Thinking Programs: Exercises

Chapter 1: Syntax and Semantics

1. Consider the language of binary numerals introduced in Section 1.1. Construct an abstract syntax tree for the expression $1+11+1 \times 10$. Do the usual precedence rules for \times and + (" \times binds stronger than + ") allow only one such tree? If not, give all possible trees.
2. Define the abstract syntax of a language of decimal numerals. This language has a domain Digit whose elements are the decimal digits $0,1, \ldots, 9$, and a domain Num whose elements are non-empty sequences of decimal digits, such as 0,99 , or 271. Give this language a semantics by defining functions $\llbracket \cdot \rrbracket:$ Digit $\rightarrow \mathbb{N}$ and $\llbracket \cdot \rrbracket:$ Num $\rightarrow \mathbb{N}$ that map digits respectively numerals to natural numbers.
3. Define the abstract syntax of a language with a single domain Exp of arithmetic expressions with constants 0 and 1 and addition, negation, subtraction, multiplication, and division. Give this language a semantics by defining a function $\llbracket \cdot \rrbracket: \operatorname{Exp} \rightarrow \mathbb{Q} \cup\{$ nan $\}$ that maps every expression to a rational number or to the special constant nan ("not a number"). This special value is the result of division by zero or the result of any operation whose operand is not a number; thus we have, e.g., $\llbracket 1+(1 /(1-1)) \rrbracket=$ nan.
4. Consider the language of binary numerals introduced in Section 1.1. Define by structural induction a function $\llbracket \cdot \rrbracket:$ Numeral \rightarrow Expression that syntactically "simplifies" numerals by removing leading occurrences of 0, e.g., $\llbracket 00010 \rrbracket=10$. Based on this function, define a function $\llbracket \cdot \rrbracket$: Expression \rightarrow Expression that syntactically "simplifies" arithmetic expressions by considering the equational laws $n+0=0+n=n, 0 \cdot n=n \cdot 0=0$, and $1 \cdot n=n \cdot 1=n$. For example, we have $\llbracket 1 \cdot 000+011 \rrbracket=11$.
5. Define the abstract syntax of a language of number and list expressions. This language has a single domain Exp with constants 0 and 1 and the usual operations for addition and multiplication (these expressions denote natural numbers); furthermore, the domain has constant nil (the empty list), a binary function cons (which prepends a number to a list), a unary function head (which returns the first number of a list), and a unary function tail (which returns the remainder of a list). Give this language a type system with judgements E : num (" E is a number expression") and E : list (" E is a list expression"). Show the derivation of the judgement head(tail(cons(1,cons(1+1,nil)))): num.
6. Define the abstract syntax of a numeric expression language with three domains Ident, Decl and Exp. The domain Ident contains infinitely many identifiers that are not further specified. The domain Decl consists of sequences of definitions of form $I_{1}=E_{1}, \ldots, I_{n}=E_{n}$ with $n \geq 1$ (this domain is modeled by one constructor that constructs a sequence of a single declaration $I=E$ and a constructor that adds such a declaration to another sequence). The domain Exp is constructed from constants 0 and 1, identifiers, operations for addition and multiplication and a "block expression" let D in E where D is a declaration sequence and E is an expression. An example expression is let $I_{1}=I_{0}+1, I_{2}=I_{1} \times 1$ in $I_{0}+I_{1} \times I_{2}$.
7. Consider the numeric expression language of Exercise 6. Give this language a type system with the judgements $I s+D: \operatorname{dec}(I s$ ') (" D is a well-formed list of declarations that extends the set of declared identifiers $I s$ to the set $I s^{\prime}$ ") and $I s \vdash E$: exp ("given the set of declared identifiers $I s, E$ is a well-formed expression"). Show how by this type system the judgement $\left\{I_{0}\right\}$ ト let $I_{1}=I_{0}+1, I_{2}=I_{1} \times 1$ in $I_{0}+I_{1} \times I_{2}:$ exp can be derived.
8. Define the abstract syntax of a language whose phrases are "bit matrices" of arbitrary dimension. In detail, this language has a domain Bit whose only values are the constants 0 and 1. The domain Row consists of finite sequences $\left[b_{1}, \ldots, b_{m}\right]$ of of $m \geq 1$ bits and the domain Matrix consists of finite sequences $\left[r_{1}, \ldots, r_{n}\right]$ of $n \geq 1$ rows. Give this language a type system with a judgement $r: \operatorname{row}(m)$ (" r is a row of length m ") and m : matrix (n, m) (" m is a matrix with n rows and m columns"). Show how the judgement $[[0,1,0],[1,1,0]]$: matrix $(2,3)$ can be derived. Give this language a semantics that determines the number of bits in a row respectively matrix by functions $\llbracket \cdot \rrbracket:$ Row $\rightarrow \mathbb{N}$ and $\llbracket \cdot \rrbracket:$ Matrix $\rightarrow \mathbb{N}$ such that $\llbracket[1,1,0] \rrbracket=2$ and $\llbracket[[0,1,0],[1,1,0] \rrbracket \rrbracket=3$.
9. Define the abstract syntax of a language with a single domain Exp of arithmetic expressions with constants 1 and 1.0 and addition, negation, subtraction, multiplication, and division. Give this language a type system with two judgements e : int and e : real interpreted as " e is an integer expression" and " r is a real expression", respectively; this type system has axioms 1: int and 1.0: real; its rules assign to to the result of any operation an integer type only if all operands are integer expressions (otherwise the result is a real expression). Give this language a denotational semantics by defining a function $\llbracket \cdot \rrbracket: \operatorname{Exp} \rightarrow \mathbb{R} \cup\{$ nan $\}$. Prove by rule induction that, if we can derive e : int, then we indeed have $\llbracket e \rrbracket \in \mathbb{Z} \cup\{$ nan $\}$ (see Exercise 3 for the interpretation of nan).
10. Define the abstract syntax of a language of a hand-held calculator by which the user can evaluate a sequence of arithmetic expressions. This language has a domain Exp of arithmetic expressions that contains the constants 0,1 , the constant $\$$, and addition and multiplication (here $\$$ represents the value of the previously evaluated expression, more on this below). Furthermore, there is a domain Seq that contains all expression sequences of form $E_{1} ; \ldots ; E_{n}$ where $n \geq 0$ (this domain is modeled by the empty sequence constructor ${ }_{-}$ and the constructor E; Es that prepends expression E to sequence $E s$).
Give this language a semantics by defining a function $\llbracket \cdot \rrbracket: \operatorname{Exp} \rightarrow(\mathbb{N} \rightarrow \mathbb{N})$ that maps an expression to a function over the natural numbers. Here an application $\llbracket E \rrbracket(n)$ receives the value n of the expression that was evaluated immediately before E (i.e., n is the value of $\$$) and returns the value of E. Likewise define a function $\llbracket \cdot \rrbracket: \operatorname{Seq} \rightarrow\left(\mathbb{N} \rightarrow \mathbb{N}^{*}\right)$ that maps an expression sequence to a function from the natural numbers to a sequence of such numbers. Here $\llbracket E s \rrbracket(n)$ receives the value n of the expression that was evaluated immediately before Es and returns the values of the expressions in the sequence. Thus we have, e.g., the evaluation $\llbracket 1+1+\$;(1+\$) \times \$; 1+\$ \rrbracket(0)=[2,6,7]$ (which provides the initial value 0 for constant \$).
