state, such375

that ‖A′‖(w) = ‖A‖(w) for every w ∈ A+.

Proof. We follow the proof of Proposition 16. Since the MK-fuzzy automaton A is deterministic,

we can easily see that the derived normalized MK-fuzzy automaton A′ is unambiguous with one

initial state.

Proposition 21. Let s ∈ K 〈〈A∗〉〉 and k ∈ K. If s is accepted by a normalized unambiguous MK-380

fuzzy automaton, then s u k is accepted also by a normalized unambiguous MK-fuzzy automaton.

Proof. Let A = (Q, I, T, F, wt) be a normalized unambiguous MK-fuzzy automaton accepting s.

We consider the MK-fuzzy automaton A′ = (Q, I, T, F, wt′) with

wt′((q, a, q′)) =

 wt(q, a, q′) u k if q′ ∈ F

wt(q, a, q′) otherwise
,

for every (q, a, q′) ∈ T .385

By construction, the automaton A′ is normalized. Let now w ∈ A+ and assume that there is

a path P
(A′)
w of A′ over w. Then P

(A′)
w is also a path of A over w. Since A is unambiguous, we

conclude that P
(A′)
w is unique which implies that the normalized MK-fuzzy automaton A′ is also

unambiguous. Furthermore, by a standard computation we get weight
(
P

(A′)
w

)
= weight

(
P

(A)
w

)
u

k, i.e., ‖A′‖(w) = ‖A‖(w)u k. On the other hand, ‖A‖(ε) = 0 and ‖A′‖(ε) = 0, since both A and390

A′ are normalized, hence ‖A′‖(ε) = ‖A′‖(ε)uk. Therefore, we conclude ‖A′‖ = suk, as required.

Theorem 22. Let r, s ∈ DRec(K,A). Then rs ∈ Rec(K,A).

Proof. Since r, s ∈ DRec(K,A), there are deterministic MK-fuzzy automata accepting them.

Then, by Proposition 20, we can effectively construct normalized unambiguous MK-fuzzy au-395

tomata A1 =
(
Q1, q

(1)
in , T1, F1, wt1

)
and A2 =

(
Q2, q

(2)
in , T2, F2, wt2

)
such that ‖A1‖(w) = r(w) and

‖A2‖(w) = s(w) for every w ∈ A+. We consider a copy Q1 = {q | q ∈ Q1} of Q1, a copy Q2 = {q |

q ∈ Q2} of Q2 and a new state r. Without loss of generality we assume the sets Q1, Q2, Q1, Q2, and

{r} pairwise disjoint and consider the MK-fuzzy automaton A =
(
Q,
{
q
(1)
in , q

(1)
in

}
, T, F, in, wt, ter

)
with400

24

- Q = (Q1 \ F1) ∪Q2 ∪ (Q1 \ F1) ∪Q2 ∪ {r}

where F1 = {q | q ∈ F1},

- T =
{(
q(1), a, p(1)

)
∈ T1 | p(1) /∈ F1

}
∪ T2 ∪{(

q(1), a, q
(2)
in

)
| there exists p(1) ∈ F1 such that

(
q(1), a, p(1)

)
∈ T1

}
∪{(

q(1), a, p(1)
)
|
(
q(1), a, p(1)

)
∈ T1 and p(1) /∈ F1

}
∪405 {(

q(1), a, q
(2)
in

)
| there exists p(1) ∈ F1 such that

(
q(1), a, p(1)

)
∈ T1

}
∪{(

q(2), a, p(2)
)
|
(
q(2), a, p(2)

)
∈ T2

}
∪{(

q(2), a, r
)
| q(2) ∈ Q2 and

(
q(2), a, p(2)

)
/∈ T2 for every p(2) ∈ Q2

}
∪

{(r, a, r) | a ∈ A},

- F = F2 ∪ {r},410

- in
(
q
(1)
in

)
= in

(
q
(1)
in

)
= 1,

- wt(q, a, p) =



wt1(q, a, p) if (q, a, p) ∈ T1
wt2(q, a, p) if (q, a, p) ∈ T2
wt1(q, a, p(1)) if q ∈ Q1 \ F1, p = q

(2)
in , p

(1) ∈ F1, and
(
q, a, p(1)

)
∈ T1

wt1
(
q(1), a, p(1)

)
if (q, a, p) =

(
q(1), a, p(1)

)
and

(
q(1), a, p(1)

)
∈ T1

wt1
(
q(1), a, p(1)

)
if q = q(1) ∈ Q1 \ F1, p = q

(2)
in , p

(1) ∈ F1, and(
q(1), a, p(1)

)
∈ T1

0 if q, p ∈ Q2 ∪ {r}

for every (q, q, p) ∈ T , and

- ter(q) =

 1 if q ∈ F2

0 otherwise
415

for every q ∈ F .

