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This work has been supported by the FWF grants F013 and P20162.





Eidesstattliche Erklärung
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Abstract

The holonomic systems approach was proposed in the early 1990s by Doron
Zeilberger. It laid a foundation for the algorithmic treatment of holonomic
function identities. Frédéric Chyzak later extended this framework by intro-
ducing the closely related notion of ∂-finite functions and by placing their
manipulation on solid algorithmic grounds. For practical purposes it is con-
venient to take advantage of both concepts which is not too much of a re-
striction: The class of functions that are holonomic and ∂-finite contains
many elementary functions (such as rational functions, algebraic functions,
logarithms, exponentials, sine function, etc.) as well as a multitude of spe-
cial functions (like classical orthogonal polynomials, elliptic integrals, Airy,
Bessel, and Kelvin functions, etc.). In short, it is composed of functions
that can be characterized by sufficiently many partial differential and differ-
ence equations, both linear and with polynomial coefficients. An important
ingredient is the ability to execute closure properties algorithmically, for ex-
ample addition, multiplication, and certain substitutions. But the central
technique is called creative telescoping which allows to deal with summation
and integration problems in a completely automatized fashion.

Part of this thesis is our Mathematica package HolonomicFunctions in
which the above mentioned algorithms are implemented, including more basic
functionality such as noncommutative operator algebras, the computation
of Gröbner bases in them, and finding rational solutions of parameterized
systems of linear differential or difference equations.

Besides standard applications like proving special function identities, the
focus of this thesis is on three advanced applications that are interesting in
their own right as well as for their computational challenge. First, we con-
tributed to translating Takayama’s algorithm into a new context, in order to
apply it to an until then open problem, the proof of Ira Gessel’s lattice path
conjecture. The computations that completed the proof were of a nontrivial
size and have been performed with our software. Second, investigating ba-
sis functions in finite element methods, we were able to extend the existing
algorithms in a way that allowed us to derive various relations which gen-
erated a considerable speed-up in the subsequent numerical simulations, in
this case of the propagation of electromagnetic waves. The third application
concerns a computer proof of the enumeration formula for totally symmetric
plane partitions, also known as Stembridge’s theorem. To make the under-
lying computations feasible we employed a new approach for finding creative
telescoping operators.



Kurzzusammenfassung
In den frühen 1990er Jahren beschrieb Doron Zeilberger den

”
holonomic sys-

tems approach“, der eine Grundlage für das algorithmische Beweisen von
Identitäten holonomer Funktionen bildete. Dies wurde später von Frédéric
Chyzak um den eng verwandten Begriff der ∂-finiten Funktionen erweitert,
deren Handhabung er auf eine solide algorithmische Basis stellte. In der Pra-
xis ist es von Vorteil, sich beider Konzepte gleichzeitig zu bedienen, was
auch keine allzu große Einschränkung bedeutet: Die Klasse der Funktionen,
die holonom und ∂-finit sind, umfasst viele elementare Funktionen (z.B. ra-
tionale und algebraische Funktionen, Logarithmen, Exponentialfunktionen,
Sinus, etc.) ebenso wie eine Vielzahl von Speziellen Funktionen (z.B. klassi-
sche orthogonale Polynome, elliptische Integrale, Airy-, Bessel- und Kelvin-
Funktionen, etc.). Grob gesagt sind dies Funktionen, die durch eine ausrei-
chende Anzahl von partiellen Differential- und Differenzengleichungen (linear
und mit Polynomkoeffizienten) charakterisiert werden können. Ein wichtiger
Aspekt besteht in der Möglichkeit, Abschlusseigenschaften wie zum Beispiel
Addition, Multiplikation und bestimmte Substitutionen algorithmisch aus-
zuführen. Das zentrale Verfahren ist jedoch das

”
creative telescoping“, mit

welchem Summations- und Integrationsprobleme vollkommen automatisiert
behandelt werden können.

Als Teil dieser Arbeit haben wir besagte Algorithmen in unserem Mathe-
matica-Paket HolonomicFunctions implementiert sowie einige Basisfunk-
tionalitäten, darunter nichtkommutative Operatoralgebren, Gröbnerbasen-
berechnung in diesen und das Auffinden von rationalen Lösungen parametri-
sierter Systeme von linearen Differential- bzw. Differenzengleichungen.

Neben Standardanwendungen, wie dem Beweisen von Formeln für Spe-
zielle Funktionen, liegt das Hauptaugenmerk dieser Arbeit auf drei neuar-
tigen Anwendungen, die, obschon für sich interessant, auch aufgrund ihrer
Rechenintensität eine Herausforderung darstellten. In der ersten wurde der
Algorithmus von Takayama so umformuliert, dass er auf ein bis dato offenes
Problem, Ira Gessels Gitterpfad-Vermutung, angewendet werden konnte. Die
zum Beweis notwendigen Rechnungen waren sehr aufwändig und wurden mit
unserer Software durchgeführt. Zweitens erweiterten wir bekannte Verfahren,
um Beziehungen für die Basisfunktionen in Finite-Elemente-Methoden herzu-
leiten. Diese erbrachten eine beachtliche Beschleunigung der numerischen Si-
mulationen, in diesem Fall von der Ausbreitung elektromagnetischer Wellen.
Die dritte Anwendung besteht aus einem Computerbeweis der Abzählformel
für totalsymmetrische plane partitions, auch bekannt als das Theorem von
Stembridge. Um die nötigen Berechnungen zu ermöglichen, verwendeten wir
einen neuen Ansatz zum Auffinden von

”
creative telescoping“-Operatoren.
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Chapter 1

Introduction

1.1 Objectives

Based on Zeilberger’s holonomic systems approach, Frédéric Chyzak did a
great job in putting the treatment of holonomic functions on solid algorithmic
grounds [24, 25, 28]. But we think that from the applications point of view,
his work did not yet receive the attention that it deserves. The reasons
for that could be that his thesis is written in French, or that his Maple
implementation Mgfun suffered from certain weaknesses, and only since very
recently the work on this package has been restarted. However, one objective
of this thesis is to provide a new implementation (in Mathematica) of the
related algorithms, which in any case is very desirable for several reasons:
to enable interaction with many other Mathematica packages of the RISC
combinatorics group, and to make comparison of results possible. Last but
not least it served to increase our understanding of these algorithms.

We have put some effort to design a user-friendly software that may help
mathematicians and other scientists in performing various tasks: the most
natural application consists in proving identities, in particular those involv-
ing special functions. A large amount of identities that can be found in
voluminous standard tables and books [74, 6, 9, 42] lies in the scope of our
package. Besides proving that a given evaluation is correct, the software can
also assist in finding a closed form for a sum or integral, by delivering a re-
currence or differential equation for it, which then can possibly be solved by
other means. Furthermore, in many applications like numerical analysis or
particle physics, one is interested in certain relations for a given expression
(like a combination of special functions or an integral); also in such cases

13



14 Chapter 1. Introduction

our package can be of great help. Some applications forced us to approach
the limit of what today’s computers can accomplish, which lead us to opti-
mize the package again and again, and which is mirrored in the title by the
attribute “advanced”.

The plan of this thesis is as follows. Chapter 2 introduces the notions of
holonomic and ∂-finite functions, and investigates their qualities and closure
properties (in particular two kinds of substitutions that are not described ex-
plicitly in Chyzak’s work). Chapter 3 is dedicated to diverse summation and
integration algorithms for holonomic and ∂-finite functions, all of them mak-
ing use of the method of creative telescoping. Chapter 4 gives an overview of
the functionality of our package HolonomicFunctions and many examples
how this software may typically be applied. In Chapters 5, 6, and 7 three
advanced applications of our software are presented, each of which required
slight modifications and extensions of the classical algorithms of Zeilberger
and Chyzak, in addition to considerable amounts of computing time.

Our software HolonomicFunctions is freely available from the RISC com-
binatorics software page

http://www.risc.uni-linz.ac.at/research/combinat/software/

1.2 Preliminaries

We assume that the reader is familiar with the theory of Gröbner bases
developed by Bruno Buchberger in the 1960s [22]. This theory has been
adapted to noncommutative polynomial rings, in a very general and theoretic
fashion in [15], and more algorithmically but less general in [44]. For our
purposes the latter suffices where a Gröbner basis theory for rings of solvable
type is developed. We do not want to reproduce it here, but only mention
a central property of such rings. If (R, 0, 1,+,−, ∗) with R = K[X1, . . . , Xd]
and ∗ : R2 → R is a ring of solvable type, then (by definition) there exist
0 6= cij ∈ K and pij ∈ R such that

Xj ∗Xi = cijXiXj + pij (1.1)

for all 1 ≤ i ≤ j ≤ d. Moreover, R is noetherian with respect to a term
order≺, if pij ≺ XiXj for all 1 ≤ i ≤ j ≤ d. In this situation the computation
of Gröbner bases is possible. In noncommutative polynomial rings we will
mostly deal with left ideals and left Gröbner bases. Nice introductions into
the theory of Göbner bases are given in [31, 14].
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1.3 Notations

This part (how could it be different) starts with the well-known mathemati-
cian’s joke “let K be a field”. In addition, we tacitly assume that K is com-
putable, commutative and has characteristic 0, or in other wordsQ ⊆ K. We
use bold letters for multivariables and multiindices, i.e., the polynomial ring
K[x1, . . . , xd] in several variables may be abbreviated by K[x], as well as the
power product xα1

1 . . . xαd
d that we often will write as xα. We refer to such

a power product as a monomial . By α ≤ β for two multiindices α,β ∈ Nd

we mean that α1 ≤ β1, . . . , αd ≤ βd. When speaking about the support of a
polynomial, we refer to the finite set of power products (monomials) whose
coefficients are nonzero.

We use the notation R〈G1, . . . , Gr〉 to refer to the left ideal in R that is
generated by G1, . . . , Gd, in symbols

R〈G1, . . . , Gr〉 := {R1G1 + · · ·+RrGr | Ri ∈ R}

(and similarly 〈G1, . . . , Gr〉R for right ideals).
Since we will work with operators all the time let us introduce the fol-

lowing notation: The bullet symbol • is used for operator application, i.e.,
P • f = P (f) means that the operator P is applied to f (where f can be
a function, for example). The multiplication inside the operator algebra is
denoted by the usual dot (which we sometimes omit): P · Q = PQ. We
introduce some operator symbols that will be used throughout.

• Differential operator : We will use the symbol Dx to denote the opera-
tor “partial derivative with respect to x”, in other words, Dx • f = ∂f

∂x
.

Often in the literature this operator is referred to by ∂x, but fol-
lowing Chyzak we would like to use the symbol ∂ in a more gen-
eral sense (see below). Using the differential operator we can repre-
sent differential equations in a convenient way: Consider the Hermite
polynomials Hn(x) that fulfill the second-order differential equation
H ′′

n(x)− 2xH ′
n(x) + 2nHn(x) = 0. In operator notation it translates to

D2
x − 2xDx + 2n.

• Shift operator : By Sn we denote the shift operator with respect to n,
this means that Sn •f(n) = f(n+1). We will use the operator notation
for expressing and manipulating recurrence relations. For example, the
Fibonacci recurrence Fn+2 = Fn+1 + Fn translates to S2

n − Sn − 1.

• Forward difference: The symbol ∆n denotes the forward difference
operator (which is the discrete analogue of the differential operator):
∆n • f(n) = f(n+ 1)− f(n).
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• Euler operator : The symbol θx is sometimes used to denote the Euler
operator which is θx = xDx.

• q-shift operator : We denote it by Sx,q and it acts as Sx,q •f(x) = f(qx).

• Generic operator : As a unifying symbol we use ∂ that may stand for
an arbitrary Ore operator (see Section 2.3) symbol (in particular any
of the above).

We want to point out that the notion “operator” is occupied with two slightly
different meanings: First, the word might refer to an operator symbol as in-
troduced above, e.g., by callingDx the “partial differential operator”. Second,
it can denote an equation that is given in operator notation, usually being
a polynomial in the previous ones, e.g., the Hermite differential equation or
the Fibonacci recurrence. So, we can speak of the operator S2

n −Sn−1 which
itself is a polynomial in the shift operator Sn. In order to avoid confusion we
want to refer to the latter as “Ore operator” and reserve the general notion
for operators of the first type. We will only deal with linear operators; these
are operators that are expressible as polynomials as exemplified above.

A last word on the notion of variables: When dealing with multivariate
functions f(v1, . . . , vd), the variables v1, . . . , vd are often of different natures.
We call a variable on which we act with the shift or the difference operator
(and that is usually supposed to take integer values only), a discrete variable.
On the other hand, there are variables on which we act with the differential
or the Euler operator; these variables we call continuous variables and they
are allowed to take real or complex values in general.



Chapter 2

Holonomic and ∂-finite
functions

2.1 Basic concepts

Before we give a formal definition of (multivariate) holonomic functions, we
want to slowly approach this widely used concept. Let us for the moment
consider a univariate formal power series f ∈ KJxK. If the derivatives dif

dxi

of such a power series span a finite-dimensional K(x)-vector space, then f
is called D-finite (differentiably finite), a notion that has been introduced
by Richard Stanley [79] in the early 1980s. He then proved that f being
D-finite is equivalent to say that it fulfills a linear differential equation with
polynomial coefficients (D-finite differential equation):

pd(x)f
(d)(x) + · · ·+ p1(x)f

′(x) + p0(x)f(x) = 0, pi ∈ K[x], pd 6= 0. (2.1)

In operator notation the above equation reads as P • f = 0 where

P = pd(x)D
d
x + · · ·+ p1(x)Dx + p0(x) (2.2)

and we will identify both objects with each other.
We now want to study the properties of the operator arithmetic. From

the Leibniz law (x · f(x))′ = x · f ′(x) + f(x) we can read off the following
commutation rule: Dxx = xDx + 1. Hence when dealing with differential
operators we have to take into account that x does not commute with Dx.
Operators of the form (2.2) are usually represented in the Weyl algebra A1

(the index 1 indicates that one variable x and the corresponding differential
operatorDx are involved). More precisely, the first Weyl algebra A1 is defined
as follows:

A1 := A1(K) := K〈x,Dx〉/〈Dxx− xDx − 1〉

17



18 Chapter 2. Holonomic and ∂-finite functions

(we omit the field K when it is clear from the context). The angle brackets
denote the free algebra in x and Dx from which we divide out the commuta-
tion relation from above. The standard monomials—those monomials where
the variable x is on the left and the differential operator Dx is on the right so
that they are of the form xαDβ

x —constitute a basis of A1(K) as a K-vector
space; it is called the canonical basis. The proof that this is indeed a basis
can be found for example in [30, Chapter 1, Proposition 2.1]. We write ele-
ments of the Weyl algebra in canonical form, this means in expanded form
as a linear combination of monomials from the canonical basis:∑

(α,β)∈I

cα,βx
αDβ

x

where I is a finite index set in N2.
It is now natural to consider not only a single operator P as given in (2.2)

but the left ideal

A1〈P 〉 := {QP | Q ∈ A1}
that is generated by this operator. The reason for doing so is obvious: We
can multiply the relation (2.1) by x and it will still be true, as well as we
can differentiate it, which corresponds to the multiplication Dx ·P . Hence all
elements of this left ideal are annihilating operators of f(x). On the other
hand, the left ideal that contains all operators in A1 which send f(x) to zero,
is called the annihilator of f(x) and is denoted by

AnnA1(f) := {P ∈ A1 | P • f = 0} .

Note that the two left ideals AnnA1(f) and I = A1〈P 〉 need not to be equal
for several reasons. If P is not the minimal differential equation for f(x) with
respect to order, or if it contains a nonconstant polynomial content among its
coefficients, then clearly I does not constitute the whole annihilator of f(x).
But there are more subtle reasons as the following example shows.

Example 2.1. Let f(x) = x3; then the homogeneous differential equation of
minimal order and degree is xf ′(x)− 3f(x) = 0, which is represented by the
operator P = xDx − 3. Nevertheless the left ideal A1〈P 〉 does not constitute
the whole annihilator since D4

x (which also annihilates x3) is not contained
in it.

In addition Stanley [79] introduced the notion of P-finite (or P-recursive)
sequences. These are sequences (a(n))n∈N ∈ KN that fulfill a linear recur-
rence with polynomial coefficients (P-finite recurrence)

pd(n)a(n+d)+· · ·+p1(n)a(n+1)+p0(n)a(n) = 0, pi ∈ K[n], pd 6= 0. (2.3)
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In operator notation equation (2.3) reads as P • a = 0 where

P = pd(n)Sd
n + · · ·+ p1(n)Sn + p0(n). (2.4)

In order to represent operators like (2.4) we introduce the shift algebra. Its
commutation rule is Snn = (n+ 1)Sn = nSn + Sn and hence the shift algebra
can be defined by

K〈n, Sn〉/〈Snn− nSn − Sn〉

as a discrete analogue of the Weyl algebra. It is well known that a P-finite
recurrence can be transformed into a D-finite differential equation for the cor-
responding generating function and vice versa. Implementations like Maple’s
gfun [77] or the Mathematica package GeneratingFunctions [59] perform
this operations. We close this section by a concrete example.

Example 2.2. The error function erf(x) is defined via the probability integral

erf(x) =
2√
π

∫ x

0

exp(−t2) dt

and a differential equation erf ′′(x) = −2x erf ′(x) is easily derived from this
definition. Thus the operator D2

x + 2xDx annihilates erf(x), and since erf(x)
can be expanded into a power series in the point x = 0, we can say that it
is D-finite. The coefficient sequence of its series expansion is P-finite and is
annihilated be the recurrence operator (k2 + 3k + 2)S2

k + 2k.

In the following two sections we will discuss two approaches how D-
finiteness and P-finiteness can be generalized to functions and sequences in
several variables. This will lead to the classes of holonomic and ∂-finite
functions.

2.2 Holonomic functions

From now on we deal with functions in several, say d continuous variables,
or in other words f : Kn → K, (x1, . . . , xd) 7→ f(x1, . . . , xd). The definition
of holonomy for such functions can be quite involved and cumbersome—we
try to keep it as simple as possible. For more elaborated expositions see
[93, 23, 24]. Again we will consider operators that annihilate f ; these are
now partial differential equations with respect to the variables x1, . . . , xd. To
represent such operators we have to introduce the Weyl algebra in d variables:

Ad := Ad(K) := K〈x1, . . . , xd, Dx1 , . . . , Dxd
〉
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modulo the relations

〈Dxi
xi − xiDxi

− 1, xixj − xjxi, Dxi
Dxj
−Dxj

Dxi
, xiDxj

−Dxj
xi〉 (i 6= j).

This means that all generators commute except for the pairs xi and Dxi
for

which the commutation relations are Dxi
xi = xiDxi

+ 1. Although the Weyl
algebra is very close to a commutative polynomial ring, its (left) ideals have
quite different properties (see Example 2.5 below).

A multivariate function f(x1, . . . , xd) is called holonomic if there exists a
left ideal of annihilating operators in Ad that has a certain property, namely
being holonomic. This notion has its origin in D-module theory, where it de-
scribes Ad-modules of minimal Bernstein dimension. Informally but sufficient
for our needs, the Bernstein dimension coincides with the notion of dimension
that is known from commutative algebra and which uses the Hilbert polyno-
mial. In the following we will define the Bernstein dimension and holonomic
functions in more precise fashion.

We want to transport the main ideas without using the heavy algebraic
machinery of filtrations, graded modules, etc. We try to keep this part as
simple as possible, but without becoming faulty. The price we pay is that
the following statements are not as general as they could be. On our way
to holonomy we use two shortcuts: The first shortcut is not to talk about
modules but only about ideals. To any left ideal I in Ad we can associate
the left Ad-module Ad/I, so we are only dealing with the special case that
interests us. The second shortcut consists in leaving away the definitions of
filtration, filtered modules, and graded modules, and instead going directly
to the definition of Hilbert polynomial and Bernstein dimension. A short
remark for the algebraists: The Bernstein dimension of an Ad-module is the
dimension of the graded associated module with respect to the Bernstein
filtration (which filters along the total degree of both the xi and Dxi

).
Let I be a left ideal in Ad(K). Then analogously to commutative rings

Ad/I is isomorphic to a K-vector space whose basis is constituted by the
monomials that cannot be reduced by I. Let (Ad/I)≤s denote the (finite-
dimensional) K-vector space that has as its basis only monomials with total
degree less or equal to s. In other words, (Ad/I)≤s = (Ad/I)∩ (Ad)≤s where
(Ad)≤s denotes the set of all elements in Ad with total degree at most s.
Then we can define the Hilbert function of the left ideal I to be

HFI(s) := dimK(Ad/I)≤s.

It turns out that there exists a polynomial HPI(s) (called the Hilbert poly-
nomial of the left ideal I) with the property that

HPI(s) = HFI(s) for all integers s ≥ s0
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for some s0 ∈ N. We want to call the degree of this polynomial the Bernstein
dimension of I. Note that classically the Bernstein dimension is defined for
left Ad-modules only, which agrees with our definition by looking at the
module Ad/I.

Example 2.3. Let’s go back to univariate holonomic functions and revisit the
left ideal I = 〈xDx − 3, D4

x 〉 from Example 2.1. Figure 2.3 shows monomials
that can be reduced by I as solid dots whereas all monomials that cannot be
reduced by I and hence form the K-basis of A1/I are depicted as open circles.

x

Dx

Figure 2.1: Shape of the annihilator of x3.

The first values of HFI(s) are listed in the following table:

s 0 1 2 3 4 5 6 . . .
HFI(s) 1 3 5 7 8 9 10 . . .

Thus the Hilbert polynomial is s + 4 and it agrees with the Hilbert function
for s ≥ 3; hence the Bernstein dimension of I is 1. Note that omitting
the second ideal generator D4

x does not change the Bernstein dimension (the
Hilbert polynomial in this case would be 2s+ 1).

We have now prepared the stage for Joseph Bernstein’s (his name is some-
times spelled I. N. Bernshtein) celebrated result.

Theorem 2.4 (Bernstein’s inequality). If I is a proper left ideal in Ad then
the Bernstein dimension of I is greater or equal to d.
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As the definition of Bernstein dimension before, this statement can be
formulated in a more general fashion, then addressing finitely generated
left Ad-modules. The general version and its proof can be found in Bern-
stein’s original paper [16, Theorem 1.3] or in the nice introductory book of
Coutinho [30, Chapter 9, Theorem 4.2].

Since they play an important rôle in our work, we want to investigate in
more detail some properties of left ideals in the Weyl algebra; in particular
the fact that there are no zero-dimensional proper left ideals. This is a
consequence of Bernstein’s inequality (Theorem 2.4). Therefore, instead of a
rigorous proof, we try to give some intuition about this fact (note also that
Example 2.3 agrees with Theorem 2.4).

Example 2.5. From commutative algebra we are very much used to zero-
dimensional ideals, e.g., the maximal ideals in K[x, y] each of which is gen-
erated by 〈x− c1, y− c2〉 for some constants c1, c2 ∈ K. If we try to construct
such an ideal in A1, i.e., I = A1〈x − c1, Dx − c2〉, we find that also 1 will be
contained in this ideal and hence it is the whole ring:

Dx · (x− c1)− x · (Dx − c2) = xDx + 1− c1Dx − xDx + c2x

= 1− c1c2 + c2c1 = 1 (mod I)

Or, in other words, we have shown by the above calculation that the given
polynomials do not form a left Gröbner basis since their S-polynomial does
not reduce to 0. Also observe that the 1 that survives in the end comes exactly
from the commutation relation of the Weyl algebra.

This example illustrates that the ideal structure in the Weyl algebra is
quite different than in a commutative polynomial ring. Note also that there
are no proper two-sided ideals in the Weyl algebra (in other words Ad is
simple).

Definition 2.6. We want to call a left ideal I in the Weyl algebra Ad holo-
nomic if I = Ad or if the Bernstein dimension of I equals d, i.e., if the
Bernstein dimension is as small as possible (Theorem 2.4). A function
f(x1, . . . , xd) (or any “object” on which the Weyl algebra Ad can act) is
called a holonomic function with respect to the variables x1, . . . , xd if there
exists a holonomic left ideal in Ad that annihilates f .

The notion of holonomic ideal is a slight abuse of mathematical language
and can lead to confusion. The reason is that an ideal in Ad gives rise to
an Ad-module in two ways: First we can consider the elements of I as the
carrier set of the module, or second we can take the quotient Ad/I. The
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holonomy of an ideal then coincides with holonomy in the D-module sense if
the second option is taken.

If one deals with partial differential equations rather than operators, then
often also the notion holonomic system is used. In this context one speaks
of the system as being maximally overdetermined, in the sense that there are
as many linear partial differential equations with polynomial coefficients as
possible.

A nice property of holonomic ideals that is crucial for our work is the
so-called elimination property . We will later see why it is so important: it
justifies the termination of many algorithms in Chapter 3.

Theorem 2.7. Let I be a holonomic ideal in Ad(K). Then for any subset of
d+ 1 elements among the generators {x1, . . . , xd, Dx1 , . . . , Dxd

} there exists a
nonzero operator in I that involves only these d+ 1 generators and is free of
the remaining d− 1 generators (we will also say that we can eliminate these
d− 1 generators).

Proof. We follow the proof given by Zeilberger in [93] to whom it was shown
by Bernstein himself. For an arbitrary but fixed (d + 1)-subset of the gen-
erators {x1, . . . , xd, Dx1 , . . . , Dxd

}, let Ã denote the subalgebra of Ad that is
generated by those. We study the mapping ϕ : Ã → Ad/I, P 7→ P mod I.
From the definition it is clear that dimK(Ã)≤s =

(
s+d+1
d+1

)
= O(sd+1) because

these are just all exponent vectors α ∈ Nd+1 with |α| ≤ s. On the other
hand the holonomy of I implies that dimK(Ad/I)≤s = O(sd). Hence there
exists an integer t > 0 so that

dimK(Ã)≤t > dimK(Ad/I)≤t.

So if we restrict ϕ to (Ã)≤t it will be a linear map from a K-vector space of
higher dimension to one with a lower dimension. Therefore kerϕ is nontrivial
and its elements are the desired operators.

An immediate consequence of Theorem 2.7 is that for a given holonomic
ideal we can find ordinary differential equations in it, namely for each Dxi

we
can eliminate the remaining operators Dxj

, j 6= i. From this fact it follows
that a holonomic function can be uniquely defined by giving its holonomic
annihilating ideal plus finitely many initial values. Thus only a finite amount
of information is needed to completely describe a holonomic function, as
pointed out by Zeilberger [93]. In most cases, however, we are interested in
eliminating some of the xi as we will see in Chapter 3.

As we pointed out, the attribute holonomic can be used in any class
of objects for which the differentiation is explained, e.g., for rational func-
tions, formal power series, C∞-functions, analytic functions, and distribu-
tions. Moreover we can think of calling also other objects holonomic as soon
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as we can act on them with the Weyl algebra (this action then has to be
explained). As an example we want to have a look at sequences, and in the
first place it is not clear how a differential operator should act on a sequence.
Let (a(n))n∈Nd ∈ KNd

be a sequence in the variables n = n1, . . . , nd. We
define the action of an operator of the Weyl algebra Ad by the actions of its
generators:

Dxi
• a(n) := (ni + 1)a(n1, . . . , ni−1, ni + 1, ni+1, . . . , nd)

xi • a(n) := a(n1, . . . , ni−1, ni − 1, ni+1, . . . , nd).

}
(2.5)

Example 2.8. With this definition we can argue that the operator 4x2Dx −
xDx + 2x − 1 ∈ A1 annihilates the univariate sequence of Catalan numbers
Cn = 1

n+1

(
2n
n

)
. Indeed if we apply it to the sequence Cn according to the above

rules we get

4(n− 1)Cn−1 − nCn + 2Cn−1 − Cn = (4n− 2)Cn−1 − (n+ 1)Cn

which is nothing else than the well-known recurrence for the Catalan numbers.

Upon closer inspection of (2.5) we perceive that this definition is not at
random but mirrors an ulterior motive: The action on a sequence just cor-
responds to the action on its (multivariate) generating function

∑
a(n)xn.

Therefore we could equivalently define a sequence to be holonomic if and
only if its generating function is holonomic. Since the action of differential
operators on sequences is not very intuitive it is more convenient to translate
them into the shift algebra via Dxi

= (ni +1)Sni
and xi = S−1

ni
(we can always

get rid of the negative powers of shift operators by multiplying through). The
elimination property carries directly over to the shift algebra by considering
the Euler operator θxi

= xiDxi
that translates to θxi

= ni. This reasoning
generalizes to the mixed setting where both discrete and continuous variables
are involved. Finally we want to mention that also for q-holonomic functions
a corresponding theory has been developed [75].

Using the theory of D-modules it can be proven that holonomic func-
tions share a couple of nice closure properties. If f and g are two holonomic
functions then so are f + g and f · g. Furthermore if f(x1, . . . , xd) is a holo-
nomic function then also f(x1, . . . , xd−1, c), c ∈ K,

∫
f(x1, . . . , xd) dxd, and∫ b

a
f(x1, . . . , xd) dxd are holonomic functions (if they are defined at all). Sim-

ilar things can be said about the closure properties of holonomic sequences
with the integral being replaced by the summation quantifier. Unfortunately
it is not so simple to execute these closure properties algorithmically using
the representation with holonomic ideals. Instead we will use the ∂-finite
representation (see the next section) to execute closure properties on the set
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of functions that interest us. For that reason we do not want to go into detail
here, in particular we omit all the proofs of the above statements (they can
be found for example in [93]).

A collection of functions and sequences that are holonomic are displayed
in Figure 2.3 (see page 41).

2.3 ∂-finite functions

In order to specify the class of functions that we are mostly going to deal with
in practice, we first have to introduce another kind of noncommutative op-
erator algebra, named after the Norwegian mathematician Øystein Ore who
studied noncommutative polynomials [63] of this type. These algebras serve
as a unifying framework to represent differential and difference equations as
well as mixed ones (the Weyl algebra is just a special instance of them).
Additionally they allow more flexibility in handling the coefficients, for ex-
ample for treating differential equations with rational instead of polynomial
coefficients (this allows us to divide out polynomial contents).

Ore algebras

We start with the space of functions that we want to operate on and denote
it by F . Again let K denote the ground field which means that we can see F
as a K-algebra of functions. We assume that F is equipped with certain
K-linear endomorphisms whose properties we want to reproduce with the
following algebraic construction. If for example the K-linear endomorphisms
in question are derivations, i.e., if they are satisfying the Leibniz law, then F
is also called a differential field or differential algebra. In this case we would
like to create an of differential operators.

An Ore algebra O is a skew polynomial ring, also called an Ore polynomial
ring, that is obtained by applying Ore extensions to some base ring. The
elements of O are interpreted as operators that act on the functions in F .
In order to specify the coefficients of the skew polynomial ring we first fix a
K-algebra A, the base ring, which has to be a subalgebra of F . Since the
elements of A will be part of the operator algebra O we have to define their
action on elements of F ; this is achieved in a natural way by specifying that
an element a ∈ A acts on f ∈ F as the operator “multiplication by a”, i.e.,
a • f := af .

Every Ore extension is based on a K-linear map δ : F → F so that
δ(kf + g) = kδ(f) + δ(g) for all f, g ∈ F and k ∈ K. Furthermore, δ has
to be a σ-derivation at the same time which means that it has to fulfill the
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skew Leibniz law

δ(fg) = σ(f)δ(g) + δ(f)g for all f, g ∈ F (2.6)

where σ is some injective K-linear endomorphism of F (additive and multi-
plicative), i.e.,

σ(kf +g) = kσ(f)+σ(g) and σ(fg) = σ(f)σ(g) for all f, g ∈ F , k ∈ K.

An Ore extension adds a new symbol ∂ to the base ring A and hence
yields a skew polynomial ring that is denoted by O = A[∂;σ, δ] and whose
elements are polynomials in ∂ with coefficients in A. The addition in O is
just the usual one but the multiplication is defined by associativity via the
commutation rule

∂a = σ(a)∂ + δ(a) for all a ∈ A

(for which to make sense we have to claim that σ and δ can be restricted
to A). Note that in contrast to the Weyl algebra the noncommutativity
is now between the “variables” of the polynomial ring and its coefficients
(see also Section 4.8). The injectivity of σ ensures the nice property that
deg∂(pq) = deg∂(p) + deg∂(q) for skew polynomials p, q ∈ O. Further it is
possible to perform right Euclidean division. If additionally σ is invertible,
then also left Euclidean division can be done. More details on the properties
of such skew polynomial rings can be found in the instructive introduction by
Bronstein and Petkovšek [21]. The process of adding Ore extensions can be
iterated to get A[∂1;σ1, δ1][∂2;σ2, δ2] · · · , whereat we assume that ∂i∂j = ∂j∂i

and σiδj = δjσi for all i and j.
The last missing step is to define how the new symbol ∂ should act on the

functions in F . Depending on what operation on F one wants to represent,
one defines either ∂ • f := δ(f) or ∂ • f := σ(f) (the latter option is usually
chosen when δ = 0). By means of the action • : O × F → F our function
space F turns into an O-module.

As examples for making the above abstract definitions clearer, we present
the two Ore extensions that we will mainly use:

• σ(f) = f and δ(f) = df
dx

: The action of the new symbol ∂ is defined to
be ∂ • f := δ(f) and with A = K[x] we get the first Weyl algebra A1

(where we tacitly assume that the univariate polynomial ring K[x] is a
subalgebra of F). In contrast if we set A = K(x) then we get the alge-
bra of linear ordinary differential equations with rational coefficients;
this can be interpreted as the localization of A1 with respect to K[x].
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• σ(f) = f |n→n+1 and δ(f) = 0: In this case the action of ∂ is defined to
be ∂ • f := σ(f). With A = K[n] we get the first shift algebra.

Typically A = K(v1, . . . , vj−1)[vj, . . . , vd] where both extreme cases j = 1
and j = d may be attained. In these cases we speak of a polynomial or
rational Ore algebra respectively.

