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Abstra
t

The method of di�eren
e forms (WZ forms) was invented by Zeilberger

in order to dis
over and prove hypergeometri
 summation identities. To

prove multisum identities by this method, one needs nontrivial 
losed

di�eren
e forms of higher degree. Almost no su
h forms were known so

far. To �nd some, we develop a new method for transforming di�eren
e

forms in a way that preserves their 
losedness, whi
h 
an be seen as a

dis
rete variant of 
hange of variables in di�erential forms. Our �nal goal

is to dis
over new multisum identities; examples are given.



.

Mein aufri
htiger Dank gilt Prof. Dr. Peter Paule f�ur seine unerm�udli
he

Unterst�utzung.

Dr. Alexander Berkovi
h, Dr. Fr�ed�eri
 Chyzak, Prof. Ira Gessel, Prof. Dr.

Christian Krattenthaler, Dipl.-Inf. Carsten S
hneider und vor allem meine Fam-

ilie haben mir auf vers
hiedene Art geholfen { danke!



Contents

1 Introdu
tion 1

1.1 Some Appli
ations of WZ Forms . . . . . . . . . . . . . . . . . . 1

1.2 WZ Form Transformations . . . . . . . . . . . . . . . . . . . . . . 3

2 Di�eren
e Forms 5

2.1 Labels, Latti
e Ve
tors and Terms . . . . . . . . . . . . . . . . . 5

2.2 Sums of Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Plotting Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Forms, Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 The Inner Produ
t of Forms . . . . . . . . . . . . . . . . . . . . . 13

2.7 Sums of Forms over Ranges . . . . . . . . . . . . . . . . . . . . . 13

2.8 Plotting Summation Ranges . . . . . . . . . . . . . . . . . . . . . 14

2.9 Plotting Sums of Forms over ranges . . . . . . . . . . . . . . . . 14

2.10 Operators on Terms . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.11 Operators on Forms . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.12 The Theorem of Stokes{Zeilberger . . . . . . . . . . . . . . . . . 19

2.13 WZ Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.14 WZ Forms and the Residue Cal
ulus . . . . . . . . . . . . . . . . 22

3 WZ Forms 24

3.1 Gosper's Algorithm Constru
ts WZ Pairs . . . . . . . . . . . . . 24

3.2 In
ompleteness of the WZ Forms Method . . . . . . . . . . . . . 25

3.3 Singlesum Identities . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Partial Sums of Hypergeometri
 Series . . . . . . . . . . . . . . . 34

3.5 Wegs
haider's Algorithm Constru
ts WZ r-forms . . . . . . . . . 36

3.6 Some Multisum Identities . . . . . . . . . . . . . . . . . . . . . . 37

4 Transformations 39

4.1 WZ Pairs Yield New WZ Pairs . . . . . . . . . . . . . . . . . . . 39

4.2 WZ 1-Forms Yield New WZ 1-Forms . . . . . . . . . . . . . . . . 42

4.3 Transforming Forms of Arbitrary Degree . . . . . . . . . . . . . . 44

4.4 Substitutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Guessing �

�

, Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Di�eren
es and Substitutions . . . . . . . . . . . . . . . . . . . . 48

4.7 Guessing �

�

, Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Closedness Preserving Substitutions . . . . . . . . . . . . . . . . 50

5 Some New WZ Forms 52

5.1 The Symmetri
 Multinomial Form . . . . . . . . . . . . . . . . . 52

5.2 Identities from the Symmetri
 Multinomial Form . . . . . . . . . 55

5.3 A new WZ form from an identity of S. Dent . . . . . . . . . . . . 61

A How to Use the Pa
kage wz 63

A.1 Constru
ting Forms . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2 Closedness Preserving Substitutions . . . . . . . . . . . . . . . . 65

A.3 Computing Exterior Derivatives . . . . . . . . . . . . . . . . . . . 66

A.4 Ranges and Boundaries. . . . . . . . . . . . . . . . . . . . . . . . 66



A.5 Summing Forms over Ranges . . . . . . . . . . . . . . . . . . . . 67

A.6 Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B Some Closed Forms 68



1 Introdu
tion

1.1 Some Appli
ations of WZ Forms

To prove hypergeometri
 summation identities, H. Wilf and D. Zeilberger in-

trodu
ed WZ pairs [WZ90℄ and, more generally, WZ forms [Zei93℄. Their work

was honored with the 1998 Steele Prize for Seminal Contribution to Resear
h

from the AMS. Before explaining (de�ning) WZ forms, we list some of their

appli
ations.

Proving known 
ombinatorial identities. WZ pairs prove most known

hypergeometri
 single sum identities like, for example, Saals
h�utz's Theorem

[GKP89, p.171℄: Let m and n be natural numbers. Then

n

X

k=0

�

r + k

n+m

��

�s+ r + n

n� k

��

s� r +m

k

�

=

�

r

m

��

s

n

�

;

or, in hypergeometri
 notation,

�

r

n+m

��

�s+ r + n

n

�

3

F

2

�

�n; r + 1; �s+ r �m

r � n�m+ 1; �s+ r + 1

; 1

�

=

�

r

m

��

s

n

�

:

Wilf and Zeilberger [WZ90℄ prove all \
lassi
al" hypergeometri
 summation

identities using the WZ method. Se
tion 3 
ontains examples of binomial 
oef-

�
ient identities proved by the WZ method.

Finding new 
ombinatorial identities. Given a hypergeometri
 single

sum identity, WZ forms allow us to produ
e new single sum identities from it.

Starting from Vandermonde's identity, Zeilberger [Zei95℄ derives the identity

k

X

n=0

(3n� 2 k)

�

k

n

�

2

�

2n

n

�

= 0 for k � 0;

or, equivalently,

4

F

3

�

�k; �k; 1�

2 k

3

;

1

2

1;

�2 k

3

; 1

; 4

�

= 0 for k � 0:

by his dualize and spe
ialize method and 
omments on it:

\This is a brand new identity, unknown to Askey. It has a q-analog

derived from the q-version of WZ, that was unknown to Andrews,

and even whose limiting 
ase was brand new, and it took George

Andrews three densely pa
ked pages, using �ve di�erent identities,

to prove."

In the dualize and spe
ialize method, a 
ertain mira
le remains unexplained;

new light is shed on it by 
losedness preserving substitutions { see se
tion 4.2.

A long list of new single sum identities found by (a variant of) the dualize and

spe
ialize method is 
ontained in [Ges95℄.

A fast series for Ap�ery's 
onstant. Using a 
ertain WZ pair, Zeilberger

[Zei93℄ proves Ap�ery's 
elebrated identity

�(3) =

5

2

1

X

n=1

(�1)

n+1

n

3

�

2n

n

�

; (1)

1



where �(3) :=

P

1

n=1

1

n

3

.

Proving known multisum identities. Consider the identity [Den96℄

X

b

X

s

(�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

= 2

�2 v+k

�

�v + k

�2 v + k

�

(2)

whi
h holds for 0 � 2v � k. By H. Wilf's amazingly su

essful method of

dividing by the right hand side [WZ90℄ and a subsequent 
all to K. Wegs
haider's

variant [Weg97℄ of Sister Celine Fasenmyer's algorithm [Fas47, Fas49℄, we �nd

a parti
ularly simple re
ursion for the summand whi
h 
an be immediately

translated to a WZ form of degree two; see se
tion 3.5.

Finding new multisum identities. The same WZ form that proves iden-

tity 2 immediately leads to the identity

X

b

X

k

(�1)

b

2

�k

�

s+ b� 2

s� 1

��

s+ b� 1

2 v � k

��

s+ k

2 v � b+ 1

��

v � 1

�v + k

�

= 0

whi
h is valid for 1 � s; 1 � v and to the identity

X

k

X

s

(�2)

k

�

b

s

��

2 v � b� 2

�s+ k � 1

��

2 v � k � 1

�s+ b� 1

��

2 v � k � 1

v � k

�

= 0

whi
h is valid for b � 0; 1 � v; b+ 2 � 2 v.

Testing simpli�ers for hypergeometri
 multisums. Multisum identi-

ties found by WZ forms, as, for example,

8

m�0

m

X

i=0

m

X

j=0

�

m+ i+ j

m; i; j

�

3

�i�j

= 3

m

;

(whi
h is derived in se
tion 5.2), are useful for 
he
king and 
omparing summa-

tion algorithms.

Challenging simpli�ers for expressions involving hypergeometri


sums. Using WZ forms, we 
an easily �nd and prove identities like

8

p�0

8

q�0

8

r�0

3

�p

q

X
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r

X
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�
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�

3

�j

3
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+ 3

�q

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

�

3

�i

3

�k

+ 3

�r

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

�

3

�i

3

�j

= 3:

Given the left hand side expression of this identity, a simpli�er should redu
e it

to the right hand side. As far as I know, no simpli�er that 
an handle the sum

of more than one sum has been invented yet.

Challenging automati
 provers. Even if given both sides of an identity

like the one above as input, there is no reasonably fast algorithm that 
omputes

a proof of the given identity. There is no dedi
ated proof algorithm for su
h

problems, and general (predi
ate logi
) provers are way too ineÆ
ient to ta
kle

them.

2



1.2 WZ Form Transformations

The need for WZ form transformations. Mu
h is known about hyper-

geometri
 single sum identities. There is an amazingly su

essful database of

a few general summation identities that 
over most sums en
ountered in 
om-

binatorial pra
ti
e as spe
ial 
ases. It is listed in Appendix III of [Sla66℄ and

implemented in Ch. Krattenthaler's Mathemati
a pa
kage HYP.m[Kra95℄.

Even better, the problem of expressing a single sum over a hypergeometri


summand as a hypergeometri
 expression is algorithmi
ally solved

1

by �nding a

re
urren
e of the sum with Zeilberger's fast algorithm [Zei91℄ and subsequently

solving this re
urren
e with M. Petkov�sek's algorithm [PWZ96℄.

Mu
h less is known about hypergeometri
 multisums. Sister Mary Celine

Fasenmyer [Fas47, Fas49℄ invented an algorithm for �nding re
urren
es for

multisums [PWZ96℄. Her algorithm was improved by P. Verbaeten and Kurt

Wegs
haider, who implemented it in Mathemati
a. Note that her algorithm

does not help us to �nd multisum identities: Given a sum, we do not know a

priori if it �nds a 
losed form evaluation. A randomly 
hosen sum is unlikely to

�nd a 
losed form evaluation.

To �nd more multisum identities by the WZ form mehtod, we need nontrivial

WZ forms of higher degree. K. Wegs
haider's Mathemati
a pa
kage multisum


an be used to 
onstru
t su
h forms. We were su

essful to do so only 3 times;

in all other 
ases we interrupted the program multisum after running for some

long time.

To get more forms from a few known forms, we would like to transform

a known WZ form into an essentially di�erent WZ form. By \essentially

di�erent" we mean that identities produ
ed by the new form should not follow

dire
tly (i.e. by substitution) from identities of the original form.

Early WZ pair transformations. The �rst WZ pair transformation is

introdu
ed in the very �rst arti
le onWZ pairs [WZ90℄ as \Theorem B". I. Gessel

generalizes it slightly ([Ges95, Theorem 3.1℄) and uses the basi
 WZ method

together with his generalization to dis
over an abundan
e of new hypergeometri


single sum identities. These transformations do not produ
e essentially di�erent

WZ forms.

Fast series for Ap�ery's 
onstant. T. Amdeberhan and D. Zeilberger

[AZ97℄ present a 
ertain new WZ form transformation whi
h does indeed pro-

du
e essentially di�erent WZ forms. It is skillfully used in [Amd96℄ to obtain an

in�nite sequen
e of faster and faster 
onverging series for �(3). The �rst series

in this sequen
e gives Ap�ery's 
elebrated identity (1); the se
ond series gives

�(3) =

1

4

1

X

n=1

(56n

2

� 32n+ 5)

(2n� 1)

2

n

3

(�1)

n+1

�

2n

n

��

3n

n

�

whi
h enjoys mu
h faster 
onvergen
e than the �rst series.

More general WZ form transformations. We aim to transform WZ

forms by applying arbitrary integer linear substitutions. For WZ pairs and WZ

1-forms, you 
an easily �nd these transformations yourself using a simple new

tri
k that is explained in se
tion 4.1 and that was dis
overed independently by

I. Gessel [Ges99℄

1

at least up to a small gap

3



Unfortunately, this tri
k 
annot be 
arried over to r-forms where r > 1, i.e.

to the more interesting multisum 
ase. Se
tion 4.3, the main part of the thesis,

solves the transformation problem in the multisum 
ase. The transformation

algorithm is implemented in Mathemati
a.

Finding new multisum identities. Given a hypergeometri
 multisum

identity, we may hope to �nd a WZ form of higher degree from it. This form

usually leads to new multisum identities. However, we 
an do better. The

method of 
losedness preserving substitutions allows us to 
onstru
t new WZ

forms from it whi
h in turn allow us to dis
over ever more { essentially di�erent

{ multisum identities. For example, we obtain the identity

X

k

X

s

2

�k

(2v + s� b� k)

�

b

s

��

b

2v � k

��

k + s

2v + s� b

��

v

k � v

�

= 0

(provided that b � 0 and v � 0) in this way, starting from S. Dent's identity

(se
tion 5.3).

Symmetry as a bonus All WZ pairs

2

F (n; k) dk + G(n; k) dn satisfy the

WZ equation

F (n+ 1; k)� F (n; k) = G(n; k + 1)�G(n; k)

whose symmetry is praised in [PWZ96℄ on page 123:

\When the WZ equation holds, there is 
omplete symmetry between

the indi
es n and k, espe
ially for terminating identities, whi
h pre-

viously had seemed to be playing seemingly di�erent roles. The

revelation of symmetry in nature has always been one of the main

obje
tives in s
ien
e."

Of 
ourse, WZ pairs should mat
h this appealing symmetry. So far, no nontrivial

ni
ely symmetri
 WZ pairs were known. We obtain the WZ form

2

�a�b

�

a+ b

a; b

�

1

a+ b

(b da� a db) ;

from the well known binomial form by our method of 
losedness preserving

substitutions in the se
tions 5.1. By the same method, the WZ forms

�

r

a

��

s

b

��

r + s

a+ b

�

�1

1

a+ b

(b da� a db)

and

4

�b�a

�

2 a

a

��

2 b

b

�

1

a+ b

(b da� a db)

are obtained. In the language of re
urren
es, the 
losedness of these forms

means that

(�

a

a+�

b

b)

1

a+ b

2

�a�b

�

a+ b

a; b

�

= 0;

(�

a

a+�

b

b)

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

= 0

and

(�

a

a+�

b

b)

1

a+ b

4

�b�a

�

2 a

a

��

2 b

b

�

= 0:

2

For uniformity, we write the WZ pair (F (n; k);G(n; k)) as F (n; k) dk + G(n; k) dn

4



2 Di�eren
e Forms

The purpose of this se
tion is to give a 
omplete proof of the Theorem of Stokes{

Zeilberger. It is deliberately disse
ted into a 
olle
tion of small de�nitions and

propositions in order to allow for automati
 proving by a system like Theorema

[BJK

+

97℄ in the future. All proofs are obvious; some are left out while others are

in
luded. Our interest lies in the disse
tion itself, and in the parti
ular 
hoi
e of

de�nitions. A struggle for 
ombining formal 
orre
tness with traditional (and

useful) notation for
ed us to rede�ne a few most familiar notions like variable and

(hypergeometri
) term. Of 
ourse one might see re-introdu
ing these 
on
epts as

overdoing; to our defense, we 
ite from the prefa
e of the textbook \Advan
ed

Cal
ulus" on di�erential forms by M. Spivak:

\There are good reasons why the theorems should all be easy and

the de�nitions hard. As the evolution of Stokes' Theorem revealed, a

single simple prin
iple 
an masquerade as several diÆ
ult results; the

proofs of many theorems involve merely stripping away the disguise.

The de�nitions, on the other hand, serve a twofold purpose: they are

rigorous repla
ements for vague notions, and ma
hinery for elegant

proofs."

We do not give a tutorial on WZ pairs and WZ forms here, sin
e the original

papers [WZ90℄ and [Zei93℄ are very readable. For a qui
k start, you may also

look at my slides for the 44e session du S�eminaire Lotharingien de Combinatoire.

2.1 Labels, Latti
e Ve
tors and Terms

Established notation for di�eren
e equations is quite readable. Consider the

equation

(�

a

a+�

b

b)

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

= 0: (3)

The di�eren
e operators �

a

and �

b

are de�ned by �

a

= S

a

�1 and �

b

= S

b

�1

where S

a

and S

b

are the shift operators w.r.t. a and b: for example,

S

a

1

a+ b

�

r

a

��

s

b

�

=

1

a+ b+ 1

�

r

a+ 1

��

s

b

�

and

S

b

1

a+ b

�

r

a

��

s

b

�

=

1

a+ b+ 1

�

r

a

��

s

b+ 1

�

:

How to de�ne the shift operators S

a

and S

b

? A moment of thought shows

that attempts like

(S

a

f)(a; b) := f(a+ 1; b)

lead to 
onfusing 
onsequen
es; for example, we would get

(S

a

f)(b; a) = f(b+ 1; a) (4)

and

(S

a

f)(�3a; b) = f(�3a+ 1; b) (5)

Looking at (4) and (5) may suggest that S

a

should be renamed to S

1

sin
e it

shifts a fun
tion in its �rst argument. We de�ne shift operators (S

1

f)(a; b) :=

5



f(a + 1; b) and (S

2

f)(a; b) := f(a; b + 1) as well as multipli
ation operators

(m

1

f)(a; b) := af(a; b) and (m

2

f)(a; b) := bf(a; b). In this notation, we would

write equation (3) as

(�

1

m

1

+�

2

m

2

)f = 0 (6)

where

f(a; b) =

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

:

Note that equation (3) is more readable than equation (6). We prefer the

operators �a; �b; a; b that a
t on terms like

1

a+ b

�

r

a

��

s

b

��

r + s

a+ b

�

�1

over the operators S

1

; S

2

; m

1

; m

2

that a
t on fun
tions like f . However, we do

not want shift operators S

a

and S

b

to behave as (4) and (5); we want to get

S

a

f(b; a) = f(b; a+ 1) (7)

and

S

a

f(�3a; b) = f(�3a� 3; b) (8)

instead.

Our use of the word \term" 
omes from \hypergeometri
 term" by dropping

hypergeometri
ity. None of our proofs assume hypergeometri
ity, but all our

examples involve hypergeometri
 terms only.

An obvious 
andidate for the notion of \term" might be \purely synta
ti
al

term" as used, for example, in the literature on term rewriting systems. To

avoid �xing a 
ertain \signature", introdu
ing an \evaluation fun
tion" and

de�ning equivalen
e of terms modulo this evaluation fun
tion, we do not adopt

that parti
ular notion of term.

To us, the term

�

n

k

�

2

�

n+k

k

�

2

is simply the fun
tion that maps, for example,

the \ve
tor" f(n; 4); (k; 1)g to the number

�

4

1

�

2

�

4+1

1

�

2

= 400.

Labels. In the sequel, we will frequently assume that some �nite set L has

been �xed. Its elements, 
alled labels, model the integer variables { like n and

k { o

urring in hypergeometri
 terms. Labels will be set in sans serif font, like

n and k. The variables x, y and z range over L. For example,

P

x

means

P

x2L

.

By 
onvention, di�erent letters in sans serif denote di�erent labels. Thus, for

example, k 6= n holds.

Remark: Where do we need the 
onvention that di�erent letters in sans serif

denote di�erent labels? Let's 
ompute a di�eren
e:

�

k

kn

3

= (k+ 1)n

3

� kn

3

= n

3

:

One might be tempted to \generalize" this to

�

x

xy

3

= y

3

whi
h, of 
ourse, is wrong as 
an be seen by 
onsidering the parti
ular 
ase

x = y = k:

�

k

kk

3

= 4k

3

+ 6k

2

+ 4k+ 1:

6



instead of

�

k

k

4

= k

3

:

Thus one really needs to assume k 6= n for 
al
ulating �

k

kn

3

= n

3

.

The labels are assumed to be totally ordered by �. We assume that L :=

fk; ng where k � n in all examples of this se
tion.

Ve
tors. X ! Y denotes the set of all fun
tions from X to Y . We will

often denote fun
tion appli
ation by using subs
ripts: f

x

means f(x).

Def. 1 (latti
e ve
tor). The set of all (latti
e) ve
tors is V := L ! Z.