We should note that in case p = q
(2)
in above, the value wt(q, a, p) is well-defined. Indeed, since the

original MK-fuzzy automaton accepting r is deterministic, by construction of A1, we get that there

is at most one p(1) ∈ F1 such that (q, a, p(1)) ∈ T1. A similar argument holds for the case p = q
(2)
in .

We define a linear order on Q as follows. We preserve the orders of Q1 and Q2 and define a linear420

order on Q1 (resp. Q2) by letting q(1) ≤ p(1) (resp. q(2) ≤ p(2)) iff q(1) ≤ p(1) (resp. q(2) ≤ p(2)) for

25

every q(1), p(1) ∈ Q1 (resp. q(2), p(2) ∈ Q2). Then we set maxQ2 ≤ minQ1,maxQ1 ≤ minQ2, and

maxQ2 ≤ r ≤ minQ1.

Let w = a0 . . . an−1 ∈ A+ and P
(A)
w = ((qi, ai, qi+1))0≤i≤n−1 be a path of A over w. By

construction of T we get that n > 1 and distinguish the following cases:425

i) q0 = q
(1)
in . Then, by definition of T , we get qn ∈ F2 and there is an index 0 < j < n such

that qj = q
(2)
in , q1, . . . , qj−1 ∈ Q1 \ F1, and qj+1, . . . , qn−1 ∈ Q2. This in turn implies that

there is a path P
(A1)
a0...aj−1 =

(
q
(1)
in , a0, q1

)
((qi, ai, qi+1))1≤i≤j−2

(
qj−1, aj−1, p

(1)
)

of A1 over

a0 . . . aj−1, with p(1) ∈ F1, and a path P
(A2)
aj ...an−1 =

(
q
(2)
in , aj , qj+1

)
((qi, ai, qi+1))j+1≤i≤n−1 of

A2 over aj . . . an−1. Since the MK-fuzzy automata A1 and A2 are unambiguous, these paths

are unique. Furthermore, we get

weight
(
P (A)
w

)
=

l

0≤i≤n−1

wt(qi, ai, qi+1)

= wt1

(
q
(1)
in , a0, q1

)
u . . . u wt1

(
qj−1, aj−1, p

(1)
)

u wt2
(
q
(2)
in , aj , qj+1

)
u . . . u wt2 (qn−1, an−1, qn)

= weight
(
P (A1)
a0...aj−1

)
u weight

(
P (A2)
aj ...an−1

)
= ‖A1‖(a0 . . . aj−1) u ‖A2‖(aj . . . an−1)

where the last equality holds by the uniqueness of the paths P
(A1)
a0...aj−1 and P

(A2)
aj ...an−1 .

ii) q0 = q
(1)
in . Again, by definition of T , we get qn = r and there is an index 0 < j < n such that

qj = q
(2)
in , q1 = q

(1)
1 , . . . , qj−1 = q

(1)
j−1 where q

(1)
1 , . . . , q

(1)
j−1 ∈ Q1 \F1, and qj+1, . . . , qn−1 ∈ Q2∪

{r}. This means that there is a (unique) path P
(A1)
a0...aj−1 =

(
q
(1)
in , a0, q1

)
((qi, ai, qi+1))1≤i≤j−2(

qj−1, aj−1, p
(1)
)

of A1 over a0 . . . aj−1, with p(1) ∈ F1, and there is not any path of A2 over

aj . . . an−1, hence ‖A2‖(aj . . . an−1) = 0. Moreover, we get

weight
(
P (A)
w

)
=

l

0≤i≤n−1

wt(qi, ai, qi+1)

= wt1

(
q
(1)
in , a0, q1

)
u . . . u wt1

(
qj−1, aj−1, p(1)

)
u 0 . . . u 0

= weight
(
P (A1)
a0...aj−1

)
u 0

= ‖A1‖(a0 . . . aj−1) u ‖A2‖(aj . . . an−1)

where the last equality holds by the uniqueness of the path P
(A1)
a0...aj−1 .

26

Conversely, keeping the above notations, we distinguish the following cases:

i)′ There is an index 0 < j < n such that there are (unique) paths P
(A1)
a0...aj−1 of A1 over

a0 . . . aj−1 and P
(A2)
aj ...an−1 of A2 over aj . . . an−1, hence ‖A1‖(a0 . . . aj−1) = weight

(
P

(A1)
a0...aj−1

)
and ‖A2‖(aj . . . an−1) = weight

(
P

(A2)
aj ...an−1

)
. Then, by definition of T , there is a path P

(A)
w

of A over w with

weight
(
P (A)
w

)
= weight

(
P (A1)
a0...aj−1

)
u weight

(
P (A2)
aj ...an−1

)
= ‖A1‖(a0 . . . aj−1) u ‖A2‖(aj . . . an−1).

ii)′ There is an index 0 < j < n such that there is a (unique) path P
(A1)
a0...aj−1 =