Definition of ∂-finite functions

The notion of ∂-finiteness is the main ingredient for most of the algorithms
that will be presented in Chapter 3. Roughly speaking a function is called
∂-finite if all its “derivatives” span a finite-dimensional vector space over
the rational functions (in this context we use the term “derivative” with a
more general meaning and let it refer to the application of any operator).
Whenever dealing with ∂-finite functions we work in rational Ore algebras.

Let O = A[∂; σ, δ] = A[∂1;σ1, δ1] · · · [∂d;σd, δd] be an Ore algebra with A
being a field (typically a rational function field). A left ideal I ⊆ O is called
a ∂-finite ideal w.r.t. O if dimA(O/I) <∞, i.e. the A-vector space O/I is of
finite dimension. A function f is called ∂-finite w.r.t. O if there exists a ∂-
finite ideal in O that annihilates f . Often we just speak of f being a ∂-finite
function meaning that there is an appropriate Ore algebra with respect to
which f is ∂-finite. The ∂ herein is just a generic symbol and does not refer
to a concrete Ore operator.

Let now I ⊆ O denote an annihilating ∂-finite ideal for the function f .
We denote the set of all “derivatives” of f byO•f := {P •f | P ∈ O}. Due to
the fact that O/I ∼= O• f we can say that f is ∂-finite if all its “derivatives”
constitute a finite-dimensional A-vector space. For this statement to make
sense we additionally have to make sure that the function f itself can be seen
as element of an A-vector space. An instance where this fact shall prevent
us from declaring a function to be ∂-finite will be given in Example 2.13.
For the moment we want to make the idea of ∂-finiteness demonstrative by
looking at a very basic example.

Example 2.9. We consider the function f(x, y) = sin
(

x+y
x−y

)
in two continu-

ous variables. It is natural to act with Dx and Dy on that function, e.g.,

D2
xDy • sin

(
x+ y

x− y

)
=

8 (−2xy − y2)

(x− y)5
sin

(
x+ y

x− y

)
+

4 (x3 − 5xy2 + 2y3)

(x− y)6
cos

(
x+ y

x− y

)
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It is obvious that all partial derivatives of f with respect to x and y are of
the form

r1(x, y) sin

(
x+ y

x− y

)
+ r2(x, y) cos

(
x+ y

x− y

)
where r1 and r2 are rational functions in Q(x, y). But this means that the
derivatives of f span a two-dimensional Q(x, y)-vector space. Hence f is a
∂-finite function with respect to the Ore algebra Q(x, y)[Dx; 1, Dx][Dy; 1, Dy].

For holonomic functions we have seen that by Theorem 2.7 there exists
an ordinary linear differential equation for each variable. A similar statement
holds for ∂-finite ideals.

Proposition 2.10. A left ideal I ⊆ O = A[∂1;σ1, δ1] · · · [∂d;σd, δd] is ∂-finite
if and only if I contains a rectangular system, i.e., {P1(∂1), . . . , Pd(∂d)} ⊆ I.
By that we mean that Pi depends only on the Ore operator ∂i and contains
none of the others.

Proof. One direction is obvious: If we have a rectangular system and con-
sider the left ideal I that is generated by its elements, then the dimension
dimAO/I ≤

∏d
i=1 deg∂i

Pi <∞ and hence I is ∂-finite.
On the other hand, assume that I ⊆ O is ∂-finite with dimAO/I = m.

We consider the sequence of power products 1, ∂1, ∂
2
1 , . . . each of which can

be reduced to normal form modulo I. Since these normal forms are elements
in a m-dimensional A-vector space, we find a linear dependence at the latest
when we go up until ∂m

1 . This linear dependence is nothing else but an
element in I that involves only ∂1 and none of the ∂i, i > 1. Doing the same
game for ∂2, . . . , ∂d yields a rectangular system.

The nice thing about ∂-finite functions is that again we have to specify
only finitely many initial values in order to have a complete description of a
concrete function (viewed as a formal power series). It may however happen
that the leading coefficients of the annihilating operators introduce some
singularities in which case more, possibly infinitely many, initial values have
to be given (see also Section 7.3).

Example 2.11. We want to study the Struve function Hn(z) that is a so-
lution of the inhomogeneous second-order Bessel differential equation ([6,
12.1.1]):

z2H ′′
n(z) + zH ′

n(z) + (z2 − n2)Hn(z) =
4
(

z
2

)n+1

√
πΓ
(
n+ 1

2

)
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We homogenize this equation by first constructing an annihilating operator
zDz − n − 1 for the inhomogeneous part (which is easy since it is hyperex-
ponential with respect to z) and by multiplying it to the differential equation
z2D2

z + zDz + z2 − n2 from the left:

P1(Dz) = z3D3
z − (n− 2)z2D2

z −
(
n2 + n− z2

)
zDz + (n3 + n2 − nz2 + z2)

hence is an annihilating operator for Hn(z). Similarly we can look up an
inhomogeneous recurrence [6, 12.1.9] for the Struve function

Hn−1(z) + Hn+1(z) =
2n

z
Hn(z) +

(
z
2

)n
√
πΓ
(
n+ 3

2

)
which again can be made homogeneous in the same manner:

P2(Sn) = ((2n+ 5)Sn − z) ·
(
zS2

n − (2n+ 2)Sn + z
)

=

= (2n+ 5)zS3
n − (4n2 + 18n+ z2 + 20)S2

n + (4n+ 7)zSn − z2

(we multiplied the original equation by z in order to clear denominators).
Now P1 and P2 form a rectangular system which proves that Hn(z) is a ∂-
finite function with respect to the Ore algebraO = Q(n, z)[Sn;Sn, 0][Dz; 1, Dz].
If we additionally provide 3 · 3 = 9 initial values, this rectangular system de-
scribes the Struve function completely. But it is not a Gröbner basis (once
again we have to suppress our intuition from commutative algebra that bases
on Buchberger’s product criterion). The Gröbner basis for the left ideal gen-
erated by P1 and P2 with respect to total degree order is

{z2D2
z + (−2nz − z)Sn − 2nzDz + n2 + n+ z2,

zSnDz + (n+ 1)Sn − z,
(2nz + 3z)S2

n − (4n2 + 10n+ z2 + 6)Sn − z2Dz + 3nz + 3z}.

From the leading monomials D2
z , SnDz, and S2

n we can read off that there
are 3 monomials 1, Dz, Sn under the staircase. Hence only 3 initial values
suffice to determine a power series expansion around z = 0 for all n ∈ N in
a unique way:

H0(0) = H1(0) = 0 and H ′
0(0) =

2

π
.

Example 2.12. In contrast to the previous example, Stirling numbers are
not ∂-finite. Although the Stirling numbers of the first kind for example are
killed by the mixed recurrence operator SmSn + mSn − 1, there are no pure
recurrences, neither in the first nor in the second parameter, for them. This
means they do not possess a rectangular system and hence are not ∂-finite.
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Let us illustrate why it is so important that any object that we want to
consider to be ∂-finite must be an element of an appropriate vector space.
In the previous example, the Stirling numbers are in principal eligible for
applying the definition of ∂-finite, but in the end there are simply not enough
relations for them (what to do in such cases has recently been described
in [27], see Section 2.6). In contrast to that we will now discuss an example
which is not ∂-finite because the definition of ∂-finiteness cannot be applied.

Example 2.13. The Kronecker delta δm,n is defined to be 1 if m = n and 0
otherwise. Since m and n are discrete variables we introduce the Ore algebra
O = Q(m,n)[Sm;Sm, 0][Sn;Sn, 0]. It is easy to verify that δm,n is annihilated
by (m−n+1)Sm+n−m and (−m+n+1)Sn+n−m. These two operators are
a rectangular system and hence generate a ∂-finite left ideal in O (they even
form a Gröbner basis), so one could be tempted to declare δm,n to be a ∂-finite
function. Now observe that δm,n is also annihilated by the polynomial m−n,
but the left ideal generated by m − n is the whole ring O (we can remove
a polynomial content in m and n). Hence in the ∂-finite setting we cannot
distinguish between δm,n and the bivariate sequence that is identically 0. The
reason is that we cannot interpret δm,n as an element of a Q(m,n)-vector
space.

Closure properties

Similar to the holonomic functions, the class of ∂-finite functions shares some
nice closure properties. Additionally these can be executed effectively and
algorithmically in a relatively simple manner. The ∂-finite functions are
closed under operator application, sum, product, algebraic substitutions for
continuous variables, and rational-linear substitutions for discrete variables.
In the following we prove that these closure properties indeed hold and we
try to formulate the proofs in a way that gives the corresponding algorithms
at the same time.

The algorithms for performing ∂-finite closure properties follow a similar
principle as the celebrated FGLM algorithm [33] (named after its inventors
Faugère, Gianni, Lazard, and Mora). For that reason we want to shortly
describe this algorithm. The FGLM algorithm is designed for transforming
a given Gröbner basis G1 of a zero-dimensional ideal in K[x] into a Gröbner
basis G2 for the same ideal with respect to a different term order ≺2. It
works by going systematically through the monomials of K[x] starting with
the set T = {x0} = {1}: In each step we choose (and afterwards delete) the
≺2-minimal monomial xγ from T such that it is not divisible by the leading
monomial of some element of G2 that we might already have found. It now
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can be decided whether xγ is the leading monomial of some new element
of G2 or whether it belongs to the set of monomials which cannot be reduced
by G2. For this purpose xγ is reduced with G1 to normal form representation
(which is an element of the finite-dimensionalK-vector spaceK[x]/〈G1〉) and
afterwards it is checked whether there is a linear dependence between this
normal form and all normal forms that correspond to monomials for which
we found earlier that they are under the stairs of G2. If they are linearly
dependent, this means that xγ is the leading monomial of an element of G2

(which now is given by exactly this linear dependence). On the other hand
if all these normal forms are linearly independent then this indicates that xγ

cannot be reduced by G2 and hence lies under the staircase of G2. In this
case we have to continue our search for leading monomials in all directions
which means that we add the elements x1x

γ , x2x
γ , . . . to T . This procedure

is repeated until G2 is complete (which can easily be seen, e.g., by equating
the vector space dimensions dimKK[x]/〈G1〉 = dimKK[x]/〈G2〉). Having
an idea of how the FGLM algorithm works will make the rest of this section
much better understandable. The algorithm is displayed in Figure 2.2.

Input: Gröbner basis G1 ⊂ K[x1, . . . , xd], term order ≺2

Output: Gröbner basis G2 of 〈G1〉 with respect to ≺2

T := {1}, G2 := {}, j := 1
while T 6= {}
T := T \ {t ∈ T | ∃g ∈ G2 such that lm(g) divides t}
tj := min≺2 T
T := T \ {tj}
NFj := normal form of tj with respect to G1

if ({NFi | 1 ≤ i ≤ j} are linearly dependent) then
let ci ∈ K (not all zero) with c1NF1 + · · ·+ cjNFj = 0
G2 := G2 ∪ {c1t1 + · · ·+ cjtj}

else
T := T ∪ {xitj | 1 ≤ i ≤ d}
j := j + 1

return G2

Figure 2.2: FGLM Algorithm

Theorem 2.14. Let f be a ∂-finite function with respect to the Ore algebra
O = A[∂; σ, δ] = A[∂1;σ1, δ1] · · · [∂d;σd, δd]. Then for any operator P ∈ O
also g = P • f is a ∂-finite function with respect to O.
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Proof. Since any “derivative” of g is also a “derivative” of f , or in other
words O • g = (O · P ) • f ⊆ O • f , it is immediately clear that also g is
∂-finite. Moreover given a Gröbner basis G ⊂ O for an annihilating ∂-finite
ideal of f , a Gröbner basis G̃ for an annihilating ideal of g can be computed
by an adjusted version of the FGLM algorithm. The monomials ∂γ are tested
in the same systematic way, whether they lie under the stairs of G̃ or are
the leading monomial of an element of G̃. The only change takes place in
the reduction step: instead of reducing the monomial ∂γ one computes the
normal form of P ·∂γ with respect to G.

Example 2.15. We consider the Hankel function of the first kind H
(1)
n (x);

sometimes it is also called Bessel function of the third kind, because it is
a linear combination of Bessel functions of the first and second kind. We
work in the Ore algebra O = Q(n, x)[Sn;Sn, 0][Dx; 1, Dx] and choose a total
degree order that breaks ties via Sn > Dx. The reduced Gröbner basis for the
annihilator of H

(1)
n (x) is

{xSn + xDx − n, x2D2
x + xDx + (x2 − n2)}.

We want to compute the reduced Gröbner basis G̃ of an annihilating ideal
for H

(1)
n+1(x) +H

(1)
n (x), thus P = Sn + 1. We start with the monomial 1 and

reduce (Sn + 1) · 1 to

Sn + 1− 1

x
(xSn + xDx − n) = −Dx +

n

x
+ 1.

Next we add the monomials Sn and Dx to the set of test monomials T . The
minimal element in T is Dx and we reduce (Sn + 1)Dx to 1

x
(n + x + 1)Dx −

1
x2 (n

2 +n−x2). We find that the two normal forms are linearly independent,

hence the monomials 1 and Dx will not be reducible by G̃. Thus we add the
monomials SnDx and D2

x to T . Next we take the smallest monomial Sn and
reduce (Sn + 1)Sn to − 1

x
(2n + x + 2)Dx + 1

x2 (2n
2 + nx + 2n − x2). Now the

three normal forms computed so far are linearly dependent:

−(2n2 + 2nx+ 2n+ x)

(
−1

n
x

+ 1

)
+ 2x(n+ x+ 1)

(
n+x+1

x

−n2+n−x2

x2

)
+

x(2n+ 2x+ 1)

(
−2n+x+2

x
2n2+nx+2n−x2

x2

)
=

(
0
0

)
.

Hence x(2n + 2x + 1)Sn + 2x(n + x + 1)Dx − (2n2 + 2nx + 2n + x) is an

element of G̃. Last we have to care about the monomial D2
x from T (SnDx we

will not have to consider since it is a multiple of the leading monomial Sn).
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We find that there is a linear dependence between the first two normal forms
(corresponding to 1 and Dx) and the normal form of (Sn + 1)D2

x . It delivers

the second element of G̃

x2(2n+ 2x+ 1)D2
x + 2x(2n+ x+ 1)Dx − (2n− 2x+ 1)(n+ x)(n+ x+ 1).

which is now a complete Gröbner basis.

In the example we observe that the resulting Gröbner basis has the same
number of monomials under its staircase as the input. Analyzing the algo-
rithm reveals that the closure property of operator application never increases
this dimension, but sometimes even reduces it. This is an important point
and one should try to use this closure property whenever it is possible. If
we used the closure property sum instead we would have ended up with a
Gröbner basis of Q(n, x)-dimension 4 under the staircase.

Theorem 2.16. If f and g are ∂-finite functions with respect to some Ore
algebra O = A[∂; σ, δ] = A[∂1;σ1, δ1] · · · [∂d;σd, δd], then f + g is ∂-finite
with respect to O as well. If additionally σα(f) ∈ O • f for α ∈ Nd, then
also f · g is ∂-finite with respect to O.

Proof. Since f is a ∂-finite function we know that we can rewrite any deriva-
tive ∂γ • f,γ ∈ Nd as an A-linear combination of {∂α • f | α ∈ U} where
U ⊂ Nd is a finite set of exponent vectors representing the monomials under
the staircase of a ∂-finite annihilating ideal for f . Similarly every derivative
of g can be expressed as an A-linear combination of {∂β • g | β ∈ V } for
some other finite set V ⊂ Nd.

In order to prove that f + g is ∂-finite we rewrite an arbitrary derivative

∂γ • (f +g) = ∂γ •f +∂γ •g =
∑
α∈U

aα(∂α •f)+
∑
β∈V

bβ(∂β •g), aα, bβ ∈ A

from which it is clear that all derivatives of f + g span a finite-dimensional
vector space over A; it is spanned by {∂α • f | α ∈ U} ∪ {∂β • f | β ∈ V }
and hence its dimension is at most |U |+ |V |.

A similar argument applies in the product case; applying the skew Leibniz
law (2.6), any derivative ∂γ • (f · g),γ ∈ Nd can be rewritten as an A-linear
combination of products of derivatives of f and g:

∂γ • (f · g) =
∑

α,β∈Nd

c̃α,β ·
(
∂α • f

)
·
(
∂β • g

)
, c̃α,β ∈ A. (2.7)

For differential and shift operators this is trivially achieved by

Dx • (f · g) = (Dx • f) · g + f · (Dx • g),
Sn • (f · g) = (Sn • f) · (Sn • g).
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In the general case we have to distinguish the cases ∂i • f = σi(f) (which is
fine) and ∂i • f = δi(f). In the latter we use that σi and δi commute:

∂n
i • (f · g) =

n∑
k=0

(
n

k

)
δn−k
i

(
σk

i (f)
)
δk
i (g).

Equation (2.7) is then established by the condition σk
i (f) ∈ O • f .

But the derivatives of f and the derivatives of g themselves can be ex-
pressed as linear combinations of elements determined by U and V . So finally
we get

∂γ • (f · g) =
∑
α∈U

∑
β∈V

cα,β ·
(
∂α • f

)
·
(
∂β • g

)
, cα,β ∈ A.

Again it is now clear that the derivatives of f · g span a finite-dimensional
A-vector space whose dimension is at most |U | · |V |.

From the algorithmic point of view we proceed as follows. The input are
two Gröbner bases for ∂-finite annihilating ideals of f and g in O. They
determine the sets U, V ⊂ Nd representing the monomials under the stairs
of the respective Gröbner basis. We go through the monomials ∂γ in the
same systematic way as in the FGLM algorithm. To each monomial ∂γ we
have to compute a kind of “normal form”. The normal form in the sum case
corresponds to the vector

(aα1 , aα2 , . . . , bβ1 , bβ2 , . . . ) ∈ A|U |+|V |.

In the product case the normal form is constituted by the coefficients cα,β:

(cα1,β1 , cα1,β2 , . . . , cα2,β1 , cα2,β2 , . . . ) ∈ A|U |·|V |.

In order to compute these “normal forms”, in particular in the last rewriting
step, the reduction modulo the input Gröbner bases is used. Everything else
is done exactly as in the FGLM algorithm.

The next closure property performs algebraic substitution of continuous
variables. Although it is quite folklore, we want to state a basic fact that is
needed later, in the following lemma.

Lemma 2.17. Let h(z) be a multivariate algebraic function, i.e., there exists
a nonzero polynomial p ∈ K[h,z] with p(h(z), z) = 0. Any derivative of h(z)
can be expressed as a polynomial in h(z) with degree smaller than the degree
of the minimal polynomial p.
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Proof. We differentiate the minimal polynomial p with respect to zi:

∂

∂zi

p(h(z), z) =
∂p

∂h
· ∂h
∂zi

+
∂p

∂zi

= 0.

Solving this equation for the derivative of h gives

∂h

∂zi

= − ∂p
∂zi

·
(
∂p

∂h

)−1

.

After reducing the expression on the right-hand side modulo the minimal
polynomial p (for the second factor we compute the modular inverse with
the extended Euclidean algorithm we obtain the desired representation for
Dzi
•h(z). Repeating this procedure iteratively, we get such a representation

for arbitrary higher and mixed derivatives of h(z).

Theorem 2.18. Let f(x,w) be a ∂-finite function with respect to the Ore
algebra O = K(x,w)[Dx;1,Dx][∂w; σw, δw] where x = x1, . . . , xd. Let fur-
ther h1(z), . . . , hd(z) be algebraic functions in z = z1, . . . , ze which means
that there are nonzero polynomials p1, . . . , pd ∈ K[h, z1, . . . , ze] such that
pi(hi(z), z1, . . . , ze) = 0. Then the function g(z,w) = f(h1(z), . . . , hd(z),w)
is ∂-finite w.r.t. the Ore algebra O′ = K(z,w)[Dz;1,Dz][∂w; σw, δw].

Proof. We want to study the action of a differential operator on g. For
1 ≤ i ≤ e, applying the chain rule we get

Dzi
• g(z,w) = (Dx1 • f)

(
h1(z), . . . , hd(z),w

)
· (Dzi

• h1(z)) + · · ·+
(Dxd

• f)
(
h1(z), . . . , hd(z),w

)
· (Dzi

• hd(z)) .

We can rewrite the derivatives of the algebraic functions h1(z), . . . , hd(z) by
Lemma 2.17 as polynomials in these respective functions. It is not difficult
to see that we can throw other differential operators on the previous expres-
sion and after doing a similar rewriting plus reduction modulo the minimal
polynomials pi, we obtain an expression that involves some derivatives of f
and each hi occurs polynomially with powers smaller than the degree of its
minimal polynomial pi. Since f is ∂-finite we can rewrite all its derivatives
as linear combinations of U1 • f, . . . , Um • f (where the Ui are the monomials
under the staircase of the ∂-finite annihilating ideal of f). Summing up, we
can express any arbitrary derivative of g(w, z) as a linear combination of

(Ui • f)
(
h1(z), . . . , hd(z),w

)
· h1(z)j1 · · ·hd(z)jd

where 1 ≤ i ≤ m and 0 ≤ jl < degh pl for 1 ≤ l ≤ d. Hence g is a ∂-
finite function and its derivatives span a K(z,w)-vector space of dimension
at most m

∏d
l=1 degh pl.
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We can execute the algebraic substitution algorithmically by again using
an FGLM-like procedure. Since the output is supposed to be a Gröbner basis
of some left ideal in O′, we will go through the monomials of O′. For each
monomial that we have to consider we compute a normal form as described in
the proof. Everything else is done as in the FGLM algorithm. The key point
is to translate the action of an operator inO′ on g to the action of an operator
in O on f . This idea is even more exploited in the last closure property that
we are going to discuss, the rational-linear substitution of discrete variables.

Theorem 2.19. Let f(k,w) be a ∂-finite function with respect to the Ore
algebra O = K(k,w)[Sk; Sk,0][∂w; σw, δw] where k = k1, . . . , kd. Then the
result of the rational-linear substitution

g(n,w) = f(c1 + c1,1n1 + · · ·+ c1,ene, . . . , cd + cd,1n1 + · · ·+ cd,ene,w)

where the ci are arbitrary constants and the ci,j are rational numbers, is again
∂-finite with respect to the Ore algebra O′ = K(n,w)[Sn; Sn,0][∂w; σw, δw],
provided that the annihilating relations for f(k,w) still hold when k1, . . . , kd

take (potentially non-integral) values implied by the ci and ci,j.

Proof. We study how shifts in the ni translate to shifts in the kj and therefore
let the operator Sa1

n1
· · ·Sae

ne
∈ O′ act on the substitution kj = cj + cj,1n1 +

· · ·+ cj,ene. The result will be

cj + cj,1(n1 + a1) + · · ·+ cj,e(ne + ae) = kj +
e∑

i=1

cj,iai︸ ︷︷ ︸
=:sj

.

Let tj be the common denominator of the cj,i, 1 ≤ i ≤ e. The quantity sj

then is a rational number with sjtj ∈ Z. It is now clear that each shift of g
translates to a shifted version of f of the form f(k + s,w) with s being an
element of the lattice generated by (t1, 0, . . . , 0), . . . , (0, . . . , 0, td). Since f
is ∂-finite all instances f(k + s,w) can be reduced to a finite set of such
instances, its size being bounded by dimK(k,w)(O • f)

∏d
j=1 tj <∞. Hence g

is ∂-finite.

We try to enlighten the argument of the above proof by an example. For
sake of simplicity we choose a univariate one.

Example 2.20. Given the ∂-finite function f(k) = k! by its ∂-finite annihi-
lating ideal I = O〈Sk − k − 1〉 with O = Q(k)[Sk;Sk, 0], compute the ∂-finite
annihilating ideal for g(n) = f

(
n
2

)
with respect to O′ = Q(n)[Sn;Sn, 0]. A
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monomial Sa
n ∈ O′ translates in terms of the original function as f

(
k + a

2

)
.

All such instances can be reduced with I to a linear combination of f(k) and
f
(
k + 1

2

)
. The first two monomials under consideration, S0

n and S1
n , translate

to exactly these two basis elements. Finally S2
n translates to Sk whose normal

form modulo I is k + 1. At this point we find a linear dependence between
the normal forms

(−k − 1)

(
1
0

)
+ 0

(
0
1

)
+

(
k + 1

0

)
=

(
0
0

)
which delivers (after substituting k = n

2
and clearing denominators) as result

the annihilating operator 2S2
n − n− 2.

2.4 Holonomic versus ∂-finite

We have now introduced two different classes of functions, namely holonomic
and ∂-finite functions. This section gives a comparison of these two classes
and answers questions like: what are the differences between holonomic and
∂-finite? Which functions lie in the intersection? Why do we need these two
notions at all and why does it not suffice to consider just one of them?

An obvious difference concerns the kind of operators that can be treated.
The definition of ∂-finiteness makes sense for all kinds of Ore operators
whereas holonomy is defined for the differential setting in the first place,
but can be extended to the shift setting using the loop way via the generat-
ing function and to q-calculus. Since we are basically interested only in these
settings, the broader generality of ∂-finiteness is not exploited and negligible
in our work.

Univariate functions

For functions in one variable, the definitions of holonomy and ∂-finiteness
coincide provided that they are applicable. We can easily convince our-
selves that this is the case: Let f(x) be a ∂-finite function with respect
to O = K(x)[Dx; 1, Dx]; then there exists a homogeneous linear differential
equation with coefficients in K(x) for f(x). After clearing denominators we
can consider the left ideal in the Weyl algebra A1 generated by it. The Bern-
stein dimension is 1 (there is no other choice—dimension 2 happens only for
the zero ideal) and hence f(x) is holonomic. Conversely assume that f(x) is
a holonomic function and that it can be seen as a K(x)-vector space element.
Then any operator in the holonomic (and therefore nonzero) ideal for f(x)
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involves the Ore operator Dx and witnesses that f(x) is ∂-finite: there are no
annihilating operators in the subalgebra K[x] because otherwise f(x) could
not be interpreted as a vector space element. A similar reasoning applies to
the shift and the q-case.

Example 2.21. The Dirac delta δ(x) distribution is a univariate example
which is holonomic but not ∂-finite. As it is annihilated by a polynomial via
xδ(x) = 0 it cannot be interpreted as an element in a K(x)-vector space.

If we restrict the functions in question to formal power series then we do
not have to care about this subtle difference the notions D-finite, holonomic,
and ∂-finite are all equivalent.

Univariate sequences with finite support are trivially annihilated by a
polynomial and therefore can not be considered to be ∂-finite. But definitely
they are holonomic and also P-finite. For sequences with infinite support the
notions P-finite, holonomic, and ∂-finite are all equivalent.

Differential setting

After having discussed the univariate situation, we now turn to the multivari-
ate setting which we restrict for the moment to differential operators only.
Doing so, one finds that holonomy and ∂-finiteness again coincide provided
that the definitions are applicable. This result follows as a corollary from a
deep theorem of Masaki Kashiwara [45].

Theorem 2.22. Let Ad be the Weyl algebra in x = x1, . . . , xd and let O be
the rational differential Ore algebra K(x)[Dx;1,Dx]. A left ideal I ⊆ O is
∂-finite if and only if I ∩ Ad (which is a left ideal in Ad) is holonomic.

Proof. The backwards direction is simple to prove: Given a holonomic ideal,
by the elimination property (Theorem 2.7) there exists (for all 1 ≤ i ≤ d) a
nonzero operator that involves onlyDxi

and none of the remaining differential
operators Dxj

, j 6= i. But these operators form a rectangular system and
therefore generate a ∂-finite left ideal in O (Proposition 2.10).

The other direction in more difficult to show and we will not give the
proof here. A proof that is adapted for this special situation and therefore
more elementary than Kashiwara’s, can be found in the appendix of [86].

Shift setting

Unfortunately, when considering multivariate sequences, the relation between
holonomic and ∂-finite is not as close as in the differential setting. The reason
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is that an analogue of Theorem 2.22 does not exist for the shift case and
there are functions that are ∂-finite but not holonomic. The most prominent
example to illustrate this fact has been given by Wilf and Zeilberger [91].

Example 2.23. The bivariate sequence f(k, n) = 1
k2+n2 is easily identified

to be ∂-finite since it is hypergeometric. Therefore it has two annihilating
operators that generate a zero-dimensional ideal

I = O

〈
(k2 + 2k+ n2 + 1)Sk + (−k2− n2), (k2 + n2 + 2n+ 1)Sn + (−k2− n2)

〉
in O = Q(k, n)[Sk;Sk, 0][Sn;Sn, 0] and the Q(k, n)-vector space dimension of
O/I is 1.

Assume for now that f(k, n) is holonomic; then by the elimination prop-
erty there exists a recurrence free of k so that

p1(n)

(k + a1)2 + (n+ b1)2
+ · · ·+ pd(n)

(k + ad)2 + (n+ bd)2
= 0, aj, bj ∈ N.

For a fixed integer n > 0 for which not all pj(n) are zero, we observe that each
nonzero term introduces two poles ±i(n+bj)−aj. All these poles are pairwise
distinct and they cannot cancel away unless all pj(n) are zero. Therefore no
such recurrence can exist and f(k, n) is not holonomic.

Conclusion

We have seen that holonomic and ∂-finite functions are closely related (see
also Figure 2.3); in fact most of the “interesting” functions lie in their in-
tersection. The reason for not restricting ourselves to just one of these two
classes is that we need certain properties of either class. We want to make
use of the fact that ∂-finite functions are much easier to handle: First the
closure properties are are simpler to perform, and second, the base cases, i.e.,
the ∂-finite descriptions of basic expressions, are easier to obtain. Let’s give
two examples:

Example 2.24. We continue with Example 2.1 where we studied annihi-
lating ideals for the function f(x) = x3. Treating f as a ∂-finite function,
we observe that it is hyperexponential and hence take its first order differ-
ential equation xDx − 3. It generates a ∂-finite ideal I in the Ore algebra
O = Q(x)[Dx; 1, Dx] and the Q(x)-dimension of O/I is 1. Since it can-
not be smaller (only the function that is identically 0 is annihilated by the
whole ring) we know that we have the complete annihilator. Treating f as
a holonomic function, we have seen that the first order differential does not
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generate the whole annihilator, since the annihilating operator D4
x is miss-

ing. However, in the ∂-finite ideal it is contained as the following calculation
shows:

D4
x =

(
1

x
D3

x

)
· (xDx − 3) .

This example illustrates a phenomenon that is of importance in practice.
Sometimes we would like to determine a holonomic ideal in a polynomial
Ore algebra from a given ∂-finite ideal in the corresponding rational Ore
algebra. More concretely, let I ⊂ Orat be a ∂-finite ideal in some rational
Ore algebra Orat = K(v)[∂; σ, δ]. We are interested in the intersection
I ∩Opol,Opol = K[v][∂; σ, δ], which in general is a quite difficult problem.
In the pure differential case it is named Weyl closure and has been solved
completely by Tsai ([88] for the univariate case, and [87] for the multivariate
case). As soon as shift operators are involved the question is still open.
An easy workaround which more or less works in practice is to cancel the
denominators of the generators of I ⊂ Orat in order to use them as generators
of an ideal in Opol. The pitfall hereby is that the result in general will only
be a subideal of I ∩Opol (as was demonstrated in Example 2.24). We will
refer to this phenomenon as extension/contraction.

Example 2.25. We want to study annihilating ideals of orthogonal polyno-
mials. Their differential equations and recurrence relations are well known.
So if we take for example the Gegenbauer polynomials Cm

n (x), we can easily
obtain a ∂-finite description by looking up the corresponding relations and
compute a Gröbner basis of them:

{(n+ 1)Sn + (1− x2)Dx + (−2mx− nx),
2mSm − xDx + (−2m− n),
(x2 − 1)D2

x + (2mx+ x)Dx + (−2mn− n2)}.

The leading monomials being Sn, Sm, and D2
x we have just two monomials

under the staircase. But we know that these polynomials are neither hyper-
geometric nor hyperexponential (which would leave only one monomial under
the staircase), hence we have indeed found the complete annihilating ideal!
In contrast, it would be much more difficult to prove that a given holonomic
ideal is the complete annihilator of Cm

n (x).

It is a hot topic in D-module theory to compute annihilators in the Weyl
algebra. Recently, algorithms for determining the complete annihilator of f s

in Ad, f being a polynomial in K[x1, . . . , xd], have been designed [60, 76] and
implemented [56], but it is still a highly nontrivial task both from theoretical
and implementational point of view. Note that in the ∂-finite setting it is
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rather trivial to get the annihilator of f s, since it is hyperexponential in all
the xi.

So why do we not just forget about holonomicity and deal only with ∂-
finite functions? The reason is the following: when justifying that some of the
algorithms to be presented in Chapter 3 indeed terminate, we have to refer
to the elimination property (Theorem 2.7) which is a property of holonomic
ideals. In practice therefore we want to deal with functions that are both
holonomic and ∂-finite for the abovely mentioned reasons. Figure 2.3 shows
that this is not too much of a restriction.

holonomic ¶-finite

1

k2 + n2

∆m,n
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Factorial2
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Figure 2.3: Holonomic and ∂-finite functions

2.5 Univariate versus multivariate

The use of univariate recurrences and differential equations is very classical
[79, 58, 77, 59], and also the new Mathematica functionality DifferenceRoot

and DifferentialRoot introduced in version 7.0 deals only with univariate
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such equations. That’s why we want to spend some effort on discussing the
essential differences between the usage of univariate and multivariate ∂-finite
descriptions. A multivariate ∂-finite function f(v1, . . . , vd) can always be in-
terpreted as a univariate ∂-finite function in one of these variables, say f(v1),
treating the remaining variables v2, . . . , vd as parameters. Given a ∂-finite
annihilating ideal of f with respect to the Ore algebra O = K(v)[∂; σ, δ],
there exists an annihilating operator that involves only ∂1 which is guaran-
teed by the existence of a rectangular system (see Proposition 2.10). This
operator then gives rise to the univariate ∂-finite description of f(v1).

