Thinking Programs: Exercises

Chapter 5: Recursion

In some of the following exercises, we use the function $\operatorname{Fin}(A)$ to denote the set of all finite subsets of set A and $\operatorname{lnf}(A)$ to denote the set of all infinite subsets of A.

1. Consider the following grammar:

$$
\begin{aligned}
& N \in N a t \\
& N::=0 \mid \mathrm{s}(N)
\end{aligned}
$$

Intuitively, every value $\mathrm{s}^{n}(0) \in \operatorname{Nat}$ (the n-fold application of constructor s to 0) represents the natural number $n \in \mathbb{N}$. Define by primitive (structural) recursion the function $+: N a t \times N a t \rightarrow$ Nat such that $m+n$ returns the "sum" of its arguments and the predicate $\leq \subseteq N a t \times N a t$ that determines whether the first argument is "less than or equal" the second one. Based upon $m+n$, define a corresponding "multiplication" function $m \cdot n$ from which you then define a corresponding "power" function m^{n}.
2. Consider your definition of $m+n$ from Exercise 1. First prove by structural induction $\forall n \in$ Nat. $0+n=n+0$. Then prove $\forall m \in$ Nat, $n \in$ Nat. $\mathrm{s}(m+n)=m+\mathrm{s}(n)$. Based upon these results, prove the commutativity property $\forall m \in N a t, n \in N a t . m+n=n+m$.
3. Define by an inductive definition for finite sequences $s, t \in \mathbb{N}^{*}$ of equal length the relation $s \leq t$ that is true if every element of s is less than or equal the corresponding element of t (you may assume the existence of operations head and tail over finite sequences). Transform the definitions into the "rule-oriented" style. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for upward continuity.
4. Repeat Exercise 3 but for infinite sequences $s, t \in \mathbb{N}^{\omega}$ by using coinductive definitions. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for downward continuity.
5. Define by an inductive definition the relation " A contains only prime numbers" for $A \in \operatorname{Fin}(\mathbb{N})$. Define by a coinductive definition the same relation for $A \in \operatorname{Inf}(\mathbb{N})$. Transform the definitions into the "rule-oriented" style. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for upward respectively downward continuity.
6. Define by an inductive definition the subset relation $A \subseteq B$ for finite sets $A \in \operatorname{Fin}(\mathbb{N})$ and $B \in \operatorname{Fin}(\mathbb{N})$. Transform the definition into the "rule-oriented" style. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for upward continuity.
7. Define by a coinductive definition the subset relation $A \subseteq B$ for infinite sets $A \in \operatorname{lnf}(\mathbb{N})$ and $B \in \operatorname{lnf}(\mathbb{N})$. Transform the definition into the "rule-oriented" style. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for downward continuity.
8. Define by an inductive function definition the union function $A \cup B$ for finite sets $A \in \operatorname{Fin}(\mathbb{N})$ and $B \in \operatorname{Fin}(\mathbb{N})$. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for upward continuity.
9. Define by a coinductive function definition the union function $A \cup B$ for infinite sets $A \in \operatorname{Inf}(\mathbb{N})$ and $B \in \operatorname{lnf}(\mathbb{N})$ (please note that this definition must iterate over "both" sets in order to add elements from both sets to the result). Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for downward continuity.
10. Repeat Exercises 8 and 9 by defining the intersection function $A \cap B$ over finite respectively infinite sets A and B.
11. Let $A \in \operatorname{Fin}(\mathbb{N})$ and $n \in \mathbb{N}$. Introduce by a (possibly rule-oriented) inductive definition over A a predicate $A \geq n$ that states "every element of A is greater than or equal n ". Prove by the principle of induction for properties defined as least fixed points (applied to the unary relation $\geq n)$ that $A \geq n \Rightarrow(\forall a \in A . a \geq n)$ holds.
12. Repeat Exercise 11 but apply the proof principle of "fixed point induction". To justify the application of this principle, verify that the formula defining $A \geq n$ indeed satisfies the syntactic constraints of an "inclusive formula".
13. Let A be an infinite subset of \mathbb{N} and $n \in \mathbb{N}$. Introduce by a (possibly rule-oriented) coinductive definition over A a predicate $A \geq n$ that states "every element of A is greater than or equal n ". Furthermore, define by coinduction a function $A+n$ whose result is the set derived from A by adding n to each of its elements. Prove by the principle of coinduction for properties defined as greatest fixed points (applied to the unary relation $\cdot \geq n$) that $A+n \geq n$ holds.
14. Let $A \in \operatorname{lnf}(\mathbb{N})$. Consider the operation $A+n$ introduced in Exercise 13. Prove by the principle of coinduction that $A+0 \sim A$ holds (here \sim is the bisimilarity relation introduced by the definition of $A+n$).