(
q
(1)
in , a0, q1

)
((qi, ai, qi+1))1≤i≤j−2

(
qj−1, aj−1, p

(1)
)

of A1 over a0 . . . aj−1, with p(1) ∈ F1 and there is

not any path of A2 over aj . . . an−1. Thus ‖A1‖(a0 . . . aj−1) = weight
(
P

(A1)
a0...aj−1

)
and

‖A2‖(aj . . . , an−1) = 0. By definition of T , there is a path

P (A)
w =

(
q
(1)
in , a0, q1

)
((qi, ai, qi+1))1≤i≤j−2

(
qj−1, aj−1, q

(2)
in

)
(
q
(2)
in , aj , qj+1

)
((qk, ak, qk+1))j+1≤k≤n−1

of A over w with q
(1)
in , q1, . . . , qj−1 ∈ Q1 \F1, q

(2)
in ∈ Q2, qj+1, . . . , qn−1 ∈ Q2∪{r}, and qn = r.

Moreover, we get

weight
(
P (A)
w

)
= weight

(
P (A)
a0...aj−1

)
u 0

= ‖A1‖(a0 . . . aj−1) u ‖A2‖(aj . . . an−1).

We conclude that for every word w = a0 . . . an−1 ∈ A+ with n > 1, the existence of a path P
(A)
w of

A over w implies the existence of an index 0 < j < n such that weight
(
P

(A)
w

)
= ‖A1‖(a0 . . . aj−1)u430

‖A2‖(aj . . . an−1), and vice versa.

Next let us assume that there is not any path of A over w = a0 . . . an−1 with n > 1, hence

‖A‖(w) = 0. This implies, that there is not any path of A1 over any prefix of w. Therefore, we get

r(a0) = r(a0a1) = . . . = r(a0 . . . an−2) = 0.

The inverse implication trivially holds, therefore we conclude that

‖A‖(w) = (r(a0) u s(a1 . . . an−1)) t . . . t (r(a0 . . . an−2) u s(an−1))

27

for every w = a0 . . . an−1 ∈ A+ with n > 1.

Next, by Theorem 18, the series r(ε) u s is recognizable, hence by Proposition 16 there is

a normalized MK-fuzzy automaton A3 such that ‖A3‖(w) = (r(ε) u s)(w) for every w ∈ A+,

and ‖A3‖(ε) = 0. Furthermore, by Corollary 19 and Proposition 21 respectively, the MK-fuzzy

languages ε u r(ε) u s(ε) and ‖A1‖ u s(ε) are recognizable. Since

rs = (ε u r(ε) u s(ε)) t ‖A3‖ t ‖A‖ t (‖A1‖ u s(ε)),

we conclude our proof by Theorem 11.

Proposition 23. Let s ∈ DRec(K,A). Then the strong support of s is a recognizable language.

Proof. Let A = (Q, q0, T, F, in, wt, ter) be a deterministic MK-fuzzy automaton over A and K435

accepting s. Assume firstly that t(in(q0)) = 0. Then for every word w ∈ A∗, if there is a path P
(A)
w

(which is unique) of A over w, we get t
(
weight

(
P

(A)
w

))
= 0. This implies that stgsupp(s) = ∅

which is recognizable.

Next let t(in(q0)) 6= 0. We consider the finite automaton A′ = (Q,A, q0, T
′, F ′) with T ′ =

{(q, a, q′) ∈ T | t(wt((q, a, q′))) 6= 0} and F ′ = {q ∈ F | t(ter(q)) 6= 0}. By definition the automaton440

A′ is deterministic. Let w = a0 . . . an−1 ∈ A+ being accepted by A′. Hence, there is a unique

successful path P
(A′)
w = ((qi, ai, qi+1))0≤i≤n−1 of A′ over w. By construction of A′, we get that

P
(A′)
w is also a path of A over w. Moreover it holds

t
(
weight

(
P

(A′)
w

))
= t(in(q0)) ·

∏
0≤i≤n−1 t(wt(qi, ai, qi+1)) · t(ter(qn))

and by our assumption we get t
(
weight

(
P

(A′)
w

))
6= 0 which in turn implies that w ∈ stgsupp(s).445

If ε ∈ L(A′), then q0 ∈ F ′, and hence t(in(q0)) · t(ter(q0)) 6= 0, i.e., ε ∈ stgsupp(s).

Conversely assume that w = a0 . . . an−1 ∈ A+ is in stgsupp(s). Then, there is a unique path

P
(A)
w = ((qi, ai, qi+1))0≤i≤n−1 of A over w with t

(
weight

(
P

(A)
w

))
6= 0. By construction of the

finite automaton A′, we get that P
(A)
w is a successful path of A′ over w, and thus w ∈ L(A′). If

ε ∈ stgsupp(s), then q0 ∈ F and t(ter(q0)) 6= 0, hence q0 ∈ F ′, i.e., ε ∈ L(A′), and our proof is450

completed.

