Thinking Programs: Exercises

Chapter 8: Computer Programs

1. We consider the following two problems:
a) Given an array a and a positive integer n, find the minimum of the first n elements of a, i.e., that element m that occurs at some of the first n positions of a and that is less than or equal all elements at these positions.
b) Given an array a and a positive integer n, find an index of the minimum of the first n elements of a, i.e., a non-negative integer p less than n such that the element of a at p is that minimum.

Formalize the specification of each problem. For this, do not use the arithmetic quantifier min but only the predicate logic quantifiers \forall and \exists (translate above specification from natural language to logic).
For each problem specification, answer the following questions (with suitable justifications):

- Is the precondition satisfiable? Is it not trivial?
- For every input that satisfies the precondition, is the postcondition satisfiable? Is it not trivial?
- Is for every input that satisfies the precondition the output uniquely defined by the postcondition?

2. Derive the weakest precondition of the command C defined as
```
if (i < 10) { a[i] = a[i]+2; i = i-1; } i := i+1;
```

for postcondition F defined as $a[i]=7$ (ignoring "index out ouf bound" violations). Simplify the derived precondition as far as possible.
Also derive for command c and precondition F the strongest postcondition. Simplify the derived postcondition as far as possible.
Also derive for above command a judgement of form $c:[F]^{x, \ldots}$ for some state relation F and variable frame $\{x, \ldots\}$.

Remember (for all parts) that an array assignment $a[i]:=b$ is just an abbreviation for the scalar assignment $a:=a[i \mapsto b]$.
3. Repeat Exercise 2 for the following command C

```
i := i+1; if (i < 10) { a[i] = a[i]+2; i = i-1; }
```

and condition F defined as $a[i]=7$.
4. Repeat Exercise 2 for the following command C

```
if (i < 10) { a[i] = a[i]+2; i = i+1; } i := i+1;
```

and condition F defined as $a[i]=7$.
5. Repeat Exercise 2 for the following command C
i := i+1; if (i<10) \{a[i] = a[i]+2; i = i+1; \}
and condition F defined as $a[i]=7$.
6. Take the following program which computes for inputs $m, n \in \mathbb{N}$ with $n \neq 0$ the truncated quotient $q:=\lfloor m / n\rfloor$ and remainder $r:=m-n \cdot q$:

```
\(\{m=\) old \(m \wedge n=\) old \(n \wedge n \neq 0\}\)
    \(\mathrm{q}=0\);
    r = m;
    while ( \(\mathrm{r}>=\mathrm{n}\) )
    \{
        \(\mathrm{q}=\mathrm{q}+1\);
        r = r-n;
    \}
\(\{\) oldm \(=n \cdot q+r \wedge r<\) old \(n\}\)
```

E.g., for $a=50$ and $n=11$ we have finally $q=4$ and $r=6$.

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying the total correctness of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously for T).

Construct for above inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
7. Take the following program which computes for given $n \in \mathbb{N}$ the result $s:=n^{2}$:

$$
\begin{aligned}
& \{n=\text { old } n\} \\
& \mathrm{s}=0 ; \mathrm{i}=1 ; \\
& \text { while }(\mathrm{i}<=\mathrm{n}) \\
& \left\{\begin{array}{l}
\mathrm{s}=\mathrm{s}+2 * \mathrm{i}-1 ; \\
\mathrm{i}=\mathrm{i}+1 ; \\
\}
\end{array}\right. \\
& \left\{s=n^{2} \wedge n=\text { old }\right\}
\end{aligned}
$$

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of measure t for variable x in I and analogously $T[t / x]$).

Construct for input $n=10$ a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
8. Take the following program which computes for input array a and natural number n the output $x:=\sum_{i=0}^{n} a[i] \cdot 10^{i}$ (i.e., it computes the natural number x denoted by the $n+1$ decimal digits in array a):

```
{a=olda ^n=oldn}
    x = 0;
    while (n >= 0)
    {
        x = 10*x+a[n];
        n = n-1;
    }
{x= \sum oldn olda[i]\cdot10
```

E.g., for $a=[3,1,4,7]$ and $n=3$ we have finally $x=7413$.

