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Abstract

The method of difference forms (WZ forms) was invented by Zeilberger
in order to discover and prove hypergeometric summation identities. To
prove multisum identities by this method, one needs nontrivial closed
difference forms of higher degree. Almost no such forms were known so
far. To find some, we develop a new method for transforming difference
forms in a way that preserves their closedness, which can be seen as a
discrete variant of change of variables in differential forms. Our final goal
is to discover new multisum identities; examples are given.
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1 Introduction

1.1 Some Applications of WZ Forms

To prove hypergeometric summation identities, H. Wilf and D. Zeilberger in-
troduced WZ pairs [WZ90] and, more generally, WZ forms [Zei93]. Their work
was honored with the 1998 Steele Prize for Seminal Contribution to Research
from the AMS. Before explaining (defining) WZ forms, we list some of their
applications.

Proving known combinatorial identities. WZ pairs prove most known
hypergeometric single sum identities like, for example, Saalschiitz’s Theorem
[GKP89, p.171]: Let m and n be natural numbers. Then

S =0 6)

or, in hypergeometric notation,

r —s+r+n o —n,r+1, —s+r—m ql = (" 5
n+m n B2l —n—m4+1, —s+r+0| " \m) \n)

Wilf and Zeilberger [WZ90] prove all “classical” hypergeometric summation
identities using the WZ method. Section 3 contains examples of binomial coef-
ficient identities proved by the WZ method.

Finding new combinatorial identities. Given a hypergeometric single
sum identity, WZ forms allow us to produce new single sum identities from it.
Starting from Vandermonde’s identity, Zeilberger [Zei95] derives the identity

Zk:(3n—2k) (§>2<2n”> =0 for k>0,

n=0
or, equivalently,

A _ 2k 1
k’lk’_glk 13’2;4]:0 for k > 0.

3

4F3{

by his dualize and specialize method and comments on it:

“This is a brand new identity, unknown to Askey. It has a g-analog
derived from the ¢-version of WZ, that was unknown to Andrews,
and even whose limiting case was brand new, and it took George
Andrews three densely packed pages, using five different identities,
to prove.”

In the dualize and specialize method, a certain miracle remains unexplained;
new light is shed on it by closedness preserving substitutions — see section 4.2.
A long list of new single sum identities found by (a variant of) the dualize and
specialize method is contained in [Ges95].

A fast series for Apéry’s constant. Using a certain WZ pair, Zeilberger
[Zei93] proves Apéry’s celebrated identity

=3 1)

—_



where ((3) := % 2

n=1 n3"*
Proving known multisum identities. Consider the identity [Den96]

srer )OO0 (G e

which holds for 0 < 2v < k. By H. Wilf’s amazingly successful method of
dividing by the right hand side [WZ90] and a subsequent call to K. Wegschaider’s
variant [Weg97] of Sister Celine Fasenmyer’s algorithm [Fasd7, Fas49], we find
a particularly simple recursion for the summand which can be immediately
translated to a WZ form of degree two; see section 3.5.

Finding new multisum identities. The same WZ form that proves iden-
tity 2 immediately leads to the identity

[(s+b=2\ [(s+D—-1 s+ k v—1
;;(_1)b 2k( :—1 ) <2-:)—k ) (2v—+b+1> (—v—l—k) =0
which is valid for 1 < s, 1 < v and to the identity
Ex e () G (n) () =0
which is valid for 5> 0,1 <wv,b+2 < 2w.

Testing simplifiers for hypergeometric multisums. Multisum identi-
ties found by WZ forms, as, for example,

m m . .
m+1+) —i—j _ om
L XX (e =

(which is derived in section 5.2), are useful for checking and comparing summa-
tion algorithms.

Challenging simplifiers for expressions involving hypergeometric
sums. Using WZ forms, we can easily find and prove identities like

(P +i+k
—p —jao—Fk
P;O q\go 7';0 5 Zz(pa ja k>3 s

=0 k=0

N LR B A Y
=y ()

=0 k=0

+ 3—zp:zq: (”j”)s—i:ri =3

i=0 j=0 ], T
Given the left hand side expression of this identity, a simplifier should reduce it
to the right hand side. As far as I know, no simplifier that can handle the sum
of more than one sum has been invented yet.

Challenging automatic provers. Even if given both sides of an identity

like the one above as input, there is no reasonably fast algorithm that computes
a proof of the given identity. There is no dedicated proof algorithm for such

problems, and general (predicate logic) provers are way too inefficient to tackle
them.



1.2 WZ Form Transformations

The need for WZ form transformations. Much is known about hyper-
geometric single sum identities. There is an amazingly successful database of
a few general summation identities that cover most sums encountered in com-
binatorial practice as special cases. It is listed in Appendix IIT of [Sla66] and
implemented in Ch. Krattenthaler’s Mathematica package HYP.m[Kra95].

Even better, the problem of expressing a single sum over a hypergeometric
summand as a hypergeometric expression is algorithmically solved ! by finding a
recurrence of the sum with Zeilberger’s fast algorithm [Zei91] and subsequently
solving this recurrence with M. Petkovsek’s algorithm [PWZ96].

Much less is known about hypergeometric multisums. Sister Mary Celine
Fasenmyer [Fas47, Fas49] invented an algorithm for finding recurrences for
multisums [PWZ96]. Her algorithm was improved by P. Verbaeten and Kurt
Wegschaider, who implemented it in Mathematica. Note that her algorithm
does not help us to find multisum identities: Given a sum, we do not know a
priori if it finds a closed form evaluation. A randomly chosen sum is unlikely to
find a closed form evaluation.