4. MK-fuzzy monadic second order logic

In this section we introduce our MK-fuzzy monadic second order (MSO for short) logic and

we prove the fundamental theorem of Büchi [3], Elgot [12], and Trakhtenbrot [24] in the setup of

28

MK-fuzzy languages. We need to recall the definition of syntax and semantics of MSO logic (cf.455

for instance [23]).

The syntax of MSO logic formulas over A is given by the grammar

φ ::= true | Pa(x) | x ≤ x′ | x ∈ X | ¬φ | φ ∨ φ | ∃x � φ | ∃X � φ

where a ∈ A and we let false = ¬true. The set free(φ) of free variables of an MSO logic formula φ is

defined as usual. In order to define the semantics of MSO logic formulas we need the notions of the

extended alphabet and valid assignment. Let V be a finite set of first and second order variables.

For every word w = w(0) . . . w(n − 1) ∈ A∗ we let dom(w) = {0, . . . , n− 1}. A (V, w)-assignment

σ is a mapping associating first order variables from V to elements of dom(w), and second order

variables from V to subsets of dom(w). If x is a first order variable and i ∈ dom(w), then σ[x→ i]

denotes the (V ∪ {x}, w)-assignment which associates i to x and coincides with σ on V \ {x}. For a

second order variable X and I ⊆ dom(w), the notation σ[X → I] has a similar meaning. We shall

encode pairs of the form (w, σ), where w ∈ A∗ and σ is a (V, w)-assignment, using the extended

alphabet AV = A×{0, 1}V . Indeed, every word in A∗V can be considered as a pair (w, σ) where w is

the projection over A and σ is the projection over {0, 1}V . Then σ is a valid assignment if for every

first order variable x ∈ V the x-row contains exactly one 1. In this case, σ is the (V, w)-assignment

such that for every first order variable x ∈ V, σ(x) is the position of the 1 on the x-row, and for

every second order variable X ∈ V, σ(X) is the set of positions labelled with 1 along the X-row. It

is well-known that

NV = {(w, σ) ∈ A∗V | σ is a valid (V, w)-assignment}

is a recognizable language. For every (w, σ) ∈ NV we define the satisfaction relation (w, σ) |= φ by

induction on the structure of φ, as follows:

(w, σ) |= true, (w, σ) |= x ∈ X iff σ(x) ∈ σ(X),

(w, σ) |= Pa(x) iff w(σ(x)) = a, (w, σ) |= ¬φ iff (w, σ) 6|= φ,

(w, σ) |= x ≤ x′ iff σ(x) ≤ σ(x′), (w, σ) |= φ ∨ φ′ iff (w, σ) |= φ or (w, σ) |= φ′,

(w, σ) |= ∃x � φ iff there exists an i ∈ dom(w) such that (w, σ[x→ i]) |= φ,

(w, σ) |= ∃X � φ iff there exists an I ⊆ dom(w) such that (w, σ[X → I]) |= φ.
460

If (w, σ) ∈ A∗V \ NV , then we let (w, σ) 6|= φ.

We denote by L(φ) the language of an MSO logic sentence φ, i.e., L(φ) = {w ∈ A∗ | w |= φ}.

29

Remark 24. For the definition of the semantics of our MK-fuzzy MSO logic, we shall need the

power set P(dom(w)) to be linearly ordered for every word w ∈ A∗. Let w = a0 . . . an−1 ∈ A∗, hence

dom(w) = {0, . . . , n − 1}. We define the linear order ≤ on P(dom(w)) in the following way. Let465

I = {i1, . . . , im}, J = {j1, . . . , jk} ∈ P(dom(w)) and assume that 0 ≤ i1 < . . . < im ≤ n−1 and 0 ≤

j1 < . . . < jk ≤ n−1. Then we consider the words vI = i1 . . . im, vJ = j1 . . . jk ∈ dom(w)∗. Clearly,

there is a one-to-one correspondence among the subsets of dom(w), and the words of dom(w)∗ with

length at most n and their letters being pairwise disjoint. The empty set corresponds to the empty

word. Now, for every I, J ∈ P(dom(w)) we set I ≤ J iff vI ≤lex vJ .470

Definition 25. The syntax of formulas of the MK-fuzzy MSO logic over A and K is given by the

grammar

ϕ ::= k | φ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕

x � ϕ |
⊕

X � ϕ |
⊗

x � ϕ

where k ∈ K, a ∈ A, and φ denotes an MSO logic formula.

We denote by MSO(K,A) the set of all MK-fuzzy MSO logic formulas ϕ over A and K. We

represent the semantics of a formula ϕ ∈ MSO(K,A) as an MK-fuzzy language ‖ϕ‖ ∈ K 〈〈A∗〉〉.

For the semantics of an MSO logic formula φ we use the satisfaction relation as defined above.