Ve
tors will also be 
alled \points" or \latti
e points". By 
onvention, p and p

0

range over V. As usual, ve
tor addition and s
alar multipli
ation are de�ned

pointwise:

1. (p+ p

0

)

x

:= p

x

+ p

0

x

2. (
p)

x

:= 
p

x

:

An example of a ve
tor is p where p

k

= 3 and p

n

= 5. Alternatively, we

write p = f(k; 3); (n; 5)g.

Remark: Remark: De�nition 1 may seem strange, but in fa
t it is natural.

Usually, Z

n

is used as the set of all latti
e ve
tors. Sin
e n = f0; 1; : : : ; n � 1g

in the usual (set theoreti
) 
onstru
tion of N, we have Z

n

= Z

f0;1;:::;n�1g

=

f0; 1; : : : ; n� 1g ! Z.

All we do is to 
hange the index set from f0; 1; : : : ; n� 1g to something like

fk; ng.

Intuitively, a term (or expression) is an obje
t like

�

n+k

k

�

2

�k

that allows

plugging in integers for the labels appearing in it: For example, plugging k = 1

and n = 7 into

�

n+k

k

�

2

�k

yields 4. Thus we 
an view a term as a fun
tion from

V to C . For example, if

T =

�

n+ k

k

�

2

�k

and

p = f(k; 1); (n; 7)g

then we 
an evaluate the term T at the point p to get

T (p) =

�

7 + 1

1

�

2

�1

= 4:

When speaking of terms, we always have (multivariate) hypergeometri


terms [Weg97, pp. 12{14℄ in mind. However, we don't restri
t ourselves to

hypergeometri
 terms (whi
h we even do not de�ne), sin
e our theorems do not

depend on this restri
tion. In pra
ti
e this means that all our theorems hold

for multivariate q-hypergeometri
 terms [Rie95℄ as well. However, our software

is presently restri
ted to (multivariate) hypergeometri
 terms.

Def. 2 (term). The set of terms is T := V ! C . We re
ursively de�ne:

1. Let x be a label in L. Then x in T is de�ned by x(p) := p

x

.

7



2. Let 
 be number in C . Then 
 in T is de�ned by 
(p) := 
.

3. Let f be fun
tion in C

n

! C . Then f in T

n

! T is de�ned by

�

f(T

1

; T

2

; : : : ; T

n

)

�

(p) := f(T

1

(p); T

2

(p); : : : ; T

n

(p)):

(In our appli
ations, the fun
tion f will typi
ally be addition, subtra
tion,

multipli
ation, division, the binomial 
oeÆ
ient fun
tion or the fa
torial

fun
tion.)

To avoid heavy notation, we allow ourselves to omit underlining. We hope that


ontext always resolves ambiguities.

Example: Let p = f(k; 1); (n; 7)g. Then

1. k(p) = 1 and n(p) = 7,

2. (k+ n) (p) = 8, and

3.

�

n+k

k

�

(p) = 8.

Example:

�

n+k

k

�

2

�k

is a term. It is the fun
tion that assigns to a point p the

number

�

p

n

+p

k

p

k

�

2

�p

k

, as 
an be 
al
ulated as follows:

�

n+ k

k

�

2

�k

(p) =

�

n+ k

k

�

(p) � (2

�k

)(p) =

=

�

n(p) + k(p)

k(p)

�

2

�k(p)

=

�

p

n

+ p

k

p

k

�

2

�p

k

:

2.2 Sums of Terms

To produ
e summation identities, we need to sum terms.

Def. 3 (support and sum). The support of T , supp T , 
onsists of all latti
e

points where T does not vanish. T has �nite support i� supp T is �nite. In

this 
ase the sum of T is de�ned by

sum T :=

X

p2 supp T

T (p) ;

otherwise, sum T is left unde�ned.

Remark: We do not lose any in�nite sum identities by insisting on the �nite-

ness of supp T . We just prove �nite versions of our identities �rst and take

appropriate limits afterwards.

Example: Let L = fag and let n be a natural number. Then sum

�

n

a

�

= 2

n

.

Example: Let L = fa; ng. Then

�

n

a

�

has in�nite support and sum

�

n

a

�

is left

unde�ned.

8



Example: Let L = fa; ng and let n be a natural number. Then sum [n = n℄

�

n

a

�

is left unde�ned.

The fun
tion sum is C -linear:

Proposition 1. If T , T

1

and T

2

have �nite support and 
 2 C then

1. sum (
 � T ) = 
 � sum T and

2. sum (T

1

+ T

2

) = sum (T

1

) + sum (T

2

):

Remark: Re
alling the de�nition of terms, we should have written sum (
 � T )

as sum (
 � T ) in order to distinguish between the 
omplex number 
 2 C and

the term 
 2 T.

2.3 Forms

Def. 4 (di�eren
e form). Let P(L) denote the set of all subsets of L. The

set F of all (di�eren
e) forms is de�ned by F := P(L)! T.

Throughout this se
tion, we sti
k to the following type 
onventions:

� i; j; k; l;m and n are integers.

� x; y and z are labels (in L).

� X;Y and Z are sets of labels, i.e. X;Y; Z 2 P(L).

� T is a term (in T).

� �; ! and � are forms (in F).

For example, we abbreviate

P

X�L

by

P

X

, we abbreviate 8

x2L

by 8

x

and so on.

For all examples in this se
tion we �x L = fa; b; 
g.

Def. 5. For X � L, the form dX is de�ned by dX (Y ) := [X = Y ℄. For x 2 L,

we abbreviate dfxg by dx.

Example: da (fag) = 1 and da (fa; bg)=0.

Def. 6. Forms 
an be multiplied by terms and added pointwise:

1. (T � !) (X) := T � !(X).

2. (! + �) (X) := !(X) + �(X).

The multipli
ation dot may be dropped. The form T d; is abbreviated by

T ; 
ontext resolves ambiguities.

Example:

�

�

b

a

�

2

�b

da

�

(X) equals

�

b

a

�

2

�b

if X = fag and 0 otherwise.

Example: (f(a; b) da+ g(a; b) db) (fag) equals f(a; b).
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2.4 Plotting Forms

To train our intuition about di�eren
e forms, we plot them.

The di�eren
e form 2

k

�

n�k

n

�

d; is plotted as

follows: The 
olor of a point p is determined

by the number v = 2

k

�

n�k

n

�

(p). If v is 0, the

point is left white. Otherwise, a grey dot is

plotted at p and the value of v is written down

near p. (Unfortunately some of these num-

bers \
ollide" with the numbers pla
ed on the

axes.)
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The di�eren
e form

�1

2

2

�n

�

n

k� 1

�

dn+ 2

�n

�

n

k

�

dk

is plotted as follows: The 
olor of a unit 
ube

in dire
tion k, i.e. a horizontal bar, is deter-

mined by the value of the term 2

�n

�

n

k

�

at the

left 
orner of the unit 
ube. Similarly the 
olor

of a unit 
ube in dire
tion n, i.e. a verti
al

bar, is determined by the value of the term

�1

2

2

�n

�

n

k�1

�

at the lower 
orner of the unit


ube.

Stri
tly speaking,

2

�n

�

n

k

� �

k

2 (�n+ k� 1)

dn+ 1 dk

�

is no di�eren
e form at all sin
e

2

�n

�

n

k

�

k

2 (�n+ k� 1)

is no total fun
tion in V ! C and therefore

no term. To warn about a term that is not

de�ned at a point p, we plot this term at p

in red 
olor. The verti
al red bars in the plot

stem from the denominator �n + k � 1 that

o

urs in 2

�n

�

n

k

�

k

2 (�n+k�1)

.
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1
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10

1
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10
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The di�eren
e form

�

n+k

n

�

dk dn is plotted as

follows: The 
olor of a unit 
ube extending in

dire
tions k and n, i.e. a square, is determined

by the number

�

n+k

n

�

(p) where p is the lower

left 
orner of that square.
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2.5 Forms, Part 2

With respe
t to the operations � and + of De�nition 6 we have:

Proposition 2. Multipli
ation is asso
iative and distributes over addition:

1. (T

1

� T

2

) � ! = T

1

� (T

2

� !).

2. (T

1

+ T

2

) � ! = T

1

� ! + T

2

� !.

3. T � (! + �) = T � ! + T � �.

Thus F is a T-module.

Def. 7 (sign). The sign of a pair of labels is de�ned by

s(x; y) =

8

<

:

1 if x � y

0 if x = y

�1 if x � y

and the sign of a pair of label sets is de�ned by

s(X;Y ) =

Y

x2X

Y

y2Y

s(x; y):

Proposition 3. The sign fun
tion satis�es the following skew 
ommutation

laws:

1. s(x; y) = �s(y; x).

2. s(X;Y ) = (�1)

#X#Y

s(Y;X).

Proposition 4. The sign fun
tion distributes over [ in the following restri
ted

sense:

1. s(X;Y ) s(X [ Y; Z) = s(X;Y ) s(X;Z) s(Y; Z).

2. s(X;Y [ Z) s(Y; Z) = s(X;Y ) s(X;Z) s(Y; Z).

Proof. We prove 1. If X\Y 6= ;, then s(X;Y ) = 0 and (1) follows. If X\Y = ;,

then s(X [Y; Z) = s(X;Z) s(Y; Z) by splitting the range of the produ
t quanti-

�er:

Q

x2X[Y

Q

y2Z

s(x; y) =

�

Q

x2X

Q

y2Z

s(x; y)

� �

Q

x2Y

Q

y2Z

s(x; y)

�

.

Def. 8 (exterior produ
t). The exterior produ
t of two forms is de�ned by

(! ^ �) (Z) :=

X

X;Y

X[Y=Z

s(X;Y )!(X) �(Y ):

For brevity ! ^ � may be abbreviated by !�.

Remark: Due to the fa
t that s(X;Y ) = 0 whenever X\Y 6= ;, only summands

for 
omplementary (with respe
t to L) X and Y 
ontribute.

Proposition 5. As expe
ted we have skew 
ommutation:
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1. dx dy = �dy dx.

2. dx dx = 0.

Remark: Note that !^ � = �� ^! is not true in general.

Proposition 6. (F; ^ ; d;) is a monoid:

1. !^ d; = d;^! = !.

2. (!

1

^!

2

)^!

3

= !

1

^ (!

2

^!

3

).

Proof of Proposition 2.2. Let X be arbitrary. Then both ((!

1

^!

2

)^!

3

) (X)

and (!

1

^ (!

2

^!

3

)) (X) are equal to

X

Y

1

[Y

2

[Y

3

=X

s(Y

1

; Y

2

) s(Y

1

; Y

3

) s(Y

2

; Y

3

)!

1

(Y

1

)!

2

(Y

2

)!

3

(Y

3

)

as 
an be shown using Proposition 4.

Proposition 7. The exterior produ
t is both left and right T-linear:

1. (T � !)^ � = !^ (T � �) = T � (! ^ �).

2. (!

1

+ !

2

)^ � = !

1

^ � + !

2

^ �.

3. !^ (�

1

+ �

2

) = !^ �

1

+ !^ �

2

.

Proposition 6 and Proposition 7.1 will be used for dropping parentheses

without introdu
ing ambiguities.

Sometimes it is easier to prove theorems for monomial forms �rst and to

extend them to arbitrary forms afterwards.

Def. 9 (monomial). A di�eren
e form ! is 
alled monomial i� there is a set

Z of labels su
h that

!(X) 6= 0 =) X = Z:

For example, T da db is monomial while T

1

da db+ T

2

da d
 is not, whenever

T

1

6= 0 and T

2

6= 0.

Some proofs (as for example the proof of Proposition 43) pro
eed by indu
-

tion on the degree.

Def. 10 (degree). A di�eren
e form is homogeneous of degree r (or has degree

r) i�

!(X) 6= 0 =) #X = r:

An r-form is a di�eren
e forms of degree r. We de�ne F

r

to be the set of all

r-forms.

An example of a 2-form is T

1

da db + T

2

db d
 + T

3

da d
. The form 0 is

homogeneous of degree r, for any natural number r.

12



2.6 The Inner Produ
t of Forms

Def. 11 (inner produ
t). The inner produ
t of the forms � and ! is de�ned

by

h�; !i :=

X

X�L

�(X) � !(X)

Proposition 8. The inner produ
t is symmetri
: h�; !i = h!; �i.

Proposition 9. The inner produ
t is both left and right T-linear:

1. hT�; !i = T h�; !i

2. h�

1

+ �

2

; !i = h�

1

; !i+ h�

2

; !i

3. h�; T!i = T h�; !i

4. h�; !

1

+ !

2

i = h�; !

1

i+ h�; !

2

i

2.7 Sums of Forms over Ranges

Def. 12 (Iversons bra
ket). We de�ne Iverson's bra
ket fun
tion from boo-

leans to integers by

1. [true℄ := 1,

2. [false℄ := 0.

For example, [2 = 2℄ = 1 and [2 < 2℄ = 0.

Def. 13 (sum). Let � have �nite support. The sum of ! over � is de�ned by

X

�

! := sum h�; !i:

The form � appearing under the

P

sign in

P

�

! is said to be used as

summation range and 
orresponds to a manifold in the 
ontinuous 
ase. The

form ! appearing on the right of the

P

sign in

P

�

! is said to be used as

summand. We typi
ally use summation ranges involving Iverson bra
kets as,

for example,

� = [n = n℄[0 � k < 0℄

satisfying

�(X)(p) 2 f�1; 0; 1g;

but we never use this assumption. Using summation ranges involving hyperge-

ometri
 terms may lead to new summation identities.

Proposition 10. Let �, �

1

and �

2

have �nite support and let 
 2 C . Then

1.

P

�


 � ! = 
 �

P

�

!,

2.

P

�

(!

1

+ !

2

) =

P

�

!

1

+

P

�

!

2

,

3.

P


��

! = 
 �

P

�

!,
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4.

P

�

1

+�

2

! =

P

�

1

! +

P

�

2

!,

The following proposition illustrates that we treat forms and ranges uni-

formly, in 
ontrast to [Zei93℄ and to the di�erential forms 
ase.

Proposition 11.

X

�

! =

X

!

�

2.8 Plotting Summation Ranges

As we en
ode summation ranges as forms, we plot them like forms; see Se
tion

2.4. Terms in summation ranges typi
ally take on the values 1, 0 and �1 only.

We en
ode these values by 
olors: Green denotes 1, white denotes 0 and blue

denotes �1.
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[k = n℄ [n < 3℄ [0 � n℄ dn+([k = n� 1℄ [n < 3+

1℄ [0 � n�1℄� [n = 3℄ [k < n℄ [0 � n�1℄+ [0 =

n℄ [k < n℄ [n < 3℄) dk
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2.9 Plotting Sums of Forms over ranges

The plot shows the sum of the form ! =

�1

2

2

�n

�

n

k�1

�

dn+2

�n

�

n

k

�

dk over the range � =

[n = n℄ dk where n = 3. (The range � is de-

pi
ted on top of the form !.) By de�nition

13,

X

�

! =

X

k

2

�n

�

n

k

�

(whi
h of 
ourse equals 1).
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2.10 Operators on Terms
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Def. 14. Let x 2 L. The unit ve
tor in x-dire
tion e

x

is de�ned by

(e

x

)

y

:= [x = y℄:

For example, e

k

= f(k; 1); (n; 0)g and e

n

= f(k; 0); (n; 1)g.

Def. 15. Let x 2 L. The shift operator S

x

in T! T is de�ned by

(S

x

T )(p) := T (p+ e

x

)

To 
ompute S

x

T in our notation of terms, it suÆ
es to repla
e ea
h o

ur-

ren
e of x textually by x+1, as justi�ed by the following obvious proposition.

(Note that x and y are labels, not integers; thus [x = y℄ below tests equality of

labels, not equality of integers.)

Proposition 12. 1. S

x

y = x+ [x = y℄,

2. S

x


 = 
,

3. S

x

f(t

1

; : : : ; t

n

) = f(S

x

t

1

; : : : ; S

x

t

n

).

For example, S

k

�

n+k

k

�

2

�k

=

�

n+k+1

k+1

�

2

�k�1

.

Def. 16. We de�ne the di�eren
e operator �

x

and the dual di�eren
e operator

�

�

x

by

1. �

x

:= �I + S

x

,

2.

�

�

x

:= �I + S

�1

x

,

where operator addition and subtra
tion is, of 
ourse, de�ned pointwise.

For example, �

k

k! = (k+ 1)!� k! = kk!. and

�

�

k

[k < n℄ = [k� 1 < n℄� [k <

n℄ = [k � n℄ � [k < n℄ = [k = n℄. (Computing

�

�

x

on Iversons allows us to


ompute boundaries { even of in�nite ranges { symboli
ally.)

Proposition 13. Let T , T

1

and T

2

have �nite support. Then

1. sum S

k

x

T = sum T ,

2. sum (T

1

� S

x

T

2

) = sum (S

�1

x

T

1

� T

2

),

3. sum (T

1

� �

x

T

2

) = sum (

�

�

x

T

1

� T

2

).

Def. 17. The set of shift polynomials SP is the smallest subset in T ! T

satisfying

1. All shift operators S

k

x

are in SP,

2. SP is 
losed under 
omposition: If A and B are in SP, then AB is in SP,

3. SP is 
losed under addition: If A and B are in SP, then A + B and �A

are in SP,

4. 0 is in SP.

Thus SP = Z[S

x

1

; : : : ; S

x

n

℄ where L = fx

1

; : : : ; x

n

g.

15



Examples of shift polynomials in
lude �

x

and G

k

x

.

Proposition 14. Let A and B be shift polynomials. Then

1. A (T

1

+ T

2

) = AT

1

+AT

2

,

2. AB = BA,

Proof. Shift operators 
ommute with ea
h other.

2.11 Operators on Forms

Operators a
ting on terms indu
e 
orresponding operators a
ting on forms in a

natural way:

Def. 18. Let A be a fun
tion in T! T. Then

^

A in F ! F is de�ned by

(

^

A!) (X) := A(!(X)):

Overloading notation, we frequently abbreviate

^

A by A.

We will use De�nition 18 to lift shift operators S

k

x

, di�eren
e operators �

x

and multipli
ation operators (T �) from T ! T to F ! F. Of 
ourse, lifting

distributes over 
omposition:

Proposition 15. Let A and B be fun
tions in T! T. Then

(AB)̂ =

^

A

^

B

Proposition 16. Di�eren
e operators in F! F 
ommute:

1.

^

�

x

^

�

y

=

^

�

y

^

�

x

.

2.

^

�

x

�

^

�

y

� =

^

�

y

�

^

�

x

�.

Proof. We prove 1 by redu
ing it to the 
ommutation of di�eren
e operators in

T! T via Proposition 15:

^

�

x

^

�

y

= (�

x

�

y

)̂ = ((�1�)�

y

�

x

)̂ = �

^

�y

^

�x:

Def. 19. Overloading the meaning of dx, we de�ne the operator dx in F ! F

by dx (!) := dx^!.

Thus dx may denote a form in F or an operator in F ! F depending on


ontext.

Proposition 17. (dx!)(Z) =

P

Y

fxg[Y=Z

s(fxg; Y )!(Y ):

Remark: The summand in Proposition 17 is nonvanishing for Y = Z nfxg only;

thus we 
ould dispense of using a sum. Refraining from doing so helps in proving

Proposition 23.

16



Proposition 18. The operators dx and dy satisfy the skew 
ommutation law

dx dy = �dy dx.

Proof. By applying both operators to ! and using the asso
iativity of ^ , Propo-

sition 18 
an be redu
ed to the skew 
ommuation law dx dy = �dy dx for the

forms dx and dy.

Def. 20. (

�

dx �)(X) := s(x;X) �(fxg [X):

The operators

�

dx and

�

dy skew 
ommute with ea
h other. To see this, we

need a te
hni
al lemma:

Lemma 1. The sign fun
tion satis�es

s(fxg; Z) s(fyg; fxg [ Z) = �s(fyg; Z) s(fxg; fyg [ Z)

Proof. By Proposition 4 2, the left hand side is equal to

s(fxg; Z) s(fyg; fxg) s(fyg; Z)

and the right hand side is equal to

�s(fyg; Z) s(fxg; fyg) s(fxg; Z):

Sin
e s(fyg; fxg) = �s(fxg; fyg) by Proposition 3 2, both sides are equal.

As an immediate 
orollary of this lemma, we get:

Proposition 19. The operators

�

dx and

�

dy skew 
ommute with ea
h other:

�

dx

�

dy = �

�

dy

�

dx:

Proposition 20. Let A be a shift polynomial. Then

1. Adx = dxA.

2. A

�

dx =

�

dxA.

