Thinking Programs: Exercises

Chapter 5: Recursion

In some of the following exercises, we use the function Fin(A) to denote the set of all *finite* subsets of set A and Inf(A) to denote the set of all *infinite* subsets of A.

1. Consider the following grammar:

 $N \in Nat$ N ::= 0 | s(N)

Intuitively, every value $s^n(0) \in Nat$ (the *n*-fold application of constructor s to 0) represents the natural number $n \in \mathbb{N}$. Define by primitive (structural) recursion the function $+: Nat \times Nat \rightarrow Nat$ such that m + n returns the "sum" of its arguments and the predicate $\leq \subseteq Nat \times Nat$ that determines whether the first argument is "less than or equal" the second one. Based upon m + n, define a corresponding "multiplication" function $m \cdot n$ from which you then define a corresponding "power" function m^n .

- 2. Consider your definition of m + n from Exercise 1. First prove by structural induction $\forall n \in Nat. 0 + n = n + 0$. Then prove $\forall m \in Nat, n \in Nat. s(m + n) = m + s(n)$. Based upon these results, prove the commutativity property $\forall m \in Nat, n \in Nat. m + n = n + m$.
- 3. Define by an *inductive* definition for *finite* sequences $s, t \in \mathbb{N}^*$ of equal length the relation $s \leq t$ that is true if every element of *s* is less than or equal the corresponding element of *t* (you may assume the existence of operations *head* and *tail* over finite sequences). Transform the definitions into the "rule-oriented" style. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for upward continuity.
- 4. Repeat Exercise 3 but for *infinite* sequences $s, t \in \mathbb{N}^{\omega}$ by using *coinductive* definitions. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for downward continuity.
- 5. Define by an *inductive* definition the relation "A contains only prime numbers" for $A \in Fin(\mathbb{N})$. Define by a *coinductive* definition the same relation for $A \in Inf(\mathbb{N})$. Transform the definitions into the "rule-oriented" style. Verify that your definitions are indeed well-formed by checking that the defining formulas satisfy the syntactic criteria required for upward respectively downward continuity.
- 6. Define by an *inductive* definition the subset relation $A \subseteq B$ for *finite* sets $A \in Fin(\mathbb{N})$ and $B \in Fin(\mathbb{N})$. Transform the definition into the "rule-oriented" style. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for upward continuity.

- 7. Define by a *coinductive* definition the subset relation $A \subseteq B$ for *infinite* sets $A \in Inf(\mathbb{N})$ and $B \in Inf(\mathbb{N})$. Transform the definition into the "rule-oriented" style. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for downward continuity.
- 8. Define by an *inductive* function definition the union function $A \cup B$ for *finite* sets $A \in Fin(\mathbb{N})$ and $B \in Fin(\mathbb{N})$. Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for upward continuity.
- 9. Define by a *coinductive* function definition the union function $A \cup B$ for *infinite* sets $A \in Inf(\mathbb{N})$ and $B \in Inf(\mathbb{N})$ (please note that this definition must iterate over "both" sets in order to add elements from both sets to the result). Verify that your definition is indeed well-formed by checking that the defining formula satisfies the syntactic criteria required for downward continuity.
- 10. Repeat Exercises 8 and 9 by defining the intersection function $A \cap B$ over finite respectively infinite sets *A* and *B*.
- 11. Let $A \in Fin(\mathbb{N})$ and $n \in \mathbb{N}$. Introduce by a (possibly rule-oriented) *inductive* definition over A a predicate $A \ge n$ that states "every element of A is greater than or equal n". Prove by the principle of induction for properties defined as least fixed points (applied to the unary relation $\cdot \ge n$) that $A \ge n \Rightarrow (\forall a \in A. a \ge n)$ holds.
- 12. Repeat Exercise 11 but apply the proof principle of "fixed point induction". To justify the application of this principle, verify that the formula defining $A \ge n$ indeed satisfies the syntactic constraints of an "inclusive formula".
- 13. Let *A* be an *infinite* subset of \mathbb{N} and $n \in \mathbb{N}$. Introduce by a (possibly rule-oriented) *coinductive* definition over *A* a predicate $A \ge n$ that states "every element of *A* is greater than or equal *n*". Furthermore, define by coinduction a function A + n whose result is the set derived from *A* by adding *n* to each of its elements. Prove by the principle of coinduction for properties defined as greatest fixed points (applied to the unary relation $\cdot \ge n$) that $A + n \ge n$ holds.
- 14. Let $A \in Inf(\mathbb{N})$. Consider the operation A + n introduced in Exercise 13. Prove by the principle of coinduction that $A + 0 \sim A$ holds (here \sim is the bisimilarity relation introduced by the definition of A + n).