First note that summation and integration, using the principle of creative
telescoping (see Chapter 3), is only possible if we consider the input as a mul-
tivariate ∂-finite function. Second it is often the case that the multivariate
description is less involved than the univariate one. In particular when the
vector space dimension of O • f is large then it happens that the mixed
operators are of moderate size compared to the ordinary operators of the
rectangular system whose order usually corresponds to the above mentioned
vector space dimension. Just to give some concrete numbers: A mixed anni-
hilating ideal of the product of Bessel functions xJ1(ax)I1(ax)Y0(x)K0(x) has
the leading monomials {D3

aDx, D
4
a , D

2
aD

3
x , DaD

5
x , D

7
x} which leave 16 monomi-

als under the staircase and the degrees of the coefficients do not exceed 7 in a
and x respectively; it easily fits on one page. The ordinary differential equa-
tion in x has order 16 (as expected) but coefficients that involve a and x with
degrees up to 68 and 88, respectively; its size is about 700 kB. And third,
the handling of the initial values is different: If we deal with multivariate
∂-finite descriptions we are usually left with checking finitely many initial
values, whereas an ordinary operator forces us to check “infinitely” many
initial values, in the sense that we have to consider initial values with the
symbolic parameters, as the following examples illustrates.

Example 2.26. In their delightful book “Irresistible Integrals” [19], George
Boros and Victor Moll studied the integral∫ ∞

0

dx

(x4 + 2ax2 + 1)m+1
=
πP

(m+1/2,−m−1/2)
m (a)

2m+3/2(a+ 1)m+1/2
(2.8)

where P denotes the Jacobi polynomials. Many proofs of how to tackle this
integral are collected in [8]. We want to sketch how to prove it with computer
algebra and present two strategies. In the first we view both sides as univariate
∂-finite functions with respect to Q(a)[Da; 1, Da]. Using closure properties
and an integration algorithm (see Chapter 3) we derive the same differential
equation

4(a2 − 1)D2
a + 4a(2m+ 3)Da + 4m+ 3
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for both sides. Hence we have to compare two initial values, but let’s concen-
trate on the first one (a = 0). We have to show that∫ ∞

0

dx

(x4 + 1)m+1
=
πP

(m+1/2,−m−1/2)
m (0)

2m+3/2
(2.9)

for symbolic m. On the other hand, if we consider (2.8) as an identity of
bivariate ∂-finite functions in a and m, we get an additional operator

(4m+ 4)Sm − 2aDa − 4m− 3 ∈ Q(a,m)[Da; 1, Da][Sm;Sm, 0]

that annihilates either side of (2.8). Now the problem of comparing the first
initial value (a = 0 and m = 0) reduces to showing∫ ∞

0

dx

(x4 + 1)
=
πP

(1/2,−1/2)
0 (0)

23/2
=

π

2
√

2

which is much easier than condition (2.9). The same applies to the second
initial value that has to be compared.

This example also reveals another remarkable aspect: With the first strat-
egy we prove that (2.8) holds for all m for which we succeed to prove (2.9),
e.g., for all real numbers m > −3

4
, whereas in the second approach m is

restricted a priori to be a natural number.

2.6 Non-holonomic functions

So far we have presented an algorithmic framework for ∂-finite functions,
which are characterized by a property of their annihilating ideals, namely
having only finitely many monomials under the staircase. Hence, in terms
of Hilbert dimension, ∂-finite ideals are just the zero-dimensional ideals. Re-
cently, Frédéric Chyzak, Manuel Kauers, and Bruno Salvy observed [27] that
the ∂-finite framework can be extended to functions that possess higher-
dimensional annihilating ideals. An instance for such a function was already
shown in Example 2.12 where the Stirling numbers of the first kind were
studied. In general it can be a very tedious task to prove that some given
function is not holonomic, see [38, 35]. The following theorem is an impor-
tant result in [27] and it prepares the stage for performing closure properties
of non-holonomic functions.
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Theorem 2.27. Let I1, I2 ⊆ O be annihilating left ideals in the Ore algebra
O = K(x)[∂x; σx, δx] for f1 and f2, respectively. Then

1. dim AnnO(P • f1) ≤ dim I1 for all P ∈ O,

2. dim AnnO(f1 + f2) ≤ max(dim I1, dim I2),

3. dim AnnO(f1f2) ≤ dim I1 + dim I2, if some technical conditions (as in
Theorem 2.16) hold, which is always the case for the Ore algebras of
practical relevance.

The algorithms for executing the ∂-finite closure properties can be easily
adopted to higher-dimensional annihilating ideals; it basically concerns the
termination condition. The algorithms now stop as soon as an annihilating
ideal of the predicted dimension is found. It can well be that the predicted
dimension exceeds the number of involved Ore operators in which case no
relation at all is expected to exist.

Example 2.28. We focus on Stirling numbers once again, but now on both
the first and the second kind. They are annihilated by SmSn + mSn − 1 and
SmSn − (n + 1)Sn − 1, respectively, so that their annihilating ideal have di-
mension 1. Theorem 2.27 predicts the existence of a one-dimensional ideal
for the sum of these two sequences. Indeed, we can find the recurrence

(m+ n+ 1)(m+ n+ 2)S2
mS

2
n + (m+ n+ 1)(m2 +m− n2 − 4n− 4)SmS

2
n−

2(m+ n+ 2)2SmSn −m(n+ 2)(m+ n+ 1)(m+ n+ 3)S2
n−

(m+ n+ 3) (m2 − n2 − 3n− 2)Sn + (m+ n+ 2)(m+ n+ 3).

In contrast, we cannot expect to find a recurrence for the product, since in
this case Theorem 2.27 predicts dimension 2 which corresponds to the zero
ideal.

In the following chapter we will explain the method of creative telescoping.
We will describe the related algorithms for the holonomic/∂-finite setting
only, but reveal already here that they can be generalized to non-holonomic
functions as well. This is the main result of [27] and we refer to the original
paper for further details. Some examples of non-holonomic function identities
can be found in Section 4.6.



Chapter 3

Algorithms for Summation and
Integration

The basic principle that makes all the algorithms of this chapter meaning-
ful, is the idea of creative telescoping (we even were tempted to utilize it for
entitling the whole chapter). To our knowledge, the first occurrence of this
notion happened in 1979 in van der Poorten’s report [89] on Apéry’s proof
of the irrationality of ζ(3). But for sure the principle was known and used
long before as an ad hoc trick to solve sums and integrals. Just think of the
practice of differentiating under the integral sign, that was made popular by
Richard Feynman in his enjoyable book “Surely You’re Joking, Mr. Feyn-
man!” [34]. It was Doron Zeilberger who equipped creative telescoping with
a concrete well-defined meaning and connected it to an algorithmic method.

The idea of creative telescoping is rather simple and works for summation
problems as well as for integrals. The aim is to get relations (like recurrences,
differential equations, etc.) for the expression in question, that may help in
evaluating it or that may serve to prove an already given identity.

When we want to do a definite sum of the form
∑b

k=a f(k,w) then we
search for creative telescoping operators that annihilate f and that are of the
form

T = P (w,∂w) + ∆kQ(k,w, Sk,∂w) (3.1)

where ∂w stands for some Ore operators that act on the variables w. The
operator P is called the principal part , and we will refer to Q as the delta
part . With such an operator T we can immediately derive a relation for the
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definite sum:

0 =
b∑

k=a

T (k,w, Sk,∂w) • f(k,w)

=
b∑

k=a

P (w,∂w) • f(k,w) +
b∑

k=a

(
∆kQ(k,w, Sk,∂w)

)
• f(k,w)

= P (w,∂w) •
b∑

k=a

f(k,w) +
[
Q(k,w, Sk,∂w) • f(k,w)

]k=b+1

k=a︸ ︷︷ ︸
inhomogeneous part

.

Depending on whether the inhomogeneous part evaluates to zero or not, we
have P as an annihilating operator for the sum, or we get an inhomogeneous
relation for the sum. In the latter case, if one is not happy with that, one
can homogenize the relation by multiplying an annihilating operator for the
inhomogeneous part to P from the left. Some of the algorithms in this section
can also tackle multiple sums; in that case a telescoping operator of the form

P (w,∂w) + ∆k1Q(k,w,Sk,∂w) + · · ·+ ∆kj
Q(k,w,Sk,∂w) (3.2)

where k = k1, . . . , kj are the summation variables, is desired.
Similarly one can derive annihilating operators for a definite integral∫ b

a
f(x,w) dx. In this case we look for creative telescoping operators that

annihilate f and that are of the form

T = P (w,∂w) +DxQ(x,w, Dx,∂w). (3.3)

Again it is straightforward to deduce a relation for the integral

0 =

∫ b

a

T (x,w, Dx,∂w) • f(x,w) dx

=

∫ b

a

P (w,∂w) • f(x,w) dx+

∫ b

a

(
DxQ(x,w, Dx,∂w)

)
• f(x,w) dx

= P (w,∂w) •
∫ b

a

f(x,w) dx+
[
Q(x,w, Dx,∂w) • f(x,w)

]b
a

which may be homogeneous or inhomogeneous. Analogously to the sum-
mation case, some algorithms can treat multiple integrals in which case the
desired telescoping operators have the form

P (w,∂w) +Dx1Q(x,w,Dx,∂w) + · · ·+Dxj
Q(x,w,Dx,∂w). (3.4)
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where now x = x1, . . . , xj are the integration variables.
In practice it happens very often that the inhomogeneous part vanishes.

The reason for that is because many sums and integrals run over natural
boundaries . This concept is often used, e.g., in Takayama’s algorithm, to ar-
gue a priori that there will be no inhomogeneous parts after telescoping. For
that purpose, we define that

∑b
k=a f resp.

∫ b

a
f dx has natural boundaries if

for any arbitrary operator P ∈ O for a suitable Ore algebra O the expression[
P •f

]k=b+1

k=a
resp.

[
P •f

]x=b

x=a
evaluates to zero. Typical examples for natural

boundaries are sums with finite support, or integrations over the whole real
line that involve something like exp(−x2). Likewise contour integrals along
a closed path do have natural boundaries.

All algorithms that will be presented in the following rely on this principle
and their aim is, given an annihilating ideal for the summand/integrand,
to compute creative telescoping operators that give rise to an annihilating
ideal for the sum/integral. In order to illustrate how the algorithms work
we chose—for sake of clarity—one of the simplest possible examples: the
binomial sum

∑n
k=0

(
n
k

)
. It is so simple that all computations can be carried

out by hand so that the demonstrations are very instructive. But this should
not give the impression that the following algorithms can only solve trivial
examples. At the end of this chapter as well as in Chapter 4 we will give
examples that are much more involved and hard to solve by hand. As input
we will always start with the ∂-finite annihilating ideal of the summand

(
n
k

)
.

Since it is hypergeometric we find that it is generated by the two operators
G1 = (n − k + 1)Sn − (n + 1) and G2 = (k + 1)Sk + (k − n) that form a
Gröbner basis in Q(k, n)[Sk;Sk, 0][Sn;Sn, 0] with respect to total degree order
(actually: with respect to any term order!).

3.1 Zeilberger’s slow algorithm

In his seminal paper “A holonomic systems approach to special functions
identities” [93], Doron Zeilberger proposed a general method for tackling
(multiple) integration and summation problems of the form

b1∑
v1=a1

· · ·
bl∑

vl=al

∫ bl+1

al+1

. . .

∫ bj

aj

f(v,w) dvl+1 . . . dvj (3.5)

where f is a holonomic function in the summation and integration vari-
ables v = v1, . . . , vj and in the additional parameters w (which should be
nonempty). We will act with the difference operators ∆v1 , . . . ,∆vl

on the
summation variables (in practice it is more natural and more efficient to work
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with shift operators but for now notation becomes simpler by using delta op-
erators). Of course, in the q-case we have to consider q-difference operators
instead (we mention this here once and omit this aspect in the following to
prevent further confusion). Similarly we want to act with the differential
operators Dvl+1

, . . . , Dvj
on the integration variables. We will use the short-

hand notation ∂v to refer to the Ore operators ∆v1 , . . . ,∆vl
, Dvl+1

, . . . , Dvj
.

Finally we denote by ∂w the unspecified Ore operators that act on the vari-
ables w (but have to restrict ∂w to the standard Ore operators for which the
notion of holonomy makes sense). For our purposes we have to assume that
the function f allows us to write the integration and summation quantifiers
in any possible order; otherwise creative telescoping would be impractical.
Therefore (3.5) represents the most general problem that is in the spirit of
the holonomic systems approach.

Shortly after [93], Zeilberger came up with the algorithm that nowadays
is known as Zeilberger’s algorithm and which solves the special case of single
(and not multiple) sums (and not integrals) of proper hypergeometric (and
not general holonomic) summands. He himself named this the fast algorithm,
and in consequence the one that we are discussing now was named by him
the slow algorithm [92, 94, 69].

As input, Zeilberger’s slow algorithm takes a holonomic annihilating ideal
for f(v,w). The main step towards a creative telescoping relation consists
in brute-force elimination of the summation/integration variables v. Note
that it is guaranteed by holonomy (see elimination property, Theorem 2.7)
that nontrivial v-free operators exist. Once such operators are found they
can be easily transformed into the form (3.2)+(3.4) by successive divisions
with remainder: The principal part will be the last remainder that survives
after all divisions. Theoretically it could happen that the remainder is zero
in which case the v-free operator is rather useless for our purposes. Assume
that we run into this unlucky case; then it suffices to multiply the v-free
operator by some suitable power product vα. Of course, the result will not
be v-free any more, but the (now nonzero) principal part will be so (for more
details see [90]). Hence the original problem has been solved.

So far we have not said how to find v-free operators. Zeilberger in his
original paper suggested Sylvester’s dialytic elimination, which was studied
further by Peter Paule [65]. Later Zeilberger admitted that the use of non-
commutative Gröbner bases might be preferable: By choosing a monomial
order where the variables v1, . . . , vj are lexicographically greater than the
other variables w and all the Ore operators ∂v and ∂w, we obtain the de-
sired result. Usually a block order with two blocks is chosen to achieve the
elimination.

In practice the following problem arises: How can we get a holonomic
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annihilating ideal for the function f? In Section 2.3 we have only discussed
how to obtain ∂-finite annihilating ideals that, by definition, are part of a
rational Ore algebra. In the following we want to denote by I ⊆ Orat a given
annihilating ∂-finite ideal for f where

Orat = K(v,w)[∂v; σv, δv][∂w; σw, δw].

But to apply the above method we need an annihilating holonomic ideal in
the polynomial Ore algebra. Unfortunately we do not know in general how
to get that. And in fact, it suffices to work in an Ore algebra O where only
the variables v to be eliminated occur polynomially:

O = K(w)[v][∂v; σv, δv][∂w; σw, δw].

This has the advantage that the computations are much less involved com-
pared to the elimination in a purely polynomial Ore algebra. But it still
remains to get an annihilating ideal in the algebra O. In other words we
need to determine I ∩O, which we already mentioned in Section 2.4 to be a
difficult problem. Therefore we use the workaround to cancel denominators
and then use the generators of I for generating an annihilating ideal of f
in O (which due to extension/contraction will be only a subideal of I ∩O in
general) and to perform the elimination in this ideal.

Example 3.1. Interpreting the two operators G1 and G2 in the Ore alge-
bra Q(n)[k][Sk;Sk, 0][Sn;Sn, 0] they are presented as G1 = −kSn +(n+1)Sn−
(n+ 1) and G2 = kSk + k + Sk − n where we already ordered the terms with
respect to a monomial order that eliminates k. The elimination of k can here
be obtained by hand calculation:

SkG1 + SnG2 = kSn + (n+ 1)SkSn − (n+ 1)Sk − (n+ 1)Sn.

The leading term can be reduced by G1 and after removing the content (n+1)
we end up with the k-free operator T = SkSn − Sk − 1 (which is nothing else
but Pascal’s rule). Note that if we worked in the polynomial Ore algebra
Q[k, n][Sk;Sk, 0][Sn;Sn, 0] we would not have found Pascal’s rule but only a
multiple of it (which again illustrates the extension/contraction problem).
Division with remainder by Sk − 1 rewrites T to a telescoping operator

T = Sn − 2 + (Sk − 1)(Sn − 1).

The sum has natural boundaries (because of finite support), so we can neglect
the delta part. Together with the initial condition

(
0
0

)
= 1 the principal part

Sn − 2 gives rise to the solution 2n.
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In order to bypass the extension/contraction problem, we came up with
a third method how to eliminate the variables v. It is based on ansatz
and coefficient comparison. In our general setting the ansatz with unknown
coefficients has the form ∑

(α,β)∈M

cα,β(w) · ∂α
v ∂β

w

where M is a finite index set of exponent vectors (structure set). The ansatz
is reduced with the Gröbner basis of the given ∂-finite ideal I, and the coeffi-
cients of the normal form are set to zero. Additionally a coefficient compari-
son with respect to all variables v is done to enforce the solutions cα,β to be
free of v. It remains to solve a linear system over K(w). Since a priori it is
not known which structure set will indeed deliver a solution, one has to loop,
say over the total degree of the ansatz, until a solution is found. This ansatz
method being a special case of the polynomial ansatz to be described in Sec-
tion 3.4, we omit further details (concerning optimizations) here and refer
to the below extensive description. To complete this section we demonstrate
the elimination via ansatz on the binomial sum example.

Example 3.2. To find a k-free recurrence for the binomial coefficient we
start with the ansatz ∑

(α,β)∈N2

α+β≤d

cα,β(n)Sα
k S

β
n

where we loop over the total degree d. To keep things short we omit the first
two steps that would deliver no solution. The ansatz for total degree d = 2 is

c00 + c01Sn + c10Sk + c02S
2
n + c11SkSn + c20S

2
k .

The normal form with respect to the Gröbner basis {G1, G2} is (after clearing
denominators):

(k + 1)(k + 2)(k − n− 2)(k − n− 1)c00 −
(k + 1)(k + 2)(n+ 1)(k − n− 2)c01 −
(k + 2)(k − n− 2)(k − n− 1)(k − n)c10 +
(k + 1)(k + 2)(n+ 1)(n+ 2)c02 +
(k + 2)(n+ 1)(k − n− 2)(k − n− 1)c11 +
(k − n− 2)(k − n− 1)(k − n)(k − n+ 1)c20.

After coefficient comparison we write the linear system in matrix form. We
cleared the content in each equation, and to make it fit on this page, give the
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transposed matrix:
2 −3n2 − 5n n2 − 3n− 5 2n 1
2 −3n2 − 7n− 4 n2 − 1 n+ 1 0
2n −n3 + 3n2 + 10n+ 4 4− 3n2 −3n− 1 −1
2 −3n2 − 9n− 6 n2 + 3n+ 2 0 0

2n+ 2 −n3 + 5n+ 4 −2n2 − 3n− 1 −n− 1 0
n2 − n 4n3 + 6n2 − 2n− 2 6n2 + 6n− 1 4n+ 2 1

 .

The nullspace of the matrix is spanned by the single vector (−1, 0,−1, 0, 1, 0)T

which corresponds to the same k-free recurrence that we found with Gröbner
basis elimination. Although in this example the computations are much more
involved compared to Example 3.1, this method is often much faster and gives
smaller results (see Example 3.7 and Section 6.3).

3.2 Takayama’s algorithm

When studying Zeilberger’s slow algorithm it turns out that due to the nature
of this algorithm also the delta parts are free of the summation and integra-
tion variables, in contrast to what is indicated in (3.1) and (3.3). Somehow,
as soon as we have eliminated all the variables v we have already done too
much (we stick to the notation introduced in the previous section because also
Takayama’s algorithm can do multiple sums and integrals). Gert Almqvist
and Doron Zeilberger [7] were the first who observed that the complete elim-
ination imposes more restriction than necessary, and that it would not do
any harm if the delta parts contained also the variables v. This fact was
then exploited by Nobuki Takayama who constructed an “infinite dimen-
sional analog of Gröbner basis” [85, 84]. But he formulated his algorithm
only in the context of the Weyl algebra and in a quite theoretical fashion. It
were Frédéric Chyzak and Bruno Salvy [29] who proposed optimizations that
are important in practice and extended the application domain of the algo-
rithm to more general Ore algebras (in particular shift algebras). The idea
in short is the following: While in Zeilberger’s slow algorithm, first v1, . . . , vj

were eliminated and then the delta parts were divided out, the order is now
reversed. In Takayama’s algorithm we first reduce modulo the right ide-
als ∂v1O, . . . , ∂vj

O and then perform the elimination of v. The consequence
is that the delta parts are not computed at all because everything that would
contribute to them is thrown away in the first step. Hence we have to assume
a priori that the inhomogeneous parts will vanish, i.e., we have to assure nat-
ural boundaries. On the other hand this strategy makes the algorithm much
faster since the division step reduces the size of the data considerably before
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starting with the elimination. Last but not least we can find bigger annihilat-
ing ideals with Takayama’s algorithm (i.e., shorter recurrences or differential
equations with lower order) because compared to Zeilberger’s slow algorithm
we allow more freedom in the delta parts.

There is one technical complication in this approach. The fact that we
are computing in a noncommutative algebra restricts us in the computations
after having divided out the right ideals (since we started with a left ideal,
there is no ideal structure any more). In particular, we are no longer allowed
to multiply by either of the variables v from the left. We can easily convince
ourselves that otherwise we would get faulty results: Assume we have written
an operator in the form P + Dvi

Q. Multiplying it by vi and then reducing
it by Dvi

O leads to viP − Q since we have to rewrite viDvi
as Dvi

vi − 1.
Because vi does not commute with Dvi

we get the additional term −Q in the
result which we lose if we first remove Dvi

Q and then multiply by vi. Similar
things happen in connection with the delta operator.

In order to find a v-free operator one needs an elimination procedure
that avoids multiplication by the variables v. Let now {G1, . . . , Gr} ⊂ O

be a finite set of operators that annihilate f(v,w), in the Ore algebra that
allows elimination of the summation and integration variables v. Such a set
of operators can be obtained for example using the workaround mentioned
in the previous section (starting with a ∂-finite ideal in the rational Ore
algebra Orat). But usually then {G1, . . . , Gr} will not constitute a Gröbner
basis in the new algebra O; in some examples it is of advantage to compute a
Gröbner basis of {G1, . . . , Gr} ⊂ O as a preprocessing step (option Saturate

in our command Takayama). Let G′
1, . . . , G

′
r ∈ K(w)[v][∂w; σw, δw] denote

the corresponding reductions modulo the right ideals ∂v1O, . . . , ∂vj
O. For

1 ≤ i ≤ r we can write

G′
i(v,w,∂w) =

∑
α∈Nj

vαGi,α(w,∂w)

where Gi,α ∈ O′ = K(w)[∂w; σw, δw]. Elimination of v now amounts to
finding a linear combination

P1(w,∂w)


G1,α1

G1,α2

G1,α3

...

+ · · ·+ Pr(w,∂w)


Gr,α1

Gr,α2

Gr,α3

...

 =


P (w,∂w)

0
0
...


for some operators P1, . . . , Pr ∈ O′. With α1 = (0, . . . , 0) the vector on the
right-hand side corresponds to the desired v-free operator. More algebraically
speaking, the elimination happens in an O′-module that is generated by the



3.2. Takayama’s algorithm 53

above vectors. It is achieved by computing a Gröbner basis of this module
with an ordering that first compares positions in the vectors and then breaks
ties by some monomial order (“position over term”).

In general, this will not work yet since we cannot expect to succeed in
the elimination without multiplying by v at all. We only have to ensure that
this multiplication takes place before dividing out the delta parts. Hence we
include multiples of the Gi by power products of v from the very beginning.
By M we denote the module that is generated by the vectors that correspond
to the Gi and their v-multiples. Note that the elements of M have infinite
dimension and also that (P (w,∂w), 0, . . . )T ∈ M if and only if there exist
Q1, . . . , Qj ∈ O such that

P + ∂v1Q1 + · · ·+ ∂vj
Qj (3.6)

is a telescoping relation in the ideal O〈G1, . . . , Gr〉. For practical purposes we
have to truncate the module M by considering only elements up to a certain
dimension d, i.e., which have zeros in all positions greater than d. The natural
choice for d is the determined by the powers of v that appear in G1, . . . , Gr.
So in the first run only v-multiples of such Gi are added that do not involve
v1, . . . , vj with their highest powers occurring in {G1, . . . , Gr}. But we are not
guaranteed that for any telescoping operator of the form (3.6) the principal
part P is an element of the truncated module. In the unlucky case that
no v-free operator is found, more multiples by power products of v have to
be included and the bound d has to be increased. In the case of multiple
summations and integrations (j > 1) there are several options how to increase
the dimension of the module elements. In the pseudo-code description of the
algorithm (see Figure 3.1) we decided to increase the maximal degree of
each of the variables v1, . . . , vj by one. But also finer strategies, for example
increasing in each step only the degree of one single variable, are possible.
A final remark concerns the termination of the algorithm: it is guaranteed
provided that the input is holonomic. Then by the elimination property there
exists a v-free operator and a fortiori an operator of the form (3.6).

Example 3.3. We now want to find a recurrence for the binomial sum with
Takayama’s algorithm. Recall that it has natural boundaries and therefore
the algorithm is applicable. We first observe that both G1 and G2 are of
degree 1 in k. Hence we can start right away with these two, without having
to include certain multiples by powers of k. The next step is to divide out
the delta parts. The first operator G1 = (n− k + 1)Sn − (n+ 1) is free of Sk

and hence is fine. The second operator rewrites as G2 = (Sk − 1)k + 2k − n
which gives 2k − n modulo the right ideal generated by Sk − 1. We represent
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these two elements in the module whose positions correspond to the powers
of k and find a linear combination between them:

2

(
(n+ 1)Sn − (n+ 1)

−Sn

)
+ Sn

(
−n
2

)
=

(
(n+ 1)Sn − 2(n+ 1)

0

)
.

The vector on the right-hand side represents the k-free operator that we have
found. After removing the content we end up with the same principal part as
with Zeilberger’s slow algorithm in Example 3.1.

Input: set of summation and integration variables {v1, . . . , vj},
{G1, . . . , Gr} ⊂ O = K(w)[v][∂v; σv, δv][∂w; σw, δw]
where ∂vi

= ∆vi
or ∂vi

= Dvi
for 1 ≤ i ≤ j

Output: principal parts {P1, . . . , Ps} of some telescoping operators
with respect to ∂v1 , . . . , ∂vj

in O〈G1, . . . , Gr〉
d := (d1, . . . , dj) :=

(
max1≤i≤r degv1

Gi, . . . ,max1≤i≤r degvj
Gi

)
P := ∅
while P = ∅
H := ∅
for i := 1 to r

e :=
(
degv1

Gi, . . . , degvj
Gi

)
H := H ∪ {vα ·Gi | α ≤ d− e}

H ′ :=
{
Hi mod

〈
∂v1 , . . . , ∂vj

〉
O
| Hi ∈ H

}
P := module Gröbner basis of H ′ eliminating v1, . . . , vj

P := {Pi ∈ P | degv Pi = 0}
d := (d1 + 1, . . . , dj + 1)

return P

Figure 3.1: Takayama’s algorithm

Last but not least we want to mention that Takayama’s algorithm as
we presented it here, can be adapted (then being more in the flavor how
Takayama originally presented it) for computing also the delta parts. In this
case the quotients of the divisions modulo the right ideals are not thrown
away, but kept and propagated through the whole run of the module Gröbner
basis computation. In the end (and also in between) they can be reduced
to normal form modulo the input ideal. In our implementation this can be
achieved by using Takayama with the option Extended (see also page 93).
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3.3 Chyzak’s algorithm

In Section 3.5 we will drastically demonstrate that Zeilberger’s slow algo-
rithm is usually very inefficient. Takayama’s algorithm has the disadvantage
that natural boundaries have to be assured a priori, which might be the case
or not, and even if so, it can be hard to prove. Chyzak’s algorithm [26]
overcomes these handicaps, but suffers from another one: It can only deal
with single sums and single integrals (multiple ones can only be solved by
applying the algorithm recursively). But still, for most summation and inte-
gration problems that can be treated in the frame of the holonomic systems
approach, it is the means of choice.

We will introduce Chyzak’s algorithm, both for indefinite and definite
summation (and integration), as a generalization of classical algorithms due
to Gosper and Zeilberger, which we recall only very briefly for this purpose.
For readers who are not familiar with these algorithms we point to the nu-
merous excellent expositions [70, 72, 53].

Indefinite problems

For indefinite hypergeometric summation—i.e., given f(k) hypergeometric
find a hypergeometric antidifference g(k) so that f(k) = g(k + 1) − g(k)—
there is Gosper’s algorithm [41, 66] which decides whether there exists g(k) of
the form q(k)f(k) for some rational function q(k), and in the affirmative case
computes it. The algorithm is a complete decision procedure which either
gives back the desired function g(k) allowing to evaluate the sum expression∑b

k=a f(k) = g(b+1)−g(a) in closed form for arbitrary summation bounds, or
proves that no such antidifference exists. There is also a version of Gosper’s
algorithm that handles indefinite integrals of hyperexponential functions [7].
Gosper’s algorithm has been generalized to ∂-finite functions by Frédéric
Chyzak, then dealing both with indefinite sums and indefinite integrals.

In Gosper’s algorithm we look for an antidifference g(k) that is a rational
function multiple of the summand. This is equivalent to claiming that g(k)
lies in the (one-dimensional) K(k)-vector space that is spanned by all shifts
of the summand f(k). The telescoping equation g(k + 1) − g(k) = f(k) is
written in operator notation as

∆kq(k)− 1 ∈ AnnO f(k) with O = K(k)[∆k;Sk,∆k]

where q(k) is the rational function to be found.
Let f(v,w) from now on denote a ∂-finite function with respect to the Ore

algebra O = K(v,w)[∂v;σv, δv][∂w; σw, δw], characterized by its annihilating
left ideal that is given by a Gröbner basis G ⊂ O. In the case where v
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is a discrete variable and ∂v = ∆v, the goal is to compute the indefinite
sum

∑
v f(v,w). In the other case when v is a continuous variable and

∂v = Dv, we want to do the indefinite integral
∫
f(v,w) dv.

Analogously to Gosper’s algorithm, it is natural to search for the anti-
difference (resp. antiderivative) in the finite-dimensional vector space that is
spanned by the shifts and derivatives of the summand (resp. integrand). As
we have learned in Section 2.3, each vector space element can be represented
as (

q1U1 + · · ·+ qmUm

)
• f, qi ∈ K(v,w), Ui ∈ O,

where U = {U1, . . . , Um} denotes the set of O-monomials that lie under the
staircase of G. Hence the telescoping problem for ∂-finite functions is the
following: Find rational functions q1, . . . , qm ∈ K(v,w) such that

∂v ·
(
q1(v,w)U1 + · · ·+ qm(v,w)Um

)
− 1 ∈ O〈G〉 ⊆ AnnO f. (3.7)

This operator can be seen as an ansatz for the unknown functions qi. Suf-
ficiently many equations for determining them are obtained by using the
condition that (3.7) has to lie in the left ideal generated by G. This is the
case if and only if its normal form modulo G is zero. At this point it is
now clear how the algorithm proceeds: It starts with the ansatz (3.7) and
reduces it with the Gröbner basis G; a system of equations is obtained by
equating the coefficients of the normal form to zero. If this system admits
rational function solutions for the qi then we have found an antidifference
(resp. antiderivative), otherwise it does not exist within our search space.
The only step that deserves a little more attention is to look at what kind
of system appears in the algorithm and how to solve it. The fact that in
the ansatz the Ore operator ∂v is on the left forces some commutations in
order to transform the ansatz to standard representation (i.e., to bring all
Ore operators to the right). Due to the commutation rules

∆vqi(v,w) = qi(v + 1,w)∆v + qi(v + 1,w)− qi(v,w),

Dvqi(v,w) = qi(v,w)Dv +
∂

∂v
qi(v,w),

shifts (resp. derivatives) of the unknown rational functions are introduced.
Hence we end up with a coupled system of difference (resp. differential)
equations. It is not difficult to see that this system will be always linear and of
first order. Fortunately there are algorithms how to find all rational solutions
of such a system: Either by direct methods as proposed by Abramov and
Barkatou [3, 11], or by uncoupling the system (by Gaussian elimination or
special uncoupling algorithms like Zürcher’s algorithm [97] or the algorithm
by Abramov and Zima [5], see also [37]) and iteratively solving the scalar
difference (resp. differential) equations with Abramov’s algorithm [1, 2, 4].
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Example 3.4. Let’s use Chyzak’s algorithm for computing the antideriva-
tive of the Hermite polynomials

∫
Hn(x) dx. A ∂-finite annihilating ideal

for Hn(x) is given by its Gröbner basis

G = {Dx + Sn − 2x, S2
n − 2xSn + 2n+ 2} ⊂ Q(n, x)[Sn;Sn, 0][Dx; 1, Dx]

from which we can read off the monomials under the staircase U = {1, Sn}.
Consequently we start with the ansatz Dx(q1(x) + q2(x)Sn)− 1 which in stan-
dard representation rewrites to q2(x)DxSn + q1(x)Dx + q′2(x)Sn + q′1(x) − 1.
Reducing it with G delivers the two equations

q′2(x)− q1(x) = 0,

2nq2(x) + q′1(x) + 2xq1(x) + 2q2(x)− 1 = 0.

Substituting the first one into the second gives a scalar equation that yields
q2(x) = 1

2(n+1)
with Abramov’s algorithm. This gives immediately rise to the

solution ∫
Hn(x) dx =

Hn+1(x)

2(n+ 1)
.

Definite problems

Doron Zeilberger’s celebrated fast algorithm [92, 94, 69] for definite hyper-
geometric summation makes essential use of Gosper’s indefinite summation
algorithm. In a similar manner, Chyzak’s indefinite summation (resp. inte-
gration) algorithm can be turned into an algorithm for definite summation
(resp. integration). Hence it can be viewed as an extension of Zeilberger’s
fast algorithm to general ∂-finite functions (and this basically is the title of
Chyzak’s paper [26]).