Proof. Shift operators 
ommute with the operator dx.

Def. 21. The exterior derivative operator d in F ! F and the boundary

operator � in F! F are de�ned by

1. d :=

P

x

dx�

x

,

2. � :=

P

x

�

dx

�

�

x

.

Remark: The letter d is overloaded. We use it both for 
onstru
ting forms and

for denoting the exterior derivative. Sin
e the exterior derivative of the form a

is indeed the form da, both interpretations of d agree.

17



Remark: The operator � is 
alled \boundary operator" sin
e it 
omputes \sign-

ed boundaries" of summation ranges; eviden
e is given by the following pi
tures:

� [k < k℄ [n < n℄ dk dn = [k = k℄ [n <

n℄ dn� [n = n℄ [k < k℄ dk

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

� [n + k < k℄ dk dn = [n + k = k℄ dn �

[n+ k = k℄ dk:

� [0 � k℄ [k � n℄ dk dn = (�[0 = k℄ [k �

n + 1℄ + [k = n + 1℄ [0 � k℄) dn + [k =

n℄ [0 � k℄ dk:

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

-1 1 2 3 4
k

-1

1

2

3

4

n

� [k = k℄ [n < n℄ [0 � n℄ dn� [n = n℄ [k <

k℄ [0 � k℄ dk = [k = k℄ [n = n℄ [0 �

n�1℄� [k = k℄ [n = n℄ [0 � k�1℄� [0 =

n℄ [k = k℄ [n < n℄ + [0 = k℄ [n = n℄ [k <

k℄:

Proposition 21. Both d and � are additive:

1. d(! + �) = d(!) + d(�).

2. �(! + �) = �(!) + �(�).

Proposition 22. We have dd = 0 as well as �� = 0.

Proof. We prove dd = 0. Using the additivity of �

y

and dy we expand dd to

P

y

P

x

A(y; x) where A(y; x) = dy dx�

y

�

x

. Now A(y; x) = �A(x; y) as 
an

be shown using the 
ommutation �

y

�

x

= �

x

�

y

and the skew 
ommutation

dy dx = �dx dy. Hen
e

P

y

P

x

A(y; x) = 0.

Proposition 23. In inner produ
ts, the operator dx 
an be moved from the

right side to left side, getting

�

dx:

h�; dx!i =




�

dx �; !

�

:

Proof. We transform the left hand side stepwise to the right hand side. By

de�nition of the inner produ
t it is

X

Z

�(Z) (dx!)(Z):

By Proposition 17, (dx!)(Z) equals

P

Y

fxg[Y=Z

s(fxg; Y )!(Y ). Thus the left

hand side equals

X

Y;Z

fxg[Y=Z

s(fxg; Y ) �(Z)!(Y ):

18



The 
ondition fxg [ Y = Z allows us to eliminate the sum on Z, yielding

X

Y

s(fxg; Y ) �(fxg [ Y )!(Y ):

As s(fxg; Y ) �(fxg [ Y ) = (

�

dx �)(Y ), this simpli�es to

X

Y

(

�

dx �)(Y )!(Y )

whi
h, by the de�nition of the inner produ
t, is the right hand side of Proposition

23.

In sums, operators 
an be moved from the summand to the summation range

by the following Proposition:

Proposition 24. Let � have �nite support. Then

1.

P

�

dx! =

P

�

dx �

!,

2.

P

�

�

x

! =

P

�

�

x

�

!,

3.

P

�

dx�

x

! =

P

�

dx

�

�

x

�

!.

Proof. We prove 1. It is true sin
e h�; dx !i =




�

dx �; !

�

by Proposition 23.

Next we prove 2. By De�nition 13, De�nition 3 and the additivity of sum it is

equivalent to

X

X

�(X)�

x

(!(X)) =

X

X

�

�

x

(�(X))!(X)

whi
h is true by Proposition 13. Finally 3 
an be proved using 1, 2 and the


ommutation

�

�

x

�

dx =

�

dx

�

�

x

(Proposition 20(2)).

2.12 The Theorem of Stokes{Zeilberger

We are now ready for the 
entral theorem about di�eren
e forms.

Theorem 1 (Stokes{Zeilberger). Let � have �nite support. Then

X

�

d! =

X

��

!:

Proof. Summing Proposition 24.3 over all x 2 L gives

X

x

X

�

dx�

x

! =

X

x

X

�

dx

�

�

x

�

!:

The bilinearity of

P

�

! allows us to move the sums on x inside:

X

�

X

x

dx�

x

! =

X

P

x

�

dx

�

�

x

�

!:

Sin
e

P

x

dx�

x

= d and

P

x

�

dx

�

�

x

= � Theorem 1 follows.
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The omnipresent teles
oping tri
k [GKP89, p.50℄ is the simplest spe
ial 
ase

of Stokes' Theorem:

Proposition 25 (teles
oping). Suppose that the fun
tions f and F in Z! C

satisfy F (n + 1) � F (n) = f(n) for all n. Assume a < b. Then

P

b�1

k=a

f(k) =

F (b)� F (a).

Proof. Let L := fkg, ! := F (k) and � := [a � k < b℄dk. Use Stokes' Theorem.

Needless to say, Proposition 25 is a dis
rete analog of

R

b

a

F

0

(x)dx = F (b) �

F (a).

Def. 22. We de�ne 
losedness and exa
tness as follows:

1. The form ! is d-
losed, or, shorter, ! is a 
losed form, i� d! = 0.

2. The form � is �-
losed, or, shorter, � is a 
losed range, i� �� = 0.

3. The form ! is d-exa
t, or, shorter, ! is an exa
t form, i� 9

~!

d~! = !.

4. The form � is �-exa
t, or, shorter, � is an exa
t range, i� 9

~�

�~� = �.

For the purpose of produ
ing interesting identities, we usually do not use

the Theorem of Stokes{Zeilberger in full generality. Instead, we only use the

following immediate 
orollary of it.

Theorem 2 (identity mill). Let � be an exa
t range having �nite support and

let ! be 
losed form. Then

X

�

! = 0:

Proof. Sin
e � is an exa
t form, there is a form ~� su
h that � = �~�. Thus

X

�

! =

X

� ~�

! =

X

~�

d! =

X

~�

0 = 0:

The essential step is the use of the Theorem of Stokes-Zeilberger.

2.13 WZ Pairs

Def. 23 (WZ pair). Let f and g be fun
tions in Z

2

! Z. The pair (f; g) is


alled a WZ pair[WZ90℄ i�

f(n+ 1; k)� f(n; k) = g(n; k + 1)� g(n; k):

WZ pairs 
an be en
oded as 
losed di�eren
e forms:

Proposition 26. Let L = fk; ng. Then (f; g) is a WZ pair i�

f(n; k) dk+ g(n; k) dn

is 
losed.
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Well known propositions about WZ pairs naturally

follow from the Identity Mill Theorem. The following

proposition is part of Theorem A of [WZ90℄:

Proposition 27. Let (f; g) be a WZ pair. Suppose

that

8

n�0

lim

k!�1

g(n; k) = 0:

Then

8

n�0

X

k

f(n; k) =

X

k

f(0; k)

whenever both sums 
onverge.

-1 1 2 3 4

-1

1

2

3

4

n

k

Proof. Let n be a �xed natural number, �

K

:= �[�K � k < K℄[0 � n <

n℄dkdn and ! := f(n; k) dk + g(n; k) dn: The Identity Mill Theorem shows that

8

K

P

�

K

! = 0 whi
h implies lim

K!1

P

�

K

! = 0 i.e.

P

k

f(n; k) =

P

k

f(0; k):

The following proposition is used in [Zei93℄ to prove Ap�erys series for �(3):

Proposition 28. Let (f; g) be a WZ pair. Suppose

that

8

�>0

9

N

8

n�N

8

k

jf(n; k)j < �:

Then

1

X

n=0

g(n; 0) =

1

X

n+0

(f(n; n) + g(n; n+ 1))

whenever both sums 
onverge.

-1 1 2 3 4
k

-1

1

2

3

4

n

Remark: The original version of this proposition, Theorem 7 of [Zei93℄, misses a


ondition like 8

�>0

9

N

8

n�N

8

k

jf(n; k)j < �: Plugging ! = d

2 k

k+n+1

into the original

version would yield a WZ proof of 0 = 1.

Proposition 29. Let (f; g) be a WZ pair and let s

be a �xed integer. Suppose that both f and g vanish

for negative arguments. Then

X

a+b=s

(g(a; b)� f(a; b)) = 0:

-1
 1
 2
 3
 4

k


-1


1


2


3


4


n


-1
 1
 2
 3
 4

k


-1


1


2


3


4


n


Proposition 30. Let (f; g) be a WZ pair and let a

and b be �xed integers. Suppose that both f and g

vanish for negative arguments. Then

X

k<a

f(b; k) =

X

n<b

g(n; a):

As is trivial to get su
h propositions by plugging some exa
t range � into

the Identity Mill Theorem (even automati
ally!), we stop doing this.

21



2.14 WZ Forms and the Residue Cal
ulus

In his foreword to [PWZ96℄, D. E. Knuth mentions the identity

X

k

�

2k

k

��

2n� 2k

2� k

�

= 4

n

:

Of 
ourse, it is immediately proved by 
omparing 
oeÆ
ients at z

n

in

1

p

1� 4z

1

p

1� 4z

=

1

1� 4z

:

We prove it in a di�erent way in order to point at an analogy between the WZ

method and the residue 
al
ulus.

To prove

X

k

4

�n

�

2k

k

��

2n� 2k

n� k

�

= 1;

To prove

Z

1

�1

1

1 + x

2

dx = �;

we start by sear
hing for a range �

and a 
losed form ! su
h that

X

�

! =

X

k

4

�n

�

2k

k

��

2n� 2k

n� k

�

:

we start by sear
hing for a meromor-

phi
 fun
tion f and a path 
 su
h

that

Z




f(z)dz =

Z

1

�1

1

1 + x

2

dx:

Gosper's algorithm helps us to �nd

! = 4

�n

�

2k

k

��

2n� 2k

n� k

�

�

�

1dk�

n� k+ 1=2

n� k+ 1

k

n+ 1

dn

�

:

Finding f is immediate:

f(z) =

1

1 + z

2

:

We �x an integer n and the range ��

where

�� = [n = n℄dk:

1
 2
 3
 4
 5

k

1


2


3


4


We �x the path �
 where

�
(t) = t:

Next we extend �� to an exa
t range

�,

� = ��+ �

0

+ �

mini

:

-1 1 2 3 4 5
k

1

2

3

4

Next we extend �
 to a nullhomo-

topi
 
losed path 
,


 = �
 + 


0

+ 


pole

:
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We 
arefully 
hoose a range �

mini

that is nonvanishing on a handful of

points only, and a range �

0

that lies

outside the support of !. Thus

X

�

mini

!

= trivial to 
ompute;

and

X

�

0

! = 0:

We 
arefully 
hoose a path �

mini

that 
onsists of 
y
les around poles

only, and a path 


0

that does not


ontribute to the integral. Thus

Z




pole

f(z)dz

= revealed by the residue

and

Z




0

f(z)dz = 0:

Sin
e

X

�

! = �

X

�

mini

!

we prove

X

k

4

�n

�

2k

k

��

2n� 2k

n� k

�

= 1:

Sin
e

Z




f(z)dz = �

Z




pole

f(z)dz

we prove

Z

1

�1

1

1 + x

2

dx = �:
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3 WZ Forms

Sometimes \WZ form" is used as a synonym for \
losed di�eren
e form". To

stress the 
lose 
orresponden
e between di�erential forms and di�eren
e forms,

we reuse 
ommon terminology from di�erential forms and reserve the notion

WZ form for the hypergeometri
 
ase.

Def. 24 (WZ form). A WZ form is a 
losed di�eren
e form whose 
oeÆ
ient

terms are hypergeometri
 or q-hypergeometri
.

Presently, our pa
kage wz.m is restri
ted to WZ forms; however, we plan to

support other 
oeÆ
ient domains as well in the future.

Def. 25 (trivial WZ form). A WZ form is 
alled trivial, i� it is the exterior

derivative of another WZ form.

To �nd nontrivial identities, we need nontrivial forms.

3.1 Gosper's Algorithm Constru
ts WZ Pairs

Given a hypergeometri
 term and a label, Gosper's algorithm �nds out if there

is a hypergeometri
 antidi�eren
e to the term. In the aÆrmative 
ase, the

algorithm returns this antidi�eren
e.

As shown in [WZ90℄, Gosper's algorithm solves the problem of 
onstru
ting

WZ pairs: Consider the Binomial Theorem. Its natural WZ-style proof is to

sum a WZ form

! := �

�

n

k

�

x

k

y

n�k

(x+ y)

n

dk+G(k; n) dn

(where L = fk; ng) over the exa
t range

� := � [0 � n < n℄ dk dn

getting

�1 +

X

k

�

n

k

�

x

k

y

n�k

(x+ y)

n

= 0:

The form ! is 
losed i�

�

k

G(k; n) = ��

n

�

n

k

�

x

k

y

n�k

(x+ y)

n

;

Gosper's algorithm 
omputes G(k; n) and we �nally obtain the WZ form

! =

�

n

k

�

x

k

y

n�k

(x+ y)

n

�

ky

(n� k+ 1)(x+ y)

dn� dk

�

:

Remark: The form ! re
eives some treatment in se
tion 5.1.
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3.2 In
ompleteness of the WZ Forms Method

Unfortunately, the method of WZ forms is not 
omplete for proving identities

of the form

1

X

k=�1

f(n; k) = 1

where f(n; k) is hypergeometri
 in n and k. Note however that Zeilberger's fast

algorithm [Zei91℄ is 
omplete for proving all these identities.

A 
ounterexample [PS95℄ for the 
ompleteness of the WZ method is

f(n; k) = (�1)

k

�

n

k

��

3k

n

�

(�3)

�n

:

More generally, Paule and S
horn [PS95℄ proved that

f

d

(n; k) = (�1)

k

�

n

k

��

dk

n

�

(�3)

�d

is a 
ounterexample for ea
h integer d � 3.

3.3 Singlesum Identities

All identities in this se
tion were generated by a 
omputer program; 
itations

were added by hand. All parameters appearing in the identities are assumed to

be integers. The program annotates identities with inequality 
onstraints on the

parameters. While these 
onstraints are suÆ
ient, some inequalities o

urring

in them may be redundant: For example, the program does not simplify \for

a � 0; 2 a � 0; a � n; n+a � 0" to \for 0 � a � n" in identity 1 below. Redun-

dant inequalities 
ould be dete
ted by the simplex algorithm and subsequently

removed; we have not implemented this so far.

Identity 1 (a \Moriarity" identity of Davis [Ego84, p. 52℄).

n

X

k=a

(�1)

k

2

2 k

�

k

a

��

n+ k

2 k

�

=

2n+ 1

2 a+ 1

(�1)

n

2

2 a

�

n+ a

2 a

�

for a � 0; 2 a � 0; a � n; n+ a � 0:

Remark: The sum equals

2

F

1

�

n+ a+ 1; �n+ a

a+

1

2

; 1

�

(�1)

a

2

2 a

�

n+ a

2 a

�

:

It 
an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 2 (!1).

k

X

n=a+1

n

(2n� 1) (2n+ 1)

�

2 k

n+ k

��

n+ a

2 a+ 1

�

=

a+ 1

(2 a+ 1) (2 k + 1)

2

2 k�2 a�2

�

k

a+ 1

�

for a+ 1 � 0; 2 a+ 1 � 0; k � 0; 2 k � 0; a+ 1 � k:
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Remark: The sum equals

4

F

3

�

2 a+ 2; a+ 2; a+

1

2

; �k + a+ 1

a+ 1; a+

5

2

; k + a+ 2

;�1

�

�

a+ 1

(2 (a+ 1)� 1) (2 (a+ 1) + 1)

�

2 k

k + a+ 1

�

:

It 
an be evaluated by Slater III.10.

Identity 3 ([Ego84, p. 52℄, 
orre
ted).

r+n

X

i=r+1

�

n� 1

�r + i� 1

��

r

2 r � i

�

=

�

r + n� 1

r � 1

�

for 1 � n; n � 0; 1 � r; r � 0; 1 � r + n:

Remark: The sum is a 
ertain

2

F

1

�

: : :

: : :

; 1

�

and 
an be evaluated by Vander-

monde's Theorem and Gauss's Theorem.

Identity 4 (!3).

n�1

X

r=�i+1

3 r

2

� 2n r + 3 i r + r � i n+ i

2

2 r + i

�

n� 1

r + i� 1

��

n

�r + n� 1

��

2 r + i

r

�

= 0

for 1 � n; n � 0:

Identity 5 (of Dixon, [GKP89℄).

a

X

k=�a

(�1)

k

�

b+ a

k + a

��


+ a

k + 


��


+ b

k + b

�

= a!

�1

b!

�1


!

�1

(
+ b+ a)!

for a � 0; b � 0; b+ a � 0; 
 � 0; 
+ a � 0; 
+ b � 0; 
+ b+ a � 0:

Remark: The sum equals

3

F

2

�

�2 a; �b� a; �
� a

b� a+ 1; 
� a+ 1

; 1

�

(�1)

a

�


+ a


� a

��


+ b

b� a

�

:

It 
an be evaluated by Dixon's Theorem (Slater III.8, terminated in the �rst

variable), Dixon's Theorem (Slater III.8) and Dixon's Theorem (Slater III.9).

Identity 6 (!5).

b

X


=k+1

(�1)




�


+ a� 1

�k + 
� 1

��

k + b

�
+ b

�

(
� 1)! (
� b+ a)!

�1

= (�1) (�1)

b+1

�

b� a� 1

k � a

�

a!

�1

(b� 1)!

for a � 0; 1 � b; a+ 1 � b; k + 1 � b; a � k; k + a � 0; k + b � 0:
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Remark: The sum equals

3

F

2

�

k � b+ 1; k + 1; k + a+ 1

k � b+ a+ 2; 2 k + 2

; 1

�

� (�1)

k+1

�

k + b

�k + b� 1

�

k! (k � b+ a+ 1)!

�1

:

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

Identity 7 (!5).




X

a=k+1

(�1)

a

�

a� 1

�
+ b+ a

��

b+ a� 1

�k + a� 1

��

k + 



� a

�

=

k � 





(�1)


+1

�





� b

��


� b

k � b

�

for b � 0; 
 � 0; b+ 1 � 
; b � 
; k � 
; b � k; k + b � 0; k + 
 � 0:

Remark: The sum equals

3

F

2

�

k � 
+ 1; k + 1; k + b+ 1

k � 
+ b+ 2; 2 k + 2

; 1

�

(�1)

k+1

�

k

k � 
+ b+ 1

��

k + 


�k + 
� 1

�

:

(9)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2).

Identity 8 (!5).

k

X

b=0

(�1)

b

�

a+ 1

�
� b+ a+ 1

��

�b+ a

�k + a

��


+ b

b

��

k + b


+ b

�

= 0

for a+ 1 � 0; 
 � a+ 1; 
 � 0; k � a; k + a+ 1 � 0; 
 � k; k + 
 � 0:

Remark: The sum equals

3

F

2

�


� a� 1; �k; k + 1


+ 1; �a

; 1

� �

a

�k + a

��

a+ 1

�
+ a+ 1

��

k




�

: (10)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2)

Identity 9 (!5).

k

X


=0

(�1)




�


+ b

b

��


+ b+ a� 1

a� 1

��

k + b


+ b

��

k + 



+ a

�

= 0

for 1 � a; b � 0; 1 � b+ a; k + 1 � b; a � k; k + a � 0; k + b � 0:

Remark: The sum equals

3

F

2

�

b+ a; k + 1; �k

a+ 1; b+ 1

; 1

� �

b+ a� 1

a� 1

��

k

a

��

k + b

b

�

: (11)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2).
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Identity 10 (!5).

a

X

k=�a

(�1)

k

�

b+ a

k + a

��


+ a

k + 


��


+ b

k + b

�

=

�


+ b

b

��


+ b+ a

a

�

for a � 0; b � 0; b+ a � 0; 
 � 0; 
+ a � 0; 
+ b � 0; 
+ b+ a � 0:

Remark: The sum equals

3

F

2

�

�2 a; �b� a; �
� a

b� a+ 1; 
� a+ 1

; 1

�

(�1)

a

�


+ a


� a

��


+ b

b� a

�

: (12)

It 
an be evaluated by Dixon's Theorem (Slater III.8, terminated in the �rst

variable) .

