
Thinking Programs: Exercises

Chapter 1: Syntax and Semantics

1. Consider the language of binary numerals introduced in Section 1.1. Construct an abstract
syntax tree for the expression 1 + 11 + 1 × 10. Do the usual precedence rules for × and +
(“× binds stronger than +”) allow only one such tree? If not, give all possible trees.

2. Define the abstract syntax of a language of decimal numerals. This language has a domain
Digit whose elements are the decimal digits 0, 1, . . . , 9, and a domain Num whose elements
are non-empty sequences of decimal digits, such as 0, 99, or 271. Give this language
a semantics by defining functions [·] : Digit → N and [·] : Num → N that map digits
respectively numerals to natural numbers.

3. Define the abstract syntax of a language with a single domain Exp of arithmetic expressions
with constants 0 and 1 and addition, negation, subtraction, multiplication, and division.
Give this language a semantics by defining a function [·] : Exp → Q ∪ {nan} that maps
every expression to a rational number or to the special constant nan (“not a number”). This
special value is the result of division by zero or the result of any operation whose operand
is not a number; thus we have, e.g., [1 + (1/(1 − 1))] = nan.

4. Consider the language of binary numerals introduced in Section 1.1. Define by structural
induction a function [·] : Numeral → Expression that syntactically “simplifies” numerals
by removing leading occurrences of 0, e.g., [00010] = 10. Based on this function,
define a function [·] : Expression → Expression that syntactically “simplifies” arithmetic
expressions by considering the equational laws n + 0 = 0 + n = n, 0 · n = n · 0 = 0, and
1 · n = n · 1 = n. For example, we have [1 · 000 + 011] = 11.

5. Define the abstract syntax of a language of number and list expressions. This language
has a single domain Exp with constants 0 and 1 and the usual operations for addition and
multiplication (these expressions denote natural numbers); furthermore, the domain has
constant nil (the empty list), a binary function cons (which prepends a number to a list),
a unary function head (which returns the first number of a list), and a unary function tail
(which returns the remainder of a list). Give this language a type system with judgements
E : num (“E is a number expression”) and E : list (“E is a list expression”). Show the
derivation of the judgement head(tail(cons(1,cons(1+1,nil)))) : num.

6. Define the abstract syntax of a numeric expression language with three domains Ident, Decl
and Exp. The domain Ident contains infinitely many identifiers that are not further specified.
The domain Decl consists of sequences of definitions of form I1 = E1, . . . , In = En with
n ≥ 1 (this domain is modeled by one constructor that constructs a sequence of a single
declaration I = E and a constructor that adds such a declaration to another sequence). The
domain Exp is constructed from constants 0 and 1, identifiers, operations for addition and
multiplication and a “block expression” let D in E where D is a declaration sequence and E
is an expression. An example expression is let I1 = I0 + 1, I2 = I1 × 1 in I0 + I1 × I2.

Wolfgang Schreiner March 31, 2021 1

7. Consider the numeric expression language of Exercise 6. Give this language a type system
with the judgements Is ⊢ D : decl(Is’) (“D is a well-formed list of declarations that extends
the set of declared identifiers Is to the set Is′ ”) and Is ⊢ E : exp (“given the set of declared
identifiers Is, E is a well-formed expression”). Show how by this type system the judgement
{I0} ⊢ let I1 = I0 + 1, I2 = I1 × 1 in I0 + I1 × I2 : exp can be derived.

8. Define the abstract syntax of a language whose phrases are “bit matrices” of arbitrary
dimension. In detail, this language has a domain Bit whose only values are the constants
0 and 1. The domain Row consists of finite sequences [b1, . . . , bm] of of m ≥ 1 bits
and the domain Matrix consists of finite sequences [r1, . . . ,rn] of n ≥ 1 rows. Give
this language a type system with a judgement r : row(m) (“r is a row of length m”)
and m : matrix(n,m) (“m is a matrix with n rows and m columns”). Show how the
judgement [[0,1,0], [1,1,0]] : matrix(2,3) can be derived. Give this language a semantics
that determines the number of bits in a row respectively matrix by functions [·] : Row → N

and [·] : Matrix → N such that [[1,1,0]] = 2 and [[[0,1,0], [1,1,0]]] = 3.

9. Define the abstract syntax of a language with a single domain Exp of arithmetic expressions
with constants 1 and 1.0 and addition, negation, subtraction, multiplication, and division.
Give this language a type system with two judgements e : int and e : real interpreted as
“e is an integer expression” and “r is a real expression”, respectively; this type system
has axioms 1 : int and 1.0 : real; its rules assign to to the result of any operation an integer
type only if all operands are integer expressions (otherwise the result is a real expression).
Give this language a denotational semantics by defining a function [·] : Exp → R ∪ {nan}.
Prove by rule induction that, if we can derive e : int, then we indeed have [e] ∈ Z ∪ {nan}
(see Exercise 3 for the interpretation of nan).

10. Define the abstract syntax of a language of a hand-held calculator by which the user
can evaluate a sequence of arithmetic expressions. This language has a domain Exp of
arithmetic expressions that contains the constants 0, 1, the constant $, and addition and
multiplication (here $ represents the value of the previously evaluated expression, more on
this below). Furthermore, there is a domain Seq that contains all expression sequences of
form E1; . . . ; En where n ≥ 0 (this domain is modeled by the empty sequence constructor _
and the constructor E; Es that prepends expression E to sequence Es).
Give this language a semantics by defining a function [·] : Exp → (N → N) that maps an
expression to a function over the natural numbers. Here an application [E](n) receives
the value n of the expression that was evaluated immediately before E (i.e., n is the value
of $) and returns the value of E . Likewise define a function [·] : Seq → (N → N∗) that
maps an expression sequence to a function from the natural numbers to a sequence of
such numbers. Here [Es](n) receives the value n of the expression that was evaluated
immediately before Es and returns the values of the expressions in the sequence. Thus we
have, e.g., the evaluation [1+1+$; (1+$)×$; 1+$](0) = [2,6,7] (which provides the initial
value 0 for constant $).

Wolfgang Schreiner March 31, 2021 2