Given a proper hypergeometric (i.e. hypergeometric and holonomic) term
f(n, k), Zeilberger’s fast algorithm computes a recurrence for the definite sum∑b

k=a f(n, k). The first step of this algorithm is to execute Gosper’s algo-
rithm. If it does not yield a solution, then a linear combination of f and
some of its n-shifts with undetermined coefficients pi(n), e.g., p0(n)f(n, k) +
p1(n)f(n+ 1, k), is tried whether it is indefinitely summable with a parame-
terized version of Gosper’s algorithm that additionally solves for the pi. The
order of these n-shifts is increased until a result is obtained (which by theory
is guaranteed to happen finally):

p0(n)f(n, k) + · · ·+ pd(n)f(n+ d, k) = g(n, k + 1)− g(n, k)

for some rational functions pi ∈ Q(n) and g(n, k) = q(n, k)f(n, k) is a ratio-
nal function multiple of f(n, k).
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As in the indefinite case, this idea of creative telescoping can be translated
to the ∂-finite setting. As before, let f(v,w) denote a ∂-finite function with
respect to the Ore algebra O = K(v,w)[∂v;σv, δv][∂w; σw, δw]. Analogously
to Zeilberger’s fast algorithm, the ansatz for a creative telescoping operator
looks like∑

α∈A

pα(w)∂α
w︸ ︷︷ ︸

principal part

+ ∂v ·
(
q1(v,w)U1 + · · ·+ qm(v,w)Um

)
︸ ︷︷ ︸

delta part

(3.8)

where A is a finite set of exponent vectors. In each step, indefinite summation
(resp. integration) with the algorithm of Section 3.3 is tried. We start with
A = {(0, . . . , 0)} which corresponds exactly to Chyzak’s indefinite algorithm
(p0 can be set to 1). If f turns out to be indefinitely summable (resp.
integrable) then the algorithm stops otherwise it proceeds with an augmented
set A. In the following steps more parameters pα are involved and we have to
take care of these when solving the coupled system. But this is no problem
since all mentioned algorithms for solving coupled systems, generalize to
parameterized systems. The set A here plays the same rôle as the set T =
{t1, . . . , tj} of monomials in the FGLM algorithm (see Figure 2.2) for which a
linear dependency between the corresponding normal forms is searched. And
exactly in the same systematic way as in the FGLM algorithm, elements are
added or removed from A. This strategy ensures that the principal parts
form a Gröbner basis of a ∂-finite ideal in the end (if such an ideal exists at
all). The existence is guaranteed provided that f(v,w) is not only ∂-finite
but also holonomic.

It is clear that in the ansatz (3.8) it suffices to restrict the support of the
delta part to the monomials under the staircase: For any telescoping operator
that exists inside O〈G〉, we can reduce the delta part to normal form by the
input Gröbner basis G, obtaining a linear combination with rational function
coefficients of the monomials U1, . . . , Um.

Example 3.5. Since in our running example the summand is hypergeomet-
ric, Chyzak’s algorithm just specializes to Zeilberger’s fast algorithm. The
first step reveals that

(
n
k

)
is not definitely summable. In the next step we

start with the ansatz p0 + p1Sn + (Sk − 1)q(k). After reducing it with the
Gröbner basis {G1, G2}, we obtain the equation

(k−n−1)
(
(k−n)q(k+1)+(k+1)q(k)

)
= (k+1)

(
(k−n−1)p0− (n+1)p1

)
which admits the solution q(k) = ck

n−k+1
, p0 = −2c, and p1 = c for an

arbitrary constant c. Once again we have discovered the recurrence Sn − 2.

In Section 4.5 a more advanced (non-hypergeometric) example is given
where all steps are displayed in detail.
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3.4 Polynomial ansatz

The basic idea of what we propose in this section is very simple: We also
start with an ansatz in order to find a telescoping operator. But in con-
trast to Chyzak’s algorithm we avoid the expensive uncoupling and solving
of difference or differential equations. The method to be presented is ap-
plicable to multiple summation and integration problems, so we reuse the
notation introduced in Section 3.1. We start with an ansatz that involves
the summation and integration variables v polynomially:∑

α∈A

pα(w)∂α
w︸ ︷︷ ︸

= P (w,∂w)

+ ∂v1 ·
∑

(β,γ)∈B

∑
µ∈M

qβ,γ,µ(w)vµ∂β
v ∂γ

w︸ ︷︷ ︸
= Q1(v,w,∂v ,∂w)

+ . . . (3.9)

where A, B, and M are finite index sets (structure set). The unknown pα

and qβ,γ,µ to solve for are rational functions in w and they can be computed
using pure linear algebra. Recall that in Chyzak’s ansatz the unknowns qi
also depended on v which causes the system to be first-order and coupled.
The prize that we pay now is that the shape of the ansatz is not at all
clear from the beginning: The sets A, B, and M need to be fixed, whereas
in Chyzak’s algorithm we have to loop only over the support of the prin-
cipal part. Our approach is similar to the generalization of Sister Celine
Fasenmyer’s technique [32, 72] that is used in Kurt Wegschaider’s MultiSum
package [90, Section 3.5.2] (which can deal with multiple summations of hy-
pergeometric terms). We proceed by reducing the ansatz with the Gröbner
basis G of the given ∂-finite ideal for f , obtaining a normal form representa-
tion of the ansatz. Since we wish this relation to be in the ideal, the normal
form has to be identically zero. Equating the coefficients of the normal form
to zero and performing coefficient comparison with respect to v delivers a
linear system for all the unknowns that has to be solved over K(w).

Trying out for which structure set A,B,M the ansatz (3.9) delivers a
nontrivial solution can be a time-consuming tedious task. Additionally, once
a solution is found it still can happen that it does not fit to our needs:
It can well happen that all pα are zero in which case the result is useless.
Hence the question is: Can we simplify the search for a good ansatz, for
example, by using homomorphic images? Clearly the size of the coefficients
can be reduced by computing modulo a prime number if the ground field
K admits that, e.g., K = Q. But in practice this does not downsize the
computational complexity too much—still we have multivariate polynomials
in v and w that can grow dramatically during the reduction process, on
which we want to focus now. We cannot get rid of the variables v since
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they are needed later for the coefficient comparison. It is also true that we
cannot just plug in some concrete integers for w: We would lose the feature of
noncommutativity that w share with ∂w. And the noncommutativity plays
a crucial rôle during the reduction process, in the sense that omitting it we
get a wrong result. Let’s have a closer look what happens and recall how the
normal form computation works (see Figure 3.2).

Input: operator R ∈ O, Gröbner basis G = {G1, . . . , Gr} ⊂ O
Output: normal form of R modulo the left ideal O〈G〉
while exists 1 ≤ i ≤ r with lm(Gi) | lm(R)
H := (lm(R)/ lm(Gi)) ·Gi

R := R− (lc(R)/ lc(H)) ·H
return R

Figure 3.2: Normal form computation (lm and lc denote the leading mono-
mial and the leading coefficient of an operator, respectively)

Note that we do the multiplication of the operator that we want to reduce
with in two steps: First multiply by the appropriate power product of Ore
operators, and second adjust the leading coefficient. The reason for that is
because the first step can change the leading coefficient. Note also that R
is never multiplied by anything. This gives rise to a modular version of the
normal form computation that does respect the noncommutativity (see Fig-
ure 3.3). We define h : O → O′ with O′ = K′(v)[∂v; σv, δv][∂w; σw, δw] to
be an insertion homomorphism that plugs in some concrete integer values for
the variables w and reduces all coefficients modulo a prime number (if this is
appropriate regarding K). Also if there are additional parameters in K, if for
example K = Q(a1, a2, . . . ), these can be replaced by the homomorphism h.
Thus most of the computations are done in the homomorphic image and the
coefficient growth is moderate compared to before.

After the modular reduction we have to do coefficient comparison with
respect to the remaining variables v an what we get is a matrix with constant
entries (usually from a finite field Zp). Nullspace computation of such matri-
ces is very fast and carries no weight in practice. The modular computations
can as well be used to prove that a relation of a certain shape does not exist.

Assume now that we have found a promising structure set by means of
modular computations. Before starting the real computation we make the
ansatz as small as possible by leaving away all unknowns that are 0 in the
modular solution. With very high probability they will be 0 in the final
solution too—in the opposite case we will realize this unlikely event since
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Input: operator R ∈ O, Gröbner basis G = {G1, . . . , Gr} ⊂ O,
insertion homomorphism h

Output: modular normal form of R modulo the left ideal O〈G〉
R := h(R)
while exists 1 ≤ i ≤ r with lm(Gi) | lm(R)
H := h((lm(R)/ lm(Gi)) ·Gi)
R := R− (lc(R)/ lc(H)) ·H

return R

Figure 3.3: Modular normal form computation

then the system will turn out to be unsolvable. In [90] a method called
Verbaeten’s completion is used in order to recognize superfluous terms in the
ansatz a priori. We were thinking about a generalization of that, but since
the modular computation is negligibly short compared to the rest, we don’t
expect to gain much and do not investigate this idea further.

Other optimizations concern the way how the reduction is performed.
With a big ansatz that involves hundreds of unknowns it is nearly impossible
to do it in the naive way. The only possibility to achieve the result at
reasonable cost is to consider each monomial in the support of the ansatz
separately. After having computed the normal forms of all these monomials
we can combine them in order to obtain the normal form of the ansatz. Last
but not least it pays off to make use of the previously computed normal
forms. This means that we sort the monomials that we would like to reduce
according to the monomial order in which the Gröbner basis is given. Then
for each monomial we have to perform one reduction step and then plug in
the normal forms that we have already (since all monomials that occur in
the support after the reduction step are smaller).

3.5 Concluding example

To conclude this chapter we want to study an example that is not so trivial as
the running example of the previous sections and which shows the different
performances of the above described algorithms more clearly. In contrast to
the summation example of before we now look at an integration problem that
was sent to Peter Paule by Gilbert Strang [83]:∫ 1

−1

(
P2k+1(x)

x

)2

dx = 2 (3.10)
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where Pk(x) denotes the family of Legendre polynomials. This example some-
how closes the circle of our work: It was chosen by Peter Paule in a proposal
to prolongate the special research program SFB F013 in Linz which then was
granted, providing financial support for our work. Additionally this proposal
was one source of inspiration that in the beginning helped us to get familiar
with the topic.

Having a closer look at the integral (3.10) we observe that for fixed inte-
ger k the integrand fk(x) = (P2k+1(x)/x)

2 is a polynomial that is symmetric
around x = 0. This tells us already that the integral cannot have natural
boundaries: for some derivative we will get that f

(d)
k (−1) = −f (d)

k (1) 6= 0.

An easy calculation shows that [f ′1(x)]
x=1
x=−1 = [5x(5x2 − 3)]

x=1
x=−1 = 20 for ex-

ample. Using the ∂-finite closure properties multiplication and substitution,
a ∂-finite annihilating ideal for fk(x) is obtained:

{ 4(k + 2)2(2k + 5)2(4k + 5)2S2
k + (4k + 5)(4k + 7)(4k + 9)(x− 1)x(x+ 1)

× (16k2x2 − 8k2 + 56kx2 − 28k + 45x2 − 23)Dx −
(4k + 7)2 (16k2x2 − 8k2 + 56kx2 − 28k + 45x2 − 23)

2
Sk +

2(2k + 3)(4k + 9)(256k4x4 − 256k4x2 + 48k4 + 1664k3x4 − 1696k3x2 +
340k3 + 3968k2x4 − 4144k2x2 + 890k2 + 4120kx4 − 4430kx2 + 1018k +
1575x4 − 1750x2 + 429),

(4k + 5)(x− 1)x(x+ 1)DxSk + (4k + 5)(x− 1)x(x+ 1)Dx −
4(k + 1) (4kx2 − 2k + 5x2 − 2)Sk + 2(2k + 3) (4kx2 − 2k + 5x2 − 3) ,

(4k + 5)2(x− 1)2x2(x+ 1)2D2
x +

2(4k + 5)(x− 1)x(x+ 1) (8k2x2 − 4k2 + 30kx2 − 16k + 25x2 − 14)Dx −
8(k + 1)2(2k + 3)2Sk +
2(2k + 3) (8k3 + 48k2x4 − 56k2x2 + 36k2 + 120kx4 − 142kx2 + 54k +
75x4 − 90x2 + 27)}

(3.11)

Example 3.6. We want to apply Zeilberger’s slow algorithm to (3.10). The
first step consists in finding an element in the ideal (3.11) that is free of the
integration variable x. Let’s follow the classical approach: switch to a (par-
tially) polynomial Ore algebra Q(k)[x][Sk;Sk, 0][Dx; 1, Dx] and apply elimina-
tion techniques. Although the annihilating ideal looks relatively innocent, the
elimination via Gröbner bases turns out to be quite hard. It takes several
hours with our implementation OreGroebnerBasis and the result contains
some elements of MegaByte-size. In total there are 4 x-free polynomials each
of which can be separated into principal part and delta part. At this point
we should check whether the inhomogeneous parts that come from integrat-
ing over the delta parts evaluate to zero. Since these delta parts are quite
huge, it is a good idea to reduce them with the annihilating ideal (3.11) before
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applying them to the integrand and evaluating at the boundaries. Altogether
this is quite a cumbersome work and for more complicated integrands this
task may easily become infeasible. In our example all inhomogeneous parts
vanish and we are left with the 4 principal parts as annihilating operators for
the integral. We finally compute their greatest common divisor in order to
obtain a recurrence of smaller order (which is 8 in this case, with coefficients
of degree 26 in k).

Example 3.7. Again we want to try (3.10) with Zeilberger’s slow algorithm
but now perform the elimination with the ansatz∑

i+j≤d

ci,j(k)S
i
kD

j
x

proposed at the end of Section 3.1. Looping over the total degree d one
has to go up to d = 12 until an x-free operator is found (its size is about
100 kB and it takes about one minute to compute it with our command
FindRelation). As before the inhomogeneous part evaluates to zero, and
the surviving principal part is of order 7. It is a multiple of the minimal
recurrence Sk − 1. Comparing this result with Example 3.6 we observe the
effect of extension/contraction that prevented us from finding the smallest
x-free operator. This example however teaches that the smallest recurrence
that can be found with Zeilberger’s slow algorithm, is of order 7.

The two examples 3.6 and 3.7 have demonstrated that Zeilberger’s orig-
inal algorithm is often not favorable in practice. For the relatively simple
integral (3.10) both versions took quite some while to come up with a result
which additionally overshoots the minimal recurrence by far. The reason lies
in the restriction of the delta part by eliminating the variable x completely.
In the following we apply the algorithms that overcome this deficiency.

Example 3.8. Takayama’s algorithm applied to (3.10) delivers (after 0.2
seconds) the second order recurrence operator

(k + 2)2(2k + 5)2(4k + 5)S2
k −

(4k + 7) (8k4 + 56k3 + 150k2 + 182k + 83)Sk +
(k + 1)2(2k + 3)2(4k + 9).

(3.12)

But this result should not be trusted immediately since the integral does not
have natural boundaries. Using our command Takayama with the additional
option Extended -> True we can force Takayama’s algorithm to propagate
the delta parts through the whole computation (which is not very efficient
however: in this instance it takes around ten times longer). Again we don’t
get an inhomogeneous part and the final result is the recurrence (3.12).
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Example 3.9. Chyzak’s algorithm is guaranteed to find the smallest recur-
rence that exists on the level of the integrand (that need not necessarily co-
incide with the shortest recurrence for the whole integral). For (3.10) it
computes the following creative telescoping operator

1− Sk︸ ︷︷ ︸
=P (k,Sk)

+Dx

(
x2 − x4

2 (2k2 + 5k + 3)
Dx +

x

4k + 5
Sk +

−4kx3 + 3kx− 5x3 + 4x

4k2 + 9k + 5

)
︸ ︷︷ ︸

=Q(k,x,Sk,Dx)

in about 0.5 seconds with our command CreativeTelescoping. Since now
also the delta part is relatively small, it is easily verified that [Q • fk(x)]

x=1
x=−1

evaluates to zero. Hence the principal part P annihilates the integral, and
together with the first initial value∫ 1

−1

(
P1(x)

x

)2

dx =

∫ 1

−1

1 dx = 2

we have found that Strang’s integral evaluates to 2 for all integers k ≥ 0.

Example 3.10. We use polynomial ansatz described in Section 3.4 for find-
ing a telescoping relation for (3.10). We have seen that there is much freedom
how to choose the structure set of the ansatz. After trying around a little bit,
it turns out that the ansatz

c1(k)Sk + c0(k) + Dx ·

(
3∑

i=0

2∑
j=0

1∑
m=0

ci,j,m(k)xiSj
kD

m
x

)
delivers a result with nontrivial principal part. The computation time for
reducing this ansatz with the given annihilating ideal (3.11) and solving the
linear system is about 1 second and yields the telescoping relation

2(k + 1)(2k + 3)(4k + 5)2(4k + 7)(4k + 9)2(Sk − 1) +

Dx

(
−(2k+5)(4k+5)(8k3 − 4k2x2 + 48k2 − 13kx2 + 92k − 9x2 + 55)S2

kDx −
4(k + 1)(k + 2)(2k + 5)(4k + 5)(4k + 9)xS2

k +
(4k + 7) (4k2 + 14k + 11) (8k2 + 28k + 23)SkDx +
(4k + 5)(4k + 7)(4k + 9)x(64k3x2 − 48k3 + 336k2x2 − 240k2 + 572kx2−

388k + 315x2 − 205)Sk −
(k + 1)(4k + 9)(16k3 + 8k2x2 + 72k2 + 30kx2 + 100k + 25x2 + 44)Dx −
4(k + 1)(k + 2)(2k + 3)(4k + 5)(4k + 9)(8k + 17)x

)
.

We observe that—up to a polynomial factor—the same principal part as in
Chyzak’s algorithm (Example 3.9) is obtained. Moreover if this relation is
simplified, in particular if the delta part is reduced to normal form with respect
to the annihilating ideal of fk(x), then we end up with exactly the same
telescoping relation as it was output by Chyzak’s algorithm.



Chapter 4

The HolonomicFunctions

Package

This chapter is dedicated to the presentation of the software developed in
the frame of this thesis. All the algorithms for summation and integration
of ∂-finite functions that have been presented in Chapter 3 have been im-
plemented (see their demonstration in Section 4.6). In order to prepare the
input for these algorithms, the package provides commands for executing the
∂-finite closure properties, or more generally speaking, for computing anni-
hilating ideals for given functions, see Section 4.3. In the core we had to
implement a framework for the (noncommutative) arithmetic of Ore polyno-
mials. Section 4.1 shortly describes the concepts and data types that were
introduced for that purpose. An important ingredient in Chyzak’s algorithm
is to find rational solutions of parameterized coupled systems of differential
or difference equations. Since this functionality is not provided by Mathe-
matica, it had to be implemented from scratch and is also included in the
package; the corresponding commands are explained in Section 4.5. Finally,
and not only because this thesis evolved from RISC that was founded by
Bruno Buchberger, noncommutative Gröbner bases play a rôle in the above
mentioned algorithms. Section 4.2 describes how they can be computed in
Ore algebras using our package HolonomicFunctions. A handbook with
systematic descriptions of all available commands is in preparation [54].

Besides demonstrating our software, this chapter has a second intention,
namely to present typical examples, applications and tasks in which our
package can be of help. Emphasis is put on a set of identities involving Bessel
functions (that is what Chapter BS is about) that was sent to Peter Paule by
Frank Olver who is the Mathematics Editor for the DLMF (Digital Library
of Mathematical Functions) project at the National Institute of Standards
and Technology. In his e-mail [62] he wrote:

65



66 Chapter 4. The HolonomicFunctions Package

The writing of DLMF Chapter BS by Leonard Maximon and
myself is now largely complete; however, a problem has arisen
in connection with about a dozen formulas from Chapter 10 of
Abramowitz and Stegun for which we have not yet tracked down
proofs, and the author of this chapter, Henry Antosiewicz, died
about a year ago. Since it is the editorial policy for the DLMF not
to state formulas without indications of proofs, I am hoping that
you will be willing to step into the breach and supply verifications
by computer algebra methods. . . I will fax you the formulas later
today. . .

When this request arrived in 2006, all of Olver’s problems were solved by
members of Peter Paule’s group, namely Stefan Gerhold, Manuel Kauers,
Carsten Schneider, and Burkhard Zimmermann by using computer algebra
packages that were available at that time [39], which was quite some chal-
lenge. We will show how this problem set can nowadays be solved with help
of HolonomicFunctions which reduces the work to be done by a human be-
ing even more. We concentrate on the computer algebra aspects that are
covered by our package, and allow ourselves to neglect extra arguments (e.g.
analytic continuation to the whole complex plane, questions of convergence,
etc.). For Olver’s problem set, these arguments can be found in [39].

The presentation is organized in a bottom-up fashion. This structure
sometimes has the effect that in Section x a certain result is computed in
several steps in a somewhat complicated manner, and then in Section x+1 it
is described how to get the very same result with a one line command—this
has to be considered when reading the first sections! On the other hand, if
you are impatient and eager to prove lots of special function identities, you
may immediately jump to Section 4.6 where the most interesting applications
are exhibited, in a way how these problems should be done.

The chapter contains a whole Mathematica session that runs through-
out all sections (sometimes variables that have been assigned a value will
be used later). The inputs are given exactly in the way how you have to
type them into Mathematica and the outputs are displayed exactly as Math-
ematica gives them back (so do not wonder when stumbling across strange
symbols like i or e—this is Mathematica’s notation for the imaginary unit,
respectively the base of the natural logarithm, for example). No computa-
tion presented in this chapter takes more than a few seconds. We start the
session by loading the package:

In[1]:= << HolonomicFunctions.m

HolonomicFunctions package by Christoph Koutschan, RISC-Linz,
Version 1.0 (25.09.2009) — Type ?HolonomicFunctions for help
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4.1 Arithmetic with Ore polynomials

Most of the computations that our package performs are based on the non-
commutative arithmetic of Ore polynomials. Recently [67] an innocent-
looking integral due to Wallis ∫ π

2

0

cos(x)2m dx

has attracted attention. Here it may serve for demonstration since its solu-
tion requires some non-standard use of the operator framework which forces
us to work on this low level. But we do not want to conceal that Wallis’s in-
tegral can be computed in a more standard way after performing the obvious
substitution.

Although the integrand is not ∂-finite, this integral can be done by a
variant of Takayama’s algorithm. Of course a certain trick has to be applied,
which requires some steps to be done by hand. The integration variable is
x which means that we have to work with partial derivatives with respect
to that variable. There is another parameter, namely m, for which it seems
more natural to act by shift on it. Let’s prepare the stage for this algebraic
context.

The package HolonomicFunctions provides the user with the following
Ore operators:

• the partial derivativeDx is entered as Der[x] (the command D is already
occupied by Mathematica and D[x] is immediately simplified to x),

• the shift operator Sn is entered as S[n],

• the difference operator ∆n is entered as Delta[n],

• the Euler operator θx = xDx is entered as Euler[x],

• and the q-shift operator Sx,q has to be entered as QS[x,q^n]. This
means that a new variable x is introduced that represents the expres-
sion qn.

It is recommended to use Der instead of Euler for differential equations, and
S instead of Delta for recurrences. But this is only for practical reasons since
more testing and optimizations were done on this side. We just want to point
out that it is also possible to define other kinds of operators, as long as they
can be introduced as Ore extensions. The commands OreSigma, OreDelta,
and OreAction are serving this purpose.
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Before being able to write down a single relation in operator notation
we have to address shortly the usage of Ore algebras. They are defined
with the command OreAlgebra, where everything that is supposed to occur
polynomially only is given in the arguments. In the first place this refers to
the Ore operators that a particular Ore algebra is equipped with; of course,
it does not make much sense to divide by operators like Dx or S2

m − 1. Let’s
create an algebra that contains these two Ore operators, and that could serve
for example for expressing recurrences and differential equations related to
the integrand of Wallis’s integral

In[2]:= OreAlgebra[Der[x], S[m]]

Out[2]= K(m,x)[Dx; 1, Dx][Sm;Sm, 0]

The algebra is displayed using the classical notation for Ore extensions intro-
duced in Chapter 2. In order to construct Ore extensions of a ring instead of
a field, as it is the case for example in the Weyl algebra, the following syntax
has to be used:

In[3]:= OreAlgebra[x, Der[x]]

Out[3]= K[x][Dx; 1, Dx]

In other words, what has to be given as arguments to the command
OreAlgebra are exactly the generators of the Ore algebra, viewed as a poly-
nomial ring over some coefficient field. Note that the order in which the
generators are given prescribes the order of the generators in the standard
monomials, and polynomials in the respective algebra will always be con-
verted to canonical form, their monomials being displayed in that order.
Thus using the command OreAlgebra[Der[x],x], you can work in the Weyl
algebra where Dx is always commuted to the left so that its monomials are
of the form Dα

x x
β.

The return value of OreAlgebra is of the type OreAlgebraObject, a
construct that contains information about how to compute with elements of
this algebra: In the first place this is the set of generators of the algebra, but
also instructions how to treat the coefficients (e.g., whether they should be
kept in expanded or factored form) as well as possible algebraic extensions.

Back to Wallis’s integral: Looking at the summand f(m,x) = cos(x)2m

immediately delivers a recurrence in m, namely f(m+1, x) = cos(x)2f(m,x).
Differentiating the summand one obtains the simple differential equation
cos(x) d

dx
f(m,x) = −2m sin(x)f(m,x). Note that the annihilating ideal gen-

erated by these two relations is not ∂-finite in the classical sense: The coef-
ficients are not in Q(m,x) (and this is the trick that we mentioned above).
We now demonstrate how to express these relations in terms of operators
and how to manipulate them. The package HolonomicFunctions provides
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a data type OrePolynomial that makes computations with Ore polynomials
very convenient. Such an object carries the Ore algebra in which it lives as
well as the monomial order in which its terms are sorted. It is displayed with
the coefficients always being on the left side, the power products ordered
according to how the generators are given in the algebra, and the terms
ordered by the given monomial order. An Ore polynomial can be trans-
ferred to a different algebra or monomial order by means of the commands
ChangeOreAlgebra and ChangeMonomialOrder. There is a simple way to
convert relations that are given in traditional notation into operator form
using the data type OrePolynomial:

In[4]:= wall = ToOrePolynomial
[{

f [m + 1, x] == Cos[x]2f [m, x],
Cos[x] D[f [m, x], x] == −2m Sin[x] f [m, x]

}
, f [m, x]

]
Out[4]= {Sm − Cos[x]2, Cos[x]Dx + 2m Sin[x]}

When the command ToOrePolynomial is used with the above syntax, the
relations will be transformed to Ore polynomials in a rational Ore algebra
that is generated by the involved Ore operators, and where everything else
goes to the coefficient field. In order to see in which algebra these two Ore
polynomials live we type

In[5]:= OreAlgebra[wall]

Out[5]= K(m,x)[Sm;Sm, 0][Dx; 1, Dx]

Note that the coefficients are not investigated further; on display are only
the variables m and x that correspond to the Ore operators of the algebra.
The fact that also sin(x) and cos(x) occurs (or possibly other parameters) is
subsumed in the unspecific symbol K.

Alternatively ToOrePolynomial can take relations in operator notation
plus (optionally) an explicit Ore algebra and outputs the corresponding
OrePolynomial objects. The inverse, i.e., converting an OrePolynomial ob-
ject to a standard Mathematica expression being a (commutative) polynomial
in the generators of the algebra, can be achieved by using Normal:

In[6]:= ToOrePolynomial
[{

Cos[x] Der[x] + 2m Sin[x], S[m] − Cos[x]2
}
,

OreAlgebra[S[m], Der[x]]
]

Out[6]= {Cos[x]Dx + 2m Sin[x], Sm − Cos[x]2}

In[7]:= Normal /@ %

Out[7]= {Cos[x] Der[x] + 2m Sin[x], S[m]− Cos[x]2}

To verify that these two operators indeed annihilate the integrand, we apply
them to cos(x)2m and hope that the result simplifies to zero:
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In[8]:= ApplyOreOperator[wall, Cos[x]ˆ(2m)] // Simplify

Out[8]= {0, 0}

We now aim at a recurrence relation for Wallis’s integral by applying
Takayama’s technique. Since we want to do integration with respect to x,
the delta part (that we are not going to compute) has the form DxQ for some
operator Q and we have to find a principal part that does neither involve x
nor Dx. Note that the variable x appears only in sin(x) and cos(x) but
not apart. We now should add certain multiples to the elements of wall in
order to make elimination possible. The highest total degree with respect to
sin(x) and cos(x) is 2, hence we want to include multiples of the differential
relation by sin(x) as well as by cos(x). The commands OrePlus, OreTimes,
and OrePower serve for such computations:

In[9]:= OreTimes[Sin[x], wall[[2]]]

Out[9]= Sin[x]Cos[x]Dx + 2m Sin[x]2

Note that it is not necessary to convert the first factor to the OrePolynomial
data type; it is automatically transformed into such by using the Ore algebra
of the other factor. To make this somewhat cumbersome notation simpler,
HolonomicFunctions uses Upvalues for Ore polynomials: This means that
you can use the symbols +, **, and ^ for doing arithmetic with Ore polyno-
mials; note the double star that stands for NonCommutativeMultiply. Using
the single star * also works, but the result may not be what you want since
Mathematica might reorder the factors before calling OreTimes. Thus we
get a new set of annihilating operators by

In[10]:= wall = Join[wall, {Sin[x] ∗∗ wall[[2]], Cos[x] ∗∗ wall[[2]]}]

Out[10]=

{
Sm − Cos[x]2, Cos[x]Dx + 2m Sin[x], Sin[x] Cos[x]Dx + 2m Sin[x]2,
Cos[x]2Dx + 2m Sin[x] Cos[x]

}
The next step consists in reducing these Ore polynomials with the right ideal
generated by Dx. In order to do so, we first commute Dx to the left (which
means to include sin(x) and cos(x) to the generators of the algebra):

In[11]:= wall = ChangeOreAlgebra[wall,
OreAlgebra[Der[x], Sin[x], Cos[x], S[m]]]

Out[11]=

{
− Cos[x]2 + Sm, DxCos[x] + (2m + 1) Sin[x], Dx Sin[x] Cos[x] +
(2m + 1) Sin[x]2 − Cos[x]2, DxCos[x]2 + (2m + 2) Sin[x] Cos[x]

}
Next we set Dx to zero. Do not try to use Mathematica’s ReplaceAll. Due
to the special data type that we use this will give faulty results! Instead use
the following command:
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In[12]:= wall = OrePolynomialSubstitute[wall, {Der[x] → 0}]

Out[12]=

{
− Cos[x]2 + Sm, (2m + 1) Sin[x], (2m + 1) Sin[x]2 − Cos[x]2,
(2m + 2) Sin[x] Cos[x]

}
The above steps somehow let Mathematica forget about the relations between
sin and cos since they are now treated as independent elements of the algebra.
Hence we shall not forget to include the Pythagorean identity:

In[13]:= AppendTo
[
wall, Cos[x]2 + Sin[x]2 − 1

]
;

Now the task is to combine these Ore polynomials (without multiplying by
sin(x) and cos(x) any more) in a way that the result is completely free of x.
In this particular example it is so simple that we can achieve the elimination
by hand:

In[14]:= wall[[3]] − (2m + 1) ∗∗ wall[[5]]

Out[14]= (−2m− 2) Cos[x]2 + (2m + 1)

In[15]:= % − (2m + 2) ∗∗ wall[[1]]

Out[15]= (−2m− 2)Sm + (2m + 1)

The last line contains the desired recurrence. It is of order 1 and by com-

puting the initial value for m = 0, i.e.,
∫ π/2

0
1 dx = π

2
, we can readily read off

the solution: ∫ π
2

0

cos(x)2m dx =
π

2
·
(

1
2

)
m

m!
.

There is one question left that we have to care about: Does Wallis’s inte-
gral have natural boundaries and are we therefore allowed to apply Taka-

yama’s algorithm at all? Does [P • cos(x)2m]
π/2
0 = 0 hold for arbitrary

operators P in our Ore algebra? Clearly not: choose P = 1 and get

[cos(x)2m]
π/2
0 = −1. Fortunately, it is very easy in this example to obtain

the delta part: We just have to carry the delta parts of the input relations
through the elimination process. The only relation with nontrivial delta part
that was used is the third element in wall. Hence the delta part of the
telescoping relation is Dx sin(x) cos(x). We could perform exactly the same
computation as before, only omit the step where we substituted Dx → 0.

Now it is immediately checked that [sin(x) cos(x)2m+1]
π/2
0 = 0.

We want to stress that such strange algebras (with sin(x) and cos(x) for
example) have to be used with caution. If we had tried to solve Wallis’s
integral with Zeilberger’s slow algorithm, we would have encountered the
problem that K[sin(x), cos(x)][Dx; 1, Dx] is not a ring of solvable type when
we fix an elimination order on the monomials that eliminates sin(x) and
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cos(x), e.g., by requiring that these two are lexicographically greater than Dx

and by claiming that cos(x) ≺ sin(x). The relation

Dx · cos(x) = cos(x) ·Dx − sin(x)

witnesses that condition (1.1) is not fulfilled. In this situation Buchberger’s
algorithm is not guaranteed to terminate.

Without explicit demonstration we want to mention some more com-
mands for treating Ore polynomials whose names are quite self-explanatory:
NormalizeCoefficients, LeadingCoefficient, LeadingPowerProduct,
LeadingTerm, LeadingExponent, OrePolynomialDegree, Support, and
OrePolynomialListCoefficients. Some of these commands anyway will
be used later in this chapter. There are some further constructions (Mathe-
matica Upvalues) to manipulate Ore polynomials on the coefficient level: the
commands Factor, Expand, and Together act directly on the coefficients
of an Ore polynomial. So if p is an Ore polynomial and you want its co-
efficients to be displayed in factored form, just type Factor[p]. In further
computations then the coefficients will always be kept in factored form.