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).
Construct for above inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
9. Take the following piece of code which computes for inputs $x, y \in \mathbb{N}$ the output $p:=x \cdot y$:

```
\(\{x=\) old \(x \wedge y=\) old \(y\}\)
    \(\mathrm{p}=0\);
    while \((y>0)\)
    \{
        if (y \% 2 == 0)
        \{
            \(\mathrm{x}=\mathrm{x} * 2 ; \mathrm{y}=\mathrm{y} / 2 ; / / \mathrm{y}\) is even
        \}
        else
        \{
            \(\mathrm{p}=\mathrm{p}+\mathrm{x} ; \mathrm{y}=\mathrm{y}-1 ; / / \mathrm{y}\) is odd
        \}
```

$$
\begin{aligned}
& \} \\
& \{p=o l d x \cdot o l d y\}
\end{aligned}
$$

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).

Construct for inputs $x=5, y=10$ a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
10. Take the following program which computes for $a \in \mathbb{N}$ and $n \in \mathbb{N}$ the result $b=a^{n}$:

```
\(\{a=\) old \(a \wedge n=o l d n\}\)
    b = 1;
    while ( \(\mathrm{n}>0\) )
    \{
        if ( \(\mathrm{n} \% 2==0\) ) // n is even (i.e. \(2 \mid n\) )
            \(\mathrm{n}=\mathrm{n} / 2\);
        else
        \{
            \(\mathrm{n}=(\mathrm{n}-1) / 2 ; / / \mathrm{n}\) is odd, thus \(\mathrm{n}-1\) is even
            \(\mathrm{b}=\mathrm{b}\) *a;
        \}
        \(a=a * a ;\)
    \}
\(\left\{b=\right.\) olda \(\left.^{\text {oldn }}\right\}\)
```

E.g., for $a=10$ and $n=25$ we have finally $b=10^{25}$.

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).

Construct for above inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
11. Consider problem (a) from Exercise 1. We claim that this problem is solved by the following algorithm:

```
int m = a[0];
int i = 1;
while (i < n)
{
    if (a[i] < m) m = a[i];
```

```
    i = i+1;
}
```

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).

Construct for some inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
12. Consider problem (b) from Exercise 1. We claim that this problem is solved by the following algorithm:

```
int m = a[0];
int p = 0;
int i = 1;
while (i < n)
{
    if (a[i] < m) { m = a[p]; p = i; }
    i = i+1;
}
```

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).
Construct for some inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
13. Consider the problem of replacing in the first n positions of a every occurrence of an element x by an element y (leaving all other elements unchanged). Furthermore, variable r is to be set to the smallest position where a replacement has been performed ($r=-1$, if no replacement has been performed).

First, formally specify this problem by giving a suitable precondition and postcondition.
We claim that this problem is solved by the following algorithm:

```
int r = -1;
int i = n-1;
while (i >= 0)
{
    if (a[i] == x)
    {
        a[i] = y;
        r = i;
```

```
    }
    i = i-1;
}
```

Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).

Construct for some inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.
14. We are given an integer array a and an integer x that might appear as an element in a. Furthermore, we are given two integers from and to such that the closed interval [from,to] describes a range of indices in a. We assume that a is sorted in ascending order within this range (the order is not strictly ascending, i.e., the array may hold multiple identical elements). Our goal is to find an integer r that is either -1 or an array index in the given range. If r is -1 , then x does not occur as an element of a in this range; otherwise, r is an index in this range at which a holds x. For instance, for inputs $a=[2,3,3,5,7,11,13]$, from $=1$, to $=4$, and $x=5$, we expect output $r=3$. For the same inputs except for $x=11$, we expect output $r=-1$.
First, formally specify this problem by giving a suitable precondition and postcondition.
We claim that this problem is solved by the following Java code fragment that implements the core of the "binary search" algorithm:

```
int r = -1; int low = from; int high = to;
while (r = -1 && low <= high)
{
    int mid = (low+high)/2;
    if (a[mid] == x)
        r = mid;
    else if (a[mid] < x)
        low = mid+1;
    else
        high = mid-1;
}
```

Please note that here a/b here means $\lfloor a / b\rfloor$.
Assume you are given a suitable loop invariant I and termination measure T; using I and T state all verification conditions (classical logic formulas) that have to be proved for verifying partial correctness and termination of the program (writing $I[t / x]$ for a substitution of term t for variable x in I and analogously $T[t / x]$).
Construct for above inputs a table for the values of the variables before/after each loop iteration. Using this table as a hint, give suitable definitions for I and T. Demonstrate how from your choice of I and T the verification condition can be proved.