Identity 11 (of Carlitz [Ego84, p. 170℄).

m

X

k=0

�

m

k

��

n

k

��

p+ n+m� k

n+m

�

=

�

p+m

m

��

p+ n

n

�

for m � 0; n � 0; n+m � 0; p � 0; p+m � 0; p+ n � 0:

Remark: The sum equals

3

F

2

�

�m; �n; �p

1; �p� n�m

; 1

� �

p+ n+m

n+m

�

: (13)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

Identity 12 (!11).

p�m+k

X

n=p

(�1)

n

�

n

k � 1

��

n

�p+ n

��

p+ k

p� n�m+ k

�

= (�1)

p+m+k

�

k � 1

m� 1

��

p

p�m+ 1

�

for 1 � k; m � k; 1 � m; p � 0; p+ k � 0; m � p+ 1:

Remark: The sum equals

3

F

2

�

m� k; p+ 1; p+ 1

p� k + 2; p+m+ 1

; 1

�

(�1)

p

�

p

k � 1

��

p+ k

�m+ k

�

: (14)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

Identity 13 (!11).

k+1

X

p=0

(�1)

p

�

n+m+ 1

p+ n+m� k

��

p+m

m

��

p+ n

n

�

= (�1)

k+1

�

m

k + 1

��

n

k + 1

�

for k + 1 � 0; m � 0; k + 1 � m; n � 0; k + 1 � n; n+m+ 1 � 0:

28



Remark: The sum equals

3

F

2

�

�k � 1; m+ 1; n+ 1

n+m� k + 1; 1

; 1

� �

n+m+ 1

n+m� k

�

: (15)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

Identity 14 (of Saals
h�utz [GKP89, (5.28)℄).

n

X

k=0

�

r + k

n+m

��

�s+ r + n

n� k

��

s� r +m

k

�

=

�

r

m

��

s

n

�

for m � 0; n � 0; m � r; s � r + n; n � s; r � s+m:

Remark: The sum equals

3

F

2

�

�n; r + 1; �s+ r �m

r � n�m+ 1; �s+ r + 1

; 1

� �

r

n+m

��

�s+ r + n

n

�

: (16)

The identity is equivalent to Saals
h�utz's Theorem (Slater III.2).

Identity 15 (!14).

n

X

m=0

�

�r + k

n�m

��

r

m

��

s+ r �m

k

�

=

�

s

n

��

s+ r � n

�n+ k

�

for k � 0; n � k; n � 0; r � k; r � 0; s � 0; n � s; k � s+ r; n � s+ r:

Remark: The sum equals

3

F

2

�

�n; �r; �s� r + k

�r � n+ k + 1; �s� r

; 1

� �

�r + k

n

��

s+ r

k

�

: (17)

The identity is equivalent to Saals
h�utz's Theorem (Slater III.2).

Identity 16 (!14).

k

X

n=0

�

r � k

�n+m

��

s

n

��

s+ r � n

�n+ k

�

=

�

r

m

��

s+ r �m

k

�

for k � 0; m � 0; k � r; m � r; s � 0; k � s+ r; m � s+ r; m+ k � s+ r:

Remark: The sum equals

3

F

2

�

�k; �m; �s

r �m� k + 1; �s� r

; 1

� �

r � k

m

��

s+ r

k

�

: (18)

The identity is equivalent to Saals
h�utz's Theorem (Slater III.2).
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Identity 17 (!14).

s+k

X

r=k

(�s+ 2 r �m� k)

�

n+ k

�s+ r + n

��

n+m

r � k

��

r

m

��

s� r +m+ k

s� r +m

�

= 0

for k � 0; m � 0; 1 � n; n+ k � 0; n+m � 0; s+ 1 � n; s � 0:

Remark: The sum equals

5

F

4

�

�s�m+ k; �

1

2

s�

1

2

m+

1

2

k + 1; �n�m; k + 1; �s

�

1

2

s�

1

2

m+

1

2

k; �s+ n+ k + 1; �s�m; �m+ k + 1

; 1

�

� (�s�m+ k)

�

k

m

��

n+ k

�s+ n+ k

��

s+m

s+m� k

�

:

It 
an be evaluated by Dixon's Theorem as stated in Slater III.12.

Identity 18 (!14).

�r+m+k+1

X

s=n

(�1)

s

�

k + 1

s+ r �m

��

s

n

��

s+ r � n

�n+ k

�

= (�1)

r+m+k+1

�

�r + k

n�m� 1

��

r

m+ 1

�

form+1 � 0; n � k; m+1 � n; r � k; r+ n � m+ k+1; r � 0; m+1 � r:

Remark: The sum equals

3

F

2

�

r + n�m� k � 1; n+ 1; r + 1

r + n�m+ 1; r + n� k + 1

; 1

�

(�1)

n

�

k + 1

r + n�m

��

r

�n+ k

�

: (19)

The identity is equivalent to Saals
h�utz's Theorem (Slater III.2).

Identity 19 (of Kummer [GKP89, (5.30)℄).

a

X

k=�a

(�1)

k

�

b+ a

k + a

��

b+ a

k + b

�

=

�

b+ a

a

�

for a � 0; b � 0; b+ a � 0:

Remark: The sum equals

2

F

1

�

�2 a; �b� a

b� a+ 1

;�1

�

(�1)

a

�

b+ a

b� a

�

: (20)

It 
an be evaluated by Kummer's Theorem.

Identity 20 (!19).

k

X

b=0

(�1)

b

�

b+ a

a

��

k + a

b+ a

��

k + b

b+ a

�

= 0 for a � 0; a � k; k + a � 0: (21)

30



Remark: The sum equals

2

F

1

�

k + 1; �k

a+ 1

; 1

� �

k

a

��

k + a

a

�

: (22)

It 
an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 21 (!19).

k

X

a=0

(�1)

a

�

b+ a

a

��

k + a

b+ a

��

k + b

b+ a

�

= 0 for b � 0; b � k; k + b � 0: (23)

Remark: The sum equals

2

F

1

�

�k; k + 1

b+ 1

; 1

� �

k

b

��

k + b

b

�

: (24)

It 
an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 22 (of Moriarty [Ego84, p. 11℄).

n

X

k=m

1

n+ k

(�4)

k

�

k

m

��

n+ k

2 k

�

=

1

n+m

(�1)

n

4

m

�

n+m

2m

�

for m � 0; 2m � 0; m � n; n+m � 0:

Remark: The sum equals

2

F

1

�

n+m; �n+m

m+

1

2

; 1

�

1

n+m

(�4)

m

�

n+m

2m

�

: (25)

It 
an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 23 (!22).

k�1

X

n=m

�

2 k � 1

n+ k

��

n+m

2m

�

= 4

�m+k�1

�

k � 1

m

�

for 1 � k; 1 � 2 k; m+ 1 � k; m � 0; 2m � 0:

Remark: The sum equals

2

F

1

�

2m+ 1; m� k + 1

m+ k + 1

;�1

� �

2 k � 1

m+ k

�

: (26)

It 
an be evaluated by Kummer's Theorem.

Identity 24.

X

n

�

18n

2

� 9 k n+ 3n� 8 k � 12

�

�

k + 4

3n� k

�

= 2 (k + 3) (k + 4) (�1)

k

for k + 4 � 0:

31



Remark: The sum is a 
ertain

5

F

4

with argument �1. There are integer dis-

tan
es between upper and lower entries; 
ontiguous relations may apply.

Exer
ise: Try to evaluate the sum with Mathemati
a 3:0:1. �

Identity 25 (of Grosswald [Ego84, p. 27℄).

2m

X

v=0

�

�1

2

�

v

�

r + 2m

v + r

��

v + 2 r + 2m

v

�

= (�1)

m

2

�2m

�

r + 2m

m

�

for m � 0; r +m � 0; r + 2m � 0; 2 r + 2m � 0:

Remark: The sum equals

2

F

1

�

2 r + 2m+ 1; �2m

r + 1

;

1

2

� �

r + 2m

r

�

: (27)

It 
an be evaluated by Gauss's Se
ond Theorem .

Identity 26 (!25).

X

r

(�1)

r

�2 r + 2m� 1

�

�2 r + 2m

�v � 2 r + 2m� 1

��

�r + 2m

m

��

v + 2m

�r + 2m

�

= 0

for m � 0; v + 1 � 0; v + 2m � 0:

Remark: The sum equals

2

F

1

�

�

1

2

v �m+

1

2

; �

1

2

v �m+ 1

�v �m+

3

2

; 1

�

�

1

2 v + 2m� 1

(�1)

v

�

v + 2m

m

��

2 v + 2m

v + 2m� 1

�

:

It 
an be evaluated by Vandermonde's Theorem, Gauss's Theorem and S2105.

Identity 27 ([Ego84, p. 27℄).

n

X

k=0

1

(k + 1) (�n+ k � 1)

�

2 k

k

��

2n� 2 k

n� k

�

=

�1

n+ 2

�

2n+ 2

n+ 1

�

for n+ 1 � 0; 2n+ 2 � 0:

Remark: The sum equals

3

F

2

�

�n� 1;

1

2

; 1

2; �n+

1

2

; 1

�

�1

n+ 1

�

2n

n

�

: (28)

It 
an be transformed by T3204, T3205, T3206, T3207, T3217, T3237, u, T3240,

T3261, T3262, T3263, T3264, T3267 and T3268. Sin
e there are integer dis-

tan
es, 
ontiguous relations may apply.
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Identity 28 (!27).

k

X

n=0

3n� 2 k � 1

(�n+ k + 1) (n+ 1)

�

�2n+ 2 k

�n+ k

��

2n

n

�

=

�1

2

�

2 k + 2

k + 1

�

for k + 1 � 0; 2 k + 2 � 0:

Remark: The sum equals

4

F

3

�

�

2

3

k +

2

3

; �k � 1;

1

2

; 1

�

2

3

k �

1

3

; 2; �k +

1

2

; 1

�

�2 k � 1

k + 1

�

2 k

k

�

: (29)

It 
an be transformed by T4301, T4302, T4303, T4304 and T4362. Sin
e there

are integer distan
es, 
ontiguous relations may apply.

Identity 29 (a 
ompanion of [Ego84, p. 49℄).

k

X

n=0

1

q + 2n

�

�2n+ 2 k

�n+ k

��

q + 2n

n

�

=

1

q

�

q + 2 k

k

�

for k � 0; q + k � 0; q + 2 k � 0:

Remark: The sum equals

3

F

2

�

1

2

q; �k;

1

2

q +

1

2

�k +

1

2

; q + 1

; 1

�

1

q

�

2 k

k

�

: (30)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

Identity 30 (a 
ompanion of [Ego84, p. 49℄).

n

X

q=�k

�

�q + 2n� 1

n� 1

��

q + 2 k

k

�

=

n+ k + 1

2 (2n+ 2 k + 1)

�

2n+ 2 k + 2

n+ k + 1

�

for k � 0; 1 � n; n+ k + 1 � 0; 2n+ 2 k + 2 � 0:

Remark: The sum equals

2

F

1

�

�n� k; k + 1

�2n� k + 1

; 1

� �

2n+ k � 1

n� 1

�

: (31)

It 
an be evaluated by Vandermonde's Theorem and Gauss's Theorem.

Identity 31 (of Le-Jen Shoo [Ego84, p. 52℄).

m

X

k=0

�

m

k

�

2

�

n+ 2m� k

2m

�

=

�

n+m

n

�

2

for m � 0; 2m � 0; n � 0; n+m � 0:

33



Remark: The sum equals

3

F

2

�

�m; �m; �n

1; �n� 2m

; 1

� �

n+ 2m

2m

�

: (32)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

Identity 32 (!31). Assume 0 � n � k and

p(m) = 3mn� 2 k n� 2n+ 4m

2

� 3 km� 2 k � 2:

Then

X

m

p(m)

�

k + 1

m

�

2

�

2m

n+ 2m� k

��

n+m

n

�

2

= 0:

Remark: The sum is a 
ertain

7

F

6

with integer distan
es; 
ontiguous relations

may apply.

Identity 33 (!31).

k+1

X

n=0

(�1)

n

�

2m+ 1

n+ 2m� k

��

n+m

n

�

2

= (�1)

k+1

�

m

k + 1

�

2

for k + 1 � 0; m � 0; k + 1 � m; 2m+ 1 � 0:

Remark: The sum equals

3

F

2

�

m+ 1; m+ 1; �k � 1

1; 2m� k + 1

; 1

� �

2m+ 1

2m� k

�

: (33)

It 
an be evaluated by Saals
h�utz's Theorem (Slater III.2) and Saals
h�utz's

Theorem (Slater III.31).

3.4 Partial Sums of Hypergeometri
 Series

Some identities involving partial sums of hypergeometri
 series 
an be proven

by the WZ-forms method. As an example, 
onsider the following identity (it

appears as (2.6.4) in [Sla66℄):

Identity 34 (Bailey 1931).

�(x +m) �(y +m)

�(m) �(x + y +m)

3

F

2

�

x; y; v +m� 1

v; x+ y +m

; 1

�

to n terms

=

�(x+ n) �(y + n)

�(n) �(x+ y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

; 1

�

to m terms

34



Proof. We aim to �nd a WZ style proof of Identity 34. We rewrite Identity 34

using a

�

k

= �(a+ k) =�(a):

�(x+m) �(y +m)

�(m) �(x+ y +m)

�

X

0�i<n

�(x+ i)

�(x)

�(y + i)

�(y)

�(v +m� 1 + i)

�(v +m� 1)

�(v)

�(v + i)

�(x+ y +m)

�(x+ y +m+ i)

1

i!

=

�(x+ n) �(y + n)

�(n) �(x+ y + n)

�

X

0�j<m

�(x+ j)

�(x)

�(y + j)

�(y)

�(v + n� 1 + j)

�(v + n� 1)

�(v)

�(v + j)

�(x+ y + n)

�(x+ y + n+ j)

1

j!

(34)

Inspe
tion shows that both summands di�er by a rational fa
tor only. Exploiting

this observation we rewrite Equation 34 as

X

0�i<n

m

v +m� 1

v +m� 1 + i

t(i;m) =

X

0�j<m

n

v + n� 1

v + n� 1 + j

t(n; i) (35)

where

t(i; j) =

�(x+ i) �(y + i)

i! �(v + i)

�(x+ j) �(y + j)

j! �(v + j)

�(v + i+ j) �(v)

�(x+ y + i+ j) �(x) �(y)

: (36)

Equation 35 suggests a WZ style proof whi
h indeed works. Let L = fi; jg

(we allow ourselves to use itali
 letters for label 
onstants from now on) and

! = j

v + j � 1

v + i+ j � 1

t(i; j) di+ i

v + i� 1

v + i+ j � 1

t(i; j) dj:

with the motive of writing Equation 35 as

X

�

1

! =

X

�

2

! (37)

where

�

1

= [0 � i < n℄[j = m℄ di and �

2

= [i = n℄[0 � j < m℄ dj:

Fortunately, ! is 
losed (as 
an be 
he
ked by our pa
kage wz.m). Therefore,

X

� [i<n℄[j<m℄ di dj

! = 0: (38)

By the support of ! only the edges �

1

and �

2

of the re
tangle � [i < n℄[j <

m℄ di dj 
ontribute to the sum in Equation 38. Equation 37is equivalent to

Equation 38 and therefore proved.

Note that �nding WZ style proofs requires some lu
k: A proposed form !

might well turn out to be non-
losed. We do not know an algorithm for �nding

WZ style proofs.

Open Problem: Find a 
losed multivariate analog to the di�eren
e form ! of

the proof above. �

Following [Sla66, p. 81℄, we 
onsider the spe
ial 
ase m!1 of Identity 34.

To do so, we use:
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Lemma 2. Let x and y be 
omplex numbers and let k be a natural number.

Then

1. lim

n!1

�

�(n+x)

�(n+y)

�

=

�

n

x

n

y

�

= 1 and

2. lim

n!1

(n+x)

�

k

(n+y)

�

k

= 1.

As m!1, Identity 34 redu
es to:

Identity 35.

2

F

1

h

x; y

v

; 1

i

to n terms =

�(x+ n) �(y + n)

�(n) �(x+ y + n)

3

F

2

�

x; y; v + n� 1

v; x+ y + n

; 1

�

Plugging in x = y =

1

2

and v = 1 yields the following identity of Ramanujan

(whi
h appears as (2.6.1) in [Sla66℄):

Identity 36.

2

F

1

�

1

2

;

1

2

1

; 1

�

to n terms =

1

n

�

�(n+

1

2

)

�(n)

�

2

3

F

2

�

1

2

;

1

2

; n

1; n+ 1

; 1

�

Note that the spe
ial 
ase n = 1 gives us a series for 1=�:

1 =

�

4

�

2

F

1

�

1

2

;

1

2

2

; 1

�

:

3.5 Wegs
haider's Algorithm Constru
ts WZ r-forms

Given an r-fold hypergeometri
 summation identity, Kurt Wegs
haider's algo-

rithm allows us to 
onstru
t a WZ form of degree r in r+1 variables from it.

Consider the identity [Den96℄

X

b

X

s

(�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

= 2

�2 v+k

�

�v + k

�2 v + k

�

whi
h is valid for 0 � 2v � k: Let

f(b; k; s) := (�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

=

�

2

�2 v+k

�

�v + k

�2 v + k

��

be the result of dividing the summand by the right hand side. To show that

X

b

X

s

f(b; k; s) = 1

we run Wegs
haider's algorithm by typing

<<MultiSum.m; summand=(-1)^b

Binomial[s,b℄Binomial[k-s,2v-b℄Binomial[k-2v,s-b℄;

rhs=Binomial[k-v,k-2v℄2^(k-2v); fbks=summand/rhs;

rek=FindCertifi
ate[fbks,k,0,{b,s},{1,0},1℄; rek1=rek[[1℄℄;

at the Mathemati
a 
ommand line, getting the answer
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2 (1+k-2 v) (1+k-v) F[k,-1+b,s℄

- 2 (1+k-2 v) (1+k-v) F[1+k,-1+b,s℄

== Delta[b,- (1+k-2 v) (b+k-2 v) F[k,-1+b,s℄

- 2 (-2+b-s) (1+k-v) F[1+k,-1+b,1+s℄℄

+Delta[s,- 2 (-1+b-s) (1+k-v) F[1+k,-1+b,s℄℄.

Up to a shift in b this means that

(p

1

S

k

� p

2

I +�

b

A

1

+�

s

A

2

)f(b; k; s) = 0

where L = fb; k; sg (note that v 62 L),

p

1

= p

2

= �2(1 + k� 2v)(1 + k� v);

A

1

= �(1 + k� 2v)(1 + b+ k� 2v)I � 2(�1 + b� s)(1 + k� v)S

k

S

s

and

A

2

= �2(b� s)(1 + k� v)S

k

:

Both p

1

and p

2

are free of b and s (by design of Wegs
haider's algorithm).

Furthermore, p

1

= p

2

(sin
e

P

b

P

s

f(b; k; s) = 1). These two properties of p

1

and p

2

allow us to transform the re
urren
e to

(�

k

+�

b

1

p

1

A

1

+�

s

1

p

1

A

2

)f(b; k; s) = 0:

The latter re
urren
e asserts the 
losedness of

! := �f(b; k; s)dbds+

1

p

1

A

1

f(b; k; s)dkds+

1

p

1

A

2

f(b; k; s)dbdk:

Straightforward 
omputation gives

! = (�1)

b

2

�k+2 v

�

k� 2 v

s� b

��

k� v

k� 2 v

�

�1

�

�s+ k

�b+ 2 v

��

s

b

�

�

 

(b� 1) b (�s+ k+ b� 2 v � 1) (�s+ k+ b� 2 v)

2

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 2) (�s+ b� 1)

2

dk ds

+

�b (�s+ k+ b� 2 v)

2

(b� 2 v � 1) (�s+ b� 1)

2

db ds

+

b (k� 2 v + 1) (�s+ k+ 1)

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 1)

db dk

�

:

Remark: The idea of dividing by the right hand side before running Wegs
hai-

der's algorithm is due to Wilf [Wil98℄.

3.6 Some Multisum Identities

Identity 37 ([Den96℄).

X

b

X

s

(�1)

b

�

�s+ k

2 v � b

��

s

b

��

�2 v + k

s� b

�

= 2

�2 v+k

�

�v + k

�2 v + k

�

for 0 � 2v � k:
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Identity 38 (!37).