4.2 Noncommutative Gröbner bases

We have implemented Buchberger’s algorithm [22], incorporating the im-
provements suggested in [14, Chapter 5.5] which concern a clever use of the
chain criterion (Buchberger’s second criterion). The product criterion (Buch-
berger’s first criterion) cannot be applied due to noncommutativity. It is well
known that the selection strategy for critical pairs can dramatically influence
the runtime of Buchberger’s algorithm. As default we use the sugar strategy
that has been proposed in [40] and that is nowadays considered as one of
the best strategies for critical pair selection. However, in certain instances a
different strategy may be of advantage; the option Method allows the user to
choose between the following strategies:

• "sugar": the strategy proposed in [40] that mimics the Gröbner basis
computation in an homogeneous ideal.

• "normal": the normal strategy has been proposed by Bruno Buch-
berger himself; it takes the pair with the smallest lcm of the leading
monomials.

• "elimination": a greedy strategy that is designed for elimination
problems; it prefers pairs where the total degree of the variables to
be eliminated is minimal (in the lcm of the leading monomials).
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• "pairsize": pairs of small “size” are treated first; we take as the size
of a pair the product of the ByteCounts of the two polynomials.

As a simple introductory example we can use our implementation with
the command OreGroebnerBasis in order to confirm our intuition about
the non-existence of zero-dimensional ideals in the Weyl algebra that we
elaborated in Example 2.5. We can compute the left Gröbner basis of Dm

x

and xn for certain integers m and n and always get {1}.
In[16]:= OreGroebnerBasis

[ {
Der[x]5, x7

}
, OreAlgebra[x, Der[x]],

MonomialOrder → DegreeLexicographic
]

Out[16]= {1}

To convince ourselves that there is really a combination of D5
x and x7 that

gives 1, we can use the option Extended. It additionally computes a ma-
trix M that transforms the given input polynomials {f1, . . . , fk} into the
Gröbner basis {g1, . . . , gm} via g1

...
gm

 = M ·

 f1
...
fk

 .

The output in this case is a list whose first element is the Gröbner basis and
whose second element is the matrix M .

In[17]:= {g, m} = OreGroebnerBasis
[ {

Der[x]5, x7
}
, OreAlgebra[x, Der[x]],

Extended → True
]

Out[17]=

{
{1},

{{
− 1

190080
x11D6

x −
11

28800
x10D5

x −
55

5184
x9D4

x −
55
384

x8D3
x

− 55
56

x7D2
x −

77
24

x6Dx −
77
20

x5,

1
190080

x4D11
x −

1
43200

x3D10
x +

1
12960

x2D9
x −

1
5760

xD8
x +

1
5040

D7
x

}}}
In[18]:= m[[1, 1]] ∗∗ Der[x]5 + m[[1, 2]] ∗∗ x7

Out[18]= 1

In most cases we will compute in rational Ore algebras. The following
example again illustrates that Buchberger’s first criterion (product criterion)
is not applicable in noncommutative polynomial rings. We study the anni-
hilating ideal for Bessel functions, namely the modified Bessel functions of
the first kind In(z). The function In(z) represents one of the two solutions
of the modified Bessel differential equation. It is also well known that In(z)
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satisfies a recurrence in n of order 2. We convert these two relations to Ore
polynomials:

In[19]:= bess = ToOrePolynomial
[{

z2 Der[z]2 + z Der[z] − n2 − z2,
z S[n]2 + (2 + 2n) S[n] − z

}]
Out[19]= {z2D2

z + zDz + (−n2 − z2), zS2
n + (2n + 2)Sn − z}

(omitting the second argument, the Ore algebra, HolonomicFunctions auto-
matically will determine a suitable algebra in which the given expressions can
be represented). Buchberger’s criterion now would tell us that this is already
a Gröbner basis since the leading power products do not have anything in
common, or in other words whose lcm equals their product:

In[20]:= LeadingPowerProduct /@ bess

Out[20]= {D2
z , S2

n}

But this is actually not a Gröbner basis as a quick computation reveals (we
do not have to specify the Ore algebra again, since the input consists already
of objects of type OrePolynomial):

In[21]:= bess = OreGroebnerBasis[bess]

Out[21]= {−zDz + zSn + n, −zS2
n + (−2n− 2)Sn + z}

Using the command OreReduce it is easily verified that the differential equa-
tion is still contained in the ideal generated by the above two elements.

In[22]:= OreReduce[z2 Der[z]2 + z Der[z] − n2 − z2, bess]

Out[22]= 0

The normal form of the differential equation modulo the Gröbner basis is 0
which means that it is contained in the left ideal generated by the elements
of bess.

It is also possible to compute Gröbner bases in modules (this is for exam-
ple needed in Takayama’s algorithm). The elements of a module are given as
follows: Consider a module element of the form (a1, . . . , ak), ai ∈ O for some
Ore algebra O. The positions 1 through k will be indicated by introducing
“position variables”. This can be a set of k extra indeterminates p1, . . . , pk

so that the module element is represented by p1a1 + · · ·+pkak. Alternatively
(and preferably) it suffices to introduce only one position variable p and mark
the positions by powers of this particular variable. In that case the module
element translates to a1 + pa2 + · · ·+ pk−1ak. For the Gröbner basis compu-
tation the positions of these extra variables within the generators of the Ore
algebra have to be given by the option ModuleBasis. We again have a look
at Wallis’s integral and this time do the elimination by means of Gröbner
bases:
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In[23]:= OreGroebnerBasis[wall, OreAlgebra[Sin[x], Cos[x], S[m]],
MonomialOrder → EliminationOrder[2], ModuleBasis → {1, 2}]

Out[23]= {(−2m− 2)Sm + (2m + 1), Sin[x], (−2m− 2) Cos[x]2 + (2m + 1),
Sin[x] Cos[x], (−2m− 2) Sin[x]2 + 1}

The first element of the Gröbner basis is the desired x-free recurrence.

For transferring a given Gröbner basis of a zero-dimensional ideal into
a Gröbner basis with respect to a different monomial order, there is the
algorithm FGLM [33] due to Faugère, Gianni, Lazard, and Mora. Since
a similar idea is behind the algorithms for ∂-finite closure properties, we
have included it in the package. The function call is as follows (the second
argument may be omitted if the Ore algebra for the output does not change):

In[24]:= FGLM[bess, OreAlgebra[S[n], Der[z]], Lexicographic]

Out[24]= {z2D2
z + zDz + (−n2 − z2), zSn − zDz + n}

4.3 ∂-finite closure properties

In Section 2.3 we have seen that the class of ∂-finite functions shares a cou-
ple of closure properties: sum and product, linear substitutions for discrete
variables, algebraic substitutions for continuous variables, and application
of an operator. These closure properties can be executed with our pack-
age HolonomicFunctions using the commands DFinitePlus, DFiniteTimes,
DFiniteSubstitute, and DFiniteOreAction. Although in practice they will
not often be used—for compound expressions the command Annihilator au-
tomatically executes the closure properties in the background—we want to
shortly introduce them. Note that all these commands, as well as others
that deal with ∂-finite functions and that will be discussed in the following
sections, can only deal with rational Ore algebras (only Ore operators are
admissible among its generators). We will give some examples while proving
one of Olver’s problems, identity (10.2.30) from [6]:

1

z
sinh
√
z2 − 2itz =

∞∑
n=0

(−it)n

n!

√
π

2z
I−n+ 1

2
(z). (4.1)

By looking at asymptotic expansions of Bessel functions for large orders
(see [6, Section 9.3]) it can be proven that the sum on the right-hand side
converges only if the condition

2|t| < |z| (4.2)
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is fulfilled. We want to point out that Mathematica is not able to simplify
the sum even if this condition is given in the assumptions. An annihilating
ideal for the left-hand side can be readily computed using closure properties.
Starting from the differential equation for the hyperbolic sine, the algebraic
substitution is done:

In[25]:= DFiniteSubstitute
[ {

ToOrePolynomial
[
Der[x]2 − 1

]}
,{

x → Sqrt[z2 − 2Izt]
}

, Algebra → OreAlgebra[Der[t], Der[z]]
]

Out[25]= {(t + iz)Dt − zDz, (2t2z + 3itz2 − z3)D2
z + t2Dz + (it3 − 3t2z − 3itz2 + z3)}

For continuous substitutions it is important to use different variables for the
input and the output; a substitution of the form x→

√
1− x2 will not work.

Hence also the Ore algebra in which the output shall be represented has to
be specified using the option Algebra.

It remains to perform the multiplication by 1
z

and we obtain an annihi-
lating ideal for the left-hand side:

In[26]:= lhs = DFiniteTimes[%, ToOrePolynomial[{z Der[z] + 1, Der[t]},
OreAlgebra[Der[t], Der[z]]]]

Out[26]= {(t + iz)Dt − zDz − 1, (2t2z2 + 3itz3 − z4)D2
z + (5t2z + 6itz2 − 2z3)Dz

+ (it3z − 3t2z2 + t2 − 3itz3 + z4)}

In order to tackle the right-hand side, we first have to get a handle on the
summand, which means computing an annihilating ideal for it. Similarly as
before we first perform the discrete substitution for the expression I−n+ 1

2
(z).

We take the annihilating ideal for the Bessel function In(z) computed earlier.
The same command as for continuous substitution is used, only that for
discrete substitutions it is possible to use the same variable on both sides of
the substitution.

In[27]:= DFiniteSubstitute[bess, {n → −n + 1/2}]

Out[27]= {2zDz − 2zSn + (1− 2n), zS2
n + (2n + 1)Sn − z}

In the special case where we wish to multiply a ∂-finite function f by a
factor that is hypergeometric resp. hyperexponential in all variables under
consideration, there is an extra command DFiniteTimesHyper that com-
putes the output relations directly without performing the closure property
algorithm. Therefore it does not require the input (the annihilating ideal

of f) to be a Gröbner basis. This applies to the factor (−it)n

n!

√
π
2z

that is still
missing: it is hypergeometric in n and hyperexponential in both t and z.
Since now the variable t enters, we have to add an annihilating relation for
I−n+ 1

2
(z) with respect to Dt, that is just Dt, and convert everything to Ore

polynomials in the same algebra (this can be done using ToOrePolynomial):
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In[28]:= smnd = DFiniteTimesHyper[ToOrePolynomial[Append[%, Der[t]],
OreAlgebra[S[n], Der[t], Der[z]]], (−It)n/n! Sqrt[Pi/(2z)]]

Out[28]= {(inz + iz)Sn − tzDz + (nt− t), −z2D2
z − 2zDz + (n2 − n + z2),−tDt + n}

This example will be continued in the next section where a detailed demon-
stration of Chyzak’s algorithm is done to solve the summation problem.

Concerning the usage of ∂-finite closure properties the previous calcula-
tions have shown that it can be cumbersome to compute an annihilating ideal
for a given compound expression for two reasons: First because you have to
compute Gröbner bases and repeatedly apply closure properties, basically
as often as the number of nodes in the expression tree. Second because you
have to know (or to look up) the defining equations for the functions that are
contained in the given expression. For some of them it can even be that you
are not sure whether they are ∂-finite or not. The command Annihilator

bypasses all these troubles. It takes an arbitrarily nested mathematical ex-
pression and computes an annihilating ideal for it by recursively applying
closure properties (this of course works only if the input indeed represents a
∂-finite function—with some exceptions that we will discuss later). Moreover
it recognizes a huge collection of special functions and for each of them a set
of annihilating operators is stored. If you are interested in the differential
equation say for the Whittaker hypergeometric function Wk,m(z), you can
just “look it up”!

In[29]:= Annihilator[WhittakerW[k, m, z], Der[z], Head → w]

Out[29]=

{
w[z]

(
4kz − 4m2 − z2 + 1

)
+ 4z2w′′[z]

}
The second argument, an Ore operator or a list of Ore operators, spec-

ifies what kind of relations you are looking for. The option Head is more
or less a gimmick and causes the output to be given as relations using the
given function name. But usually we will omit this option and work with Ore
polynomials instead (this is also preferable when you want to do further com-
putations with HolonomicFunctions). If we also omit the second argument,
Annihilator tries to find out himself for which Ore operators relations exist
(although in many cases this works quite well, we recommend to specify the
Ore operators—this is faster and more reliable).

In[30]:= Annihilator[WhittakerW[k, m, z]]

Out[30]= {(−2kz + 2mz + z)Sm + (4mz + 2z)Dz + (2kz − 4m2 − 4m− 1),
2Sk + 2zDz + (2k − z), 4z2D2

z + (4kz − 4m2 − z2 + 1)}

The function Annihilator always returns a Gröbner basis with respect to
the rational Ore algebra that is generated by the given operators. So we
could have achieved the annihilating ideals for the left-hand side and the
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summand in (4.1) in a single line!

To some extent Annihilator can also handle functions that are not ∂-
finite. Following the ideas of Chyzak, Kauers, and Salvy [27] we have enlarged
Annihilator’s database of mathematical functions with some functions that
are not ∂-finite, and also the implementation of the closure properties has
been adjusted accordingly. Hence we can try the integrand of Wallis’s inte-
gral:

In[31]:= Annihilator[Cos[x]̂ (2m), {S[m], Der[x]}]
Annihilator::nondf : The expression Cos[x]2m is not recognized to be ∂-finite.

The result will not generate a zero-dimensional ideal.

Out[31]= {−SmD2
x + (−4m2 − 8m− 4)Sm + (4m2 + 6m + 2)}

We obtain only one single relation—too few to generate a zero-dimensional
ideal in the Ore algebra Q(m,x)[Sm;Sm, 0][Dx; 1, Dx]; this fact is always
indicated by a warning. We also observe that this relation is different from
the two operators that we used to solve the integral. The reason is that
Annihilator only returns operators whose coefficients are rational functions
in the variables that correspond to the given Ore operators. In fact the output
is normalized in a way that there are no denominators and no content. The
dimension of an ideal can be computed as follows:

In[32]:= AnnihilatorDimension[%]

Out[32]= 1

which confirms the observation that the ideal was not zero-dimensional.

As an application of Annihilator we solve a problem taken from a paper
by Stoll and Zeng [82]. The authors define the function

Un(x, a) =


√
a

k
xUk

(
−a+x2−1

2
√

a

)
, n = 2k + 1

√
a

k
(
Uk

(
−a+x2−1

2
√

a

)
+
√
aUk−1

(
−a+x2−1

2
√

a

))
, n = 2k

and are interested in its differential equation with respect to x (separately for
even and odd n). In the definition, Uk(x) denotes the Chebyshev polynomial
of the second kind. The case n = 2k + 1 we can solve right away:

In[33]:= Annihilator[Sqrt[a]̂ ((n − 1)/2) x ChebyshevU[(n − 1)/2,
(x2 − a − 1)/(2 Sqrt[a])], Der[x]]

Out[33]= {(a2x2 − 2ax4 − 2ax2 + x6 − 2x4 + x2)D2
x + (−3a2x + 6ax + 3x5 − 3x)Dx +

(3a2 − 6a− n2x4 − 2nx4 + 3)}

If we do the same for the case n = 2k we get a much more complicated result:
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In[34]:= Annihilator
[
Sqrt[a]n/2(ChebyshevU[n/2, (x2 − a − 1)/(2 Sqrt[a])]

+Sqrt[a] ChebyshevU[n/2−1, (x2−a−1)/(2 Sqrt[a])]), Der[x]
]

Out[34]= {(a4x3 − 4a3x5 − 4a3x3 + 6a2x7 + 4a2x5 + 6a2x3 − 4ax9 + 4ax7 + 4ax5 −
4ax3 +x11−4x9 +6x7−4x5 +x3)D4

x +(−6a4x2 +4a3x4 +24a3x2 +24a2x6−
4a2x4−36a2x2−36ax8+16ax6−4ax4+24ax2+14x10−36x8+24x6+4x4−
6x2)D3

x + (15a4x− 60a3x− 2a2n2x5 − 4a2nx5 + 6a2x5 + 90a2x + 4an2x7 +
4an2x5 +8anx7 +8anx5−72ax7−12ax5−60ax−2n2x9 +4n2x7−2n2x5−
4nx9+8nx7−4nx5+51x9−72x7+6x5+15x)D2

x +(−15a4+60a3+2a2n2x4+
4a2nx4−6a2x4−90a2+8an2x6−4an2x4+16anx6−8anx4−24ax6+12ax4+
60a−10n2x8 +8n2x6 +2n2x4−20nx8 +16nx6 +4nx4 +45x8−24x6−6x4−
15)Dx + (n4x7 + 4n3x7 − 4n2x7 − 16nx7)}

It is a differential equation of order 4 and since the one for n = 2k + 1 was
of order 2, we suspect that there should be one of order 2 for the even case,
too. Indeed, by slightly reformulating the input we can achieve this goal.
The closure property “application of an operator” that has not been used so
far will help. We observe that the two summands in the parentheses are very
similar. In fact they can be rewritten as the application of an operator to a
single instance of U :

Un
2

(
−a+x2−1

2
√

a

)
+
√
aUn

2
−1

(
−a+x2−1

2
√

a

)
= (S2

n +
√
a) • Un

2
−1

(
−a+x2−1

2
√

a

)
.

In all cases where such a rewriting can be done it is preferable to use the
closure under operator application (since there the vector space dimension
of the annihilating ideal cannot grow).

In[35]:= DFiniteTimes[Annihilator[Sqrt[a]̂ (n/2), {S[n], Der[x]}],
DFiniteOreAction[Annihilator[ChebyshevU[n/2 − 1,
(x2 − a − 1)/(2 Sqrt[a])], {S[n], Der[x]}], S[n]2 + Sqrt[a]]]

Out[35]= {(−a3x+a2nx3 +3a2x3 +3a2x−2anx5−2anx3−3ax5−2ax3−3ax+nx7−
2nx5 + nx3 + x7 − x5 − x3 + x)D2

x + (a3 − 3a2nx2 + a2x2 − 3a2 +
6anx2 − 5ax4 + 6ax2 + 3a + 3nx6 − 3nx2 + 3x6 + 5x4 − 7x2 − 1)Dx +
(3an2x3 + 6anx3 − n3x5 − 3n2x5 − 3n2x3 − 2nx5 − 6nx3),
(2a− 2nx2 − 2x2 − 2)S2

n + (a2x− 2ax3 − 2ax + x5 − 2x3 + x)Dx +
(−anx2 − 2ax2 + 2a + nx4 − nx2 + 2x4 − 2)}

The Ore operator Sn has to be included in the Ore algebra because it appears
in the second argument of DFiniteOreAction. Again this result can be ob-
tained by a single call of Annihilator. The operator application is encoded
by the name ApplyOreOperator:

In[36]:= % === Annihilator[Sqrt[a]n/2 ApplyOreOperator[S[n]2 + Sqrt[a],
ChebyshevU[n/2 − 1, (x2 − a − 1)/(2 Sqrt[a])]], {S[n], Der[x]}]

Out[36]= True
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Both differential equations agree with the results of Stoll and Zeng who found
it by other means (ad-hoc ansatz for the polynomial coefficients).

In the input line 36 it was crucial that the expression given to the com-
mand Annihilator was not evaluated. Otherwise ApplyOreOperator would
have delivered the same expression that we had at the beginning. For this
reason, Annihilator carries the attribute HoldFirst. In a similar manner
the symbol D can be used in the first argument of Annihilator; and instead
of letting Mathematica evaluate the differentiation the corresponding closure
property is carried out.

4.4 Finding relations by ansatz

In Section 3.1 we have investigated how to use an ansatz in order to elimi-
nate variables that are part of the coefficients of Ore polynomials. Actually
this method is much more general: by prescribing the structure set we can
ask for relations in an ideal that are of a certain shape. We have imple-
mented the command FindRelation that makes use of all the optimizations
described in Section 3.4. There are several options which serve for specifying
the properties of the desired operators.

• Eliminate gives a set of variables to be eliminated; this option is used
in the coefficient comparison.

• The use of the option Support forces to search only for operators with
the given support.

• With Pattern only those monomials are considered whose exponent
vector is matched by the given pattern.

As an example we want to turn to the widely used hypergeometric func-
tion 2F1 that has been introduced [36] by Carl Friedrich Gauß at the begin-
ning of the nineteenth century. Besides many other important properties of
this function, Gauß investigated what he called contiguous functions, nowa-
days better known as contiguous relations:

Functionem ipsi F (α, β, γ, x) contiguam vocamus, quae ex illa
oritur, dum elementum primum, secundum, vel tertium unitate
vel augetur vel diminuitur, manentibus tribus reliquis elementis.1

1As contiguous function to F (α, β, γ, x) we denominate such a function that emerges
from the latter by either augmenting or diminishing the first, second, or third element by
one whereat the other three elements remain unaffected.
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In the following Gauß gives a complete list of all 15 possible such contiguous
relations for his function F (that is the 2F1 in our present-day notation).
What must have been a tedious task at the times where the word “computer”
referred to some pitiable human being, we can now achieve in a second. We
start with the annihilating ideal for the hypergeometric function with respect
the Ore algebra that is generated by the three shift operators:

In[37]:= ann = Annihilator[Hypergeometric2F1[a, b, c, x], {S[a], S[b], S[c]}]

Out[37]= {(bcx− bc)Sb + (abx− acx− bcx + c2x)Sc + (acx + bc + c2(−x)),
(acx− ac)Sa + (abx− acx− bcx + c2x)Sc + (ac + bcx + c2(−x)),
(abx− acx− ax− bcx− bx + c2x + 2cx + x)S2

c +
(acx+ax+bcx+bx−2c2x+c2−3cx+c−x)Sc +(c2x−c2 +cx−c)}

Then we have to build the set of all supports for the 15 contiguous rela-
tions, that correspond to all 2-subsets of the set of the 6 forward and back-
ward shifts. In order to get rid of the inverse shifts we use our command
NormalizeVector that takes a list of rational functions, multiplies them
with the common denominator and removes the common polynomial content.
This set is then given to FindRelation by means of the option Support. For
better readability we factor the coefficients:

In[38]:= supps = NormalizeVector[Append[#, 1]]& /@
Subsets[{S[a], 1/S[a], S[b], 1/S[b], S[c], 1/S[c]}, {2}];

In[39]:= ApplyOreOperator[Factor[FindRelation[ann, Support → supps]],
F [a, b, c, x]] // TableForm

Out[39]= (−a + c− 1)F [a, b, c, x] + (a(−x) + 2a + bx− c− x + 2)F [a + 1, b, c, x] +
(a + 1)(x− 1)F [a + 2, b, c, x]

(b− a)F [a, b, c, x]− bF [a, b + 1, c, x] + aF [a + 1, b, c, x]
(−b+c−1)F [a, b, c, x]+(a+b−c+1)F [a, b+1, c, x]+a(x−1)F [a+1, b+1, c, x]
c(a+bx−cx)F [a, b, c, x]+x(a−c)(b−c)F [a, b, c+1, x]+ac(x−1)F [a+1, b, c, x]
− cF [a, b, c, x] + (c− a)F [a, b, c + 1, x] + aF [a + 1, b, c + 1, x]
(−a+c−1)F [a, b, c, x]+(a+b−c+1)F [a+1, b, c, x]+b(x−1)F [a+1, b+1, c, x]
(a− c + 1)F [a, b + 1, c, x] + (−b + c− 1)F [a + 1, b, c, x] +

(x− 1)(a− b)F [a + 1, b + 1, c, x]
cF [a, b, c, x] + c(x− 1)F [a + 1, b, c, x] + x(b− c)F [a + 1, b, c + 1, x]
(c−a)F [a, b, c+1, x]+c(x−1)F [a+1, b, c, x]+(a+bx−cx)F [a+1, b, c+1, x]
(−b + c− 1)F [a, b, c, x] + (ax + b(−x) + 2b− c− x + 2)F [a, b + 1, c, x] +

(b + 1)(x− 1)F [a, b + 2, c, x]
c(ax+b−cx)F [a, b, c, x]+x(a−c)(b−c)F [a, b, c+1, x]+bc(x−1)F [a, b+1, c, x]
− cF [a, b, c, x] + (c− b)F [a, b, c + 1, x] + bF [a, b + 1, c + 1, x]
cF [a, b, c, x] + c(x− 1)F [a, b + 1, c, x] + x(a− c)F [a, b + 1, c + 1, x]
(c−b)F [a, b, c+1, x]+c(x−1)F [a, b+1, c, x]+(ax+b−cx)F [a, b+1, c+1, x]
c(c + 1)(x− 1)F [a, b, c, x]− (c + 1)(−ax− bx + 2cx− c + x)F [a, b, c + 1, x] +

x(a− c− 1)(b− c− 1)F [a, b, c + 2, x]
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Modulo backwards shifting, our result looks very much like the table in the
original paper—the only difference are two little typos in the formulas 4 and
11 where an x has been forgotten.

4.5 Rational solutions of systems of differen-

tial and difference equations

Finding rational solutions of parameterized coupled systems of differential
and difference equations is a subtask in Chyzak’s algorithm. We show how
this task can be carried out with the package HolonomicFunctions. We con-
tinue with identity (4.1) from Section 4.3 and solve the summation problem
with Chyzak’s algorithm. Recall that we have already computed an annihi-
lating ideal smnd for the summand and that now we have to find telescoping
relations of the form Pi + ∆nQi. The Pi are supposed to be free of n and
Sn, and we want to find so many of them that their principal parts Pi gener-
ate a zero-dimensional ideal. For the Qi in the ansatz we have to know the
monomials under the stairs of the Gröbner basis smnd:

In[40]:= UnderTheStaircase[smnd]

Out[40]= {1, Sn}

Chyzak’s algorithm loops over the support of the principal parts Pi. To
shorten this process, we look at the annihilating ideal lhs that has been
computed for the left-hand side. Of particular interest is the support of its
generators:

In[41]:= Support[lhs]

Out[41]= {{Dt, Dz, 1}, {D2
z , Dz, 1}}

Hoping that the annihilating ideal that we are going to find for the sum is the
same as that one for the left-hand side, we try our luck with a principal part
that has the same support as the first generator of lhs. Hence the ansatz
looks as follows:

In[42]:= ansatz = a3Der[t]+a2Der[z]+a1+(S[n]−1) ∗∗ (c1[n]+c2[n] ∗∗ S[n])

Out[42]= a3Der[t] + a2Der[z] + a1 + (S[n]− 1) ∗∗ (c2[n] ∗∗S[n] + c1[n])

Bringing the ansatz to canonical form as an Ore polynomial reveals the fact
why later a coupled difference system has to be solved.

In[43]:= ToOrePolynomial[ansatz, OreAlgebra[Der[t], Der[z], S[n]]]

Out[43]= c2[n + 1]S2
n + a3Dt + a2Dz + (c1[n + 1]− c2[n])Sn + (a1 − c1[n])

The commutation of Sn to the right causes shifted instances of the unknowns
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c1 and c2 to appear. The last computation also shows that the coefficients
of an OrePolynomial need not be polynomials or rational functions in the
respective variables but can be anything, even unspecified functions in these
variables.

The next step consists in reducing the ansatz with the annihilating ideal
of the summand and setting all the coefficients of the normal form to zero.
The command OrePolynomialListCoefficients returns the list of nonzero
coefficients of an Ore polynomial ordered according to the monomial order.

In[44]:= OreReduce[ansatz, smnd]

Out[44]=

(
ia2n

2

(n + 2)t
+

3ia2n

(n + 2)t
+

2ia2

(n + 2)t
+

2intc2[n + 1]
(n + 2)z

+
itc2[n + 1]
(n + 2)z

+
nc1[n + 1]

n + 2

−nc2[n]
n + 2

+
2c1[n + 1]

n + 2
− 2c2[n]

n + 2

)
Sn +

(
3a3n

2

(n2 + 3n + 2) t
+

2a3n

(n2 + 3n + 2) t

+
2a2n

2

(n2 + 3n + 2) z
− a2n

(n2 + 3n + 2) z
− 2a2

(n2 + 3n + 2) z
+

a1n
2

n2 + 3n + 2

+
3a1n

n2 + 3n + 2
+

2a1

n2 + 3n + 2
+

a3n
3

(n2 + 3n + 2) t
+

a2n
3

(n2 + 3n + 2) z

− t2c2[n + 1]
n2 + 3n + 2

− n2c1[n]
n2 + 3n + 2

− 3nc1[n]
n2 + 3n + 2

− 2c1[n]
n2 + 3n + 2

)
In[45]:= eq = Collect[#, {a1, a2, a3, c1[ ], c2[ ]}, Together]& /@

OrePolynomialListCoefficients[%]

Out[45]=

{
ia2(n + 1)

t
+
ic2[n + 1](2nt + t)

(n + 2)z
+ c1[n + 1]− c2[n],

a3n

t
+

a2(n− 1)
z

+ a1 −
t2c2[n + 1]
n2 + 3n + 2

− c1[n]
}

This coupled system has to be solved for unknown rational functions c1, c2 ∈
Q(n, t, z) and for the parameters a1, a2, a3 ∈ Q(t, z). The uncoupling here is
trivial and can be done by hand.

In[46]:= eq[[1]] /. c1[n + 1] → ((eq[[2]] + c1[n]) /. n → n + 1)

Out[46]=
ia2(n + 1)

t
+

a3(n + 1)
t

+
a2n

z
+ a1 −

t2c2[n + 2]
(n + 1)2 + 3(n + 1) + 2

+
ic2[n + 1](2nt + t)

(n + 2)z
− c2[n]

We obtain a scalar difference equation of order 2 for c2 and have to find
rational solutions of it. The command RSolveRational does the job by
executing Abramov’s algorithm [1, 2, 4]. Plugging the solution into one of
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the original equations immediately gives the solution for c1.

In[47]:= sol = RSolveRational[%, c2[n], ExtraParameters → {a1, a2, a3}]

Out[47]=

{{
c2[n]→ 0, a1 →

C[1]
z

, a2 → C[1], a3 →
C[1](−t− iz)

z

}}
In[48]:= eq[[1]] /. c2[ ] → 0 /. First[sol]

Out[48]= c1[n + 1] +
iC[1] (n + 1)

t

In a similar fashion, DSolveRational is designed for finding rational so-
lutions of linear differential equations. The procedures RSolvePolynomial

and DSolvePolynomial perform the subtasks of finding polynomial solutions
of linear difference resp. differential equations.

We can verify whether the above computations are correct by plugging
the solution into our original ansatz and reducing it with the Gröbner basis:

In[49]:= ansatz /. First[sol] /. c1[n] → −I n C[1]/t

Out[49]=
C[1]Der[t] (−t− iz)

z
+C[1]Der[z]+ (S[n]−1)∗∗

(
0∗∗S[n]− iC[1]n

t

)
+

C[1]
z

In[50]:= OreReduce[%, smnd]

Out[50]= 0

Indeed we have found a telescoping relation. It remains to investigate the
delta part. As we can set the arbitrary constant C[1] to 1 we have to evaluate
the expression [

n(−i)n+1tn−1

n!

√
π

2z
I−n+ 1

2
(z)

]∞
0

at the boundaries. For n = 0 this clearly vanishes, but for n→∞ this is not
so easy to see (also Mathematica is not able to compute this limit). Similar
to the statement of the identity (4.1) we have to use asymptotic expansions
of Bessel functions together with condition (4.2) to show that the limit tends
indeed to 0 (but since our package cannot address such tasks we do not want
to go more into detail here). Hence the principal part is an annihilating
operator for the sum (in fact the same as found for the left-hand side):

In[51]:= NormalizeCoefficients[
ToOrePolynomial[a3Der[t] + a2Der[z] + a1] /. First[sol]]

Out[51]= (−t− iz)Dt + zDz + 1

Most of the subtasks that have been accomplished above are combined
in the command SolveCoupledSystem: It takes as input a coupled system
of difference and/or differential equations, tries to uncouple it, and in the
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successful case finds all rational solutions by backwards substitution as we
did before. So for finding a second telescoping relation we can do faster
(for the principal part in the ansatz we now choose a differential equation of
order 2 in z as indicated by the supports of lhs):

In[52]:= SolveCoupledSystem[OrePolynomialListCoefficients[OreReduce[
a3Der[z]2+a2Der[z]+a1+(S[n]−1)∗∗(c1[n]+c2[n]∗∗S[n]), smnd]],
{c1, c2}, {n}, ExtraParameters → {a1, a2, a3}]

Out[52]=

{{
c1[n]→

C[1]
(
2n2t2 + 3in2tz − n2z2 − nt2 − 3intz + nz2

)
2t2 + 3itz − z2

,

a1 →
C[1]

(
it3z − 3t2z2 + t2 − 3itz3 + z4

)
2t2 + 3itz − z2

,

a2 →
C[1]z

(
−5t2 − 6itz + 2z2

)
−2t2 − 3itz + z2

,

a3 → C[1]z2, c2[n]→
i
(
C[1]n2z + C[1]nz

)
2t + iz

}}

After clearing the content in the coefficients of the principal part it is apparent
that the solution coincides with the second annihilating operator of lhs:

In[53]:= NormalizeVector[{a3, a2, a1}] /. First[%]

Out[53]=

{
−it3z + 3t2z2 − t2 + 3itz3 − z4,−5t2z − 6itz2 + 2z3,−2t2z2 − 3itz3 + z4

}
SolveCoupledSystem in principal can also handle mixed difference and

differential systems of equations, and solve them in case that they can be
uncoupled. Gaussian elimination over Ore polynomial rings is used for the
uncoupling and can be easily performed using our OreGroebnerBasis imple-
mentation (we have to work over a module).

For the special case where we have a coupled either difference or dif-
ferential system of order 1, there are other algorithms that are designed
exactly for such problems. Some of them—like Zürcher’s algorithm [97] or
an uncoupling algorithm due to Abramov and Zima [5] —have been imple-
mented at RISC by Stefan Gerhold who described them in his thesis [37].
From an early stage of development and for testing purposes the package
HolonomicFunctions contains a function SolveOreSys that can find ratio-
nal solutions of order 1 systems as they appear in Chyzak’s algorithm, using
Gerhold’s package OreSys (but it has to be loaded separately). We also made
some efforts to implement the algorithms by Abramov and Barkatou [3, 11].
The commands DSystemSolvePolynomial and DSystemSolveRational for
example compute the polynomial resp. rational solutions of a linear first-
order system of differential equations directly. So far only simple systems
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(for the definition see [3, 11]) can be treated; there are several algorithms to
transform a system that not simple into a simple one [12, 13] but this seems
to be a very cumbersome procedure.

