
Thinking Programs: Exercises

Chapter 3: The Art of Reasoning

1. Construct a proof tree for the following sequent:

⊢ (∃x. ∀y. p(x, y)) ⇒ (∀y. ∃x. p(x, y))

Also present this proof in informal “textbook” style.

2. Construct a proof tree for the following sequent:

⊢
(︁
(∃x. p(x)) ∧ (∀x. p(x) ⇒ ∃y. q(x, y))

)︁
⇒ ∃x, y. q(x, y)

Also present this proof in informal “textbook” style.

3. Construct a proof tree for the following sequent:

⊢
(︁
p(a) ∧ (∀x. p(x) ⇒ p( f (x))) ∧ (∀x. p( f (x)) ⇒ p(g(x)))

)︁
⇒ p(g( f (a)))

Also present this proof in informal “textbook” style.

4. Construct a proof tree for the following sequent:

⊢
(︁
(p(a) ∨ q(b)) ∧ (∀x. p(x) ⇒ r(x)) ∧ (∀x. q(x) ⇒ r( f (x)))

)︁
⇒ ∃x. r(x)

Also present this proof in informal “textbook” style.

5. Construct a proof tree for the following sequent:

⊢ (∀y. ∃x. f (x) = y) ∧ (∀y. ∃x. g(x) = y) ⇒ (∀y. ∃x. g( f (x)) = y)

Also present this proof in informal “textbook” style.

6. Construct a proof tree for the following sequent:

⊢
(︁
(∀x. r(x, x) ∨ q(x)) ∧ (∀x. (p(x) ∧ q(x)) ⇒ r(x, f (x)))

)︁
⇒

(∀x. p(x) ⇒ ∃y. r(x, y))

Also present this proof in informal “textbook” style.

7. Construct a proof tree from the following proof in informal “textbook” style:
We show

∀x. ¬(x ∈ A ∧ x ∈ B) ⇔ (x ∉ A ∨ x ∉ B)

Take arbitrary x. We show
(︁
¬(x ∈ A ∧ x ∈ B) ⇔ (x ∉ A ∨ x ∉ B)

)︁
(a):
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• First we assume ¬(x ∈ A ∧ x ∈ B) (1) and show (x ∉ A ∨ x ∉ B) (b). To
show (b), we assume x ∈ A (3) and show x ∉ B (c). To show (c), we
assume x ∈ B (4) and show a contradiction. Indeed, from (3) and (4), we
know (x ∈ A ∧ x ∈ B) which contradicts (1).

• Now we assume (x ∉ A ∨ x ∉ B) (5) and show ¬(x ∈ A ∧ x ∈ B) (d).
To show (d), we assume (x ∈ A ∧ x ∈ B) (6) and show a contradiction.
From (6), we know x ∈ A (7) and x ∈ B (8). From (5), we have two cases
x ∈ A and x ∈ B: however, case x ∈ A contradicts (7) and case x ∈ B
contradicts (8), so we are done. □

Hint: in this proof the derived rule (contradict) is required.

8. Prove by induction ∀x ∈ N. n < 2n.

9. Prove by induction ∀x ∈ N. n ≥ 4 ⇒ n2 ≤ 2n.

10. Assume F(0) = 0, F(1) = 1, ∀n ∈ N. F(n + 2) = F(n) + F(n + 1). Prove by complete
induction the following conclusion:

∀n ∈ N.

n∑︂
i=0

F(i) = F(n + 2) − 1

11. Consider the following grammar:

N ∈ Nat, L ∈ List
N ::= 0 | s(N)

L ::= nil | cons(N, L)

We define by structural induction the functions [ . ] : Nat → N, s : List → N, and a : List →
List as follows:

[ 0 ] := 0, [ s(N) ] := 1 + [ N ]

l(nil) := 0, l(cons(N, L)) := 1 + l(L)

s(nil) := 0, s(cons(N, L)) := [ N ] + s(L)

a(nil) := nil, a(cons(N, L)) := cons(s(N),a(L))

Prove by structural induction the following property:

∀L ∈ List. s(a(L)) = s(L) + l(L)

12. We equip the domain Nat introduced in Exercise 11 with the following type system:

0 : even
N : even

s(N) : odd
N : odd

s(N) : even

Prove by rule induction the following property:

∀N ∈ Nat. (⊢ N : even ⇒ 2 | [ N ]) ∧ (⊢ N : odd ⇒ ¬2 | [ N ])

Please note ∀m ∈ N,n ∈ N. m|n ⇔ ∃p ∈ N. m · p = n.
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