X

b

X

k

(�1)

b

2

�k

�

s+ b� 2

s� 1

��

s+ b� 1

2 v � k

��

s+ k

2 v � b+ 1

��

v � 1

�v + k

�

= 0

for 1 � s; 1 � v:

Remark: The annotation \(!37)" above indi
ates that identity 38 is obtained

as a 
ompanion of identity 37.

Identity 39 (!37).

X

k

X

s

(�2)

k

�

b

s

��

2 v � b� 2

�s+ k � 1

��

2 v � k � 1

�s+ b� 1

��

2 v � k � 1

v � k

�

= 0

for b � 0; 1 � v; b+ 2 � 2 v:

Identity 40 ([AP93℄).

X

i

X

j

�

j + i

j

�

2

�

n+m� j � i

n� j

�

2

=

1

2

�

2n+ 2m+ 2

2n+ 1

�

for m � 0; n � 0:

Identity 41 (!40). Let j and m be natural numbers. De�ne the polynomial

p(i; n) by

p(i; n) = �2 j n

3

+ i n

3

� n

3

+ 5 j mn

2

� 2 imn

2

+ 2mn

2

� 4 j

2

n

2

�2 i j n

2

� 2 j n

2

+ 2 i

2

n

2

� 2 i n

2

� 4 j m

2

n�m

2

n+ 6 j

2

mn

+4 i j mn+ 2 j mn+ 2 imn� 2 j

3

n� 3 i j

2

n� j

2

n� 2 i j n

�i

2

n� 2 j

2

m

2

+ j

3

m+ 2 i j

2

m:

Then

X

i

X

n

p(i; n)

1

(n+ j)

2

�

j + i� 1

j

�

2

�

2m

�2n+ 2m

��

n+ j

n�m+ j + i

�

2

= 0:
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4 Transformations

4.1 WZ Pairs Yield New WZ Pairs

Tewodros Amdeberhan [AZ97℄, Ira Gessel[Ges95℄, Herbert Wilf and Doron Zeil-

berger [WZ90℄ found transformations of knownWZ pairs to newWZ pairs. They

are stated as Propositions 33{36 on pp. 42{42. Appli
ations of these transfor-

mations range from dis
overing new summation identities to obtaining faster

and faster 
onvergent series for �(3) [Amd96℄. A 
ommon feature of all known

transformations is that they do not mix the labels n and k. We aim to �nd more

general transformations that do mix n and k. Note that the transformations we

�nd were independently dis
overed by Ira Gessel [Ges99℄.

A naive attempt that fails. Consider the form

! =

�

n

k

�

2

�n

�

n� 2k� 1

k+ 1

dk+

n� 2k+ 1

2(k� n� 1)

dn

�

whi
h is 
losed as 
ould be 
he
ked by 
omputation. To obtain a new 
losed

form, we try to apply the substitution n! n+ k to !. A reasonable guess is to

pro
eed just as in the 
ase of di�erential forms, repla
ing dn by dn+ dk.

!

0

=

�

n+ k

k

�

2

�n�k

�

n� k� 1

k+ 1

dk+

n� k+ 1

2(�n� 1)

(dn+ dk)

�

(39)

=

�

n+ k

k

�

2

�n�k

�

n� k� 1

k+ 1

dk+

n� k+ 1

2(�n� 1)

dn+

n� k+ 1

2(�n� 1)

dk

�

(40)

=

�

n+ k

k

�

2

�n�k

�

2n

2

+ k

2

� 2nk� n� 2k� 3

2(n+ 1)(k+ 1)

dk+

n� k+ 1

2(�n� 1)

dn

�

(41)

Sin
e 
omputation reveals that !

0

is not 
losed, our substitution has not pre-

served 
losedness. Thus we learn that di�eren
e forms require a di�erent method

for substituting 
losedness-preservingly.

A method based on 
heating. Note that ! = d(�(n; k)) where

�(n; k) =

�

n

k

�

2

�n

:

All we need to do is to apply n! n+k to the potential term �(n; k) of ! instead

of applying it dire
tly to ! getting

�

0

(n; k) =

�

n+ k

k

�

2

�n�k

and 
hoose !

0

:= d(�

0

(n; k)). Cal
ulation yields

!

0

=

�

n+ k

k

�

2

�n�k

�

n� k� 1

2(k+ 1)

dk+

k� n� 1

2(n+ 1)

dn

�

As !

0

is exa
t by its de�nition, it is 
losed. Summarizing, we rea
hed !

0

by a

detour via �(n; k) and �

0

(n; k):

�(n; k)

substitute

������! �

0

(n; k)

d

?

?

y

?

?

y

d

! ����! !

0

39



Unfortunately, our method depends on having a hypergeometri
 potential

term of !. Thus it works for trivial forms only.

3

But we should not give up

too early, we just need an additional tri
k.

A general method. Consider Example 1 of [WZ90℄:

! = f(n; k)dk+ g(n; k)dn

where

f(n; k) =

�

n

k

�

2

�n

g(n; k) =

�

n

k

�

2

�n�1

k

k� n� 1

Sin
e Gosper's algorithm [Gos78℄ shows that there is no hypergeometri
 term

�(n; k) satisfying d(�(n; k)) = ! we 
annot 
heat any more. A dis
rete 
oun-

terpart of Poin
ar�e's Lemma (whi
h we do not prove) assures us that there is

some term �(n; k) satisfying d(�(n; k)) = !. Of 
ourse, �(n; k) might well fail to

be hypergeometri
; it seems that we loose in that 
ase. A simple tri
k res
ues

us. Assume that ! = d(�(n; k)); this is, ! = f(n; k)dk+ g(n; k)dn where

f(n; k) = �(n; k+ 1)� �(n; k);

g(n; k) = �(n+ 1; k)� �(n; k):

We de�ne �

0

(n; k) := �(n + k; k) and !

0

:= d(�

0

(n; k)) in order to imitate the

substitution n! n+ k somehow. Straightforward 
omputation gives

!

0

= f

0

(n; k)dk+ g

0

(n; k)dn

where

f

0

(n; k) = �

k

�(n+ k; k)

= �(n+ k+ 1; k+ 1)� �(n+ k; k);

g

0

(n; k) = �

n

�(n+ k; k)

= �(n+ k+ 1; k)� �(n+ k; k):

Next we simply eliminate all o

urren
es of the unknown potential fun
tion �

by expressing di�eren
es of � by f and g only:

f

0

(n; k)

= �(n+ k+ 1; k+ 1)� �(n+ k+ 1; k)

| {z }

f(n+k+1;k)

+�(n+ k+ 1; k)� �(n+ k; k)

| {z }

g(n+k;k)

g

0

(n; k) = g(n+ k; k):

Note that we don't need to know �(n; k) any more! In a nutshell, our tri
k is to

pretend to know the potential fun
tion �.

3

[Zei93℄ 
alls a form trivial i� there is a hypergeometri
 term �(n; k) satisfying d(�(n; k)) =

!.
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Proposition 31. If

f(n; k)dk+ g(n; k)dn

is 
losed, then

(f(n+ k+ 1; k) + g(n+ k; k))dk+ g(n+ k; k)dn

is 
losed, too.

Proof. The proof is an easy 
al
ulation (that does not use the Lemma of Poin-


ar�e). Lemma.

Let's go ba
k to Example 1 of [WZ90℄,

! =

�

n

k

�

2

�n

dk+

�

n

k

�

2

�n�1

k

k� n� 1

dn:

Proposition 31 gives

!

0

=

�

n+ k

k

�

2

�n�k

�

1

2

dk�

k

2(n+ 1)

dn

�

whi
h is 
losed indeed. To get rid of ugly rational fa
tors !

0

we try some shifts

on it, and S

�1

n

su

eeds in the sense that !

00

:= S

�1

n

!

0

looks ni
e:

!

00

=

�

n+ k

n ; k

�

2

�n�k

�

n

n+ k

dk�

k

n+ k

dn

�

:

Grasping the pattern in !

00

allows us to �nd an in�nite sequen
e of 
losed forms;

see page 53.

We 
lose with two remarks on Proposition 31.

Remark: Naive substitution of n! n+ k into f(n; k)dk+ g(n; k)dn yields

!

0

= f(n+ k; k)dk+ g(n+ k; k)d(n+ k)

= (f(n+ k; k) + g(n+ k; k)) dk+ g(n+ k; k)

whi
h di�ers from the form in Proposition 31 just by a shift.

Herb Wilf [Wil99℄ obtains the following Proposition by iterating the trans-

formation of Proposition 31. To obtain it dire
tly via potential fun
tions, we

use �

0

(n; k) = �(n+ rk; k).

Proposition 32. Let f(n; k)dk + g(n; k)dn be 
losed and let r be a natural

number. De�ne

f

0

(n; k) := f(n+ rk + r; k) +

X

0�j<r

g(n+ rk + j; k);

g

0

(n; k) := g(n+ rk; k):

Then f

0

(n; k)dk+ g

0

(n; k)dn is 
losed.

A transformation of Ira Gessel 
an be obtained via �

0

(n; k) := �(�n; k).
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Proposition 33 (Theorem 3.1 (iv) of [Ges95℄). If

f(n; k)dk+ g(n; k)dn

is 
losed, then

f(�n; k)dk� g(�n� 1; k)dn

is 
losed.

Similarly, �

0

(n; k) := ��(n;�k+ 1) yields:

Proposition 34 ([Ges95℄, Theorem 3.1 (v)). If

f(n; k)dk+ g(n; k)dn

is 
losed, then

f(n;�k)dk� g(n;�k+ 1)dn

is 
losed.

A transformation from Rational Fun
tions Certify Combinatorial Identities

[WZ90℄ 
an be found using �

0

(n; k) := ��(�k;�n).

Proposition 35 ([WZ90℄, part of Theorem B). If

f(n; k)dk+ g(n; k)dn

is 
losed, then

g(�k� 1; n)dk+ f(�k;�n� 1)dn

is 
losed.

A transformation of Tewodros Amdeberhan 
an be obtained via �

0

(n; k) :=

�(sn; k).

Proposition 36 ([AZ97℄). Let s be a positive integer and let

f(n; k)dk+ g(n; k)dn

be a 
losed form. Then

f(sn; k)dk+

X

0�i<s

g(sn+ i; k)dn

is 
losed.

4.2 WZ 1-Forms Yield New WZ 1-Forms

The method of substituting in potential fun
tions extends to 1-forms in an

arbitrary number of variables and any integer linear substitutions in a straight-

forward way.

As a �rst appli
ation, we show that 
losedness preserving substitution in

1-forms partially explain the dualize and spe
ialize mira
le [Zei95℄. Consider

the Vandermonde identity

X

k

�

a

k

��

n

k

�

=

�

a+ n

a

�

for a � 0 and n � 0: (42)
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Its asso
iate identities are just other instan
es of the Vandermonde identity.

However, its spe
ial 
ase

n

X

k=0

�

n

k

�

2

=

�

2n

n

�

for n � 0 (43)

yields, as an asso
iate identity,

k

X

n=0

(3n� 2 k)

�

k

n

�

2

�

2n

n

�

= 0 for k � 0; (44)

or, equivalently,

4

F

3

�

�k; �k; 1�

2 k

3

;

1

2

1;

�2 k

3

; 1

; 4

�

= 0 for k � 0; (45)

whi
h �rst appears in [Zei95℄:

This is a brand new identity, unknown to Askey. It has a q-analog

derived from the q-version of WZ, that was unknown to Andrews,

and even whose limiting 
ase was brand new, and it took George

Andrews three densely pa
ked pages, using �ve di�erent identities,

to prove.

Let's look at this from the point of view of 
losedness preserving substitutions.

To prove identity 42, we 
ould use the form

�

a

k

��

n

k

��

a+ n

a

�

�1

�

1 dk+

k

2

(n� k+ 1) (a+ n+ 1)

dn

�

(46)

whi
h is 
losed with respe
t to L = fk; ng. However, let us use the form

�

a

k

��

n

k

��

a+ n

a

�

�1

�

�

1 dk+

k

2

(n� k+ 1) (a+ n+ 1)

dn+

k

2

(a� k+ 1) (a+ n+ 1)

da

�

{ whi
h is 
losed with respe
t to L = fk; n; ag { instead. (It is a remarkable fa
t

that it is usually possible to extend hypergeometri
 WZ 1-forms in two variables

to hypergeometri
 WZ 1-forms in more than two variables. In our example this

is obvious sin
e

�

a

k

��

n

k

��

a+ n

a

�

�1

is symmetri
 under ex
hanging a and n.) Closedness preserving substitution

fa! ng

�

yields

fa! ng

�

! =

�

n

k

�

2

�

2 n

n

�

�1

 

1 dk+

k

2

(2 k� 3 n� 3)

2 (n� k+ 1)

2

(2 n+ 1)

dn

!

and a shadow of this form proves identity 44. It remains to dis
lose what is

going on in the 
losedness preserving substitution fa! ng

�

.
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Proposition 37. Assume that

f(k; n; a) dk+ g(k; n; a) dn+ h(k; n; a) da

is 
losed with respe
t to L = fk; n; ag. Then

f(k; n; n) dk+ (g(k; n; n+ 1) + h(k; n; n)) da

is 
losed with respe
t to L = fk; ng.

4.3 Transforming Forms of Arbitrary Degree

Unfortunately, the simple substitution tri
k (as des
ribed in [Ges99℄ or se
tion

4.1) does not generalize to forms of higher degree. Therefore we needed to de-

velop a 
ompletely di�erent method; it is presented in the following subse
tions.

Note that substitution is more important in the domain of higher degree

forms than in the domain of forms of degree 1. This is due to a la
k of known

nontrivial higher degree forms. In fa
t, as far as I know, only a single higher

degree forms has been known so far

To �nd higher degree forms, we start with a well known multisum


losed form identity, and we would need a multivariate analog of

Gosper's algorithm. I am presently developing su
h an algorithm,

but until I su

eed, all I 
an present is the r-form arising out of the

multinomial identity . . . whi
h produ
es . . . .

To �nd other higher degree forms, we use two methods:

1. We use Kurt Wegs
haider's algorithm [Weg97℄ as shown in se
tion 3.5.

2. We transform known 
losed di�eren
e forms to new ones. The transfor-

mation algorithm developed in this se
tion is implemented in our Math-

emati
a pa
kage wz.m. Using this pa
kage, transformation theorems 
an

be produ
ed by pressing a few keys.

4.4 Substitutions

A substitution � assigns a term to ea
h label in L. If the term t is assigned to

the label x (this is, if �(x) = t), then we say that t is substituted for x. The

set of all substitutions is L ! T. We adopt spe
ial notation for substitutions:

f(x

1

; t

1

); : : : ; (x

n

; t

n

)g is written fx

1

! t

1

; : : : ; x

n

! t

n

g. Furthermore, x ! x

may be dropped. Thus the substitution f(n; n + k); (k; k)g 
an be written

fn! n+ kg.

Applying substitutions to terms. An example of an appli
ation of a

substitution to a term is

\

fn! n+ k; k! kg

| {z }

substitution

�

n

k

�

2

�n

| {z }

term

=

�

n+ k

k

�

2

�n�k

:

If we had introdu
ed terms synta
ti
ally, we 
ould easily de�ne the appli
ation

of a substitution � to a term t by turning Proposition 38 on page 45 into a

de�nition; it would be the obvious re
ursive de�nition of substitution that is
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used in most fun
tional and logi
 programming languages, as for example in

Prolog, Haskell and Mathemati
a. For simpli
ity (to hide unimportant detail)

we have not de�ned terms synta
ti
ally; for us, a term is a fun
tion in V ! C .

Still, substitutions following Proposition 38 are import to us: We have used them

already when 
omputing shifts { the operator S

n

is nothing but the substitution

fn! n+1g { and we will use them heavily in the method of 
losedness preserving

substitutions. Thus we want to de�ne substitutions. Of 
ourse, substitutions

should obey Proposition 38. Indeed, knowing Proposition 38, together with

Proposition 39, is all one needs to know about substitutions; the te
hni
al but

trivial rest of this se
tion may be skipped at no risk.

Let us avoid parentheses by two 
onventions in this se
tion. First, f x :=

f(x) denotes the appli
ation of f to x. Se
ond, fun
tion appli
ation asso
iates to

the left: F f x denotes (F f)x whi
h would be usually written (F (f))(x). The

so-
alled �-notation for fun
tions turns out to be handy in this se
tion. Using

�-notation, 8x : in
rement(x) = x + 1 
an be written in
rement = �x: x + 1,

and 8x : square(x) = x

2


an be written square = �a: a

2

{ the name of the

variable \bound by �" does not matter. �-notation allows us to use fun
tions

in intermediate steps of proofs without giving names to these fun
tions. For

example, we might 
al
ulate (�x: x � 1) 4 = 3 and (�y: y

3

) 4 = 64.

Def. 26. Let � be a substitution and t be a term. The appli
ation of the

substitution � to the term t is denoted by �̂ t and de�ned by

�̂ t p := t (�x: � x p):

Example: Let � = fn! n+k; k! kg and t =

�

n

k

�

2

�n

: Let us 
he
k if De�nition

26 gives the expe
ted result �̂ t =

�

n+k

k

�

2

�n�k

: Let n and k be arbitrary but

�xed integers and let p = f(n; n); (k; k)g. We want to see if indeed �̂ t p =

�

n+k

k

�

2

�n�k

.

Note that � n p = n + k and � k p = k. Taken together, these equations

show that �x: � x p is the fun
tion f(n; n + k); (k; k)g. By de�nition of �̂ t we

thus have �̂ t p = t (�x: � x p) =

�

n+k

k

�

2

�n

.

The result �̂ t =

�

n+k

k

�

2

�n�k


ould have been obtained immediately by the

following proposition; it shows the 
lose analogy of our notion of term to syn-

ta
ti
al terms and justi�es the our use of the word \substitution".

Proposition 38. Let 
 2 C , x 2 L, f 2 C

n

! C and � 2 L! T. Then

1. �̂ 
 = 
.

2. �̂ x = �(x).

3. �̂ (f(t

1

; : : : ; t

n

)) = f(�̂ t

1

; : : : ; �̂ t

n

).

Proof. We prove (1). Let p be an arbitrary point. Then �̂ 
 p = 
 (�x: � x p) =


 p.

We prove (2). Let p be an arbitrary point. Then �̂ x p = x (�z: � z p) =

(�z: � z p) (x) = � x p = �(x) p.

We prove (3). Let p be an arbitrary point. Then �̂ (f(t

1

; : : : ; t

n

)) p

= f(t

1

; : : : ; t

n

) (�x: � x p)

= f(t

1

(�x: � x p); : : : ; t

n

(�x: � x p))

= f(�̂ t

1

p; : : : ; �̂ t

n

p)

= f(�̂ t

1

; : : : ; �̂ t

n

) p.
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Def. 27. A term t is integer linear i� it is integer-valued and additive:

1. t 2 V ! Z.

2. 8

p;q2V

t(p+ q) = t(p) + t(q).

For example, 2n�3k is integer linear. The term

1

2

n�3k is not integer linear

sin
e it is not integer-valued. The term 2n� 3k+1 is not integer linear sin
e it

is not additive.

Def. 28. A substitution � is integer linear i� �(x) is an integer-linear term

for ea
h label x. In this 
ase we de�ne �

xy

, the 
oeÆ
ient of y in �(x) by

�

xy

:= � x e

y

.

For example, � = fn! 2n+3k; k! 4n+5kg is an integer linear substitution

and �

nk

= 3.

One more 
onvention:

Q

x

f

x

denotes the 
omposition of the fun
tions f

x

1

;

: : : ; f

x

n

where fx

1

; : : : ; x

n

g = L and x

1

� � � � � x

n

. It does not denote a

produ
t. Shifts 
an be \moved to the right of substitutions" as follows:

Proposition 39. Let y 2 L and let � be an arbitrary integer linear substitution

in L! T. Then

S

y

Æ �̂ = �̂ Æ

Y

x

S

�

xy

x

: (47)

For example,

S

k

Æ (fn! 2n+3k; k! 4n+5kg)̂ = S

k

Æ (fn! 2n+3k; k! 4n+5kg)̂ ÆS

3

n

ÆS

5

k

as 
an be 
he
ked by applying both operators to the term f(n; k) { the result

is f(2n + 3k + 3; k ! 4n + 5k + 5) either way. Of 
ourse, Proposition 39 is a

triviality. With an eye towards automati
 proof-
he
king, we prove it anyway.

To this end, we need a lemma:

Lemma 3. Let d be a ve
tor. Then t(p+ d) = (

Q

x

S

d(x)

x

t)(p).