Therefore, the semantics of an MSO logic formula φ gets only the values 0 and 1.475

Definition 26. Let ϕ ∈ MSO(K,A) and V be a finite set of variables with free(ϕ) ⊆ V. The

semantics of ϕ is an MK-fuzzy language ‖ϕ‖V ∈ K 〈〈A∗V〉〉. Consider an element (w, σ) ∈ A∗V . If

(w, σ) /∈ NV , then we let ‖ϕ‖V (w, σ) = 0. Otherwise, we define ‖ϕ‖V (w, σ) ∈ K, inductively on

the structure of ϕ, as follows:

- ‖k‖V (w, σ) = k,480

- ‖φ‖V (w, σ) =

 1 if (w, σ) |= φ

0 otherwise
,

- ‖ϕ⊕ ψ‖V (w, σ) = ‖ϕ‖V (w, σ) t ‖ψ‖V (w, σ),

- ‖ϕ⊗ ψ‖V (w, σ) = ‖ϕ‖V (w, σ) u ‖ψ‖V (w, σ),

- ‖
⊕

x � ϕ‖V (w, σ) =
⊔

0≤i≤|w|−1
‖ϕ‖V∪{x} (w, σ[x→ i]),

30

- ‖
⊗

x � ϕ‖V (w, σ) =
d

0≤i≤|w|−1
‖ϕ‖V∪{x} (w, σ[x→ i]),485

- ‖
⊕

X � ϕ‖V (w, σ) =
⊔

I⊆dom(w)

‖ϕ‖V∪{X} (w, σ[X → I])

where the operator
⊔

I⊆dom(w)

is applied on the ascending order according to the relation ≤ as defined

in Remark 24.

We simply denote ‖ϕ‖free(ϕ) by ‖ϕ‖, hence if ϕ is a sentence, then ‖ϕ‖ ∈ K 〈〈A∗〉〉.

Lemma 27. [6] Let A be a linearly ordered alphabet, ϕ ∈ MSO(K,A), and V be a finite set of

variables containing free(ϕ). Then

‖ϕ‖V (w, σ) = ‖ϕ‖ (w, σ|free(ϕ))

for every (w, σ) ∈ NV . Furthermore ‖ϕ‖V is recognizable iff ‖ϕ‖ is recognizable.490

Proof. We extend the order on A to a linear order on AV and apply the proof of Prop. 3.3. in [6]

using our Theorems 12–14.

For first order variables x, y, z, second order variables X1, . . . , Xm, and k ∈ K let

first(y) := ∀x � y ≤ x, (y = x+ 1) := ((x ≤ y) ∧ ¬(y ≤ x) ∧ ∀z � (z ≤ x ∨ y ≤ z)) ,

last(y) := ∀x � x ≤ y, partition(X1, . . . , Xm) := ∀x �
∨

i=1,...,m

(
(x ∈ Xi) ∧

∧
j 6=i
¬(x ∈ Xj)

)
,

x ∈ X → k := ¬(x ∈ X)⊕ ((x ∈ X)⊗ k) .495

Next we define a fragment of our MK-fuzzy MSO logic.

Definition 28. A formula ϕ ∈ MKO(K,A) will be called restricted if whenever it contains a

subformula ψ⊗ψ′, then ψ is a (boolean) MSO logic formula, and whenever it contains a subformula

of the form
⊗

x �ψ, then ψ is of the form
⊕

1≤i≤m
((x ∈ Xi)→ ki), where ki ∈ K for every 1 ≤ i ≤ m.

We shall denote by RMSO(K,A) the class of all restricted MK-fuzzy MSO logic formulas over500

A and K. An MK-fuzzy language s ∈ K 〈〈A∗〉〉 is called RMSO-definable if there is a sentence

ϕ ∈ RMSO(K,A) such that s = ‖ϕ‖. The main result of this section is the subsequent theorem

which follows from Theorems 30 and 31 below.

Theorem 29. Let A be a linearly ordered alphabet and s ∈ K 〈〈A∗〉〉. Then s is recognizable iff it

is RMSO-definable.505

31

Theorem 30. Let A be a linearly ordered alphabet. If an MK-fuzzy language s ∈ K 〈〈A∗〉〉 is

RMSO-definable, then it is recognizable.

Proof. Let ϕ ∈ RMSO(K,A) such that s = ‖ϕ‖. We show by induction on the structure of ϕ

that ‖ϕ‖ ∈ Rec(K,A).

Assume first that ϕ = φ is a (boolean) MSO logic formula. Then L(φ) is a recognizable510

language hence, by Proposition 10 the MK-fuzzy language ‖ϕ‖ = 1L(φ) is recognizable. Let ϕ = k.

By definition ‖k‖ = k̃, hence ‖k‖ is recognizable by Example 9.

Next let ϕ = ψ ⊕ ψ′ such that ‖ψ‖, ‖ψ′‖ are recognizable. We let V = free(ψ) ∪ free(ψ′).

