Thinking Programs: Exercises

Chapter 3: The Art of Reasoning

1. Construct a proof tree for the following sequent:

$$
\vdash(\exists x \cdot \forall y \cdot p(x, y)) \Rightarrow(\forall y \cdot \exists x \cdot p(x, y))
$$

Also present this proof in informal "textbook" style.
2. Construct a proof tree for the following sequent:

$$
\vdash((\exists x \cdot p(x)) \wedge(\forall x \cdot p(x) \Rightarrow \exists y \cdot q(x, y))) \Rightarrow \exists x, y \cdot q(x, y)
$$

Also present this proof in informal "textbook" style.
3. Construct a proof tree for the following sequent:

$$
\vdash(p(a) \wedge(\forall x \cdot p(x) \Rightarrow p(f(x))) \wedge(\forall x \cdot p(f(x)) \Rightarrow p(g(x)))) \Rightarrow p(g(f(a)))
$$

Also present this proof in informal "textbook" style.
4. Construct a proof tree for the following sequent:

$$
\vdash((p(a) \vee q(b)) \wedge(\forall x \cdot p(x) \Rightarrow r(x)) \wedge(\forall x \cdot q(x) \Rightarrow r(f(x)))) \Rightarrow \exists x \cdot r(x)
$$

Also present this proof in informal "textbook" style.
5. Construct a proof tree for the following sequent:

$$
\vdash(\forall y \cdot \exists x \cdot f(x)=y) \wedge(\forall y \cdot \exists x \cdot g(x)=y) \Rightarrow(\forall y \cdot \exists x \cdot g(f(x))=y)
$$

Also present this proof in informal "textbook" style.
6. Construct a proof tree for the following sequent:

$$
\begin{aligned}
& \vdash((\forall x \cdot r(x, x) \vee q(x)) \wedge(\forall x \cdot(p(x) \wedge q(x)) \Rightarrow r(x, f(x)))) \Rightarrow \\
& \quad(\forall x \cdot p(x) \Rightarrow \exists y \cdot r(x, y))
\end{aligned}
$$

Also present this proof in informal "textbook" style.
7. Construct a proof tree from the following proof in informal "textbook" style:

We show

$$
\forall x . \neg(x \in A \wedge x \in B) \Leftrightarrow(x \notin A \vee x \notin B)
$$

Take arbitrary x. We show $(\neg(x \in A \wedge x \in B) \Leftrightarrow(x \notin A \vee x \notin B))($ a):

- First we assume $\neg(x \in A \wedge x \in B)$ (1) and show $(x \notin A \vee x \notin B)$ (b). To show (b), we assume $x \in A$ (3) and show $x \notin B$ (c). To show (c), we assume $x \in B$ (4) and show a contradiction. Indeed, from (3) and (4), we know ($x \in A \wedge x \in B$) which contradicts (1).
- Now we assume $(x \notin A \vee x \notin B)(5)$ and show $\neg(x \in A \wedge x \in B)$ (d). To show (d), we assume ($x \in A \wedge x \in B$) (6) and show a contradiction. From (6), we know $x \in A$ (7) and $x \in B$ (8). From (5), we have two cases $x \in A$ and $x \in B$: however, case $x \in A$ contradicts (7) and case $x \in B$ contradicts (8), so we are done.
Hint: in this proof the derived rule (contradict) is required.

8. Prove by induction $\forall x \in \mathbb{N}$. $n<2^{n}$.
9. Prove by induction $\forall x \in \mathbb{N}$. $n \geq 4 \Rightarrow n^{2} \leq 2^{n}$.
10. Assume $F(0)=0, F(1)=1, \forall n \in \mathbb{N} . F(n+2)=F(n)+F(n+1)$. Prove by complete induction the following conclusion:

$$
\forall n \in \mathbb{N} . \sum_{i=0}^{n} F(i)=F(n+2)-1
$$

11. Consider the following grammar:

$$
\begin{aligned}
& N \in N a t, L \in \text { List } \\
& N::=0 \mid \mathrm{s}(N) \\
& L::=\text { nil } \mid \operatorname{cons}(N, L)
\end{aligned}
$$

We define by structural induction the functions $\llbracket . \rrbracket:$ Nat $\rightarrow \mathbb{N}, s:$ List $\rightarrow \mathbb{N}$, and $a:$ List \rightarrow List as follows:

$$
\begin{aligned}
& \llbracket 0 \rrbracket:=0, \llbracket \mathrm{~s}(N) \rrbracket:=1+\llbracket N \rrbracket \\
& l(\text { nil }):=0, l(\operatorname{cons}(N, L)):=1+l(L) \\
& s(\text { nil }):=0, s(\operatorname{cons}(N, L)):=\llbracket N \rrbracket+s(L) \\
& a(\text { nil }):=\text { nil, } a(\operatorname{cons}(N, L)):=\operatorname{cons}(\mathrm{s}(N), a(L))
\end{aligned}
$$

Prove by structural induction the following property:

$$
\forall L \in \operatorname{List.} s(a(L))=s(L)+l(L)
$$

12. We equip the domain Nat introduced in Exercise 11 with the following type system:

$$
0: \text { even } \frac{N: \text { even }}{\mathrm{s}(N): \text { odd }} \quad \frac{N: \text { odd }}{\mathrm{s}(N): \text { even }}
$$

Prove by rule induction the following property:

$$
\forall N \in N a t .(\vdash N: \text { even } \Rightarrow 2 \mid \llbracket N \rrbracket) \wedge(\vdash N: \text { odd } \Rightarrow \neg 2 \mid \llbracket N \rrbracket)
$$

Please note $\forall m \in \mathbb{N}, n \in \mathbb{N} . m \mid n \Leftrightarrow \exists p \in \mathbb{N} . m \cdot p=n$.