Proof. Expand d =

P

x

d(x)e

x

and use t(p+me

x

) = S

m

x

t p.

Proof of Proposition 39. Let t be an arbitrary but �xed term and p be an arbi-

trary but �xed ve
tor. We have to show

S

y

Æ �̂ t p = �̂ Æ

Y

x

S

�

xy

x

t p:

We transform the left hand side to the right hand side. By the de�nition of the

shift, the left hand side is equal to �̂ t (p + e

y

). By the de�nition of substitu-

tion appli
ation, this equals t(�x: � x (p+ e

y

)); from this point on, �-notation


omes in handy. The term � x is additive sin
e � is assumed to be integer lin-

ear. We thus obtain t(�x: (� x p) + (� x e

y

)). By pointwise ve
tor addition, used

\ba
kwards", this equals t((�x: � x p) + (�x: � x e

y

)). By Lemma 3, this equals

(

Q

x

S

� x e

y

x

) t (�x: � x p). Using the de�nition of substitution appli
ation ba
k-

wards, this equals (�̂ Æ

Q

x

S

� x e

y

x

) t p whi
h 
an be written as (�̂ Æ

Q

x

S

�

xy

x

) t p

by de�nition of �

xy

.
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We do not use the 
onvention that f x = f(x) any more. In the following

pages, fg will denote the 
omposition of f and g most of the times: (fg)(x) =

f(g(x)). Furthermore we abbreviate �̂ by �; 
ontext resolves ambiguities. Thus

Proposition 39 will be written

S

y

� = �

Y

x

S

�

xy

x

:

4.5 Guessing �

�

, Part 1

How to transform a 
losed di�eren
e form ! to a new 
losed form !

0

? Let us

look at the 
ontinuous 
ounterpart { di�erential forms { for inspiration. Put

loosely, a fun
tion f indu
es a pullba
k f

�

that preserves 
losedness: d! = 0

implies df

�

! = 0. Closedness preservation is implied by the following properties

of the pullba
k:

1. df

�

! = f

�

d!,

2. f

�

0 = 0,

whi
h 
an be proved as follows: Assuming d! = 0 and df

�

! = f

�

d! and f

�

0 = 0

we have to show that df

�

! = 0. And indeed, df

�

! = f

�

d! = f

�

0 = 0.

We return to di�eren
e forms. The fun
tion f 
orresponds to an integer

linear substitution � in T ! T; the restri
tion to integer linearity ensures that

� preserves hypergeometri
ity. For ea
h substitution � we aim to 
onstru
t a

nontrivial operator �

�

in F ! F su
h that the following three properties hold:

1. d�

�

! = �

�

d!,

2. �

�

0 = 0,

3. �

�

(!

1

+ !

2

) = �

�

!

1

+ �

�

!

2

By the argument given above, �

�

will be a 
losedness preserving substitution:

d! = 0 =) d�

�

! = 0: (48)

Let us try to �nd a de�nition for the fun
tion � that satis�es d�

�

! = �

�

d!

by motivated guessing. We �rst look at Equation d�

�

! = �

�

d! in the spe
ial


ase where ! is a 0-form { this is, a term { T .

d�

�

T = �

�

dT (49)

Unfortunately we 
annot 
ompute either side of Equation 49 sin
e both sides

involve the fun
tion � whose de�nition is still unknown to us. However, sin
e

0-forms are just terms, we may reasonably de�ne

�

�

T := �T (50)

for all forms T of degree 0. Thus Equation 49 redu
es to

d�T = �

�

dT (51)

whose left hand side does not involve any unde�ned fun
tion.

47



Our plan is to expand both sides of Equation 51 using the de�nition of d

and to read o� a suitable de�nition of �

�

by \
omparing 
oeÆ
ients".

Clearly, the right hand side of Equation 51 equals

�

�

X

x

dx�

x

T (52)

whi
h 
an be transformed to

X

x

�

�

dx�

x

T (53)

sin
e �

�

is additive.

We turn to the left hand side of Equation 51. By de�nition of d, it equals

X

y

dy�

y

�T: (54)

\Comparing 
oeÆ
ients" between 54 and 53 is hindered by the operator � whi
h

appears on the left of � in 54 but on the right of �

�

in 53. To make Equation

54 more similar to Equation 53 we try to move the operator � to the right of �

in 54; we aim to express �

y

� as

P

x

�A

x

�

x

for suitable operators A

x

.

4.6 Di�eren
es and Substitutions

Lemma 39 on page 46 shows us how to move a shift to the right of a substitution:

S

y

� = �

Y

x

S

�

xy

x

: (55)

We want to move a di�eren
e to the right of a substitution. Subtra
ting I�

from both sides of 47 yields

�

y

� = �(�I +

Y

x

S

�

xy

x

): (56)

By teles
oping a

ording to the pattern

� I + S

A

x

1

y

x

1

S

A

x

2

y

x

2

: : : S

A

x

n

y

x

n

(57)

=� I + S

A

x

1

y

x

1

(58)

� S

A

x

1

y

x

1

+ S

A

x

1

y

x

1

S

A

x

2

y

x

2

(59)

� S

A

x

1

y

x

1

S

A

x

2

y

x

2

+ S

A

x

1

y

x

1

S

A

x

2

y

x

2

S

A

x

3

y

x

3

(60)

: : : (61)

� S

A

x

1

y

x

1

S

A

x

2

y

x

2

: : : S

A

x

n�1

y

x

n�1

+ S

A

x

1

y

x

1

S

A

x

2

y

x

2

: : : S

A

x

n

y

x

n

(62)

we express �I +

Q

z

S

�

zy

z

in terms of \long di�eren
es" �I + S

�

xy

x

as follows:

�I +

Y

z

S

�

zy

z

=

X

x

0

�

�

Y

z�x

S

�

zy

z

+

Y

z�x

S

�

zy

z

1

A

=

X

x

 

Y

z�x

S

�

zy

z

!

(�I + S

�

xy

x

)

By teles
oping again, we 
an redu
e \long di�eren
es" to di�eren
es using

�I + S

�

xy

x

= G

�

xy

x

�

x

: (63)

where the operator G

k

x

is de�ned by:
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Def. 29. The geometri
 shift polynomial G

k

x

is de�ned by

G

k

x

=

8

<

:

I + S

x

+ � � �+ S

k�1

x

if k > 0

0 if k = 0

�I � S

�

x

1� � � � � S

�k+1

x

if k < 0

In this subse
tion we have proved:

Proposition 40. Let y 2 L and let � be an arbitrary integer linear substitution

in T! T. Then

�

y

� = �

X

x

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

:

4.7 Guessing �

�

, Part 2

Plugging Proposition 40 into Equation 54 on page 48 yields

d�T =

X

y

dy�

X

x

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T (64)

whi
h by additivity of � equals

d�T =

X

x

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T: (65)

Thus our goal

d�T = �

�

dT (66)


an be restated as

X

x

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T =

X

x

�

�

dx�

x

T: (67)

As a naive �rst attempt at obtaining equality we try to make both sums

equal by equating 
orresponding summands:

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

�

x

T = �

�

dx�

x

T: (68)

Next we repla
e �

x

T by T

0

. Note that this requires additional faith sin
e x has

o

urren
es outside �

x

too.

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

T

0

= �

�

dxT

0

: (69)

Read from right to left this de�nes �

�

on all monomial 1-forms

�

�

dxT :=

X

y

dy�

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

T; (70)

and, by additivity of �

�

, on all 1-forms.
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To de�ne �

�

on forms of arbitrary degree we need one more guess (fortunately

our last). We extend Equation 70 to the re
ursion

�

�

dx! :=

X

y

dy�

�

X

x

 

Y

z�x

S

�

zy

z

!

G

�

xy

x

! (71)

(Note that �

�

appears on the right hand side of Equation 71).

4.8 Closedness Preserving Substitutions

Equation 71 leads us de�ne:

Def. 30. Let � be an integer linear substitution and x; y 2 L. Then the shift

polynomial P

�xy

in F! F is de�ned by

P

�xy

:= G

�

xy

x

Y

z�x

S

�

zy

z

:

Proposition 41. The following 
ommutation relations hold:

1. P

�x

1

y

1

P

�x

2

y

2

= P

�x

2

y

2

P

�x

1

y

1

.

2. P

�xy

dz = P

�xy

dz.

Proof. P

�xy

is a shift polynomial.

Proposition 42. Let � be an integer linear substitution. Then there is exa
tly

one fun
tion �

�

in F! F satisfying

1. �

�

(!

1

+ !

2

) = �

�

!

1

+ �

�

!

2

.

2. �

�

dx! =

P

y

dy�

�

P

�xy

!,

3. �

�

T = �T ,

Proof. Let ! be an arbitrary but �xed form. Sin
e the listed rules allow us to


ompute �

�

! in at least one way, there 
an be at most one su
h fun
tion �

�

.

To show the existen
e of �

�

, we have to show that the rules listed do not

lead to a 
ontradi
tion. In other words, we have to show that 
omputing �

�

! in

di�erent ways 
annot lead to di�erent results. Rules (1) and (3) 
annot lead to

di�erent results. We show that rule (2) 
annot lead to di�erent results either.

Sin
e dx

1

dx

2

= �dx

2

dx

1

, we have to show that �(dx

1

dx

2

) = �(�dx

2

dx

1

) in

order to rule out a 
ontradi
tion (By 
he
king this transposition, we 
over w.l.o.g

all permutations). Indeed,

�

�

(dx

1

dx

2

!) =

X

y

1

dy

1

�

�

P

�x

1

y

1

dx

2

! =

X

y

1

dy

1

�

�

dx

2

P

�x

1

y

1

!

=

X

y

1

y

2

dy

1

dy

2

�

�

P

�x

2

y

2

P

�x

1

y

1

!

agrees with

�

�

(�dx

2

dx

1

)!) = �

X

y

1

y

2

dy

2

dy

1

�

�

P

�x

1

y

1

P

�x

2

y

2

!

where we have used 
ommutation properties of the shift polynomials.
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Proposition 42 allows us to de�ne:

Def. 31. Let � be an integer linear substitution. We de�ne the 
losedness

preserving substitution operator �

�

in F ! F by

1. �

�

(!

1

+ !

2

) := �

�

!

1

+ �

�

!

2

,

2. �

�

dx! :=

P

y

dy�

�

P

�xy

!,

3. �

�

T := �T .

Remark: Clearly, �

�

dx! := : : : is an impli
it de�nition. It would be ni
e to

repla
e it by an equivalent expli
it de�nition �

�

(!)(X) := : : : but we failed to

do so.

Proposition 43 (Lifting Lemma). Suppose the shift polynomials A and B

and the substitution � satisfy

A� = �B:

Then

^

A�

�

= �

�

^

B:

Proof. Sin
e both

^

A�

�

and �

�

^

B are additive, it suÆ
es to prove

^

A�

�

! = �

�

^

B!

for any monomial !. We pro
eed by indu
tion on the degree of !.

If the degree of w is zero, then ! is a term and

^

A�

�

! = �

�

^

B! redu
es to

A� = �B.

If the degree of w is positive, then we 
an �nd x and !

0

su
h that ! = dx!

0

.

We have to show that

^

A�

�

dx!

0

= �

�

^

Bdx!

0

:

We 
ompute

^

A�

�

dx!

0

=

^

A

X

y

dy�

�

P

�xy

!

0

=

X

y

dy

^

A�

�

(P

�xy

!

0

)

and

�

�

^

Bdx!

0

= �

�

dx

^

B!

0

=

X

y

dy�

�

P

�xy

^

B!

0

=

X

y

dy�

�

^

B(P

�xy

!

0

)

using the de�nition of �

�

and 
ommutation properties of shift polynomials.

Sin
e P

�xy

!

0

is a monomial form of lesser degree than !, the indu
tion hypoth-

esis shows that

^

A�

�

(P

�xy

!

0

) = �

�

^

B(P

�xy

!

0

):

Proposition 43 allows us to lift Proposition 39 to the level of 
losedness

preserving substitutions on forms:

Proposition 44. Let y 2 L and let � be an arbitrary integer linear substitution

in T! T. Then

�

y

�

�

= �

�

X

x

P

�xy

�

x

:
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Proof. By Proposition 40,

�

y

� = �

X

x

P

�xy

�

x

:

Sin
e both �

y

and �

P

x

P

�xy

�

x

are shift polynomials, we 
an lift this to Propo-

sition 44 by Proposition 43.

Proposition 45. The operators d and �

�


ommute:

d�

�

= �

�

d:

Proof. By Proposition 44,

d�

�

=

X

y

dy�

y

�

�

=

X

x;y

dy�

�

P

�xy

�

x

:

By de�nition of �

�

,

�

�

d =

X

x

�

�

dx�

x

=

X

x;y

dy�

�

P

�xy

�

x

:

Both sides agree.

Proposition 46 (Closedness Preserving Substitutions). .

The operator �

�

preserves d-
losedness: If d! = 0, then d�

�

! = 0.

Proof. Suppose d! = 0. Then d�

�

! = �

�

d! = �

�

0 = 0.

We have found a tool for 
onstru
ting new forms and we are ready to apply

it.

5 Some New WZ Forms

5.1 The Symmetri
 Multinomial Form

We use the derivation of the symmetri
 multinomial form for illustrating how

new WZ forms { and therefore summation identities { 
an be found by the

method of 
losedness preserving substitutions and some guesswork.

Consider the form ([WZ90℄; or see se
tion 3.1),

! =

�

n

k; n� k

�

x

k

y

n�k

(x+ y)

n

�

ky

(n� k+ 1)(x+ y)

dn� dk

�

:

Its asymmetry provokes us to substitute fn ! a+ b; k ! ag

�

(using 
omputer

algebra) getting

fn! a+ b; k! ag

�

! =

�

a+ b

a; b

�

x

a

y

b

(x+ y)

a+b

�

y

x+ y

a

b+ 1

db�

y

x+ y

da

�

;
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whi
h looks somehow better. At this point it seems that \�ne tuning" suÆ
es

to rea
h a ni
e 
losed form. We try some substitutions like fa ! a � 1g

�

and

fb! b� 1g

�

; and indeed, one of them is more than su

essful:

fb! b� 1g

�

fb! a+ bg

�

! =

�

a+ b

a; b

�

x

a

y

b

(x + y)

a+b

�

a

a+ b

db�

b

a+ b

da

�

:

Impressed by the beauty of our new form, we stop substituting. We absorb

rational fa
tors into fa
torials getting

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x + y)

a+b

da�

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

db:

A pattern pops up now:

!

2

=

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

(�1)

0

./

da db

+

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x+ y)

a+b

(�1)

1

da

./

db ;

!

3

=

�

a� 1 + b+ 


a� 1; b; 


�

x

a

y

b

z




(x+ y + z)

a+b+


(�1)

0

./

da db d


+

�

a+ b� 1 + 


a; b� 1; 


�

x

a

y

b

z




(x+ y + z)

a+b+


(�1)

1

da

./

db d


+

�

a+ b+ 
� 1

a; b; 
� 1

�

x

a

y

b

z




(x+ y + z)

a+b+


(�1)

2

da db

./

d
 ;

(Alternatively, !

3


an be found from the trinomial theorem by dividing through

the right hand side and running KurtWegs
haider'sWegs
haider, Kurt algorithm

FindRe
urren
ewhi
h is 
ontained in his Mathemati
a pa
kage Multisum). We

are led to 
onsider an in�nite sequen
e of WZ forms of higher and higher degree:

Def. 32. Fix a natural number n, let L := fa

1

; : : : ; a

n

g and de�ne the nth

symmetri
 multinomial form !

n

to be

n

X

�=1

�

a

1

+ � � �+ a

��1

+ a

�

� 1 + a

�+1

+ � � �+ a

n

a

1

; : : : ; a

��1

; a

�

� 1; a

�+1

; : : : ; a

n

�

x

1

a

1

� � �x

n

a

n

(x

1

+ � � �+ x

n

)

a

1

+���+a

n

�(�1)

��1

da

1

: : : da

��1

./

da

�

da

�+1

: : : da

n

;

Theorem 3. For ea
h natural number n, the nth symmetri
 multinomial form

!

n

is 
losed.

In order to avoid an abundan
e of dots, we resist proving Theorem 3 in full

generality and 
on�ne ourselves to the 
ase n = 3.

for n = 3. We re
all

!

3

=

�

a� 1 + b+ 


a� 1; b; 


�

x

a

y

b

z




(x+ y + z)

a+b+


(�1)

0

./

da db d


+

�

a+ b� 1 + 


a; b� 1; 


�

x

a

y

b

z




(x+ y + z)

a+b+


(�1)

1

da

./

db d


+

�

a+ b+ 
� 1

a; b; 
� 1

�

x

a

y

b

z




(x+ y + z)

a+b+


(�1)

2

da db

./

d
:
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By de�nition of the exterior derivative d,

d(!

3

) = �

a

�

a� 1 + b+ 


a� 1; b; 


�

x

a

y

b

z




(x+ y + z)

a+b+


da db d


+ �

b

�

a+ b� 1 + 


a; b� 1; 


�

x

a

y

b

z




(x+ y + z)

a+b+


da db d


+ �




�

a+ b+ 
� 1

a; b; 
� 1

�

x

a

y

b

z




(x+ y + z)

a+b+


da db d
;

where we have used that \sorting the ds" introdu
es an alternating sign whi
h


an
els the alternating sign appearing in !

3

. For example, in the se
ond line,

(�1)

1

db da d
 = (�1)

1+1

da db d
 = da db d
. Computing di�eren
es gives

d(!

3

)

=

�

x+y + z

x+ y + z

�

a+ b+ 


a; b; 


�

�

�

a� 1 + b+ 


a� 1; b; 


��

x

a

y

b

z




(x + y + z)

a+b+


da db d


+

�

x+y+z

x+ y + z

�

a+ b+ 


a; b; 


�

�

�

a+ b� 1 + 


a; b� 1; 


��

x

a

y

b

z




(x + y + z)

a+b+


da db d


+

�

x+ y+z

x+ y + z

�

a+ b+ 


a; b; 


�

�

�

a+ b+ 
� 1

a; b; 
� 1

��

x

a

y

b

z




(x + y + z)

a+b+


da db d
:

Adding up 
olumnwise yields

d(!

3

) =

�

x+ y + z

x+ y + z

�

a+ b+ 


a; b; 


�

�

�

a+ b+ 


a; b; 


��

x

a

y

b

z




(x + y + z)

a+b+


da db d
;

where we have used

�

a� 1 + b+ 


a� 1; b; 


�

+

�

a+ b� 1 + 


a; b� 1; 


�

+

�

a+ b+ 
� 1

a; b; 
� 1

�

=

�

a+ b+ 


a; b; 


�

;

whi
h is 
orre
t by 
ombinatorial interpretation. Hen
e d(!

3

) = 0.

Remark: It is trivial to reformulate

8

n�0

X

k

�

n

k

�

x

k

y

n�k

= (x+ y)

n

as

8

n�0

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

= (x+ y)

n

:

with the motive of symmetry. This should not mislead us to believe that it is

trivial to guess !

2

dire
tly.

Remark: Note that (an asymmetri
 version of) the multinomial form appears

in the very �rst paper [Zei93℄ on WZ forms as equation (7.14):

!

MULTINOMIAL

:=

n!

k

1

! � � � k

r

!(k� k

1

� � � � � k

r

+ 1)!(r + 1)

n

�

 

(n� k

1

� � � � � k

r

+ 1) dk

1

� � � dk

r

+

r

X

i=1

k

i

dn dk

1

� � �

./

dk

i

� � � dk

r

!

:
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Computation reveals that !

MULTINOMIAL

is not 
losed for r = 2; Hen
e the

de�nition of !

MULTINOMIAL

must 
ontain an error somewhere. How to �x it

qui
kly? Closedness preserving substitutions help us in this task: We start from

!

n

as de�ned in De�nition 32,

n

X

�=1

�

a

1

+ � � �+ a

��1

+ a

�

� 1 + a

�+1

+ � � �+ a

n

a

1

; : : : ; a

��1

; a

�

� 1; a

�+1

; : : : ; a

n

�

x

1

a

1

� � �x

n

a

n

(x

1

+ � � �+ x

n

)

a

1

+���+a

n

�(�1)

��1

da

1

: : : da

��1

./

da

�

da

�+1

: : : da

n

;

and apply a 
ertain 
losedness preserving substitution (left as an exer
ise) to

get a debugged de�nition of !

MULTINOMIAL

:

~!