Then, by Lemma 27, the MK-fuzzy languages ‖ψ‖V , ‖ψ′‖V are recognizable. Since ‖ψ ⊕ ψ′‖ =

‖ψ‖V t ‖ψ′‖V , we conclude our claim by Theorem 11.515

Assume now that ϕ = ψ ⊗ ψ′ such that ψ = φ is a (boolean) MSO logic formula and ‖ψ′‖ is

recognizable. We let V = free(ψ) ∪ free(ψ′). Then, the language L(φ) is recognizable, ‖ψ‖V =

1L(φ), and by Lemma 27 the MK-fuzzy language ‖ψ′‖V is recognizable. Since ‖ψ ⊗ ψ′‖ = ‖ψ‖V u

‖ψ′‖V we get our result by Theorem 12.

Let ϕ =
⊕

x � ψ such that ‖ψ‖ is a recognizable MK-fuzzy language and let V = free(ϕ). We520

extend the order on AV to a linear order on AV∪{x} by letting (a, r[x = 1]) ≤ (a, r[x = 0]) for every

(a, r) ∈ AV . Then, we follow the proof of Lm. 4.3. in [6] taking into account our Theorem 13 and

show that ‖ϕ‖ is recognizable.

Next let ϕ =
⊕

X � ψ such that ‖ψ‖ is a recognizable MK-fuzzy language and let V = free(ϕ).

We extend the order on AV to a linear order on AV∪{X} by letting (a, r[X = 1]) ≤ (a, r[X = 0]) for525

every (a, r) ∈ AV . Then, we follow the proof of Lm. 4.3. in [6] taking into account our Theorem

13 and show that ‖ϕ‖ is recognizable.

Finally, let ϕ =
⊗

x �

(⊕
1≤i≤m

((x ∈ Xi)→ ki)

)
where ki ∈ K for every 1 ≤ i ≤ m. We consider

the deterministic MK-fuzzy automaton A = ({q}, q, T, {q}, in, wt, ter) over A{X1,...,Xm} and K,

with T =
{

(q, (a, r), q) | a ∈ A, r ∈ {0, 1}{X1,...,Xm}
}

. The weight mappings are defined by in(q) =

ter(q) = 1 and wt(q, (a, r), q) =
⊔

1≤i≤m (r(Xi) u ki) for every a ∈ A and r ∈ {0, 1}{X1,...,Xm},

where r(Xi) = 1 if r(Xi) = 1 and r(Xi) = 0 otherwise. Let (w, σ) ∈ N{X1,...,Xm}

(
= A∗{X1,...,Xm}

)
,

and assume (w, σ) = (a0, r0) . . . (an−1, rn−1) where w = a0 . . . an−1 ∈ A∗ and rj ∈ {0, 1}{X1,...,Xm}

for every 0 ≤ j ≤ n− 1. Then, there is a unique path P(w,σ) of A over (w, σ). Moreover, we have

‖A‖(w, σ) = weight(P(w,σ))

32

=
l

0≤j≤n−1

 ⊔
1≤i≤m

(rj(Xi) u ki)


=

l

0≤j≤n−1

∥∥∥∥∥
(⊕

1≤i≤m
((x ∈ Xi)→ ki)

)∥∥∥∥∥
{x}

(w, σ[x→ j])


=

∥∥∥∥∥⊗x �

(⊕
1≤i≤m

((x ∈ Xi)→ ki)

)∥∥∥∥∥ (w, σ)

= ‖ϕ‖(w, σ).

Therefore, ‖A‖ = ‖ϕ‖, which implies that ‖ϕ‖ ∈ Rec
(
K,A{X1,...,Xm}

)
, and this concludes our

proof.

Theorem 31. Let A be a linearly ordered alphabet. If an MK-fuzzy language s ∈ K 〈〈A∗〉〉 is530

recognizable, then it is RMSO-definable.

Proof. Let A = (Q, I, T, F, in, wt, ter) be an MK-fuzzy automaton over A and K, and let ‖A‖(ε) =

0. By Proposition 16, we can assume that A is normalized. We intend to show that ‖A‖ is an

RMSO-definable MK-fuzzy language. For this, we can follow the proof of Thm. 5.5. in [6].

Nevertheless, in our case we have, in addition, to take care for the order of the paths of A over

any word w ∈ A+, as well as the order of the corresponding assignments. For every transition

(p, a, q) ∈ T , we consider a second order variable Xp,a,q and we let V = {Xp,a,q | (p, a, q) ∈ T}. Let

m = |T |. We define an enumeration X1, . . . , Xm of V, preserving the order of the corresponding

transitions in T . We let

ψ(X1, . . . , Xm) := partition(X1, . . . , Xm) ∧
∧

(p,a,q)∈T

∀x � ((x ∈ Xp,a,q)→ Pa(x))∧

∀x � ∀y �

(y = x+ 1)→
∨

(p,a,q),(q,b,r)∈T

(x ∈ Xp,a,q) ∧ (y ∈ Xq,b,r)

∧
∃z �

first(z) ∧ ∨
(p,a,q)∈T
p∈I

z ∈ Xp,a,q

 ∧ ∃z′ �
last(z′) ∧ ∨

(p,a,q)∈T
q∈F

z′ ∈ Xp,a,q

 .