So far we have shown that both sides of identity (4.1) share the same
annihilating ideal. To make the proof rigorous we have to compare initial
values, which in general can be a tricky and difficult task. So in this example:
Since we have a pole for z = 0 we cannot just prove the identity on the formal
power series level. Additionally we have to consider convergence issues due
to condition 4.2. One strategy consists in taking initial values at a different
point, e.g., at t = 0 and z = 1, but one has to argue carefully what exactly
then has been proven (compare also our proof of identity (10.2.38) below).
We consider such questions as a direction for future research. Another strat-
egy consists in reducing the problem to a univariate one by considering only
the ordinary differential equation in t that is contained in both annihilating
ideals. Then initial values are compared by treating z as a parameter; by
convergence considerations it can then be determined for which t, z ∈ C the
identity actually holds. This discussion has been carried out explicitly in [39].

4.6 Summation and Integration

We turn to the implementation of algorithms that are designed for solving
summation and integration problems: Takayama’s and Chyzak’s algorithm.
Using these algorithms we are going to solve four more of Olver’s problems
(at least concerning the computer algebra part—we will allow ourselves to
leave to the reader some tasks that are not in the scope of our package). All
the remaining ones are variations of them and can be solved analogously. In
case that you belong to the kind of impatient readers who jumped directly
into this section, you may consider to learn the basics about how to use the
command Annihilator described at the end of Section 4.3 (page 77).

Identity (10.1.52)

First we are going to prove the following identity that was among Olver’s
problems [6, 10.1.52] where jn(z) and Si(z) denote the spherical Bessel func-
tion of the first kind and the sine integral, respectively:

∞∑
n=0

j2
n(z) =

Si(2z)

2z
. (4.3)

The command for executing Chyzak’s algorithm is CreativeTelescoping. It
computes a set of telescoping relations Pi +EQi for a given ∂-finite function.
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The first argument has to be a mathematical expression (like Annihilator it
has the attribute HoldFirst) or a list of Ore polynomials that form a Gröbner
basis of some annihilating ideal. The second argument is the factor E that
appears left to the delta part in the telescoping relation. It describes the
nature of the problem: For an integration problem w.r.t. x we set E = Dx,
and if we are tackling a sum that runs over n we set either E = Sn − 1
or E = ∆n. In the third argument the Ore operators that are intended to
constitute the principal parts Pi are given.

In[54]:= ct= CreativeTelescoping
[
SphericalBesselJ[n, z]2, S[n] − 1, Der[z]

]
Out[54]=

{
{zDz + 1},

{z

2
Dz + (n + 1)

}}
The only variable that survives the summation is z and hence we get a single
telescoping relation P + (Sn − 1)Q. The output consists of the principal
part P and the delta part Q, and it is easily verified that this telescoping
relation lies indeed in the annihilating ideal of the summand:

In[55]:= OreReduce[ct[[1, 1]] + (S[n] − 1) ∗∗ ct[[2, 1]],
Annihilator[SphericalBesselJ[n, z]2]]

Out[55]= 0

Next we have to check whether, after summing over the telescoping relation,
the delta part Q • j2

n(z) vanishes.

In[56]:= test = ApplyOreOperator
[
ct[[2, 1]], SphericalBesselJ[n, z]2

]
Out[56]= (n + 1)SphericalBesselJ[n, z]2 + z

(
1
2
(SphericalBesselJ[n− 1, z]−

SphericalBesselJ[n + 1, z])− SphericalBesselJ[n, z]
2z

)
SphericalBesselJ[n, z]

We have to evaluate this expression at the summation bounds. For n → ∞
this is not so trivial and Mathematica is not able to compute the limit directly.
But we can use the asymptotic expansion for large orders for Jn(z), after
rewriting jn(z) in terms of Jn(z). For n = 0 the delta part is nonzero.

In[57]:= Limit[test
/. SphericalBesselJ[k , z] → Sqrt[Pi/(2z)] BesselJ[k + 1/2, z]
/. BesselJ[k , z] → (Ez/(2k))̂ k/Sqrt[2 Pi k], n → Infinity]

Out[57]= 0

In[58]:= delta = −FullSimplify[test /. n → 0]

Out[58]= −Sin[z] Cos[z]
z
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This means that we end up with an inhomogeneous equation for the left-hand
side. It is homogenized by multiplying (from the left) with an annihilating
operator of the inhomogeneous part:

In[59]:= lhs = First[Annihilator[delta, Der[z]]] ∗∗ ct[[1, 1]]

Out[59]= z2D4
z + 7zD3

z + (4z2 + 9)D2
z + 12zDz + 4

For the right-hand side an annihilating operator is readily obtained.

In[60]:= rhs = Annihilator[SinIntegral[2z]/(2z), Der[z]]

Out[60]= {z2D3
z + 5zD2

z + (4z2 + 4)Dz + 4z}

The operators are not identical but we find out that the order 4 operator for
the left-hand side is a left multiple of the other one:

In[61]:= OreReduce[lhs, rhs]

Out[61]= 0

Thus by comparing 4 initial values we can complete the proof. We start with
the left-hand side, investigating the derivatives of the summand:

In[62]:= Table[D[SphericalBesselJ[n, z]2, {z, k}], {k, 0, 3}] // Together

Out[62]= {SphericalBesselJ[n, z]2,

− 1
z
(SphericalBesselJ[n, z](−z SphericalBesselJ[n− 1, z] +

SphericalBesselJ[n, z] + z SphericalBesselJ[n + 1, z]),
1

2z2
(z2SphericalBesselJ[n− 1, z]2 − 2z2SphericalBesselJ[n, z]2 +

...

(We have cut the output which takes about one page and continues in a
similar fashion.) Since jn(0) is 0 for all integers n > 0 and the smallest shift
of n in jn(z) that occurs is n− 3, we can safely cut the summation at n = 3.

In[63]:= Limit[Sum[%, {n, 0, 3}], z → 0]

Out[63]=

{
1, 0,−4

9
, 0
}

The initial values of the right-hand side match:

In[64]:= Limit[Table[D[SinIntegral[2z]/(2z), {z, k}], {k, 0, 3}], z → 0]

Out[64]=

{
1, 0,−4

9
, 0
}

For reasons of fairness we shall mention that Mathematica evaluates the sum
immediately to the expression on the right-hand side of (4.3).
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Identity (10.2.38)

The next example is the duplication formula for Kn(z), the modified Bessel
function of the second kind, see [6, 10.2.38].

Kn+ 1
2
(2z) =

n!√
π
zn+ 1

2

n∑
k=0

(−1)k(2n− 2k + 1)

k!(2n− k + 1)!
K2

n−k+ 1
2
(z) (4.4)

Mathematica leaves the sum unevaluated. Recapitulating the previous ex-
ample we realize that still a lot of work had to be done: Evaluating the
delta part at the boundaries, computing an annihilating ideal for it, and so
on, until we ended up with a differential equation for the sum. In many
examples we can save this time: The functionality of Annihilator has been
extended so that it recognizes also expressions of the form Sum[...] or
Integrate[...] and then internally calls CreativeTelescoping and takes
care about the boundaries and possible inhomogeneous parts. Hence we just
type both sides of identity (4.4) into the computer and get:

In[65]:= Annihilator[BesselK[n + 1/2, 2z], {S[n], Der[z]}]

Out[65]= {4zSn + 2zDz + (−2n− 1), 4z2D2
z + 4zDz + (−4n2 − 4n− 16z2 − 1)}

In[66]:= Annihilator
[
n! Pî (−1/2) z (̂n + 1/2) Sum

[
(−1)k(2n − 2k + 1)

/k!/(2n−k+1)!BesselK[n−k+1/2, z]2, {k, 0, n}
]
, {S[n], Der[z]}

]
Out[66]= {4zSn + 2zDz + (−2n− 1), 4z2D2

z + 4zDz + (−4n2 − 4n− 16z2 − 1)}

The only thing that has to be done by hand is comparing initial values. The
initial values that have to be taken into account can be read off from the
monomials that lie under the stairs of the Gröbner basis of the annihilating
ideal. For convenience, we can just take the operators that are returned by
UnderTheStaircase and apply them to both sides. After that the substitu-
tion has to take place.

In[67]:= uts = UnderTheStaircase[%]

Out[67]= {1, Dz}

In[68]:= ApplyOreOperator[uts, BesselK[n + 1/2, 2z]] /. n → 0 /. z → 1

Out[68]=

{√
π

2e2
,−5
√

π

4e2

}
In[69]:= ApplyOreOperator

[
uts, n! Pî (−1/2) ẑ (n+1/2)(−1)k(2n − 2k + 1)

/k!/(2n − k + 1)! BesselK[n − k + 1/2, z]2
]

/. n → 0 /. k → 0 /. z → 1 // Together

Out[69]=

{√
π

2e2
,−5
√

π

4e2

}
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Since Kn(z) has a singularity at z = 0 we decided to compare initial values
at the point z = 1. The ordinary differential equation in z together with the
two initial values (for n = 0) guarantees a unique solution that is analytic at
z = 1. From this solution the instances for n > 0 can be obtained via the
first relation. Hence there exists a uniquely defined function that is equal
to the expression on either side of (4.4) in a neighborhood around z = 1.
The validity of the identity can be extended to a larger region by analytic
continuation.

Identity (10.1.48)

We continue with a beautiful formula that connects different kinds of Bessel
functions with Legendre polynomials where trigonometric functions appear
in the arguments [6, 10.1.48]:

J0(z sin t) =
∞∑

n=0

(4n+ 1)
(2n)!

22n(n!)2
j2n(z)P2n(cos t). (4.5)

At first glance one might be tempted to say that neither side is ∂-finite. In
Section 2.3 we have proven that the class of ∂-finite functions in continuous
variables is closed under algebraic substitution. But z sin(t) is definitely not
algebraic. As we already feared we do not get annihilating operators by
typing:

In[70]:= Annihilator[BesselJ[0, z Sin[t]], {Der[t], Der[z]}]
DFiniteSubstitute::algsubs : The substitutions for continuous variables

{z Sin[t]} must be algebraic expressions.

Not all of them are recognized to be algebraic.

Annihilator::nondf : The expression (w.r.t. Der[t], Der[z]) is not recognized to be ∂-finite.

The result will not generate a zero-dimensional ideal.

Out[70]= {}

But in contrast to Wallis’s integral where the integration took place with
respect to the argument of the cosine, we here can treat t and therefore also
sin(t) and cos(t) as parameters. This is done by omitting the derivative with
respect to t.

In[71]:= lhs = Annihilator[BesselJ[0, z Sin[t]], Der[z]]

Out[71]= {zD2
z + Dz + z Sin2[t]}

This operator was not found in the first try because its coefficients are not
rational functions in the given variables t and z, but they are if we consider
only z.
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Now the summand of the right-hand side has to be investigated. The
squared factorial in the denominator causes the summand to be 0 for neg-
ative n. Similarly when n goes to infinity, the summand as well as all its
possible “derivations” (in the sense of application of an operator from the al-
gebra) tend to zero. In other words, the sum has natural boundaries and we
can apply Takayama’s algorithm. The corresponding command takes a list of
Ore polynomials that constitute a Gröbner basis for some annihilating ideal,
and a list of variables that have to be eliminated. In standard applications
these are just the summation and integration variables.

In[72]:= ann = Annihilator[(4n + 1)(2n)!/22n/(n!)2 SphericalBesselJ[2n, z]
LegendreP[2n, Cos[t]], {S[n], Der[z]}];

In[73]:= rhs = Takayama[ann, {n}]

Out[73]= {−16z5D6
z − 144z4D5

z + (16z5Cos[t]2 − 48z5 − 216z3)D4
z +

(128z4Cos[t]2 − 288z4 + 120z2)D3
z +

(32z5Cos[t]2 + 152z3Cos[t]2 − 48z5 − 240z3 − 45z)D2
z +

(128z4Cos[t]2 − 80z2Cos[t]2 − 144z4 + 120z2 − 45)Dz +
(16z5Cos[t]2 + 24z3Cos[t]2 + 45zCos[t]2 − 16z5 − 24z3 − 45z)}

As it often happens with Takayama’s algorithm we do not find the differ-
ential equation of minimal order. We have to test whether it is compatible
with the left-hand side. We could reduce it with the order 2 differential equa-
tion of the left-hand side. Instead, let’s plug in the left-hand side and see
whether it satisfies the order 6 differential equation:

In[74]:= ApplyOreOperator[First[rhs], BesselJ[0, z Sin[t]]] // FullSimplify

Out[74]= 0

Finally 6 initial values have to be computed for both sides.

In[75]:= Table[D[BesselJ[0, z Sin[t]], {z, k}], {k, 0, 5}] /. z → 0

Out[75]=

{
1, 0,−1

2
Sin[t]2, 0,

3 Sin[t]4

8
, 0
}

In[76]:= Limit[Table[Sum[D[(4n+1)(2n)!/22n/(n!)2 SphericalBesselJ[2n, z]
LegendreP[2n, Cos[t]], {z, k}], {n, 0, 2}], {k, 0, 5}], z → 0]

Out[76]=

{
1, 0,−1

2
Sin[t]2, 0,

3 Sin[t]4

8
, 0
}

Identity (10.1.41)

As a last example from Olver’s problem set we want to mention a class of
identities that express the first derivatives of spherical Bessel functions with
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respect to the discrete parameter n, evaluated at a certain point, in terms
of the sine integral and the cosine integral. They are all very similar, so we
content ourselves with displaying only one of them [6, 10.1.41] (note that
there is a misprint in Abramowitz and Stegun’s book: an additional factor
π/2 appears on the right-hand side):

[
∂

∂ν
jν(x)

]
ν=0

=
1

x
(Ci(2x) sinx− Si(2x) cos x)

First we have to notice that in our framework mixing the discrete or con-
tinuous nature of a variable is possible only in rare cases, e.g., for rational
functions:

In[77]:= Annihilator
[
(a2 − 1)/(a2 + 1)

]
Out[77]= {(a4 − 1)Da − 4a, (a4 + 2a3 + a2 − 2a− 2)Sa + (−a4 − 2a3 − a2 − 2a)}

But usually it is determined by the input which variables have to be treated
as discrete and which ones as continuous. The spherical Bessel function jn(z)
is only ∂-finite with respect to Sn and Dz. There is no other way to make it
∂-finite, or in other words there is no P-finite recurrence for jn(z) in n. So
there is a problem when we want to consider the derivative with respect to
a discrete variable: We cannot apply the closure property “application of an
operator” since the Ore operatorDn does not play any rôle in the annihilating
ideal of jn(z). Therefore we proceed by rewriting the left-hand side manually
in order to fit it into the ∂-finite/holonomic framework. We replace jn(z) by√
π/(2z)Jn+1/2(z) and then apply formula (9.1.64) from [6]:

∂

∂ν
jν(z) =

√
π

2z

log
(z

2

)
Jν+ 1

2
(z)−

(z
2

)ν+ 1
2

∞∑
k=0

(
− z2

4

)k

ψ
(
k + ν + 3

2

)
k! Γ

(
k + ν + 3

2

)
 .

Now this expression, although it looks quite complicated, can be fed without
further changes into Annihilator, and the right-hand side anyway is no big
challenge for our package:

In[78]:= lhs = Annihilator
[
Sqrt[Pi/(2z)] (Log[z/2] BesselJ[1/2, z] −

(z/2)̂ (1/2) Sum[(−z2/4)k PolyGamma[k + 3/2]
/k!/Gamma[k + 3/2], {k, 0, Infinity}]), Der[z]

]
Out[78]= {z3D6

z + 14z2D5
z + (3z3 + 52z)D4

z + (28z2 + 48)D3
z + (3z3 + 64z)D2

z +
(14z2 + 32)Dz + (z3 + 12z)}
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In[79]:= rhs = Annihilator[1/z (CosIntegral[2z] Sin[z] −
SinIntegral[2z] Cos[z]), Der[z]]

Out[79]= {(12z5 + 5z3)D6
z + (144z4 + 70z2)D5

z + (132z5 + 475z3 + 260z)D4
z +

(1056z4 + 796z2 + 240)D3
z + (228z5 + 1991z3 + 1288z)D2

z +
(912z4 + 1110z2 + 560)Dz + (108z5 + 753z3 + 516z)}

Both differential equations are of order 6 and obviously not the same. This
situation is different from the examples before where one annihilating ideal
was contained in the other (when they did not even coincide). But they have
nontrivial common factors, as a gcd computation via Gröbner bases reveals:

In[80]:= OreGroebnerBasis[Join[lhs, rhs]]

Out[80]= {z3D4
z + 8z2D3

z + (2z3 + 14z)D2
z + (8z2 + 4)Dz + (z3 + 6z)}

This is a strong indication that the identity is indeed correct. What we have
to do is to test whether the difference of both sides gives zero. We use the
closure property sum to compute a differential equation that is satisfied by
the difference of the two sides (in fact by any K-linear combination of them):

In[81]:= DFinitePlus[lhs, rhs]

Out[81]= {(48z5 + 95z3)D8
z + (864z4 + 1900z2)D7

z + (576z5 + 5436z3 + 10830z)D6
z +

(7968z4 + 23684z2 + 17100)D5
z + (1440z5 + 32442z3 + 77002z)D4

z +
(13344z4 + 59332z2 + 83448)D3

z + (1344z5 + 33596z3 + 82858z)D2
z +

(6240z4 + 31404z2 + 46892)Dz + (432z5 + 6495z3 + 15150z)}

It remains to compare 8 initial values which we leave as an exercise to the
reader.

Wallis’s integral revisited

Let us return to our first example, Wallis’s integral. In Section 4.1 we have
performed Takayama’s algorithm step by step. Of course, everything goes
automatically when we use the corresponding command:

In[82]:= Takayama[ToOrePolynomial[{
−Cos[x]2+S[m], Cos[x] Der[x]+2m Sin[x], Sin[x]2+Cos[x]2−1

}], {Sin[x], Cos[x]}, Extended → True]

Out[82]= {{(−2m− 2)Sm + (2m + 1)}, {{Sin[x] Cos[x]}}}

Note that in the second argument we have to give sin(x) and cos(x), the
two “variables” that we wish to eliminate (usually we would just use x to
indicate the integration with respect to that variable). The option Extended

forces the computation of the delta part in the way it was done in Section 4.1
(which usually is not very efficient).
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Alternatively we can use the powerful Annihilator command in order to
get the recurrence at one stroke, after performing the substitution u = cos(x):∫ π

2

0

cos(x)2m dx =

∫ 1

0

u2m

√
1− u2

du.

In[83]:= Annihilator[Integrate[û (2m)/Sqrt[1 − u2], {u, 0, 1}], S[m]]

Out[83]= {(−2m− 2)Sm + (2m + 1)}

Feynman integrals

Since all Bessel function identities sent by Frank Olver consisted of summa-
tion problems only, we want to turn to an integration problem now. In the
following it is shown how recursive application of Chyzak’s algorithm can
solve multiple integrals. We want to tie in with a very fruitful cooperation
that takes place between the Research Institute for Symbolic Computation
(RISC) and Deutsches Elektronen-Synchrotron (DESY). In the latter insti-
tution, research on particle physics and big bang theory is done, for which
purpose so-called Feynman integrals have to be evaluated. Computer alge-
bra could already significantly contribute in the form of Carsten Schneider’s
Sigma package [78]. We study the double integral∫ 1

0

∫ 1

0

w−1−ε/2(1− z)ε/2z−ε/2

(z + w − wz)1−ε

(
1− wn+1 − (1− w)n+1

)
dw dz (4.6)

than can be found in [52, (J.17)]. The task is to compute a recurrence in n
where ε is just a parameter (that we replace by the symbol e for convenience).
We are aware of the fact that (4.6) is not a hard challenge for the physicists,
and we use it only as a proof of concept here.

For computing an annihilating ideal for the inner integral, we simply
use the command Annihilator that takes care of the inhomogeneous part
automatically:

In[84]:= expr = w (̂−1 − e/2) (1 − z)̂ (e/2) ẑ (−e/2)/(w + z − w z)̂ (1 − e)
(1 − w (̂n + 1) − (1 − w)̂ (n + 1));

In[85]:= ann = Annihilator
[
Integrate[expr, {w, 0, 1}], {S[n], Der[z]}

]
;

In[86]:= UnderTheStaircase[ann]

Out[86]= {1, Dz, Sn, D2
z , SnDz}

This result so big that we do not want to display it here. But it can be used
again as input to Chyzak’s algorithm, in order to treat the outer integral.

In[87]:= {{P}, {Q}} = CreativeTelescoping[ann, Der[z], S[n]];
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It is a little bit tricky to handle the inhomogeneous part of the outer integral
since it involves an integral itself. In other words, with Q denoting the delta
part that was obtained in the previous computation, we have to evaluate[

Q •
∫ 1

0

expr dw

]z=1

z=0

=

∫ 1

0

[Q • expr]z=1
z=0 dw. (4.7)

It turns out that the right-hand side of (4.7) is preferable. In the following,
we first compute the integrand and investigate it further. It contains sev-
eral expressions of the form 0a which we can set to zero, provided that the
symbolic parameter e is not in {−2, 0, 2} (which is a realistic assumption).

In[88]:= inh = With[{d = Together[ApplyOreOperator[Q, expr]]},
Together[(d /. z → 1) − (d /. z → 0)]];

In[89]:= Union[Cases[inh, 0̂ , Infinity]]

Out[89]=

{
01− e

2 , 0
e
2
+1, 0e/2

}
In[90]:= inh /. (0̂ ) → 0

Out[90]= 0

We find that the integrand of the inhomogeneous part is zero, hence this
whole part vanishes. Therefore the operator P annihilates the double inte-
gral, and this is the desired recurrence in n (which is of order 3):

In[91]:= Factor[P ]

Out[91]= −(e− n− 3)(e− n− 2)(e + 2n + 4)(e + 2n + 6)S3
n +

(e− n− 2)(e + 2n + 4)(e2 + 2en + 5e− 6n2 − 28n− 34)S2
n −

(n + 2)(e3− 3e2n− 6e2− 8en2− 30en− 28e + 12n3 + 64n2 + 116n + 72)Sn−
2(n + 1)(n + 2)2(e− 2n− 2)

Non-holonomic functions

We have already seen in Out[31] that also functions that are not holonomic
or ∂-finite can be treated to some extent with our package (although it is
named HolonomicFunctions!). In Section 2.6 we have mentioned how the
closure properties can be performed for functions that do not possess enough
relations to be ∂-finite. Now we want to give two examples that are in the
spirit of [27]. The handling of initial values is more involved in this setting
than for ∂-finite functions, since we have to consider infinitely many initial
values.
First, we look at the integral that is given as an example in [27]:∫ ∞

0

xa−1 Lin(−xy) dx =
π(−a)ny−a

sin(πa)
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where Lin(x) denotes n-th polylogarithm. We start by computing an anni-
hilating ideal for the integrand that is not ∂-finite but of dimension 1.

In[92]:= ann = Annihilator
[
xa−1 PolyLog[n, −x y], {S[n], Der[x], Der[y]}

]
Annihilator::nondf : The expression PolyLog[n, -x y] is not recognized to be ∂-finite.

The result will not generate a zero-dimensional ideal.

Out[92]= {xDx − yDy + (1− a), ySnDy − 1}

In[93]:= AnnihilatorDimension[ann]

Out[93]= 1

Then Chyzak’s algorithm, extended according to [27], delivers an ordinary
differential equation in y for the whole integral (the delta part vanishes for
−1 < a < 0, but this has to be established by hand) which is the same as we
obtain for the right-hand side.

In[94]:= CreativeTelescoping
[
ann, Der[x], {Der[y], S[n]}

]
Out[94]=

{
{yDy + a}, {−x}

}
In[95]:= Annihilator

[
Pi (−a)̂ n y (̂−a)/Sin[a Pi], Der[y]

]
Out[95]= {yDy + a}

In this example the initial values are easily compared since both sides give 0
for y = 0. The second non-holonomic example is the summation identity

n∑
k=0

(
k

m

)
S(n, k)(x− k +m+ 1)k−m =

n∑
k=0

(
n

k

)
S(k,m)xn−k

where (x)k = x(x + 1) · · · (x + k − 1) denotes the Pochhammer symbol or
rising factorial, and S(n, k) the Stirling numbers of the second kind. The
annihilating ideals for the two sums can be computed in a nearly completely
automatic fashion. Only the additional information that Mathematica needs
for evaluating the inhomogeneous parts, has to be figured out by hand: in the
first case it suffices to state that n is a natural number, in the second instance
we have to tell Mathematica about the Stirling recurrence—otherwise it does
not simplify the inhomogeneous part (which would lead to a far too big
annihilating ideal).

In[96]:= lhs = Annihilator
[
Sum[Binomial[k, m]

Pochhammer[x − k + m + 1, k − m] StirlingS2[n, k], {k, 0, n}],
{S[m], S[n]}, Assumptions → Element[n, Integers] && n ≥ 0

]
Annihilator::nondf : The expression StirlingS2[n, k] is not recognized to be ∂-finite.

The result will not generate a zero-dimensional ideal.

Out[96]= {SmSn + (−m− x− 1)Sm − 1}
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In[97]:= rhs = Annihilator
[
Sum[Binomial[n, k] x̂ (n − k) StirlingS2[k, m],

{k, 0, n}], {S[m], S[n]}, Assumptions → StirlingS2[n, m] +
(m + 1) StirlingS2[n, m + 1] − StirlingS2[n + 1, m + 1] == 0

]
Annihilator::nondf : The expression StirlingS2[k, m] is not recognized to be ∂-finite.

The result will not generate a zero-dimensional ideal.

Out[97]= {SmSn + (−m− x− 1)Sm − 1}

The result indicates that we have to compare initial values for m = 0 and
arbitrary n, as well as for n = 0 and arbitrary m. This means that infinitely
many cases have to be checked, which can be achieved without problems in
this instance. For m = 0 we obtain

n∑
k=0

(x− k + 1)kS(n, k) = xn =
n∑

k=0

(
n

k

)
xn−k

and for n = 0 the identity reduces to(
0

m

)
(x+m+ 1)−m = S(0,m)

which is 1 for m = 0 and 0 otherwise. This concludes the proof.

4.7 q-Identities

To finish this series of examples we would like to demonstrate how q-identities
can be treated with HolonomicFunctions. These kinds of identities contain
an extra parameter q that is assumed to be a transcendental element, in
particular no root of unity. For many classical combinatorial identities there
exist q-analogs, i.e., identities that reduce to the classical one when q is
set to 1. This aspect of HolonomicFunctions continues the tradition of
the RISC combinatorics software of always having a strong emphasis on q-
calculus. The following identity can be found in [64, Formula (56)]; it is one
of the finite forms of the Göllnitz-Gordon identities:

∞∑
j=−∞

(−1)jq4j2−3j

[
2l + 1
j + l

]
q2

= (q2l+2; q2)l+1

∞∑
j=0

q2j2+2j

(−q; q2)j+1

[
l
j

]
q2

where (a; q)m = (1 − a)(1 − aq) · · · (1 − aqm−1) denotes the q-Pochhammer
symbol and [

n
k

]
q

=
(q; q)n

(q; q)k(q; q)n−k
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denotes the q-binomial coefficient.

Note that the summations could as well be performed with qZeil [68], an
implementation of a q-version of Zeilberger’s fast algorithm. For univariate
closure properties in the q-world, the package qGeneratingFunctions [47]
is available. Since both sums have finite support we can perform creative
telescoping without having to care about the delta part (recall that J and L
replace the expressions qj and ql, respectively:

In[98]:= lhs = First
[
CreativeTelescoping

[
(−1)̂ j q (̂4j 2̂ − 3j) QBinomial[2l + 1, l + j, q 2̂],
QS[J, q ĵ] − 1, QS[L, q l̂]

]]
Out[98]=

{
S4
L,q +

(
L8q33 + L8q31 + L4q20 + L4q18 − q6 − q4 − q2 − 1

)
S3
L,q +(

L16q56+L8q36+L8q34+L8q32−L4q24−2L4q22−3L4q20−2L4q18−L4q16−
L4q14 + q10 + q8 + 2q6 + q4 + q2

)
S2
L,q +(

−L20q64−L20q62 +L16q54 +L16q52 +L16q50 +L16q48 +L12q48 +L12q46 +
L12q44 +L12q42−L8q38−2L8q36−3L8q34−3L8q32−3L8q30−2L8q28−
L8q26−L8q24 + L4q26 + 2L4q24 + 3L4q22 + 3L4q20 + 2L4q18 + 2L4q16 +
L4q14 − q12 − q10 − q8 − q6

)
SL,q +(

L24q66 − L20q62 − L20q60 − L20q58 − L20q56 − L20q54 − L20q52 + L16q56 +
L16q54 + 2L16q52 + 2L16q50 + 3L16q48 + 2L16q46 + 2L16q44 + L16q42 +
L16q40 − L12q48 − L12q46 − 2L12q44 − 3L12q42 − 3L12q40 − 3L12q38 −
3L12q36−2L12q34−L12q32−L12q30 +L8q38 +L8q36 +2L8q34 +2L8q32 +
3L8q30 + 2L8q28 + 2L8q26 + L8q24 + L8q22 − L4q26 − L4q24 − L4q22 −
L4q20 − L4q18 − L4q16 + q12

)}
In[99]:= ct = First

[
CreativeTelescoping

[
q (̂2j 2̂ + 2j)

QBinomial[l, j, q 2̂]/QPochhammer[−q, q 2̂, j + 1],
QS[J, q ĵ] − 1, QS[L, q l̂]

]]
Out[99]=

{(
− L2q5 − 1

)
S2
L,q +

(
L4q8 + L2q5 − L2q4 + q2 + 1

)
SL,q +

(
L2q4 − q2

)}
In order to obtain a recurrence for the right hand side, we compute an an-
nihilating ideal of the extra factor (q2l+2; q2)l+1 and use the closure property
product:

In[100]:= ann = Annihilator
[
QPochhammer[q̂ (2l +2), q̂ 2, l +1], QS[L, q̂ l]

]
Out[100]=

{
SL,q +

(
L6q8 + L4q6 − L2q2 − 1

)}
In[101]:= rhs = DFiniteTimes[ann, ct]

Out[101]=

{
S2
L,q+

(
L8q17+L6q14−L6q12+L4q11+L4q10−L4q9+L2q7−L2q6−q2−1

)
SL,q+(

−L12q21−L10q17+L10q16+L8q17+L8q15+L8q12+L6q13−L6q12+L6q11−
L6q10 − L4q11 − L4q8 − L4q6 − L2q7 + L2q6 + q2

)}
We end up with two different recurrences. We can now use the closure
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property sum to get an operator that annihilates either side; it turns out
that it is the same as we computed already for the left-hand side. This
means that it is a left multiple of the recurrence for the right-hand side.

In[102]:= GBEqual[DFinitePlus[lhs, rhs], lhs]

Out[102]= True

In[103]:= OreReduce[lhs, rhs]

Out[103]= {0}

Hence we have to compare 4 initial values:

In[104]:= Table
[
Sum

[
(−1)̂ j q (̂4j 2̂ − 3j) QBinomial[2l + 1, l + j, q 2̂],
{j, −l, l + 1}

]
==

QPochhammer[q (̂2l + 2), q 2̂, l + 1]
Sum

[
q (̂2j 2̂ + 2j) QBinomial[l, j, q 2̂]
/QPochhammer[−q, q 2̂, j + 1], {j, 0, l}

]
,

{l, 0, 3}
]

// FullSimplify

Out[104]= {True, True, True, True}

4.8 Interface to Singular/Plural

Computing Gröbner bases is a very costly task, especially in noncommuta-
tive polynomial rings. And since this task is only a subproblem in the al-
gorithms that are contained in HolonomicFunctions, our main concern was
not to make this implementation of Buchberger’s algorithm the fastest in the
world; using an interpreter language, in our case that of Mathematica, this
anyway seems to be a hopeless undertaking. Ergo we have to admit that our
OreGroebnerBasis cannot compete with special purpose computer algebra
systems like Singular [43] and its noncommutative extension Plural [57, 55].
The idea therefore was to provide an interface between HolonomicFunctions

and Singular/Plural that enables the user to switch to the special purpose
system for heavy computations. Manuel Kauers and Viktor Levandovskyy
have written such an interface for commutative Gröbner bases and related
computations [50]. We have extended this piece of software such that it
can also translate objects of type OrePolynomial into polynomials in the
corresponding noncommutative ring in Plural. This works already fine for
computations in purely polynomial algebras like the Weyl algebra.

But in contrast to the Weyl algebra, the noncommutativity in a rational
Ore algebraK(x)[∂x; σx, δx] is between the “variables” ∂1, ∂2, . . . of the skew
polynomial ring and its coefficients. It was a basic prerequisite in the design
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of Singular from the very beginning, that the coefficients commute with the
variables that generate the polynomial ring.

During two visits to RISC, Viktor Levandovskyy and Hans Schönemann
worked hard on an extension of the Singular kernel that enables computa-
tions in rational Ore algebras. At the moment a prototype version is tested
which will be included into one of the forthcoming Singular distributions. We
also plan to include our interface between HolonomicFunctions and Singu-
lar/Plural into [50].



Chapter 5

Proof of Gessel’s Lattice Path
Conjecture

In this chapter we want to describe how the methods that were subject of the
previous chapters could successfully be used to prove a conjecture about the
enumeration of certain lattice paths that was open for several years (Doron
Zeilberger named it “the holy grail for lattice-walk-counters” [51]). The
results presented below evolved from a collaboration with Manuel Kauers
and Doron Zeilberger and have recently been published in the prestigious
journal PNAS [49].