MULTINOMIAL

:=

n!

k

1

! � � � k

r

!(n� k

1

� � � � � k

r

+ 1)!(r + 1)

n

�

�

(n� k

1

� � � � � k

r

+ 1)(r + 1) dk

1

� � � dk

r

+

r

X

i=1

k

i

(�1)

i

dn dk

1

� � �

./

dk

i

� � � dk

r

!

(The ne
essary pat
hes are underlined).

5.2 Identities from the Symmetri
 Multinomial Form

To our knowledge, Identities 43, 47, 48, 49 and 50 are new. All 
al
ulations in

this se
tion 
an be done by hand almost e�ortlessly; 
omputer algebra support

is super
uous.

We start with an obvious appli
ation of !

2

.

Identity 42 (Binomial Theorem).

8

n�0

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

= (x+ y)

n

:

Proof of Identity 42. Assume n � 0. De�ne

! :=

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

db�

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x+ y)

a+b

da

and

� := �

fa;bg

([0 � a; 0 � b; 1 � a+ b < n℄ da db) :

Sin
e ! is 
losed by Theorem 3 and � is exa
t we know that

X

a;b

� � ! = 0:

We aim to 
ompute

P

a;b

� � !.
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The diagram shows that � de
omposes into

� = �

0

+ �

1

+ �

2

+ �

3

where

�

0

= [a = 0; b = 1℄ da� [a = 1; b = 0℄ db;

�

1

= �[0 � a; 0 � b; a+ b = n℄ da

+[0 � a; 0 � b; a+ b = n℄ db;

�

2

= [1 � a � n; b = 0℄ da;

�

3

= �[a = 0; 1 � b � n℄ db:

1 2 3 4 5 6 7
i

1

2

3

4

5

6

7

j

The diagram further shows that

P

a;b

�

2

� ! = 0,

P

a;b

�

3

� ! = 0, and we 
om-

pute

X

a;b

�

0

� ! = �

�

0 + 0

0; 0

�

y

x+ y

�

�

0 + 0

0; 0

�

x

x+ y

= �1;

X

a;b

�

1

� ! =

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

(x+ y)

n

:

Adding these four sums gives

X

a;b

� � ! = �1 +

X

i;j

i+j=n

�

i+ j

i; j

�

x

i

y

j

(x+ y)

�n

;

whi
h is zero as it is the sum of a 
losed form over an exa
t range. Identity 42

follows.

By summing the same form over di�erent ranges we usually get 
ompletely

di�erent identities; for example, both Identity 42 and Identity 43 are obtained

from !

2

.

Identity 43. Let p and q be natural numbers. Then

�

x

x+ y

�

p+1

q

X

k=0

�

p+ k

p

��

y

x+ y

�

k

+

�

y

x+ y

�

q+1

p

X

k=0

�

q + k

q

��

x

x+ y

�

k

= 1:

We postpone the proof of Identity 43 to page 57. It might seem redundant

to list spe
ial 
ases of more general identities expli
itly. However, this helps us

to see that Identity 43 is a generalization of well known identities. Substituting

1 for x and y redu
es Identity 43 to Identity 44 whi
h appears in [FC88℄.

Identity 44.

8

q�0

8

p�0

q

X

k=0

�

p+ k

k

�

2

�p�k

+

p

X

k=0

�

q + k

k

�

2

�q�k

= 2:

Finally, substituting m for p and q redu
es Identity 44 to Identity 45, whi
h

appears as \unexpe
ted identity" (5.20) in [GKP89, p. 167℄.

Identity 45.

8

m�0

m

X

k=0

�

m+ k

k

�

2

�k

= 2

m

:
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Note that Identity 43 and Identity 44 are nontrivial in the sense that their

sums 
annot be expressed in 
losed form, as 
an be proved by Gosper's algo-

rithm.

Proof of Identity 43. Assume p � 0 and q � 0. We de�ne

! :=

�

a� 1 + b

a� 1; b

�

x

a

y

b

(x+ y)

a+b

db�

�

a+ b� 1

a; b� 1

�

x

a

y

b

(x+ y)

a+b

da

and

� := � ( [0 � a � p; 0 � b � q℄ da db) :

Sin
e ! is 
losed by Theorem 3 and � is exa
t we know that

X

a;b

� � ! = 0:

We aim to 
ompute

P

a;b

� � !.

The diagram shows that � de
omposes into

� = �

0

+ �

1

+ �

2

+ �

3

+ �

4

where

�

0

= [a = 0; b = 1℄ da� [a = 1; b = 0℄ db;

�

1

= [1 � a � p; b = 0℄ da;

�

2

= [a = p+ 1; 0 � b � q℄ db;

�

3

= �[0 � a � p; b = q + 1℄ da;

�

4

= �[a = 0; 1 � b � q℄ db:

1 2 3 4 5 6 7
i

1

2

3

4

5

6

7

j

The diagram further shows that

P

a;b

�

1

� ! = 0 and

P

a;b

�

4

� ! = 0. Computa-

tion yields

X

a;b

�

0

� ! = �

�

0 + 0

0; 0

�

y

x+ y

�

�

0 + 0

0; 0

�

x

x+ y

= �1;

X

a;b

�

2

� ! =

q

X

j=0

�

p+ j

p; j

�

x

p+1

y

j

(x+ y)

p+1+j

;

and

X

a;b

�

3

� ! =

p

X

i=0

�

i+ q

i; q

�

x

i

y

q+1

(x+ y)

i+q+1

:

Adding these �ve sums gives

X

a;b

� � ! = �1 +

q

X

j=0

�

p+ j

p; j

�

x

p+1

y

j

(x+ y)

p+1+j

+

p

X

i=0

�

i+ q

i; q

�

x

i

y

q+1

(x+ y)

i+q+1

:

whi
h is zero as it is the sum of a 
losed form over an exa
t range. Identity 43

follows upon renaming summation indi
es.

Of 
ourse, !

3


an be used to prove the Trinomial Theorem.
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Identity 46 (Trinomial Theorem).

8

n�0

X

i;j;k

i+j+k=n

�

i+ j + k

i; j; k

�

x

i

y

j

z

k

= (x+ y + z)

n

:

Note that the Trinomial Theorem is trivial in the sense that its double

sum 
an be transformed into 
losed form by iteratively applying the Binomial

Theorem, as expe
ted from (x+ y + z)

n

= (x+ (y + z))

n

.

Proof. Assume n � 0. We de�ne

! :=

�

a� 1 + b+ 


a� 1; b; 


�

x

a

y

b

z




(x+ y + z)

a+b+


./

da db d


�

�

a+ b� 1 + 


a; b� 1; 


�

x

a

y

b

z




(x+ y + z)

a+b+


da

./

db d


+

�

a+ b+ 
� 1

a; b; 
� 1

�

x

a

y

b

z




(x+ y + z)

a+b+


da db

./

d


and

� := � ([0 � a; 0 � b; 0 � 
; 1 � a+ b+ 
 < n℄ da db d
) ;

the range � is the surfa
e of a \dis
rete tetrahedron". Sin
e ! is 
losed by

Theorem 3 and � is exa
t we know that

P

a;b;


� � ! = 0: As

X

a;b;


� � ! = �1 +

X

i;j;k

i+j+k=n

�

i+ j + k

i; j; k

�

x

i

y

j

z

k

(x+ y + z)

n

;

Identity 46 is proved.

The triviality of the Trinomial Theorem should not mislead us to dis
ard !

3

whi
h proves Identity 47, a (truly) double sum identity.

Identity 47. Let p, q and r be natural numbers. Then

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

+

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

+

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

= 1:

Identity 47 is a trivariate analog of Identity 43.

Proof of Identity 47. Assume p � 0, q � 0, and r � 0. We de�ne

! :=

�

a� 1 + b+ 


a� 1; b; 


�

x

a

y

b

z




(x + y + z)

a+b+


./

da db d


�

�

a+ b� 1 + 


a; b� 1; 


�

x

a

y

b

z




(x + y + z)

a+b+


da

./

db d


+

�

a+ b+ 
� 1

a; b; 
� 1

�

x

a

y

b

z




(x + y + z)

a+b+


da db

./

d
:
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and

� := � (([0 � a � p; 0 � b � q; 0 � 
 � r℄� [a = 0; b = 0; 
 = 0℄) da db) :

As ! is 
losed by Theorem 3 and � is exa
t we know that

X

a;b;


� � ! = 0:

We aim to 
ompute

P

a;b;


� � !.

0

2

4

6

i

0

2

4
j

0

1

2

3

k

0

1

2

0 2 4 6

i

0

2

4

j

0

1

2

3

k

1

2

3

0 2 4 6

i

0

2

4

j

0

1

2

3

k

1

2

3

The range � 
an be found by looking on the diagrams above or by 
ompu-

tation. Both methods yield � = �

a

+ �

b

+ �

b

+ �

0

+ �

0

where

�

a

= [a = p+ 1; 0 � b � q; 0 � 
 � r℄ db d
;

�

b

= �[0 � a � p; b = q + 1; 0 � 
 � r℄ da d
;

�




= [0 � a � p; 0 � b � q; 
 = r + 1℄ da db;

�

0

= ��

a

� �

b

� �




at p = q = r = 0;

�

0

= � � � :

We 
ompute

X

a;b;


�

a

� ! =

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

;

X

a;b;


�

b

� ! =

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

;

and

X

a;b;


�




� ! =

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

:
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Adding yields

X

a;b;


(�

a

+ �

b

+ �




) � !

=

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

+

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

+

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

:

As �

0

= �(�

a

+ �

b

+ �




) at p = q = r = 0, we derive

P

a;b;


�

0

� ! = �1 as

a parti
ular 
ase of

P

a;b;


(�

a

+ �

b

+ �




) � !. Finally,

P

a;b;


�

0

� ! = 0. Adding

these three sums we get

X

a;b;


� � !

=

�

x

x+ y + z

�

p+1

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

��

y

x+ y + z

�

j

�

z

x+ y + z

�

k

+

�

y

x+ y + z

�

q+1

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

��

x

x+ y + z

�

i

�

z

x+ y + z

�

k

+

�

z

x+ y + z

�

r+1

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

��

x

x+ y + z

�

i

�

y

x+ y + z

�

j

� 1:

whi
h is zero as it is the sum of a 
losed form over an exa
t range. Identity 47

follows.

Upon substituting 1 for x, y, and z, Identity 47 redu
es to a (truly) double

sum analog of Identity 44.

Identity 48.

8

p�0

8

q�0

8

r�0

3

�p

q

X

j=0

r

X

k=0

�

p+ j + k

p; j; k

�

3

�j�k

+ 3

�q

p

X

i=0

r

X

k=0

�

i+ q + k

i; q; k

�

3

�i�k

+ 3

�r

p

X

i=0

q

X

j=0

�

i+ j + r

i; j; r

�

3

�i�j

= 3:

Upon substituting m for p, q, and r, Identity 48 redu
es to a (truly) double

sum analog of Identity 45.

Identity 49.

8

m�0

m

X

i=0

m

X

j=0

�

m+ i+ j

m; i; j

�

3

�i�j

= 3

m

:
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Note that it is easily possible to generalize Identities 43 and 47 to an arbitrary

number of summations. In order to save spa
e, we resist this temptation and


on�ne ourselves to looking at the spe
ial 
ases Identity 45 and Identity 49:

�

m

m

�

1

0

= 1

m

;

m

X

i=0

�

m+ i

m; i

�

2

�i

= 2

m

;

m

X

i=0

m

X

j=0

�

m+ i+ j

m; i; j

�

3

�i�j

= 3

m

:

Grasping a pattern we 
onje
ture a sequen
e of multisum identities.

Identity 50.

m

X

i

1

=0

� � �

m

X

i

�

=0

�

m+ i

1

+ � � �+ i

�

m; i

1

; : : : ; i

�

�

(� + 1)

�i

1

����i

�

= (� + 1)

m

:

5.3 A new WZ form from an identity of S. Dent

An 
ertain identity of S. Dent [Den96℄ leads to the WZ form

! = (�1)

b

2

�k+2 v

�

k� 2 v

s� b

��

k� v

k� 2 v

�

�1

�

�s+ k

�b+ 2 v

��

s

b

�

�

 

(b� 1) b (�s+ k+ b� 2 v � 1) (�s+ k+ b� 2 v)

2

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 2) (�s+ b� 1)

2

dk ds

+

�b (�s+ k+ b� 2 v)

2

(b� 2 v � 1) (�s+ b� 1)

2

db ds

+

b (k� 2 v + 1) (�s+ k+ 1)

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 1)

db dk

�

:

Closedness preserving substitution fb! b+ sg

�

leads to

(�1)

s+b

2

�k+2 v

�

k� 2 v

�b

��

k� v

k� 2 v

�

�1

�

�s+ k

�s� b+ 2 v

��

s

s+ b

�

�

 

(k+ b� 2 v)

2

(s+ b) (s+ k+ b� 2 v)

2 (b� 1)

2

(�k+ v � 1) (s+ b� 2 v � 1)

dk ds

+

� (k+ b� 2 v)

2

(s+ b)

(b� 1)

2

(s+ b� 2 v � 1)

db ds

+

(k� 2 v + 1) (�s+ k+ 1) (s+ b)

2 (b� 1) (�k+ v � 1) (s+ b� 2 v � 1)

db dk

�

:

61



Consider the following shadow of the last form:

� (k� 2 v)

2

s

b

2

(�1)

b

2

�k+2 v

�

v

k� v

��

b

�k+ 2 v

��

b

�s

��

�s+ k

�s� b+ 2 v

�

�

 

(k+ b� 2 v)

2

(s+ b) (s+ k+ b� 2 v)

2 (b� 1)

2

(�k+ v � 1) (s+ b� 2 v � 1)

dk ds

+

� (k+ b� 2 v)

2

(s+ b)

(b� 1)

2

(s+ b� 2 v � 1)

db ds

+

(k� 2 v + 1) (�s+ k+ 1) (s+ b)

2 (b� 1) (�k+ v � 1) (s+ b� 2 v � 1)

db dk

�

:

It leads, by straightforward manipulation, to the identity

X

k

X

s

2

�k

(2v + s� b� k)

�

b

s

��

b

2v � k

��

k + s

2v + s� b

��

v

k � v

�

= 0

whi
h holds provided that b � 0 and v � 0.
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A How to Use the Pa
kage wz

This appendix may help the reader to use our pa
kage wz.m. Explanations apply

to the pa
kage wz.m as of February 00 running under Mathemati
a 3.x.

Download the �les wz.m and wzManual.nb from

http://www.ris
.uni-linz.a
.at/resear
h/
ombinat/ris
/.

Under Unix, put these �les into some dire
tory (for example, your home dire
-

tory) and start the Mathemati
a frontend in that dire
tory by typing

Mathemati
a&

to a shell. From within Mathemati
a, load the pa
kage wz.m by exe
uting

(Shift-Return)

In[1℄ := << wz:m

loading wz.m O
t 28, 1999...

Under Windows, 
reate a dire
tory C:nwz (using the Explorer), put the �les

wz.m and wzManual.nb into C:nwz and start Mathemati
a by double-
li
king

on C:nwznwzManual.nb. From within Mathemati
a, load the pa
kage wz.m by

exe
uting (Shift-Return)

In[2℄ := $Path = Append[$Path; \
 : =wz

00

℄;

<< wz:m

(When loading wz.m, you will get some "multiple 
ontext" warnings; you 
an

safely ignore them.)

The notebook �le wzManual.nb 
ontains appendix A. A qui
k way to get started

is to modify and rerun the following examples.

A.1 Constru
ting Forms

Using pre
omputed examples. The easiest way to get a 
losed form is to


all a pre
omputed example; these examples are listed in appendix B.

In[3℄ := w1 = example[\dixon

00

℄

Out[3℄ =

(�1)

k

�

a+ b

a+ k

� �

a+ 



+ k

� �

b+ 


b+ k

�

a! b! 
!

(a + b+ 
)!

�

�(b+ k) (
+ k)

2 (1 + a+ b+ 
) (1+ a� k)

da

�

(a+ k) (
+ k)

2 (1+ a+ b+ 
) (1 + b� k)

db +�

(a+ k) (b+ k)

2 (1+ a+ b+ 
) (1 + 
� k)

d
 + 1dk

�

Using Gosper's algorithm to 
onstru
t 
losed 1-forms. If we know a

de�nite single hypergeometri
 sum identity involving free variables we 
an try

to 
onstru
t a 
losed form from it by using Gosper's algorithm in the imple-

mentation of Peter Paule and Markus S
horn. Download the �le Zb.m from

http://www.ris
.uni-linz.a
.at/resear
h/
ombinat/ris
/ . Under Unix, 
opy this

�le into your Mathemati
a dire
tory; under Windows9x/NT, put it into C:nwz.

The fun
tion 

f ("
omplete to a 
losed form") returns a WZ form. Note that



f 
alls the fun
tion Gosper of Peter Paule and Markus S
horn, whi
h does the

diÆ
ult part of the 
omputation.

In[4℄ := term = toPht[Binomial[n; k℄2^� n℄;

w2 = 

f[term; fkg; fn; kg℄

Out[4℄ =

�

2

�n

�

n

k

��

�

1dk +

k

2 (�1+ k� n)

dn

�
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The third argument of 

f[...℄ determines the set of labels. For example

In[5℄ := term = toPht[Binomial[n; k℄Binomial[a; k℄=Binomial[a+ n; n℄℄;

w5 = 

f[term; fkg; fk; ng℄

Out[5℄ =

�

a

k

� �

n

k

�

�

a+ n

n

�

�

1dk+

k

2

(�1+ k� n) (1+ a+ n)

dn

�

is di�erent from

In[6℄ := w6 = 

f[term; fkg; fk; n; ag℄

Out[6℄ =

�

a

k

� �

n

k

�

�

a+ n

n

�

�

�

k

2

(1 + a� k) (1+ a+ n)

da+ 1dk+

k

2

(�1+ k� n) (1+ a+ n)

dn

�

Using Kurt Wegs
haider's pa
kage to 
onstru
t 
losed forms of higher

degree. To exe
ute the examples of this subse
tion, you need Kurt Wegs
hai-

der's pa
kage multisum.m. It is available at

http://www.ris
.uni-linz.a
.at/resear
h/
ombinat/ris
/. Under Unix,

put the �le multisum.m into your Mathemati
a dire
tory; under Windows, put

it into C:nwz.

Suppose we want to prove the following (trivial) double sum analog of Vander-

monde's identity:

X

ij

�

R

i

��

S

j

��

T

n� i� j

�

=

�

R+ S + T

n

�

:

We divide by the right hand side and enter the resulting summand.

In[7℄ := lhs = bi[R; i℄ bi[S; j℄ bi[T; n� i� j℄;

rhs = bi[R+ S+ T; n℄;

summand = lhs=rhs;

We 
ompute a re
urren
e for the summand by Kurt Wegs
haider's pa
kage.

In[8℄ := rek = FindCertifi
ate[summand; n;

ff1; 0; 0g; f0; 0; 0gg; fi; jg; f ff0; 0; 0gg; ff0; 0; 0gg g; 1℄[[

1℄℄

Out[8℄ = �n MultiSum`F[�1+ n; i; j℄ + n MultiSum`F[n; i; j℄ ==

Delta[i;�i MultiSum`F[n; i; j℄℄ + Delta[j;�j MultiSum`F[n; i; j℄℄

This re
urren
e yields a 
losed form:

In[9℄ := w3 = TermRekToForm[summand; rek℄

Out[9℄ =

�

R

i

� �

S

j

� �

T

�i� j+ n

�

�

R+ S+ T

n

�

�

�

(i + j� n) (�1+ n� R� S� T)

n (�1� i� j+ n� T)

didj +

j

n

dndi+�

i

n

dndj

�

Entering forms manually. Suppose we want to enter the form

Out[9℄ =

�

x

a

y

b

(x+ y)

�a�b

�

a+ b

a; b

�� �

�

b

a+ b

da +

a

a+ b

db

�

at the keyboard. First we enter the 
ommon hypergeometri
 fa
tor. Note that

we have to 
all the fun
tion toPht to 
onvert it to our internal representation

for hypergeometri
 terms.
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In[10℄ := hyp = Multinomial[a; b℄ x^a y^b (x + y)^(�a � b)== toPht

Out[10℄ = x

a

y

b

(x+ y)

�a�b

�

a+ b

a; b

�

Next we input the rational fun
tion 
oeÆ
ients of the desired form:

In[11℄ := rat1 = toPht[a=(a+ b)℄

Out[11℄ =

a

a+ b

and

In[12℄ := rat2 = toPht[�b=(a+ b)℄

Out[12℄ =

b

�a� b

Finally we "assemble" the desired form.