Let w = a0 . . . an−1 ∈ A+. We define a linear order on the set of all (V, w)-assignments satisfying ψ

in the following way. For two such assignments σ and σ′, we let σ ≤ σ′ iff there exists k ∈ dom(w),

33

with 0 ≤ k ≤ n− 1, such that k ∈ σ(Xik)∩ σ′(Xi′k
) with ik ≤ i′k and j ∈ σ(Xij)∩ σ′(Xij) for every

0 ≤ j < k. Trivially ≤ is a linear order. On the other hand, for every path Pw of A over w there

exists a unique (V, w)-assignment σPw
satisfying ψ, i.e., ‖ψ‖ (w, σPw

) = 1 and vice versa (cf. Thm.

5.5. in [6]). Then, we can easily get that Pw ≤ P ′w iff σPw
≤ σP ′w . Next, we consider the formula

ϕ(X1, . . . , Xm) := ψ(X1, . . . , Xm)⊗
⊗

x �

(⊕
(p,a,q)∈T

(x ∈ Xp,a,q)→ wt(p, a, q)

)
.

Let now w = a0 . . . an−1 ∈ A+, Pw = ((qi, ai, qi+1))0≤i≤n−1 a path of A over w, and σPw the

corresponding (V, w)-assignment. Then, we get

‖ϕ‖V (w, σPw) =
l

0≤i≤n−1

wt (qi, ai, qi+1) = weight (Pw) .

Finally, we consider the restricted MK-fuzzy MSO logic sentence

ξ =
⊕

X1
. . .
⊕

Xm
�ϕ(X1, . . . , Xm).

Then for every w ∈ A+, due to the above bijection of paths of A over w and (V, w)-assignments

which preserves the order, we get

‖ξ‖ (w) =
⊔

σ (V,w)-assignment

‖ϕ‖V (w, σ)

=
⊔
Pw

‖ϕ‖V (w, σPw
)

=
⊔
Pw

weight(Pw) =

= ‖A‖(w).

Hence, ‖A‖ = ‖ξ‖, i.e., ‖A‖ is RMSO-definable.

Next let ‖A‖(ε) = k 6= 0. Then, by Proposition 16, we consider the MK-fuzzy automaton A′

such that ‖A′‖(w) = ‖A‖(w) for every w ∈ A+. By what we have shown previously, there exists a

restricted MK-fuzzy MSO logic sentence ξ′ such that ‖A′‖ = ‖ξ′‖. We let

ξ = ξ′ ⊕ (∀x � ¬(x ≤ x)⊗ k) .

Then ξ is a restricted MK-fuzzy MSO logic sentence, and we get ‖∀x � ¬(x ≤ x) ⊗ k‖(w) = 0 for

every w ∈ A+, and ‖∀x � ¬(x ≤ x)⊗ k‖(ε) = k (cf. [6]). Hence ‖A‖ = ‖ξ‖, and this concludes our

proof.535

34

5. Conclusion

We introduced the bimonoid K related to the fuzzification of MK-logic, and investigated MK-

fuzzy automata over K. Our models are inspired by real practical applications being in development

within the project LogicGuard [17, 18, 15, 4]. We proved properties of the class of MK-fuzzy

languages accepted by MK-fuzzy automata as well as by their deterministic counterpart. We540

introduced an MK-fuzzy MSO logic and established a Büchi type theorem for the class of MK-

fuzzy recognizable languages.

It is worth noting that our results can be generalized to weighted automata over any bimonoid

(K,+, ·, 0, 1) with the additional property that 0 · k = 0 for every k ∈ K. Indeed, one can replace

t by + and u by ·.545

Several problems remain open and they are under investigation, for instance, whether the class

of recognizable MK-fuzzy languages is closed under MK-conjunction, Cauchy product and star

operation, as well as whether the class of deterministically recognizable MK-fuzzy languages is

closed under MK-disjunction and conjunction, Cauchy product, and star operation. Furthermore,

due to the four-valued elements of K, there are several notions of supports and it is greatly desirable550

for applications to check which of them constitute recognizable languages. It should be clear from

the proofs of our results, that the usual constructions on semiring-weighted automata cannot be

always applied, even with modifications, when the weight structure is just a bimonoid. For instance,

our bimonoid K is zero-sum free and zero-divisor free. Nevertheless, one can not show that the

support supp(s) = {w ∈ A∗ | s(w) 6= 0} of a recognizable (even deterministically recognizable)555

MK-fuzzy language s over A and K is a recognizable language following the usual construction on

weighted automata (cf. for instance [8]). In our future research we intend also to study MK-fuzzy

automata models over infinite words.

