
Thinking Programs: Exercises

Chapter 8: Computer Programs

1. We consider the following two problems:

a) Given an array a and a positive integer n, find the minimum of the first n elements
of a, i.e., that element m that occurs at some of the first n positions of a and that is
less than or equal all elements at these positions.

b) Given an array a and a positive integer n, find an index of the minimum of the first n
elements of a, i.e., a non-negative integer p less than n such that the element of a at p
is that minimum.

Formalize the specification of each problem. For this, do not use the arithmetic quantifier
min but only the predicate logic quantifiers ∀ and ∃ (translate above specification from
natural language to logic).
For each problem specification, answer the following questions (with suitable justifications):

• Is the precondition satisfiable? Is it not trivial?
• For every input that satisfies the precondition, is the postcondition satisfiable? Is it

not trivial?
• Is for every input that satisfies the precondition the output uniquely defined by the

postcondition?

2. Derive the weakest precondition of the command C defined as

if (i < 10) { a[i] = a[i]+2; i = i-1; } i := i+1;

for postcondition F defined as a[i] = 7 (ignoring “index out ouf bound” violations).
Simplify the derived precondition as far as possible.
Also derive for command c and precondition F the strongest postcondition. Simplify the
derived postcondition as far as possible.
Also derive for above command a judgement of form c : [F]x,... for some state relation F
and variable frame {x, . . .}.
Remember (for all parts) that an array assignment a[i] := b is just an abbreviation for the
scalar assignment a := a[i ↦→ b].

3. Repeat Exercise 2 for the following command C

i := i+1; if (i < 10) { a[i] = a[i]+2; i = i-1; }

and condition F defined as a[i] = 7.

4. Repeat Exercise 2 for the following command C

Wolfgang Schreiner April 1, 2021 1



if (i < 10) { a[i] = a[i]+2; i = i+1; } i := i+1;

and condition F defined as a[i] = 7.

5. Repeat Exercise 2 for the following command C

i := i+1; if (i < 10) { a[i] = a[i]+2; i = i+1; }

and condition F defined as a[i] = 7.

6. Take the following program which computes for inputs m,n ∈ ℕ with n ≠ 0 the truncated
quotient q := ⌊m/n⌋ and remainder r := m − n · q:

{m = oldm ∧ n = oldn ∧ n ≠ 0}
q = 0;
r = m;
while (r >= n)
{
q = q+1;
r = r-n;

}

{oldm = n · q + r ∧ r < oldn}

E.g., for a = 50 and n = 11 we have finally q = 4 and r = 6.
Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
the total correctness of the program (writing I[t/x] for a substitution of term t for variable
x in I and analogously for T).
Construct for above inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

7. Take the following program which computes for given n ∈ N the result s := n2:
{n = oldn}

s = 0; i = 1;
while (i <= n)
{
s = s+2*i-1;
i = i+1;

}

{s = n2 ∧ n = oldn}

Wolfgang Schreiner April 1, 2021 2



Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
measure t for variable x in I and analogously T[t/x]).
Construct for input n = 10 a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

8. Take the following program which computes for input array a and natural number n the
output x :=

∑︁n
i=0 a[i] · 10i (i.e., it computes the natural number x denoted by the n + 1

decimal digits in array a):

{a = olda ∧ n = oldn}

x = 0;
while (n >= 0)
{
x = 10*x+a[n];
n = n-1;

}

{x =
∑︁oldn

i=0 olda[i] · 10i}

E.g., for a = [3,1,4,7] and n = 3 we have finally x = 7413.
Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for above inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

9. Take the following piece of code which computes for inputs x, y ∈ ℕ the output p := x · y:

{x = oldx ∧ y = oldy}

p = 0;
while (y > 0)
{
if (y % 2 == 0)
{
x = x*2; y = y/2; // y is even

}
else
{
p = p+x; y = y-1; // y is odd

}

Wolfgang Schreiner April 1, 2021 3



}

{p = oldx · oldy}

Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for inputs x = 5, y = 10 a table for the values of the variables before/after each
loop iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate
how from your choice of I and T the verification condition can be proved.

10. Take the following program which computes for a ∈ ℕ and n ∈ ℕ the result b = an:
{a = olda ∧ n = oldn}

b = 1;
while (n > 0)
{
if (n % 2 == 0) // n is even (i.e. 2|n)
n = n/2;

else
{
n = (n-1)/2; // n is odd, thus n-1 is even
b = b*a;

}
a = a*a;

}

{b = oldaoldn}

E.g., for a = 10 and n = 25 we have finally b = 1025.
Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for above inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

11. Consider problem (a) from Exercise 1. We claim that this problem is solved by the following
algorithm:

int m = a[0];
int i = 1;
while (i < n)
{
if (a[i] < m) m = a[i];

Wolfgang Schreiner April 1, 2021 4



i = i+1;
}

Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for some inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

12. Consider problem (b) from Exercise 1. We claim that this problem is solved by the following
algorithm:

int m = a[0];
int p = 0;
int i = 1;
while (i < n)
{
if (a[i] < m) { m = a[p]; p = i; }
i = i+1;

}

Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for some inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

13. Consider the problem of replacing in the first n positions of a every occurrence of an
element x by an element y (leaving all other elements unchanged). Furthermore, variable r
is to be set to the smallest position where a replacement has been performed (r = −1, if no
replacement has been performed).
First, formally specify this problem by giving a suitable precondition and postcondition.
We claim that this problem is solved by the following algorithm:

int r = -1;
int i = n-1;
while (i >= 0)
{
if (a[i] == x)
{
a[i] = y;
r = i;

Wolfgang Schreiner April 1, 2021 5



}
i = i-1;

}

Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for some inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

14. We are given an integer array a and an integer x that might appear as an element in a.
Furthermore, we are given two integers from and to such that the closed interval [from, to]
describes a range of indices in a. We assume that a is sorted in ascending order within
this range (the order is not strictly ascending, i.e., the array may hold multiple identical
elements). Our goal is to find an integer r that is either −1 or an array index in the given
range. If r is −1, then x does not occur as an element of a in this range; otherwise, r is
an index in this range at which a holds x. For instance, for inputs a = [2,3,3,5,7,11,13],
from = 1, to = 4, and x = 5, we expect output r = 3. For the same inputs except for x = 11,
we expect output r = −1.
First, formally specify this problem by giving a suitable precondition and postcondition.
We claim that this problem is solved by the following Java code fragment that implements
the core of the “binary search” algorithm:

int r = -1; int low = from; int high = to;
while (r = -1 && low <= high)
{
int mid = (low+high)/2;
if (a[mid] == x)
r = mid;

else if (a[mid] < x)
low = mid+1;

else
high = mid-1;

}

Please note that here a/b here means ⌊a/b⌋.
Assume you are given a suitable loop invariant I and termination measure T ; using I and T
state all verification conditions (classical logic formulas) that have to be proved for verifying
partial correctness and termination of the program (writing I[t/x] for a substitution of
term t for variable x in I and analogously T[t/x]).
Construct for above inputs a table for the values of the variables before/after each loop
iteration. Using this table as a hint, give suitable definitions for I and T . Demonstrate how
from your choice of I and T the verification condition can be proved.

Wolfgang Schreiner April 1, 2021 6