In[13℄ := w4 = hyp � (rat1 d[b℄ + rat2 d[a℄)

Out[13℄ =

�

x

a

y

b

(x + y)

�a�b

�

a+ b

a; b

�� �

b

�a� b

da +

a

a+ b

db

�

A.2 Closedness Preserving Substitutions

WZ forms yield newWZ forms by 
losedness preserving substitutions. If <rule>

is a substitution, or a list of substitutions, then 
ps[<rule>℄ is the 
orresponding


losedness preserving substitution. As a �rst example, we explain a \dualize and

spe
ialize-mira
le" of D. Zeilberger by a 
losedness preserving substitution.

In[14℄ := w6

Out[14℄ =

�

a

k

� �

n

k

�

�

a+ n

n

�

�

�

k

2

(1 + a� k) (1 + a+ n)

da+ 1dk+

k

2

(�1+ k� n) (1 + a+ n)

dn

�

In[15℄ := w�new = w6=:
ps[a� > n℄

Out[15℄ =

��

n

k

��

2

�

2 n

n

�

�

1dk+

k

2

(�3 + 2 k� 3 n)

2 (�1 + k� n)

2

(1+ 2 n)

dn

�

For another example, we show how to symmetrize the form

In[16℄ := w2

Out[16℄ =

�

2

�n

�

n

k

��

�

1dk +

k

2 (�1 + k� n)

dn

�

whi
h 
ontains a binomial 
oeÆ
ient

n!

k!(n� k)!

. To get rid of its ugly asym-

metri
 denominator, we substitut n->n+k:

In[17℄ := w�halfdone = w2=:
ps[n� > n+ k℄

Out[17℄ =

�

2

�k�n

�

k+ n

k

��

�

1

2

dk+�

k

2 (1+ n)

dn

�

Now the denominator of the pure hypergeometri
 fa
tor is symmetri
. We

wonder if the rational 
oeÆ
ients 
an be made symmetri
 too, and we try a


ouple of shifts. One of them is indeed su

essful:

In[18℄ := w�symmetri
 = shift[n;�1℄[w�halfdone℄
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Out[18℄ =

�

2

�k�n

�

k+ n

k

�� �

n

k+ n

dk +�

k

k+ n

dn

�

A.3 Computing Exterior Derivatives

The appli
ation d[w℄ 
omputes the exterior derivative of w (whi
h must be

a form). Sin
e all forms introdu
ed so far are 
losed by 
onstru
tion, their

respe
tive exterior derivatives are zero. For example,

In[19℄ := d[w�symmetri
℄

Out[19℄ = 0

A.4 Ranges and Boundaries.

Entering ranges. Suppose we need the range (�[a+ b == k℄)da+([a+b ==

k℄)db. We 
an either enter it dire
tly at the keyboard

In[20℄ := r1 = �i[a+ b == k℄d[a℄ + i[a+ b == k℄d[b℄

Out[20℄ = 1 ((�[a+ b == k℄)da + ([a+ b == k℄)db)

or we de�ne it as the boundary of a halfspa
e:

In[21℄ := interior�of�r1 = i[a+ b < k℄ d[a; b℄

Out[21℄ = 1 (([a+ b < k℄)dadb)

In[22℄ := r1 = boundary[interior�of�r1℄

Out[22℄ = 1 ((�[a+ b == k℄)da + ([a+ b == k℄)db)

The se
ond method is re
ommended for all but the simplest ranges. For exam-

ple,

In[23℄ := interior�of�r2 = i[a+ b < k℄ i[a >= 0℄i[b >= 0℄ d[a; b℄;

r2 = boundary[interior�of�r2℄

Out[23℄ = 1 ((�[a + b == k℄ [a � 0℄ [b � 0℄ + [b == 0℄ [a � 0℄ [a+ b < 1+ k℄)da+

([a+ b == k℄ [a � 0℄ [b � 0℄� [a == 0℄ [b � 0℄ [a+ b < 1+ k℄)db)

would be hard to enter dire
tly.

Plotting ranges. To 
he
k if we get indeed the ranges we have in mind we

plot them.

In[24℄ := Blo
k[fk = 3g;

dstPlot[f0; r1; 0g℄℄;

-3 -2 -1 1 2 3
a

-3

-2

-1

1

2

3

b
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In[25℄ := Blo
k[fk = 3g;

dstPlot[f0; r2; 0g℄℄;

-3 -2 -1 1 2 3
a

-3

-2

-1

1

2

3

b

Of 
ourse we have to set all parameters, like k in the example above, of the range

to be plotted to �xed integers. This 
an be 
onveniently done by wrapping a

Blo
k[fk=...g,...℄ around.

A.5 Summing Forms over Ranges

We sum the form

In[26℄ := w4

Out[26℄ =

�

x

a

y

b

(x + y)

�a�b

�

a+ b

a; b

�� �

b

�a� b

da +

a

a+ b

db

�

over the range

In[27℄ := r1

Out[27℄ = 1 ((�[a+ b == k℄)da + ([a+ b == k℄)db)

by issuing the 
ommand

In[28℄ := wwSum[r1; w4℄

Out[28℄ =

X

ab

a+b==k

x

a

y

b

(x + y)

�a�b

�

a+ b

a; b

�

A.6 Bugs

Please report bugs to B.Zimmermann�ris
.uni-linz.a
.at.
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B Some Closed Forms

All 
losed forms in the following list are in
luded in the pa
kage wz.m.

example["dent"℄ = (�1)

b

2

�k+2 v

 

k� 2 v

s� b

! 

k� v

k� 2 v

!

�1

 

�s+ k

�b+ 2 v

! 

s

b

!

�

(b� 1) b (�s+ k+ b� 2 v � 1) (�s+ k+ b� 2 v)

2

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 2) (�s+ b� 1)

2

dk ds+

�b (�s+ k+ b� 2 v)

2

(b� 2 v � 1) (�s+ b� 1)

2

dbds

+

b (k� 2 v + 1) (�s+ k+ 1)

2 (b� 2 v � 1) (�k+ v � 1) (�s+ b� 1)

dbdk

�

[Den96℄

example["jaegers"℄= 2

�

j+i

j

�

2

�

n�j�i+m

n�j

�

2

�

2 n+2m+2

2 n+1

�

�1

�

�(i�1)

2

i

2

(�n+j+i�m�1)

2

(i n�n�m j�j)

(i�m�1)

2

(j+i�1)

2

(j+i)

2

n (2 n+1)

dj dn+

�i

2

j

2

(�n+j+i�m�1)

2

(i�m�1)

2

(j+i�1)

2

(j+i)

2

(�n+j�1)

2

n (2 n+1)

�

2 j n

3

� i n

3

� n

3

� 4 j

2

n

2

� 2 i j n

2

+ 5m j n

2

+ 11 j n

2

+ 2 i

2

n

2

� 2m i n

2

� 2 i n

2

� 3m n

2

� 5 n

2

+ 2 j

3

n+ 3 i j

2

n� 6m j

2

n� 11 j

2

n

�4m i j n� 8 i j n+ 4m

2

j n+ 18m j n+ 18 j n+ i

2

n+ 2m i n+ 3 i n� 3m

2

n� 10m n� 8 n+m j

3

+ j

3

+ 2m i j

2

+ 2 i j

2

� 2m

2

j

2

�7m j

2

� 5 j

2

� 4m i j� 4 i j+ 4m

2

j+ 11m j+ 7 j+ 2m i+ 2 i� 2m

2

� 5m� 3

�

di dn

+

i

2

j

2

(�n+j+i�m�1)

2

(n+m+1) (2 n+2m+1)

(i�m�1)

2

(j+i�1)

2

(j+i)

2

n (2 n+1)

di dj

�

[, ℄

example["hong"℄= (�1)

i+v+r

�

i

�q+r

� �

i

�q+v

� �

n
r

�

�1

�

n

v

�

�1

�

n

i

� �

n�i

q

� �

n�i

q+n�v�r

�

�

�q (q+i�r) (q+i�v) (q+n�v�r)

(

q

2

+i q�2 q�i�r v+1

)

(n�r) (n�v) (q�r�1) (q�v�1) (q+i�v�r�1) (q�n+i�1)

dq dn

+

n q (q+i�r) (q+i�v) (q+n�v�r�1) (q+n�v�r)

(�n+i) (n�r) (n�v) (�q+r+1) (q�v�1) (q+i�v�r�1)

dq di +

�(q�1) q (q+i�1) (q+i�r) (q+i�v) (q+n�v�r�1) (q+n�v�r)

(�n+i) (n�r) (n�v) (q�r�1) (q�v�1) (q+i�v�r�1) (q�n+i�1)

dn di

�

[Hon96, ℄

example["gkp5.22"℄=

�

r

m+k

� �

s

n�k

� �

s+r

n+m

�

�1

�

m+k

s+r+1

ds+

(m+k) (s�n+k)

(�r+m+k�1) (s+r+1)

dr +

�(m+k) (s�n+k)

(�n+k�1) (�s�r+n+m)

dn+

s�n+k

s+r�n�m

dm+ 1 dk

�

[GKP89, 5.22℄
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example["gkp5.23"℄=

�

l

m+k

� �

s

n+k

� �

s+l

n�m+l

�

�1

�

(m+k) (n+k)

(�s+n+k�1) (s+l+1)

ds+

�m�k

�s+n�m

dn+

�n�k

�n+m�l

dm+

(m+k) (n+k)

(m�l+k�1) (s+l+1)

dl+ 1 dk

�

[GKP89, 5.23℄

example["gkp5.24"℄ = (�1)

�m�l+k

 

l

m+ k

! 

s+ k

n

! 

s�m

n� l

!

�1

�

m+ k

�s+m� 1

ds+

� (m+ k) (s� n+ k)

(n+ 1) (�s+ n+m � l)

dn+

�s+ n� k

�s+ n+m� l

dm+

(m+ k) (s� n+ k)

(m� l+ k� 1) (�n+ l)

dl+ 1 dk

�

[GKP89, 5.24℄

example["gkp5.25"℄ = (�1)

�m�l+k

 

l� k

m

! 

s

�n+ k

! 

s�m� 1

�n�m+ l

!

�1

�

(�l+ k� 1) (�n+ k)

(�s+m) (s+ n� k+ 1)

ds+

� (�l+ k� 1) (�n+ k)

(�n�m+ l) (s+ n� k+ 1)

dn+

(�l+ k� 1) (�n+ k)

(m+ 1) (n+m � l)

dm+

� (�l+ k� 1) (�n+ k)

(m� l+ k� 1) (�s� n+ l+ 1)

dl+ 1 dk

�

[GKP89, 5.25℄

example["gkp5.26"℄=

�

l�k

m

� �

q+k

n

� �

q+l+1

n+m+1

�

�1

�

l�k+1

q+l+2

dq+

�(�l+k�1) (q�n+k)

(n+1) (�q+n+m�l)

dn+

(�l+k�1) (q�n+k)

(m+1) (�q+n+m�l)

dm+

�(�l+k�1) (q�n+k)

(m�l+k�1) (q+l+2)

dl + 1 dk

�

[GKP89, 5.26℄

example["gkp5.27"℄=

�

r

k

� �

s

n�k

� �

s+r

n

�

�1

�

k

s+r+1

ds+

k (s�n+k)

(�r+k�1) (s+r+1)

dr +

�k (s�n+k)

(�n+k�1) (�s�r+n)

dn+ 1 dk

�

[GKP89, 5.27℄
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example["gkp5.28"℄ =

 

r

m

!

�1

 

r + k

n+m

! 

�s+ r + n

n� k

! 

s

n

!

�1

 

s� r +m

k

!

�

k (r � n�m+ k) (�s+ r + k)

(�s+ r �m+ k� 1) (�s+ r + n) (s+ 1)

ds+

�k (�s+ 2 r �m+ k+ 1)

(r + 1) (�s+ r �m)

dr +

�k (r � n�m+ k) (�s+ r + k)

(�n+ k� 1) (n+m+ 1) (�s+ n)

dn

+

k (r � n�m+ k) (�s+ r + k)

(n+m+ 1) (�r +m) (s� r +m� k+ 1)

dm+ 1 dk

�

[GKP89, 5.28℄

example["gkp5.29"℄ = (�1)

k

 

b+ a

k+ a

! 


+ a

k+ 


! 


+ b

b

!

�1

 


+ b

k+ b

! 


+ b+ a

a

!

�1

�

1 dk+

� (k+ a) (k+ b)

2 (
+ b+ a+ 1) (�k+ 
+ 1)

d
+

� (k+ a) (k+ 
)

2 (
+ b+ a+ 1) (�k+ b+ 1)

db+

� (k+ b) (k+ 
)

2 (
+ b+ a+ 1) (�k+ a+ 1)

da

�

[GKP89, 5.29℄

example["gkp5.30"℄= (�1)

k

�

b+a

a

�

�1

�

b+a

k+a

� �

b+a

k+b

�

�

1 dk+

�k�a

2 (�k+b+1)

db+

�k�b

2 (�k+a+1)

da

�

[GKP89, 5.30℄

example["ep11"℄= (�1)

�n+k

4

�m+k

�

k

m

� �

n+k

2 k

� �

n+m

2m

�

�1

�

�(2 k�1) (�m+k)

(�n+k�1) (n+k)

dn+

�(2 k�1) (�m+k)

2 (�n+m) (n+k)

dm+

n+m

n+k

dk

�

[Ego84, p.11℄

example["ep24rest0"℄= (�1)

�3 n+k

�

3 n�k

k

�

�

k

(

�18 n

2

+9 k n�15 n+k�1

)

2 (�3 n+2 k�3) (�3 n+2 k�2) (�3 n+2 k�1)

dn+

�3 n

2 (�3 n+k)

dk

�

[Ego84, p.24℄

example["ep27"℄= (�1)

�v�m

2

�v+2m

�

r+2m

m

�

�1

�

r+2m

v+r

� �

v+2 r+2m

v

�

�

1 dv +

v

�2 r�2m�1

dr +

2 (2 r+4m+3) v (v+r)

(2 r+2m+1) (�v+2m+1) (�v+2m+2)

dm

�

[Ego84, p.27℄

7
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example["ep47"℄= (�1)

k

�

r

k

�

r!

�1

�

�k

(

�k r

3

+a r

3

+r

3

+k

2

r

2

�a k r

2

�2 k r

2

+r

2

+k

2

r�2 k r+r+a k�k�a+1

)

(�r+k�1) (r�1) r (r+1)

dr + (�k+ a) dk+

�k

r

da

�

[Ego84, p.47℄

example["e2.6"℄=

�

2 k

k

� �

2 n+2

n+1

�

�1

�

2 n�2 k

n�k

�

�

�k (�3 n+2 k�5) (�2 n+2 k�1)

(�n+k�2) (�n+k�1) (n+1) (2 n+3)

dn+

�n�2

(k+1) (�n+k�1)

dk

�

[Ego84, 2.6℄

example["ep48"℄= 2

�2 n+k

n!

�1

(n� k)!

�1

(2 n� k)!

�

�k (�2 n+k�1)

4 (�n+k�1) (n+1)

dn+ 1 dk

�

[Ego84, p.48℄

example["ep49"℄=

�

2 n�2 k

n�k

� �

q+2 k

k

� �

q+2 n

n

�

�1

�

2 k (�2 n+2 k�1)

(q+2 k) (q+2 n+1)

dq+

�2 k (�2 n+2 k�1) q (q+k)

(�n+k�1) (q+2 k) (q+2 n+1) (q+2 n+2)

dn+

q

q+2 k

dk

�

[Ego84, p.49℄

example["ep52"℄=

�

m

k

�

2

�

n+m

n

�

�2

�

n+2m�k

2m

�

�

�k

2

(�n�2m+k�1)

(�n+k�1) (n+m+1)

2

dn+

�k

2

(�n�2m+k�1)

(

�3mn+2 k n�3 n�4m

2

+3 km�8m+3 k�4

)

2 (�m+k�1)

2

(2m+1) (n+m+1)

2

dm+ 1 dk

�

[Ego84, p.52℄

example["e2.18;1"℄= (�1)

�n+k

2

2 k�2 a

�

k
a

� �

n+a

2 a

�

�1

�

n+k

2 k

�

�

2 (2 a+1) (�k+a) (2 k�1) (n+1)

(�n+k�1) (n+a+1) (2 n+1) (2 n+3)

dn+

2 a+1

2 n+1

dk+

(2 a+1) (�k+a) (2 k�1)

2 (�n+a) (n+a+1) (2 n+1)

da

�

[Ego84, 2.18;1℄

example["ep59"℄=

�

n�1

�r+i

� �

r+1

2 r�i

� �

r+n

r

�

�1

�

(�r+i) (�r+i+1)

(

3 r

2

+2 n r�3 i r+5 r�i n+2 n+i

2

�2 i+2

)

(�2 r+i�2) (�2 r+i�1) (�r�n+i) (r+n+1)

dr +

(�r+i) (�r+i+1)

(�r�n+i) (r+n+1)

dn+ 1 di

�

[Ego84, p.59℄

example["gauss"℄= n!

�1

(� (
))

�1

� (
� a) � (
� b) (� (
� b� a))

�1

a

n

b

n




n

�1

�

1 dn+

n


�b�a

d
+

n (n+
�1)

b (�
+b+1)

db+

n (n+
�1)

a (�
+a+1)

da

�

example["e3.17"℄= (�1)

k+j

�

p+i

p+k

� �

p+k

p+j

�

�

k�j

�p�j�1

dp+ 1 dk+

(�k+j) (j p�i p+p+j k�i k+j+1)

(�j+i�1) (�j+i) (p+j+1)

dj+

�(�k+j) (j p�i p+j k�i k�k+i+1)

(�j+i) (�j+i+1) (�k+i+1)

di

�

[Ego84, 3.17℄

example["e3.4.2;1"℄= (�1)

k+j

�

i

k

� �

k

j

�

�

1 dk+

(�k+j) (j k�i k+j+1)

(�j+i�1) (�j+i) (j+1)

dj+

�(�k+j) (j k�i k�k+i+1)

(�j+i) (�j+i+1) (�k+i+1)

di

�

[Ego84, 3.4.2;1℄
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example["e3.4.2;2"℄ = (�1)

k+j

 

p� j

p� k

! 

p� k

p� i

!

�

k� j

�p+ i� 1

dp+ 1 dk

+

(�k+ j)

�

�j p+ i p� p� j k+ i k+ 2 j

2

� 2 i j + 2 j� i

�

(�j+ i� 1) (�j+ i) (�p+ j)

dj+

� (�k+ j)

�

j p� i p+ j k� i k� k� 2 i j� j + 2 i

2

+ 2 i+ 1

�

(�j + i) (�j+ i+ 1) (�k+ i+ 1)

di

!

[Ego84, 3.4.2;2℄

example["e3.4.2;3"℄= (�1)

k+j

�

i�1

k�1

� �

k�1

j�1

�

i! j!

�1

�

1 dk+

(�k+j)

(

j k�i k+j

3

�i j

2

+j

2

+i

)

(�j+i�1) (�j+i) j (j+1)

dj+

�(�k+j)

(

j k�i k�k+i

2

j�j�i

3

+2 i+1

)

(�j+i) (�j+i+1) (�k+i+1)

di

�

[Ego84, 3.4.2;3℄

example["dixon"℄= (�1)

k

�

b+a

k+a

� �


+a

k+


� �


+b

k+b

�

a! b! 
! (
+ b+ a)!

�1

�

1 dk+

�(k+a) (k+b)

2 (
+b+a+1) (�k+
+1)

d
+

�(k+a) (k+
)

2 (
+b+a+1) (�k+b+1)

db

+

�(k+b) (k+
)

2 (
+b+a+1) (�k+a+1)

da

�

example["ep170"℄ =

 

m

k

! 

n
k

! 

p+m

m

!

�1

 

p+ n

n

!

�1

 

p+ n+m� k

n+m

!

�

�k

2

(�p� n�m+ k� 1)

(�p+ k� 1) (p+m+ 1) (p+ n+ 1)

dp+

�k

2

(�p� n�m+ k� 1)

(�n+ k� 1) (n+m+ 1) (p+ n+ 1)

dn+

�k

2

(�p� n�m+ k� 1)

(�m+ k� 1) (n+m+ 1) (p+m+ 1)

dm+ 1 dk

�

[Ego84, p.170℄
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