5.1 Gessel walks

We start by introducing some basic notions. The objects that we are going
to study are walks in the integer lattice N2 that start at the origin (0, 0) and
use only unit steps from the step set

G :=

{(
−1
0

)
,

(
1
0

)
,

(
−1
−1

)
,

(
1
1

)}
= {←,→,↙,↗}.

Of course we demand that a walk does not leave the first quadrant N2. Such
walks we want to call Gessel walks ; an example is depicted in Figure 5.1.

Throughout this chapter we want to use the symbol f(n; i, j) with i, j, n ∈
N to denote the number of Gessel walks that consist of exactly n steps, start
at (0, 0) and end at the point (i, j).

The conjecture that we are going to prove is about the enumeration of
such Gessel walks and has been formulated by Ira Gessel around the year
2001. Unfortunately he did not publish it anywhere, but nevertheless it was
spread inside the combinatorial community and several people worked on it.

101
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Figure 5.1: Example of a closed Gessel walk

In short Gessel conjectured that f(n; 0, 0), the number of closed Gessel walks
that return to the origin after n steps, can be computed by the innocent-
looking formula

f(n; 0, 0) =

{
16k (5/6)k(1/2)k

(2)k(5/3)k
if n = 2k

0 if n is odd

5.2 Transfer to the holonomic world

When just reading the statement of Gessel’s conjecture it is not immediately
clear how the techniques related to the holonomic systems approach can be
applied. Before doing so we have to reformulate the problem and the key
for that is the quantity f(n; i, j) which is more general than needed to state
the conjecture. But this generality makes it easier to characterize it via
recurrence relations.

Looking at the steps {←,→,↗,↙} that are allowed in Gessel walks, a
very simple recurrence for f(n; i, j) can be readily read off. Consider a certain
point in (i, j) ∈ N2 and assume that this point was reached with exactly n
steps. We can express the number of possible paths by considering all points
that are candidates for the previous position (see Figure 5.2):

f(n; i, j) = f(n− 1; i+ 1, j) + f(n− 1; i− 1, j) +
f(n− 1; i+ 1, j + 1) + f(n− 1; i− 1, j − 1).

(5.1)

Having only this single recurrence at hand we are still far away from a
∂-finite description of the function f(n; i, j). Moreover it is not at all clear



5.2. Transfer to the holonomic world 103

r r r r
r r r r
r r r r
r r r r

u
(i, j)
�-

�
�

�	

�
�

��

Figure 5.2: Four possibilities to reach the point (i, j) with a single step.

a priori whether such a description exists (in fact, this question was open as
well and has been answered only very recently by Alin Bostan and Manuel
Kauers [20] who proved that the trivariate generating function of f(n; i, j) is
even algebraic!). Also note that with a single operator we cannot do much
(no recombination, elimination, summation, etc.). So we wish to have more
recurrences and the question is how to find these. The answer is: with
guessing!

What sounds as a joke at the first glance turns out to be a serious and
very powerful technique. The basic ingredient is an ansatz with unspecified
coefficients for a linear recurrence with polynomial coefficients. The prereq-
uisite is that sufficiently many values of the sequence in question are known.
Plugging them into the ansatz yields a linear system that has to be solved
in the end. This method has deserved the name guessing for the reason that
there is some uncertainty in it: There is no guarantee that guessed recur-
rences are indeed correct. We only know that they describe our sequence up
to the limit to which we provided concrete values. But who knows how the
sequence proceeds beyond them? The more values we provide the higher is
the probability that a guessed recurrence is correct, but we can never be 100%
sure. Summarizing, we have to prove separately that the guessed recurrences
are indeed correct!

The guessing was conducted by Manuel Kauers with his powerful Mathe-
matica package Guess [46]. The result is a set of 68 recurrences and each of
them—except the one from above—fills several lines or even pages. For that
reason and to save paper, we do not print them here.

Instead we present a simple procedure how to prove their correctness. It
has to be noted that this method is very particular and is applicable only to
a very restricted class of problems. Let

O = Q(n, i, j)[Sn;Sn, 0][Si;Si, 0][Sj;Sj, 0]
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and let
T = SnSiSj − S2

i Sj − Sj − S2
i S

2
j − 1

be the simple recurrence (5.1). Given some operator R ∈ O we want to
decide whether R • f(n; i, j) = 0 or not.

We will argue that it suffices to show that (TR) • f = 0, because then it
can be algorithmically decided whether also R•f = 0. Saying (TR)•f = 0 is
equivalent to the assertion that R•f satisfies the recurrence T . But R•f = 0
if and only if all the initial values (R•f)(0; i, j) are zero. The crucial property
with such problems coming from restricted lattice walks is that f(n; i, j) = 0
for i > n or j > n, so we are left with only finitely many values to check!

By a division with remainder computation we obtain

TR = UT + V

where the remainder V is of smaller total degree with respect to the variables
n, i, j. This can easily be seen by—without loss of generality—consider R to
be a single term of the form p(n, i, j)Sa

nS
b
i S

c
j . Then

TR = p(n+ 1, i+ 1, j + 1)Sa+1
n Sb+1

i Sc+1
j − p(n, i+ 2, j + 2)Sa

nS
b+2
i Sc+2

j − . . .

Viewing the first displayed term as the leading one (this can be achieved by
a lexicographic monomial order for example), the quotient will be

U = p(n+ 1, i+ 1, j + 1)Sa
nS

b
i S

c
j

and it is now obvious that the degree in the coefficients of the remainder
drops.

Since (UT ) • f = 0 for sure, we reduced the problem: TR • f = 0 if
and only if V • f = 0. We continue recursively with TV knowing that after
finitely many steps we will end up with remainder 0. This completes the
recurrence proving algorithm; it is needless to say that we applied it to all
68 guessed candidate recurrences with affirmative result.

5.3 The quasi-holonomic ansatz

Let I ⊂ O be the left ideal that is generated by the 68 recurrences that we
guessed in the previous section. The quasi-holonomic ansatz proposed in [51]
consists in finding an operator R ∈ I that has the special form

R(n, i, j, Sn, Si, Sj) = P (n, Sn) + iQ1(n, i, j, Sn, Si, Sj) + jQ2(n, i, j, Sn, Si, Sj).
(5.2)
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By construction, the operator R annihilates f(n; i, j). If we now set
i = j = 0 the only part that will survive is P (n, Sn), which then will be
an annihilating operator of f(n; 0, 0). As soon as we have such a univariate
recurrence, it is an easy routine exercise to rigorously proving or disproving
Gessel’s conjecture.

My colleague Manuel Kauers tried his Guess package in order to guess
this operator R. By means of modular computations he found out that if it
really exists, then R must be bigger than what nowaday’s computers could
cope with.

5.4 Takayama’s algorithm adapted

The fact that by setting i = j = 0 in equation (5.2) the two parts with
Q1 and Q2 will vanish suggests to tackle the problem with a Takayama-like
approach. Recall that Takayama’s algorithm (see Section 3.2) computes the
principal part of a telescoping relation without caring about the delta parts.
For that reason one has to ensure natural boundaries in order to make the
inhomogeneous parts vanish. In the quasi-holonomic ansatz we are in an
even more comfortable position: The “delta parts” will vanish and we do
not have to care about any extra condition.

So instead of computing the full operator R and then setting i = j = 0,
we first substitute i = j = 0 and then compute the “principal part” P
by eliminating Si and Sj. Hence the only difference to Takayama’s original
algorithm is that here somehow the rôles of the shift operators Si and Sj and
corresponding variables i and j are interchanged. Still we have to care about
the noncommutativity and shall not allow multiplication by either Si or Sj

after the substitution i = j = 0. As before this is achieved by translating
the operators to elements in a module, the positions of whose elements being
in correspondence with the power products Sα

i S
β
j . For example, the simple

recurrence (5.1)

SnSiSj − S2
i Sj − Sj − S2

i S
2
j − 1

translates to

(−1,−1, 0, 0, Sn, 0, 0,−1,−1)T

when going up to degree 2 in both Si and Sj. Finally we have to compute a
Gröbner basis with position over term ordering to get and element with zero
entries except in the first position, corresponding to an operator P free of Si

and Sj.
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5.5 Results

Following the lines of the previous section we carried out the necessary
computation with our package HolonomicFunctions. They are quite time-
consuming and therefore we first experimented with modular Gröbner bases,
i.e. using the option Modulus -> p in OreGroebnerBasis we calculate with
the coefficient domain Zp(n) instead ofQ(n) and get information about which
input (a selection of the 68 recurrences) and which pair selection strategy
in Buchberger’s algorithm deliver the desired P (n, Sn) in shortest time (it
turned out that our elimination strategy was superior here). Moreover
we can record during the modular run, which pairs reduced to zero and
omit them in the final computation over Q(n). Another means to shorten
Buchberger’s algorithm is to set the option Incomplete -> True. The ef-
fect is that Buchberger’s algorithm is interrupted as soon as an element that
matches the desired elimination property. Of course it is not guaranteed then
that this element is the minimal one that lies ideal generated by the input.
Sometimes however, like in the application that we have in mind here, this
does not hurt much. If we have to compare 10 initial values in the end or
20, we do not really care, since we can easily compute the number of Gessel
walks for moderate-sized number of steps (for other applications it may well
by that this is not the case!).

Finally the computation took around 7 hours and delivered an operator
P (n, Sn) annihilating f(n; 0, 0) of impressive size (order 32, polynomial co-
efficients of degree 172 and therein integers with up to 385 decimal digits).
With the computer it is now easily verified that this monstrous recurrence
operator also annihilates

g(n; 0, 0) :=

{
16k (5/6)k(1/2)k

(2)k(5/3)k
if n = 2k

0 if n is odd

We now have to compare initial values, in other words we have to inspect
whether f(n; 0, 0) = g(n; 0, 0) for 0 ≤ n ≤ 31 (this is indeed the case).
Finally we have to make sure that the leading coefficient of P (n, Sn) (and all
polynomial contents that have been cancelled out during the computation) do
not introduce singularities, i.e., do not have positive integer roots. In order
to get a handle on the contents that during the run of Buchberger’s algorithm
are tacitly canceled, the are stored in the variable GlobalNormalizeFactors.
The fact that all these polynomials have only negative integer roots concludes
our rigorous computer proof of Gessel’s conjecture.

The natural question that arises is whether this computational effort is
really necessary, or whether it should not be possible to prove this simply-
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stated conjecture in a more direct way by hand. Since so far, our proof is
the only one, we don’t know. But Doron Zeilberger [49] offers a bet on it:

I offer a prize of one hundred (100) US-dollars for a short, self-
contained, human-generated (and computer-free) proof of Ges-
sel’s conjecture, not to exceed five standard pages typed in stan-
dard font. The longer that prize would remain unclaimed, the
more (empirical) evidence we would have that a proof of Gessel’s
conjecture is indeed beyond the scope of humankind.

5.6 Related conjectures

In 2008 also Marko Petkovšek and Herb Wilf worked on Gessel’s conjecture.
In their report [71] they state a bunch of conjectures that are related to
Gessel’s and that we want to investigate in this section.

The first two conjectures of Petkovšek and Wilf concern other special
cases of the general path counting function f(n; i, j), namely f(2n; 0, 1) and
f(2n+ 1; 1, 0), which count the number of Gessel walks that end at (0, 1) or
(1, 0) respectively. For the first they conjecture the closed form formula

f(2n; 0, 1) = 16n (1/2)n

(3)n

(
(111n2 + 183n− 50) (5/6)n

270(8/3)n

+
5(7/6)n

27(7/3)n

)
and for the latter they conjecture that it satisfies the second order recurrence

(n+ 3)(3n+ 7)(3n+ 8) g(n+ 1)
−8(2n+ 3)(18n2 + 54n+ 35) g(n)

+256n(3n+ 1)(3n+ 2) g(n− 1) = 0.

We have proven both conjectures in the same way as we did Gessel’s. Omit-
ting the details here, we just want to mention that the computations did not
become smaller compared to the case f(n; 0, 0) but grew.

In the same article [71] Marko Petkovšek and Herbert Wilf conjectured
that h(n) := f(2n; 2, 0) is not holonomic. With our approach we were able
to disprove this conjecture! In fact, we could prove that h(n) satisfies the
recurrence

0 = 4096(n+1)(2n+1)(2n+3)(3n+4)(3n+5)(6n+5)(6n+7) p1(n)h(n)

−128(2n+ 3) p2(n)h(n+ 1) + 48(n+ 4) p3(n)h(n+ 2)

−8(n+ 4)(n+ 5)(3n+ 13)(3n+ 14) p4(n)h(n+ 3) +

(n+4)(n+5)(n+6)(3n+13)(3n+14)(3n+16)(3n+17) p5(n)h(n+ 4)
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that was guessed by Manuel Kauers with help of the computer. In order to
present a clear arrangement, we abbreviated some nasty irreducible factors
of higher degree:

p1(n) = 6144n7 + 130560n6 + 1169216n5 + 5718720n4 + 16490716n3+
28015035n2 + 25933899n+ 10077210,

p2(n) = 31850496n13 + 1043103744n12 + 15528112128n11+
139066675200n10 + 835537836288n9 + 3554184658752n8+
11003992594864n7 + 25083927328960n6 + 42052581871616n5+
51138759649954n4 + 43770815405708n3 + 24915467579665n2+
8429189779675n+ 1274964941250,

p3(n) = 15925248n13 + 561364992n12 + 9001764864n11 + 86874808320n10+
562452019584n9 + 2576877461856n8 + 8584177057392n7+
21020268432120n6 + 37767656881868n5 + 49065078284877n4+
44671143917844n3 + 26891118085035n2 + 9545234776900n+
1498120123500,

p4(n) = 442368n10 + 11612160n9 + 133731840n8 + 888142080n7+
3758533024n6 + 10562908440n5 + 19901273510n4+
24718969695n3 + 19263730233n2 + 8437822050n+ 1558180800,

p5(n) = 6144n7 + 87552n6 + 514880n5 + 1616000n4 + 2911836n3+
2992423n2 + 1606825n+ 341550.



Chapter 6

Applications in Numerics

A domain which is quite far away from symbolic computation and computer
algebra but in which our package HolonomicFunctions can be very fruit-
fully applied, are finite element methods (FEM) in numerical analysis. These
methods serve to approximate the solution of a partial differential equation
on a given domain Ω ⊆ Rd subject to certain constraints, e.g., boundary
conditions. The domain Ω is decomposed into a set of finite elements, that
are just intervals when working in one dimension and that can be triangles or
tetrahedra for example when working in dimension 2 or 3 respectively. Us-
ing the concept of weak derivative—that is a generalization of the derivative
in the classical sense to nondifferentiable functions—the original problem is
transformed to a variational formulation. In order to obtain this formulation
the original equation is multiplied by a smooth test function v, then inte-
grated over Ω and simplified by partial integration. Two main reasons for
doing so are that the order of the partial differential equation is decreased by
passing to the weak formulation and that one now can look for solutions in a
Sobolev space V that admits also non-smooth solutions. After this reformu-
lation usually the task consists in finding solutions u ∈ V of a(u, v) = F (v)
for all v ∈ V , for some bilinear form a and some linear form F . This problem
now is discretized by approximating the infinite-dimensional space V by some
finite-dimensional space that is spanned by a finite set of basis functions. By
that the variational formulation translates into a linear system that has to
be solved. The basis functions are chosen in a way that they have local
support, for example being nonzero only on a small patch of neighboring
elements, and therefore they are typically defined to be piecewise polynomial
functions. Furthermore they influence the sparsity of the linear system that
in the end has to be solved. It turned out that orthogonal polynomials serve
this goal perfectly in many instances. This is the point where computer
algebra can contribute valuable results: Computing relations for the basis

109
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functions may help in building the system matrix, and providing recurrences
for the matrix entries can show that most of them are zero. Being not at all
an expert in finite element methods we would like to refer to [73] where the
interested reader can find an excellent and easy-to-read introduction to the
subject (this paragraph also followed this exposition).

6.1 Small examples

A Jacobi polynomial identity

This section contains some identities that are easily derived with our package
HolonomicFunctions and which are useful for mathematicians working in
numerics. Veronika Pillwein was so kind to communicate these formulas to
us. We start with a relation for the Jacobi polynomials that can be found in
her thesis [73, Formula (4.7)]:

(2n+ a+ b)P (a−1,b)
n (x) = (n+ a+ b)P (a,b)

n (x)− (n+ b)P
(a,b)
n−1 (x).

In order to find this relation automatically we have to formulate the problem
first, for example: For P

(a,b)
n (x) find a mixed recurrence with shifts in a and n,

whose coefficients are free of x. This can be seen as an elimination problem:
Find an operator in the annihilating ideal of P

(a,b)
n (x) that is free of Sb, Dx

and x. This problem can be solved by means of Gröbner bases. We have to
include the variable x into the generators of the algebra, because otherwise
we don’t have a handle on it with the monomial order (but recall that because
of extension/contraction we are not guaranteed to find the smallest operator
or to succeed at all by such an approach):

In[105]:= jac = Annihilator
[
JacobiP[n, a, b, x], {S[n], S[a], S[b], Der[x]}

]
Out[105]= {(a + b + n + 1)Sb + (1− x)Dx + (−a− b− n− 1),

(a + b + n + 1)Sa + (−x− 1)Dx + (−a− b− n− 1),
(2an + 2a + 2bn + 2b + 2n2 + 4n + 2)Sn + (−ax2 + a− bx2 + b− 2nx2 + 2n−

2x2 + 2)Dx + (a2(−x)− a2 − 2abx− 3anx− an− 3ax− a− b2x + b2 −
3bnx + bn− 3bx + b− 2n2x− 4nx− 2x),

(x2 − 1)D2
x + (ax + a + bx− b + 2x)Dx + (−an− bn− n2 − n)}

In[106]:= First[OreGroebnerBasis[jac, OreAlgebra[x, S[b], Der[x], S[n], S[a]],
MonomialOrder → EliminationOrder[3]]]

Out[106]= (−a− b− n− 2)SnSa + (a + b + 2n + 3)Sn + (b + n + 1)Sa

In this simple example, elimination via Gröbner basis worked fine, but in
general the command FindRelation is preferable for such problems:
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In[107]:= FindRelation[jac, Eliminate → {x}, Pattern → { , , 0, 0}]

Out[107]= {(−a− b− n− 2)SnSa + (a + b + 2n + 3)Sn + (b + n + 1)Sa}

In the above input line the pattern { , , 0, 0} tells that only exponent vectors
are taken into account where the first two positions can contain anything but
the last two, which correspond to Sb and Dx, have to be 0. Of course, we
could also start differently by computing an annihilating ideal for P

(a,b)
n (x)

with respect to Sn and Sa only, and then eliminate x.
There is a different way to formulate the problem, namely to ask for an

operator with a certain support. We have seen that the relation that we are
looking for, involves the monomials Sa, Sn, and SaSn. We can specify this
condition with the option Support:

In[108]:= FindRelation
[
jac, Support → {S[a], S[n], S[a] S[n]}

]
Out[108]= {(a + b + n + 2)SnSa + (−a− b− 2n− 3)Sn + (−b− n− 1)Sa}

Integrated Jacobi polynomials

As a second example we want to turn to integrated Jacobi polynomials that
were introduced in [18, 17] for constructing sparse shape functions for tetra-
hedral p-FEM. They are defined via

p̂a
n(x) :=

∫ x

−1

P
(a,0)
n−1 (s) ds. (6.1)

In order to find relations for p̂a
n(x), we first need to compute an annihilating

ideal for it. Unfortunately this cannot be achieved completely automatic
(by typing Annihilator of the integral expression), because Mathematica
spends too much time in simplifying the inhomogeneous part. So we have to
work a little bit and first compute a creative telescoping relation for (6.1):

In[109]:= ann = Annihilator
[
JacobiP[n − 1, a, 0, x], {Der[x], S[n], S[a]}

]
;

In[110]:= ct = CreativeTelescoping
[
ann, Der[x], {S[n], S[a]}

]
Out[110]=

{
{1},

{
a + n− ax− nx

n(−1 + a + n)
Sa +

−2a− n + nx

n(−1 + a + n)

}}
Now we have to care about the inhomogeneous part. For the lower bound we
can easily convince ourselves that P

(a,0)
n (−1) does not depend on a. Hence Sa

can be replaced by 1 in the delta part and we find that the lower bound does
not contribute to the inhomogeneous part.

In[111]:= Annihilator
[
JacobiP[n − 1, a, 0, −1]

]
Out[111]= {Sn + 1, Sa − 1}



112 Chapter 6. Applications in Numerics

In[112]:= OrePolynomialSubstitute
[
ct[[2, 1]], {S[a] → 1, x → −1}

]
Out[112]= 0

Applying the delta part to the integrand (we bypassed the extra substitution
s → x) thus gives the inhomogeneous part, and an annihilating ideal for it
can be obtained by using the closure property DFiniteOreAction. Since the
principal part was 1 this ideal does already annihilate the whole integral.

In[113]:= phat = DFiniteOreAction
[
ann, ct[[2, 1]]

]
Out[113]=

{
(2 + 2n)Sn + (a + 2n− ax− 2nx)Sa + (2− 2a− 2n),
(1 + x)Dx + (−a− n)Sa + (−1 + a + n),
(−1− a− n + x + ax + nx)S2

a + (3a + 2n− ax− 2nx)Sa + (2− 2a− 2n)
}

A useful property of the integrated Jacobi polynomial—breakbefores is
that they can be written in terms of the original Jacobi polynomials whereat
this relation is free of the variable x and shifts are only taken with respect to n
(see [17, Formula (12)]). With FindRelation this identity is immediately

recovered, where we make use of the fact that Dx • p̂a
n(x) = P

(a,0)
n−1 (x):

In[114]:= Factor
[
FindRelation

[
phat, Eliminate → x, Pattern → { , , 0}

]]
Out[114]=

{
2(a + n + 1)(a + 2n)DxS2

n + 2a(a + 2n + 1)DxSn − 2n(a + 2n + 2)Dx −
(a + 2n)(a + 2n + 1)(a + 2n + 2)Sn

}
As a last example of this type we want to derive automatically the recur-

rence relation for p̂a
n(x) that is given in [17, Formula (14)], and we observe

that the result matches exactly:

In[115]:= ApplyOreOperator
[
First

[
FindRelation

[
phat, Pattern → {0, , 0}

]]
,

ph[n]
]

/. n → n − 2 // FullSimplify

Out[115]= 2(−2 + n)(−3 + a + n)(−2 + a + 2n) ph[−2 + n]−
(−3 + a + 2n)((−2 + a)a + (−4 + a + 2n)(−2 + a + 2n)x) ph[−1 + n] +
2n(−1 + a + n)(−4 + a + 2n) ph[n]

6.2 Simulation of electromagnetic waves

The rest of this chapter is dedicated to some results that arose from a joint
work with Joachim Schöberl (RWTH Aachen). The goal is to simulate the
propagation of electromagnetic waves for which he uses high order discontin-
uous Galerkin finite elements. The results of these simulations can be applied
for example for constructing antennas of mobile phones, car radios, etc. Some
inventions in this context that make use of our symbolically derived formulas,
are considered to be registered as a patent.
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We want to approximate the electric field E = (Ex(t), Ey(t), Ez(t)) and
the magnetic field H = (Hx(t), Hy(t), Hz(t)) in 3D space. For that purpose
we use Maxwell’s equations in free space:

∂H

∂t
= −∇×E

∂E

∂t
=

1

µ0ε0

∇×H

where ε0 and µ0 are the electric and the magnetic constant respectively, and
where ∇×F denotes the curl operator (also known as rotor) which is defined
to be

∇× F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (Fx, Fy, Fz)

=

(
∂Fz

∂y
− ∂Fy

∂z
,
∂Fx

∂z
− ∂Fz

∂x
,
∂Fy

∂x
− ∂Fx

∂y

)
.

As described above, the unknown quantities are approximated by polyno-
mial basis functions using orthogonal polynomials. The basis functions are
denoted by ϕi,j,k(x, y, z), and in this application it turned out to be useful to
define them as follows:

ϕi,j,k(x, y, z) = ui(x, y, z)vi,j(x, y)wi,j,k(x), where

ui(x, y, z) = Pi

(
2z

(1− x)(1− y)
− 1

)
(1− x)i(1− y)i,

vi,j(x, y) = P
(2i+1,0)
j

(
2y

1− x
− 1

)
(1− x)j,

wi,j,k(x) = P
(2i+2j+2,0)
k (2x− 1),

(6.2)

where Pn(x) and P
(a,b)
n (x) denote the Legendres and Jacobi polynomials,

respectively. These basis functions have nice properties, for example being
orthogonal on the reference tetrahedron

{(x, y, z) ∈ R3 | x ≥ 0 ∧ y ≥ 0 ∧ z ≥ 0 ∧ x+ y + z ≤ 1}.

6.3 Relations for the basis functions

For setting up the linear system, integrals over products of basis functions
and their partial derivatives in all combinations need to be computed, which
then yield the entries for the system matrix. Certain rewritings of the basis
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functions have to be performed during this process. An important step is to
express the partial derivatives (with respect to x, y, and z, respectively) in
the original basis. In other words, we want to rewrite

∂

∂x
ϕi,j,k(x, y, z) =

∑
α∈N3

cα · ϕ(i,j,k)+α(x, y, z) (6.3)

as a linear combination of the basis functions themselves. The same applies
to the derivatives with respect to y and z, but for sake of simplicity we
content ourselves with writing explicitly only the first case, the ∂

∂x
derivative.

Such relations are easily found by just computing an annihilating ideal for
ϕi,j,k(x, y, z) with our command Annihilator:

In[116]:= phi = (1 − x)̂ (i + j) (1 − y)̂ i LegendreP[i, 2z/((1 − x)(1 − y)) − 1]
JacobiP[j, 2i+1, 0, 2y/(1−x)−1] JacobiP[k, 2i+2j+2, 0, 2x−1];

In[117]:= Timing[ann = Annihilator[phi, {Der[x], S[i], S[j], S[k]}]; ]

Out[117]= {820.147,Null}

In[118]:= Support[ann]

Out[118]= {{S2
k , Sk, 1}, {S2

j , SjSk, Sj , Sk, 1}, {S2
i , SiSj , SiSk, SjSk, Si, Sj , Sk, 1},

{DxSk, SiSj , SiSk, SjSk, Dx, Si, Sj , Sk, 1}, {DxSj , SiSj , SiSk, SjSk, Dx, Si, Sj , Sk, 1},
{DxSi, SiSj , SiSk, SjSk, Dx, Si, Sj , Sk, 1}, {D2

x , SiSj , SiSk, SjSk, Dx, Si, Sj , Sk, 1},
{SiSjSk, SiSj , SiSk, SjSk, Dx, Si, Sj , Sk, 1}}

In[119]:= ByteCount[ann]

Out[119]= 215677308

The last operator is exactly of the form (6.3). But there is another constraint
that we did not mention so far, namely the coefficients cα have to be free
of x, y, and z, and therefore may only depend on i, j, and k. It would
be too much to expect a relation of the form (6.3) matching this additional
condition. Hence we allow more freedom on the left-hand side, namely to
have a linear combination of shifted ∂

∂x
derivatives, their coefficients also

being free of x, y, and z. More concretely we are now looking for a finitely-
supported operator of the form∑

(l,m,n)∈N3

c1,l,m,n(i, j, k)DxS
l
i S

m
j S

n
k +

∑
(l,m,n)∈N3

c0,l,m,n(i, j, k)Sl
i S

m
j S

n
k . (6.4)

Having implemented noncommutative Gröbner bases, our first attempt
was to use them to eliminate the variables x, y, and z. When we start with
an annihilating ∂-finite ideal with respect to the Ore algebra

Q(i, j, k, x, y, z)[Dx; 1, Dx][Si;Si, 0][Sj;Sj, 0][Sk;Sk, 0]



6.3. Relations for the basis functions 115

we can hope that an operator P with degDx
P = 1 (matching the form of

(6.4)) is found. But we can do better as we will see later. Before tackling
this difficult problem we insert an intermezzo by looking at the simpler two-
dimensional case.

2D case

Let’s for a moment assume that our world is a flat disc (this can also be a
realistic assumption if we consider plane waves where the propagation in the
third dimension can be neglected). Then we would be interested in simulating
the propagation of electromagnetic waves in two dimensions only. In this case
the finite elements are just flat triangles and the basis functions are much
simpler:

ϕi,j(x, y) = (1− x)iP
(2i+1,0)
j (2x− 1)Pi

(
2y

1− x
− 1

)
.

The task is the same as before, namely to find an {x, y}-free operator that is
a 2D-analog of (6.4). The elimination of the two variables can be achieved by
Gröbner bases and indeed we find an operator that involves only Dx and no
higher derivative. But the computation takes quite long: we interrupted it
after more than one day and took the smallest operator in the intermediate
basis that fits our needs. Moreover this result seems to be far from being
optimal: Its support involves 42 monomials, the shifts are up to order 9 and
the coefficients have degrees up to 13 and 14 in i and j, respectively. This
somehow was to be expected since with the Gröbner basis approach we suffer
from the notorious extension/contraction problem (see Section 2.4, as well
as the Examples 2.24 and 3.1).

At the end of Section 3.1 we described a method by ansatz that can
deliver such {x, y}-free operators. Just use equation (6.4) as the ansatz (of
course without k and Sk), reduce it with the ∂-finite annihilating ideal, set
the coefficients to zero, do coefficient comparison with respect to x and y,
and solve the resulting linear system over Q(i, j)! Even more is possible:
the degree condition on Dx can be incorporated from the very beginning
when creating the ansatz. The last but very important point is that we can
make use of the modular techniques that have been described in Section 3.4.
Indeed, using our command FindRelation that automatically performs these
steps, we can find {x, y}-free operators for both derivatives ∂

∂x
and ∂

∂y
in a

few seconds. We should mention that the Gröbner basis elimination approach
works better if we consider the derivative with respect to y; in this case we get
the Gröbner basis in less than a minute and the desired operator is exactly
the same as we have found by ansatz.
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3D case

Since the times of Copernicus we know that the earth is not a flat disc
which leads us back to our original problem in three dimensions. The two-
dimensional intermezzo has taught us that it may not be a good idea to try
Gröbner basis elimination in the 3D case. Instead we immediately try to find
(6.4) by ansatz. We primarily focus on the ∂

∂x
derivative again (the other

two give similar results). The modular computations already take about 10
hours and they tell us that the smallest operator of the form (6.4) has the
following support (for that task the command FindSupport which performs
only the modular computations, has been used):
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This is impressive but unfortunately rather useless. Even if we succeeded
in computing the coefficients (for this purpose homomorphic images and
rational reconstruction can be used), the relation is of a size that might not
help in speeding up the work of the numerists. But it also illustrates another
advantage of the ansatz technique combined with modular computations: In
certain instances as it is the case in the current example, we get a lot of
information about the expected result at a very early stage. This usually
suffices to decide whether it is worth to proceed or whether the computation
should be aborted because the result will not match the individual needs.

6.4 Extension of the holonomic framework

As we have seen in the last section, the relations that we in principle could
derive are not very adjuvant. Moreover, by having followed the proposed
ansatz, we have a proof that no smaller relations (with respect to the total
degree of the involved Ore operators) can exist. At this point, Veronika
Pillwein and Joachim Schöberl came up with the following idea: Since the
basis functions are composed of three factors ϕ = u · v · w (see (6.2)), the
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product rule delivers

∂ϕ

∂x
=
∂u

∂x
vw + u

∂v

∂x
w + uv

∂w

∂x
.

It is now manifest to split the right-hand side and to try to find smaller
relations that connect for example uvw and ∂u

∂x
vw.

The question is how this fits into the holonomic framework where we
handled only equations of the form P • f = 0 for some operator P . A
relation that contains f1 = uvw and f2 = ∂u

∂x
vw cannot be formulated as an

operator applied to some function yielding zero (at least not for general u,
v, and w). Instead it could be formulated as

P1 • f1 + P2 • f2 = 0. (6.5)

More generally we can consider an arbitrary number of functions f1, . . . , fd.
The natural way to express a relation like (6.5) is by introducing the free left
O-module M = Od. The operations in this module are defined component-
wise, e.g.,

R · (P + Q) = R ·

P1 +Q1
...

Pd +Qd

 =

R · (P1 +Q1)
...

R · (Pd +Qd)

 =

RP1 +RQ1
...

RPd +RQd


for R ∈ O and P ,Q ∈ M . Denoting with F the space of functions that we
consider, we define the action of P ∈M on f ∈ Fd by

P • f =

P1
...
Pd

 •
f1

...
fd

 := P1 • f1 + · · ·+ Pd • fd. (6.6)

If the right-hand side of (6.6) evaluates to zero we say that the module ele-
ment P annihilates the vector of functions f . The set of all elements in M
that annihilate f is a left submodule of M . So it makes sense to speak about
annihilating modules rather than annihilating ideals. This construction be-
comes useful as soon as we are able to compute a basis for the submodule
of relations between f1, . . . , fd, i.e. the annihilator AnnM(f) (as always we
would be happy with a sufficiently large submodule, without claiming that
it coincides with the full annihilator). Trivially we get that{

(P1, . . . , Pd)
T ∈M | Pi • fi = 0 for 1 ≤ i ≤ d

}
⊆ AnnM(f). (6.7)

In many cases, when the fi are not at all related with each other, we will have
equality in (6.7). On the other side there are examples where more relations
exist, in which case this construction makes sense in the first place.
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Example 6.1. Let O = Q(x)[Dx; 1, Dx] and M = O2. First consider f =
(f1, f2)

T with f1(x) = ex and f2(x) = x. Clearly whatever operator P ∈ O is
applied to f1, the result will be of the form r(x)ex for some rational function
r(x) ∈ Q(x). So for any (P1, P2)

T ∈ AnnM(f) we must have that P1 •f1 = 0
because otherwise the surviving exponential cannot be canceled by P2 • f2.
Similarly P2 • f2 = 0 must hold and we have equality in (6.7).