References

[1] J. Ahsan, J. Mordeson, M. Shabir (Eds.), Fuzzy Semirings with Applications to Automata560

Theory, Studies in Fuzziness and Soft Computing, Springer-Verlag, 2012. doi:10.1007/978-3-

642-27641-5.

[2] A. Avron, B. Konikowska, Proof Systems for reasoning about computation errors, Studia

Logica (91) (2) (2009) 273–293. doi:10.1007/s11225-009-9175-4.

35

[3] J. R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlagen565

Math. 6 (1960) 66–92.

[4] D. Cerna, W. Schreiner, T. Kutsia, Predicting space requirements for a stream monitor speci-

fication language, in: Y. Falcone, C. Sánchez (Eds.), Runtime Verification - 16th International

Conference, RV 2016, pp. 135–151. doi:10.1007/978-3-319-46982-9 9.

[5] M. Ćirić, M. Droste, J. Ignjatović, H. Vogler, Determinization of weighted finite automata over570

strong bimonoids, Inform. Sci. 180 (18) (2010) 3497–3520. doi:10.1016/j.ins.2010.05.020.

[6] M. Droste, P. Gastin, Weighted automata and weighted logics, Theoret. Comput. Sci. 380

(2007) 69-86. doi:10.1016/j.tcs.2007.02.055.

[7] M. Droste, W. Kuich, H. Vogler (Eds.), Handbook of Weighted Automata, EATCS Monographs

in Theoretical Computer Science, Springer-Verlag, Berlin Heidelberg, 2009. doi:10.1007/978-575

3-642-01492-5.

[8] M. Droste, D. Kuske, Weighted automata, in: J.-E. Pin (Ed.), Handbook: Automata: from

Mathematics to Applications, Ch. 4, to appear.

URL http://eiche.theoinf.tu-ilmenau.de/kuske/Submitted/weighted.pdf

[9] M. Droste, T. Kutsia, G. Rahonis, W. Schreiner, MK-fuzzy automata and MSO logics, in: P.580

Bouyer, A. Orlandini, P. San Pietro (Eds.), 8th Symposium on Games, Automata, Logics and

Formal Verification (GandALF’ 17) EPTCS 256, 2017, pp.106–120. doi:10.4204/EPTCS.256.8.

[10] M. Droste, I. Meinecke, B. Šešelja, A. Tepavčević, Coverings and decompositions of semiring-

weighted finite transition systems, 2012, Ch. 11, in [1].

[11] M. Droste, T. Stüber, H. Vogler, Weighted finite automata over strong bimonoids, Inform. Sci.585

180 (1) (2010) 156–166. doi:10.1016/j.ins.2009.09.003.

[12] C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer.

Math. Soc. 98 (1) (1961) 21–51.

[13] S. Kleene, Introduction to Metamathematics, North-Holland, 1952

36

[14] B. Konikowska, Four-valued logic for reasoning about finite and infinite computation errors in590

programs, in: W. Carnielli, M. Coniglio and I. D’Ottaviano (Eds.), The Many Sides of Logic,

Studies in Logic, College Publications, 2009, pp.403–423.

[15] T. Kutsia, W. Schreiner, LogicGuard abstract language, RISC Report Series 12-08, Research

Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Austria (2012).

[16] P. Li, Y. Li, S. Geng, The realization problems related to weighted transducers over strong595

bimonoids, in: IEEE International Conference on Fuzzy Systems 2014, Fuzzy Systems (FUZZ-

IEEE), 2014, pp.1686–1690. doi:10.1109/FUZZ-IEEE.2014.6891580.

[17] LogicGuard I, http://www.risc.jku.at/projects/LogicGuard/.

[18] LogicGuard II, http://www.risc.jku.at/projects/LogicGuard2/.

[19] J. McCarthy, A Basis for a Mathematical Theory of Computation, Computer Programming600

and Formal Systems, North-Holland, 1967, doi:10.1145/1460690.1460715.

[20] J. Mordeson, D. Malik, Fuzzy Automata and Languages, Theory and Applications, Computa-

tional Mathematics Series, Chapman and Hall, 2002.

[21] M. Nivat, Transductions des langages de Chomsky, Ann. de l’Inst. Fourier 18 (1968) 339-456.

[22] G. Rahonis, Fuzzy languages, 2009, Ch. 12, in [7]. doi:10.1007/978-3-642-01492-5 12.605

[23] W. Thomas, Languages, automata, and logic, in: G. Rozenberg, A. Salomaa (Eds.), Handbook

of Formal Languages, Vol. 3, Springer, 1994, 389-455. doi:10.1007/978-3-642-59126-6.

[24] B. Trakhtenbrot, Finite automata and logic of monadic predicates, Doklady Akademii Nauk

SSSR 140 (1961) 326–329, (in Russian).

37

	Introduction
	Preliminaries
	MK-fuzzy automata
	MK-fuzzy monadic second order logic
	Conclusion