On the other hand let g = (g1, g2)
T with g1(x) = log(x) and g2(x) = x.

Then clearly (−Dx, x
−2)T ∈ AnnM(g) but does not have the property described

in (6.7): both (−Dx) • g1(x) and x−2 • g2(x) are not zero.

We have seen that in our work an essential ingredient is the ability to
execute closure properties. Therefore we should have a short look on how
to perform them for annihilating modules. It turns out that the algorithms
of Section 2.3 can be extended in a natural way to the module setting. We
want to exemplify that by discussing the closure property “multiplication
by a scalar function”, i.e., given an annihilating module J ⊆ AnnM(f) for
f ∈ Fd and an annihilating ideal I ⊆ AnnO(g) for g ∈ F , compute an
annihilating module for g · f = (gf1, . . . , gfd)

T (this is also the only closure
property that we will need in the following).

Once again, we use the basic ideas of the FGLM algorithm (see Fig-
ure 2.2). Since the result shall be an annihilating module in M , the “stan-
dard monomials” (that will be considered in the FGLM-systematic way) are
elements of the form P = (0, . . . , Pi, . . . , 0)T ∈ M where Pi ∈ O is a mono-
mial. Consequently we do not start with {1} as the set of test monomials,
but with {(1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1)T}. The task is now to compute a
normal form for such standard monomials. If we apply P to the product
g · f we obtain Pi • (gfi), which can be rewritten to the form∑

k

ck · (Qk • g) · (Rk • fi), Qk, Rk ∈ O

exactly as we did in the scalar case. Reducing the Qk to normal form with
respect to I and reducing the Rk to normal form with respect to J (for this
purpose, Rk has to be identified with the vector that has Rk on its i-th
position and that is zero elsewhere), yields a normal form for P . The rest of
the algorithm works exactly as depicted in Figure 2.2.

We turn back to our original problem: Compute an annihilating module
for f = (f1, f2)

T where f1 = uvw and f2 = u′vw (u, v, w as defined in (6.2),
and u′ denoting the partial derivative of u with respect to x). Let from now
on

O = Q(i, j, k, x, y, z)[Si;Si, 0][Sj;Sj, 0][Sk;Sk, 0][Dx; 1, Dx][Dy; 1, Dy][Dz; 1, Dz]
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and M = O2. We expect the annihilating module for f to be strictly larger
than (6.7), because f1 and f2 are closely related by the common factor vw.
Hence we will start with h = (u, u′)T and compute an annihilating ideal for
f = (vw) · h by the above mentioned closure property.

First we have to ask ourselves how to compute an annihilating module
J ⊆ AnnM h ⊆M for (u, u′)T . We know how to compute annihilating ideals
for u and u′, and clearly J should incorporate this knowledge (this gives
rise to elements in J that have only a single nonzero entry annihilating the
corresponding component). Additionally we are aware of the fact that the
second component is the derivative of the first one. Putting all this together,
we let J be the submodule that is generated by{

(P, 0)T | P ∈ AnnO u
}
∪
{
(0, P )T | P ∈ AnnO u

′} ∪ {(Dx,−1)T
}
.

At this point we should not forget to compute a module Gröbner basis of the
above, because this will usually not be the case on its own. Now the closure
property “component-wise multiplication by vw” can be performed, yielding
an annihilating module for f .

Finally we can use the ansatz technique as before in order to find an
{x, y, z}-free element in the annihilating module of f . As a result we get the
following relation:

−2(1 + 2i)(2 + j)(3 + 2i+ j)(7 + 2i+ 2j)(5 + i+ j + k)(7 + i+ j + k)
(8 + i+ j + k)(8 + 2i+ 2j + k)(9 + 2i+ 2j + k)(11 + 2i+ 2j + 2k)

(15 + 2i+ 2j + 2k) f1(i, j + 1, k + 3)
...

+ 〈31 similar terms〉+
...

−2(4 + 2i+ j)(5 + 2i+ j)(5 + 2i+ 2j)(5 + i+ j + k)(6 + i+ j + k)
(8 + i+ j + k)(10 + 2i+ 2j + k)(11 + 2i+ 2j + k)(11 + 2i+ 2j + 2k)

(15 + 2i+ 2j + 2k) f2(i+ 1, j + 2, k + 3) = 0

(most other cases are smaller, i.e., when taking the partial derivatives of v
and w). But why restrict to vectors of dimension 2? We could as well try to
find relations for

f =

(
uvw,

∂u

∂x
vw,

∂u

∂y
vw,

∂u

∂z
vw

)T

and obtain an identity that connects uvw, ∂u
∂x
vw, and ∂u

∂z
vw, and that has the
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following support:

{(0, 0, 0, S3
j S

4
k )T , (0, 0, 0, S2

j S
5
k )T , (0, 0, 0, SjS

6
k )T , (0, S2

j S
4
k , 0, 0)T ,

(0, 0, 0, SiS
2
j S

3
k )T , (0, 0, 0, SiSjS

4
k )T , (0, 0, 0, SiS

5
k )T , (0, 0, 0, S3

j S
3
k )T ,

(0, 0, 0, S2
j S

4
k )T , (0, 0, 0, SjS

5
k )T , (S2

j S
3
k , 0, 0, 0)T , (0, S2

j S
3
k , 0, 0)T ,

(0, 0, 0, SiS
2
j S

2
k )T , (0, 0, 0, SiSjS

3
k )T , (0, 0, 0, SiS

4
k )T , (0, 0, 0, S3

j S
2
k )T ,

(0, 0, 0, S2
j S

3
k )T , (0, 0, 0, SjS

4
k )T , (0, S2

j S
2
k , 0, 0)T , (0, 0, 0, SiS

2
j Sk)

T ,
(0, 0, 0, SiSjS

2
k )T , (0, 0, 0, SiS

3
k )T , (0, 0, 0, S3

j Sk)
T , (0, 0, 0, S2

j S
2
k )T ,

(0, 0, 0, SjS
3
k )T , (0, 0, 0, S3

j )T , (0, 0, 0, S2
j Sk)

T , (0, 0, 0, SjS
2
k )T}.



Chapter 7

A fully algorithmic proof of
Stembridge’s TSPP theorem

Chapter 3 contained four algorithms, all of them serving more or less the
same goal: to find a creative telescoping relation in a given annihilating
ideal. To the three existing classical algorithms we added what we called
the “polynomial ansatz”. In this chapter an application is presented that
justifies its invention. In fact, it was the TSPP problem that lead us to come
up with this kind of ansatz.

The theorem (see Theorem 7.3 below) that we are going to prove is
about the enumeration of totally symmetric plane partitions (TSPP); it was
first proven by John Stembridge [81]. We will reprove the statement using
only computer algebra; this means that basically no human ingenuity (from
the mathematical point of view) is needed any more—once the algorithmic
method has been invented (in this case, by Doron Zeilberger). But it is not as
simple (otherwise our contribution would be trivial): The summation prob-
lems that have to be solved are very much involved and we were not able to
do them with the known methods that have been presented in Sections 3.1,
3.2, and 3.3. One option would be to wait for 20 years hoping that Moore’s
law equips us with computers that are thousands of times faster than the
ones of nowadays and that can do the job easily. But we prefer a second
option, namely to think about how to make the problem feasible for today’s
computers.

Somehow, the results of this chapter are a byproduct of a joint work with
Doron Zeilberger and Manuel Kauers where the long term goal is to apply
the methodology described below to the Andrews-Robbins q-TSPP conjec-
ture [80] (which is a q-analogue of Theorem 7.3). Some first but remarkable
steps into this direction have been done [48], but at some point the limi-
tations of our computers forced us to stop. Therefore the ordinary q = 1

121
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case serves as a proof-of-concept and to get a feeling for the complexity of
the underlying computations; it delivers valuable information that go further
than just giving yet another proof of Stembridge’s theorem.

It should be mentioned that this is not the first proof of Stembridge’s
theorem that uses computer algebra. In 2005 George Andrews, Peter Paule,
and Carsten Schneider [10] came up with a computer-assisted proof. By
means of a matrix decomposition into triangular matrices they transformed
the problem of evaluating the determinant into the task to verify the cor-
rectness of the decomposition which resulted in a couple of hypergeometric
multiple-sum identities. These were solved with help of the Mathematica
package Sigma [78]. Finding the matrix decomposition however required hu-
man insight (and so far it is not clear how to do it in the q-case). We claim
to have the first “human-free” computer proof of Stembridge’s theorem that
is completely algorithmic and does not require any human insight into the
problem. Moreover our method generalizes immediately to the q-case and it
is only the computational complexity that prevented us from proving it.

7.1 Totally symmetric plane partitions

We first want to motivate the topic of this chapter by giving a short expla-
nation of the underlying combinatorial objects.

Definition 7.1. A plane partition π of some integer n is a two-dimensional
array

π = (πi,j), πi,j ∈ N for integers i, j ≥ 1,
∑
i,j≥1

πi,j = n,

which is weakly decreasing in rows and columns, or more precisely

πi+1,j ≤ πi,j and πi,j+1 ≤ πi,j for all i, j ≥ 1.

Note that this definition implies that only finitely many entries πi,j can be
nonzero. To each plane partition we can draw its 3D Ferrers diagram by
stacking πi,j unit cubes on top of the location (i, j). Each unit cube can
be addressed by its location (i, j, k) in 3D coordinates. The conditions on
the entries of πi,j imply that the 3D Ferrers diagram is an origin-justified
structure, in the sense that if the position (i, j, k) is occupied then so are
all positions (i′, j′, k′) with i′ ≤ i, j′ ≤ j, and k′ ≤ k. Figure 7.1 shows an
example of a plane partition together with its 3D Ferrers diagram. We are
now going to define TSPPs, the objects of interest.
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5 4 1

3 2 1

1

Figure 7.1: A plane partition of n = 17

Definition 7.2. A plane partition is totally symmetric iff whenever the po-
sition (i, j, k) in its 3D Ferrers diagram is occupied (in other words πi,j ≥ k),
it follows that all its permutations {(i, k, j), (j, i, k), (j, k, i), (k, i, j), (k, j, i)}
are also occupied.

Stembridge’s theorem [81] now tells us how many TSPPs of a certain size
exist.

Theorem 7.3. The number of totally symmetric plane partitions whose 3D
Ferrers diagram is contained in the cube [0, n]3 is given by the product-formula

∏
1≤i≤j≤k≤n

i+ j + k − 1

i+ j + k − 2
. (7.1)

Example 7.4. We are considering the case n = 2: Formula (7.1) tells us
that there should be ∏

1≤i≤j≤k≤2

i+ j + k − 1

i+ j + k − 2
=

2

1
· 3
2
· 4
3
· 5
4

= 5

TSPPs that fit into the cube [0, 2]3. This result is confirmed by the enumer-
ation given in Figure 7.2.

As others that proved the TSPP formula before us we will make use of
a result by Soichi Okada [61] that reduces the proof of Theorem 7.3 to a
determinant evaluation:
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Figure 7.2: All TSPPs that fit into the cube [0, 2]2

Theorem 7.5. The enumeration formula (7.1) for TSPPs is correct if and
only if the determinant evaluation

det (a(i, j))1≤i,j≤n =
∏

1≤i≤j≤k≤n

(
i+ j + k − 1

i+ j + k − 2

)2

(7.2)

holds, where the entries in the matrix are given by

a(i, j) =

(
i+ j − 2

i− 1

)
+

(
i+ j − 1

i

)
+ 2δ(i, j)− δ(i, j + 1). (7.3)

In the above, δ(i, j) denotes the Kronecker delta.

7.2 How to prove determinant evaluations

Doron Zeilberger [95] proposes a method for completely automatic and rig-
orous proofs of determinant evaluations that fit into a certain class. For
the sake of self-containedness this section gives a short summary how this
method works. It concerns the following problem: For all n ≥ 1 prove that

det(a(i, j))1≤i,j≤n = Nice(n),

for some explicitly given expressions a(i, j) and Nice(n). We assume that
the matrix has full rank. What you have to do is the following: Pull out of
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the hat another discrete function B(n, j) (this looks a little bit like magic for
now—we will make this step more explicit later) and check the identities

n∑
j=1

B(n, j)a(i, j)=0 for 1 ≤ i < n, i, n ∈ N, (7.4)

B(n, n)=1 for all n ≥ 1, n ∈ N. (7.5)

If they hold, then by uniqueness it follows that B(n, j) equals the cofactor
of the (n, j)-entry of the n× n determinant divided by the (n− 1)× (n− 1)
determinant. This fact becomes more obvious when we expand the deter-
minant with respect to the last row using Laplace’s formula (we divided the
whole equation by Mn,n already):

1

Mn,n

det(a(i, j))1≤i,j≤n =
n∑

j=1

(−1)n+jMn,j

Mn,n︸ ︷︷ ︸
B(n,j)

a(n, j)

where Mn,j denotes the (n, j)-minor, i.e., the determinant of the matrix with
the last row and the jth column removed. Changing the term a(n, j) in
the sum to a(i, j), i < n corresponds to replace the last row of the original
matrix by its i-th row. The determinant then is of course 0 and we have
equation (7.4). Since there are n − 1 choices for i we obtain as many lin-
ear independent equations for the B(n, j), 1 ≤ j ≤ n and they determine
the solution up to a constant multiple. This ambiguity is disposed by the
normalization condition (7.5).

If one finally succeeds to verify the identity

n∑
j=1

B(n, j)a(n, j) =
Nice(n)

Nice(n− 1)
for all n ≥ 1, n ∈ N, (7.6)

the determinant evaluation Nice(n) is established.

7.3 The computer proof

The annihilating ideal

The first thing we have to do according to Zeilberger’s algorithmic proof
technique is to resolve the magic step that we have left as a black box so far,
namely “to pull out of the hat” the sequence B(n, j) for which we have to
verify the identities (7.4) – (7.6). Note that we are able, using the definition
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of what B(n, j) is supposed to be (namely a certain cofactor in a determinant
expansion), to compute the values of B(n, j) for small concrete integers n
and j. This data allows us (by plugging it into an appropriate ansatz and
solving the resulting linear system) to find recurrence relations for B(n, j)
that will hold for all values of n and j with a very high probability. We call
this method guessing; it has been executed by Manuel Kauers who used his
highly optimized software Guess [46]. More details about this part of the
proof can be found in [48]. The result of the guessing were 65 recurrences,
their total size being about 5MB.

Many of these recurrences are redundant and it is desirable to have a
unique description of the object in question that additionally is as small as
possible (in a certain metric). To this end we compute a Gröbner basis of the
∂-finite left ideal that is generated by the 65 recurrences. The computation
was executed by the noncommutative Gröbner basis implementation which is
part of the package HolonomicFunctions. We later found out that it can as
well be obtained directly from the guessing procedure. One just has to choose
the structure set of the ansatz in an appropriate way. The Gröbner basis
consists of 5 polynomials (their total size being about 1.6MB). Their leading
monomials S4

j , S
3
j Sn, S

2
j S

2
n , SjS

3
n , S

4
n form a staircase of regular shape. This

means that we should take 10 initial values into account which correspond
to the monomials under the staircase.

In addition, we have now verified that all the 65 recurrences are consistent.
Hence they are all valid for the same object. If this is not the case then we
would have expected to get {1} as the Gröbner basis. The next question
is whether the 5 elements of the Gröbner basis together with the 10 initial
values define a unique bivariate sequence, or in other words whether they
give already a complete description of the sequence that we want to identify
as B(n, j).

The singularities

Before we start to prove the relevant identities there is one subtle point
that, aiming at a fully rigorous proof, we should not omit: the question
of singularities in the ∂-finite description of B′(n, j). Recall that in the
univariate case when we deal with a P-finite recurrence, we have to regard the
zeros of the leading coefficient and in case that they introduce singularities in
the range where we would like to apply the recurrence, we have to separately
specify the values of the sequence at these points. Similarly in the bivariate
case: We have to check whether there are points in N2 where none of the
recurrences can be applied because the leading term vanishes.

For all points that lie in the area (4, 4) + N2 we may apply any of the
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recurrences, hence we have to look for common nonnegative integer solutions
of all their leading coefficients (being bivariate polynomials in n and j).
In order to determine the common solutions we compute a (commutative)
Gröbner basis of the leading coefficients (the variables shifted according to
the exponents of the leading monomial). It reveals that everything goes well
in the (4, 4)-shifted quadrant:{

(n− 3)2(n− 2)(n− 1)2(2n− 3)2(2n− 1)(j + n− 1)(j + n),
(n− 2)(n− 1)(2n− 3)(2n− 1)(j + n− 1)(j + n)(1608j + 154n3 − 847n2

−222n− 693),
(j − 3)(n− 1)(2n− 1)(j − n)(j + n− 1)(j + n),
(2n− 1)(j + n− 1)(j + n)(308n6 − 3080n5 + 12397n4 + 9648jn2 + . . . ),
(j + n− 1)(j + n)(1053818880n14 − 983564288jn13 + . . . )

}
where two irreducible polynomials were cut off for better readability. First
one observes that all Gröbner basis elements contain the factors (j + n)
and (j + n − 1) from which we can read off the solutions (0, 0), (1, 0), and
(0, 1). But since these points are lying under the stairs anyway they are of
no interest. The remaining factors of the first polynomial involve only the
variable n and they tell us that we have to address the cases n = 1, 2, 3.
The first three polynomials contain the factor (n− 1) and hence are zero for
all j when n = 1. Plugging n = 1 into the remaining two polynomials and
factoring delivers

3216(j − 2)2(j − 1)j(j + 1),
1072(j − 2)2(j − 1)j(j + 1) (65536j11 − 2686976j10 + . . . )

which luckily restricts j to a finite set of values: For n = 1 we obtain the
additional solutions j = 1 and j = 2. Doing the same reasoning for n = 2 and
n = 3 we can write down the complete set of common nonnegative integer
solutions:

{(0, 0), (0, 1), (1, 0), (1, 1), (2, 1), (2, 2), (3, 2), (3, 3)}.

But all of them are outside of (4, 4) +N2 so we need not to care.

It remains to look at the lines j = 0, 1, 2, 3 and the lines n = 0, 1, 2, 3.
They are simpler to treat because we can substitute the value of the line
for j resp. n and are left with finding common nonnegative integer roots of
univariate polynomials. As an example consider the line j = 0: On this line
we may only apply the last recurrence that has leading monomial S4

n , since
all others would require values outside the first quadrant. So take the leading
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coefficient of this recurrence, shift n to n−4, and substitute j = 0, obtaining

576(n− 4)(n− 3)2(n− 2)2(n− 1)3n2

×(2n− 7)(2n− 5)(2n− 3)(2n− 1)(3n− 8)(3n− 4)
× (81n6 − 1389n5 + 10009n4 − 38819n3 + 85522n2 − 101620n+ 51016) .

We can read off the singularities (0, 0), (0, 1), (0, 2), (0, 3), and (0, 4). In a
similar way the other seven cases can be treated (we omit the details here).
Summarizing, the points for which initial values have to be given (either
because they are under the stairs or because of singularities) are

{(j, n) | 0 ≤ j ≤ 6 ∧ 0 ≤ n ≤ 1} ∪ {(j, 2) | 0 ≤ j ≤ 4}∪
{(j, 3) | 0 ≤ j ≤ 3} ∪ {(j, 4) | 0 ≤ j ≤ 2} ∪ {(1, 5)}.

They are depicted in Figure 7.3.

j

n

Figure 7.3: The points for which the initial values of the sequence B(n, j)
have to be given because the recurrences do not apply.

Aiming at a rigorous proof we have to admit at this point that what we
have found so far does not prove anything yet. Supplying the ∂-finite descrip-
tion with these 27 initial values uniquely and completely defines a bivariate
sequence—let’s call it B′(n, j). We still have to show that this B′(n, j) is
identical to the sequence B(n, j) defined by (7.4) and (7.5). We anticipate
the correctness of these two identities and write always B(n, j) instead of
B′(n, j). Finally we have to verify that identity (7.6) indeed holds. In the
following we prove the three identities in the order of their difficulty.

The second identity

The simplest of the three identities to prove is (7.5). From the ∂-finite de-
scription of B′(n, j) we can compute a recurrence for the diagonal B′(n, n) by
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the closure property substitution. Our command DFiniteSubstitute deliv-
ers a recurrence of order 7 in a couple of minutes. Reducing this recurrence
with the ideal generated by Sn− 1 (which annihilates 1) gives 0; hence it is a
left multiple of the recurrence for the right-hand side. We should not forget
to have a look on the leading coefficient in order to make sure that we don’t
run into singularities:

256(2n+ 3)(2n+ 5)(2n+ 7)(2n+ 9)(2n+ 11)2(2n+ 13)2p1p2

where p1 and p2 are irreducible polynomials in n of degree 4 and 12 respec-
tively. Comparing initial values (which of course match due to our definition)
establishes identity (7.5).

The third identity

In order to prove (7.6) we first rewrite it slightly. Using the definition of the
matrix entries a(n, j) we obtain for the left-hand side

n∑
j=1

B(n, j)

((
n+ j − 2

n− 1

)
+

(
n+ j − 1

n

))
︸ ︷︷ ︸

=:a′(n,j)

+2B(n, n)−B(n, n− 1)

and the right-hand side simplifies to

Nice(n)

Nice(n− 1)
=

∏
1≤i≤j≤k≤n

(
i+j+k−1
i+j+k−2

)2

∏
1≤i≤j≤k≤n−1

(
i+j+k−1
i+j+k−2

)2 =
41−n(3n− 1)2(2n)2

n−1

(3n− 2)2(n/2)2
n−1

.

Note that a′(n, j) = 2n+j−1
n+j−1

(
n+j−1

j−1

)
is a hypergeometric expression in both

variables j and n. A ∂-finite description of the summand can be computed
with our implementation DFiniteTimes from the annihilating ideal of B(n, j)
using the closure property product. The task is now to find a creative tele-
scoping relation for the summand. We tried to accomplish this in various
ways.

Some unsuccessful tries

Zeilberger’s slow algorithm We tried this approach but it seems to be
hopeless: The summation variable j that we would like to eliminate occurs
in the annihilating relations for the summand B(n, j)a′(n, j) with degrees
between 24 and 30. When we follow the intermediate results of the Gröbner
basis computation we observe that none of the elements that were added to
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the basis because some S-polynomial did not reduce to zero has a degree
in j lower than 23 (we aborted the computation after more than 48 hours).
Additionally the coefficients grow rapidly and it seems very likely that we
run out of memory before coming to an end.

Takayama’s algorithm First we note that our summand has finite sup-
port and hence natural boundaries which allows us to apply Takayama’s
algorithm. Although this algorithm is much superior to the elimination al-
gorithm proposed by Zeilberger, we were not able to complete the necessary
computations. The underlying elimination problem, as before, seems to be
unsolvable with today’s computers: We now can lower the degree of j to 18,
but the intermediate results consume already about 12GB of memory (after
48 hours).

Chyzak’s algorithm In the run of Chyzak’s algorithm (see Section 3.3)
we have to solve a system of linear first-order difference equations. Due to
the size of the input, we did not succeed in uncoupling this system (neither
with our implementation nor with Stefan Gerhold’s OreSys), and even if we
can do this step, it would remain to solve a presumably huge (concerning the
size of the coefficients as well as the order) scalar difference equation.

A successful approach

At this point we came up with the idea to treat this problem with the tech-
nique described in Section 3.4. The advantage of this technique is that the
computations are better controllable for big inputs, because the building
steps are only normal form computation with respect to a given Gröbner
basis and linear algebra. No run of Buchberger’s algorithm or expensive
uncoupling is needed.

We found by means of modular computations that the ansatz

I∑
i=0

pi(n)Si
n︸ ︷︷ ︸

= P (n,Sn)

+ (Sj − 1) ·
K∑

k=0

L∑
l=0

M∑
m=0

qk,l,m(n)jkSl
jS

m
n︸ ︷︷ ︸

= Q(j,n,Sj ,Sn)

. (7.7)

with I = 7, K = 5, and the support of Q being the power products Sl
jS

m
n

with l + m ≤ 7 delivers a solution with nontrivial principal part. After
omitting the 0-components of this solution, we ended up with an ansatz
containing 126 unknowns. For computing the final solution we used again
homomorphic images and rational reconstruction. Still it was quite some
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effort to compute the solution (it consists of rational functions in n with
degrees up to 382 in the numerators and denominators). The total size of
the telescoping relation becomes smaller when we reduce the delta part to
normal form (then obtaining an operator of the form that Chyzak’s algorithm
would deliver). In contrast to Chyzak’s algorithm we do not necessarily find
the telescoping relation with minimal-order principal part. Finally the result
takes about 5 MB of memory. We counterchecked its correctness by reducing
the relation with the annihilating ideal of B(n, j)a′(n, j) and obtained 0 as
expected.

We have now a recurrence for the sum but we need to to cover the whole
left-hand side. A recurrence for B(n, n − 1) is easily obtained with our
package performing the substitution j → n − 1, and B(n, n) = 1 as shown
before. Using our command DFinitePlus, the closure property sum delivers
a recurrence of order 10. On the right-hand side we have a ∂-finite expression
for which our package automatically computes an annihilating operator. This
operator is a right divisor of the one that annihilates the left-hand side. By
comparing 10 initial values and verifying that the leading coefficients of the
recurrences do not have singularities among the positive integers, we have
established identity (7.6).

The first identity

With the same notation as before we reformulate identity (7.4) as
n∑

j=1

B(n, j)a′(i, j) = B(n, i− 1)− 2B(n, i).

The hard part again is to do the sum on the left-hand side. Since two param-
eters i and n are involved and remain after the summation, one annihilating
operator does not suffice. We decided to search for two operators with lead-
ing monomials being pure powers of Si and Sn respectively. Although this is
far away from being a Gröbner basis, it is nevertheless a complete descrip-
tion of the object (together with sufficiently (but still finitely) many initial
values). We obtained these two relations in a similar way as in the previous
section, but the computational effort was even bigger (more than 500 hours
of computation time were needed). The first telescoping operator is about
200 MB big and the support of its principal part is

{S5
i , S

4
i Sn, S

3
i S

2
n , S

2
i S

3
n , SiS

4
n , S

4
i , S

3
i Sn, S

2
i S

2
n , SiS

3
n ,

S3
i , S

2
i Sn, SiS

2
n , S

3
n , S

2
i , SiSn, S

2
n , Si, Sn, 1}.

The second one is of size 700 MB and the support of its principal part is

{S5
n , S

4
i , S

3
i Sn, S

2
i S

2
n , SiS

3
n , S

4
n , S

3
i , S

2
i Sn, SiS

2
n , S

3
n , S

2
i , SiSn, S

2
n , Si, Sn, 1}.
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Again we can independently from their derivation check their correctness by
reducing them with the annihilating ideal of B(n, j)a′(i, j): both give 0.

Let’s now examine the right-hand side: From the Gröbner basis of re-
currences for B(n, j) that we computed in Section 7.3 one immediately gets
an annihilating ideal for B(n, i − 1) by replacing Sj by Si and by substitut-
ing j → i − 1 in the coefficients. We now could apply the closure prop-
erty sum but we can do better: Since the right-hand side can be written as
(1 − 2Si) • B(n, i − 1) we can use the closure property operator application
and obtain a Gröbner basis which has even less monomials under the stairs
than the input, namely 8. The opposite we expect to happen when using
the closure property sum: usually there the dimension grows but never can
shrink. It is now a relatively simple task to verify that the two principal parts
that were computed for the left-hand side are contained in the annihilating
ideal of the right-hand side (both reductions give 0).

The initial value question needs some special attention here since we
want the identity to hold only for i < n; hence we cannot simply look at
the initial values in the square [0, 4]2. Instead we compare the initial values
in a trapezoid-shaped area which allows us to compute all values below the
diagonal. Since all these initial values match for the left-hand and right-hand
side we have the proof that the identity holds for all i < n. Looking at the
leading coefficients of the two principal parts we find that they contain the
factors 5 + i− n and 5− i+ n respectively. This means that both operators
cannot be used to compute values on the diagonal which is a strong indication
that the identity does not hold there: Indeed, identity (7.4) is wrong for n = i
because in this case we get (7.6).

The prize

It might have become manifest that our proof did not go so smooth and we
had to overcome many difficulties, in particular we had to recover from many
disappointing unsuccessful attempts. Doron Zeilberger was so generous to
stimulate my motivation by offering two prizes of $100 and $200 for prov-
ing (7.6) and (7.4), respectively! And he really pushed towards the complete
rigorous proof as the following e-mail [96] evidences:

I was about to write you a $100 check, when I realized that you
don’t deserve it (yet) The stipulation of the prize was that you
FIRST do (Soichi) for $200, and then if you can also do (Okada)
then you get an additional $100.

[. . . ]
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P.S. This is like Jacob and Laban, before Jacob could marry
Rachel, working for seven years, he had to marry Leah, also by
working seven years, so the price of Rachel was 14 years of labor,
plus an extra, unwanted wife. I am sure that it would take you
less than 14 years.

7.4 Outlook

As we have demonstrated, Zeilberger’s methodology is completely algorith-
mic and does not need human intervention. This fact makes it possible to
apply it to other problems (of the same class) without further thinking. Just
feed the data into the computer! The q-TSPP enumeration formula∏

1≤i≤j≤k≤n

1− qi+j+k−1

1− qi+j+k−2

has been conjectured independently by George Andrews and Dave Robbins
in the early 1980s [80]. This conjecture is still open and one of the most
intriguing problems in enumerative combinatorics. The tantalizing aspect
of this chapter is that the methodology can be applied one-to-one to that
problem (also a q-analogue of Okada’s result exists). Unfortunately, due
to the additional indeterminate q the complexity of the computations is in-
creased considerably which prevents us from proving it right away. But we
are working on that. . .
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linear algebra. Theoretical Computer Science, 157(1):3–33, 1996.

[22] Bruno Buchberger. Ein Algorithmus zum Auffinden der Basiselemente
des Restklassenrings nach einem nulldimensionalen Polynomideal. PhD
thesis, University of Innsbruck, Innsbruck, Austria, 1965.

[23] Pierre Cartier. Démonstration “automatique” d’identités et fonctions
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Gröbner basis, 14, 22, 29, 30, 32–34,

36, 40, 47, 48, 50–62, 65, 72,
73–77, 82, 84, 87, 89, 91, 93,

99, 105, 110, 114–116, 119,
126, 127, 129–132

graded module, 20
guessing, 103, 105, 108, 126

Hankel function, 32
Hermite polynomial, 15, 57
Hilbert dimension, 43
Hilbert polynomial, 20, 21
holonomic, 17, 19–21, 22, 23–25, 28,

30, 37–41, 47–49, 53, 57, 58,
92

holonomic system, 23
hyperbolic sine, 75
hyperexponential, 29, 39, 41, 55, 76
hypergeometric, 39, 47, 55, 57–59, 76
hypergeometric function 2F1, 80

Incomplete, 106
inhomogeneous part, 29, 46, 47, 51,

62, 63, 88, 89, 94–96, 105,
111, 112

initial value, 23, 28, 29, 42, 43, 71,
86, 88–91, 93, 95–97, 99, 104,
106, 126, 128, 129, 131, 132

integral
cosine, 92
Feynman, 94
probability, 19
sine, 86, 92
Strang’s, 61
Wallis’s, 67, 71, 74, 78

integrated Jacobi polynomial, 111,
112

Jacobi polynomial, 42, 110–113

Kashiwara, Masaki, 38
Kauers, Manuel, 43, 66, 78, 99, 101,

103, 105, 108, 121, 126
Koutschan, Christoph, 66
Kronecker delta, 30



148 Index

Laplace expansion, 125
Lazard, Daniel, 30, 75
LeadingCoefficient, 72
LeadingExponent, 72
LeadingPowerProduct, 72, 74
LeadingTerm, 72
left ideal, 18
Legendre polynomial, 62, 90, 113
Leibniz law, 17, 25
Levandovskyy, Viktor, 99, 100
lexicographic order, 48, 72, 75, 104
localization, 26
logarithm, 92, 118

magnetic field, 113
Maximon, Leonard, 66
Maxwell’s equations, 113
Method, 72
Mgfun, 13
modified Bessel function of the first

kind, 42, 73, 75
modified Bessel function of the sec-

ond kind, 42, 89
ModuleBasis, 74
Modulus, 106
Moll, Victor, 42
monomial, 15
monomial order, 48, 49, 53, 61, 69,

75, 83, 104, 110
Mora, Teo, 30, 75
multiindex, 15
MultiSum, 59

natural boundaries, 47, 49, 51, 53,
55, 62, 63, 71, 91, 105, 130

non-holonomic function, 43, 44, 78,
95, 96

NonCommutativeMultiply, 70
Normal, 69
normal strategy, 72
NormalizeCoefficients, 72, 84

NormalizeVector, 81, 85
numerical analysis, 109

Okada, Soichi, 123
Olver, Frank, 65, 94
Ore algebra, 25, 26–37, 39, 42, 44, 47,

49, 51, 52, 55, 58, 62, 68–70,
74–76, 78, 99, 114

Ore extension, 25, 26, 67, 68
Ore operator, 16, 27, 28, 37, 38, 44,

45, 48, 56, 60, 67, 69, 75, 77,
79, 87, 92

Ore, Øystein, 25
OreAction, 67
OreAlgebra, 68, 69, 73–76, 82, 110
OreAlgebraObject, 68
OreDelta, 67
OreGroebnerBasis, 62, 73, 74, 85,

93, 99, 106, 110
OrePlus, 70
OrePolynomial, 69, 83
OrePolynomialDegree, 72
OrePolynomialList-

Coefficients, 72, 83, 85
OrePolynomialSubstitute, 70, 111
OrePower, 70
OreReduce, 74, 83–85
OreSigma, 67
OreSys, 85, 130
OreTimes, 70
orthogonal polynomial, 40, 109, 113

P-finite, 18, 19, 38, 92, 126
pair selection strategy, 72, 106
Pascal’s rule, 49
Pattern, 80
Paule, Peter, 48, 61, 62, 65, 66, 122
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