To find more multisum identities by the WZ form mehtod, we need nontrivial
WZ forms of higher degree. K. Wegschaider’s Mathematica package multisum
can be used to construct such forms. We were successful to do so only 3 times;
in all other cases we interrupted the program multisum after running for some
long time.

To get more forms from a few known forms, we would like to transform
a known WZ form into an essentially different WZ form. By “essentially
different” we mean that identities produced by the new form should not follow
directly (i.e. by substitution) from identities of the original form.

Early WZ pair transformations. The first WZ pair transformation is
introduced in the very first article on WZ pairs [WZ90] as “Theorem B”. I. Gessel
generalizes it slightly ([Ges95, Theorem 3.1]) and uses the basic WZ method
together with his generalization to discover an abundance of new hypergeometric
single sum identities. These transformations do not produce essentially different
WZ forms.

Fast series for Apéry’s constant. T. Amdeberhan and D. Zeilberger
[AZ97] present a certain new WZ form transformation which does indeed pro-
duce essentially different WZ forms. It is skillfully used in [Amd96] to obtain an
infinite sequence of faster and faster converging series for ((3). The first series
in this sequence gives Apéry’s celebrated identity (1); the second series gives

1 (5602 —32n-|-5) (=1)ntt
X e

n

n

which enjoys much faster convergence than the first series.

More general WZ form transformations. We aim to transform WZ
forms by applying arbitrary integer linear substitutions. For WZ pairs and WZ
1-forms, you can easily find these transformations yourself using a simple new
trick that is explained in section 4.1 and that was discovered independently by
I. Gessel [Ges99]

Lat least up to a small gap



Unfortunately, this trick cannot be carried over to r-forms where r > 1, i.e.
to the more interesting multisum case. Section 4.3, the main part of the thesis,
solves the transformation problem in the multisum case. The transformation
algorithm is implemented in Mathematica.

Finding new multisum identities. Given a hypergeometric multisum
identity, we may hope to find a WZ form of higher degree from it. This form
usually leads to new multisum identities. However, we can do better. The
method of closedness preserving substitutions allows us to construct new WZ
forms from it which in turn allow us to discover ever more — essentially different
— multisum identities. For example, we obtain the identity

ZZSZZ_k(2”+S_b_k)<z> (2vb—k> (gﬁf_ﬁ <kiv) =0

k
(provided that b > 0 and v > 0) in this way, starting from S. Dent’s identity
(section 5.3).
Symmetry as a bonus All WZ pairs 2 F(n, k) dk + G(n, k) dn satisfy the
WZ equation

whose symmetry is praised in [PWZ96] on page 123:

“When the WZ equation holds, there is complete symmetry between
the indices n and k, especially for terminating identities, which pre-
viously had seemed to be playing seemingly different roles. The
revelation of symmetry in nature has always been one of the main
objectives in science.”

Of course, WZ pairs should match this appealing symmetry. So far, no nontrivial
nicely symmetric WZ pairs were known. We obtain the WZ form

|
9-a=b (aa+bb> — (bda—adb).

from the well known binomial form by our method of closedness preserving
substitutions in the sections 5.1. By the same method, the WZ forms

BINI G R

2a\ (2b 1
—b—a _
4 (a><b>a+b(bda adb)

are obtained. In the language of recurrences, the closedness of these forms
means that

and

1 a+b
A A _— _9gah =
(Asa+ bb)a+b <a,b> 0,

ez () () (20) -

I _p_a(2a\ (2b) _
(A33+Abb)a_'_—b4 (a>(b>—0

2For uniformity, we write the WZ pair (F(n, k), G(n,k)) as F(n,k)dk + G(n,k)dn

and




2 Difference Forms

The purpose of this section is to give a complete proof of the Theorem of Stokes—
Zeilberger. It is deliberately dissected into a collection of small definitions and
propositions in order to allow for automatic proving by a system like Theorema
[BJK'97] in the future. All proofs are obvious; some are left out while others are
included. Our interest lies in the dissection itself, and in the particular choice of
definitions. A struggle for combining formal correctness with traditional (and
useful) notation forced us to redefine a few most familiar notions like variable and
(hypergeometric) term. Of course one might see re-introducing these concepts as
overdoing; to our defense, we cite from the preface of the textbook “Advanced
Calculus” on differential forms by M. Spivak:

“There are good reasons why the theorems should all be easy and
the definitions hard. As the evolution of Stokes’ Theorem revealed, a
single simple principle can masquerade as several difficult results; the
proofs of many theorems involve merely stripping away the disguise.
The definitions, on the other hand, serve a twofold purpose: they are
rigorous replacements for vague notions, and machinery for elegant
proofs.”

We do not give a tutorial on WZ pairs and WZ forms here, since the original
papers [WZ90] and [Zei93] are very readable. For a quick start, you may also
look at my slides for the 44e session du Séminaire Lotharingien de Combinatoire.

2.1 Labels, Lattice Vectors and Terms

Established notation for difference equations is quite readable. Consider the

equation
1 r\ /s\ [r+s\ "
(Baa+26b) 75 () (b) ( t b) =0 3)

The difference operators A, and Ay are defined by A; =S;—1and Ay = Sp—1
where S, and S}, are the shift operators w.r.t. a and b: for example,

it () ()= 7w (1) )
s () - (060

How to define the shift operators S, and Sp? A moment of thought shows
that attempts like

and

(Saf)(a,b) == f(a+1,b)
lead to confusing consequences; for example, we would get
(Saf)(b,a) = f(b+1,a) (4)

and
(Saf)(=3a,b) = f(=3a+1,b) (5)

Looking at (4) and (5) may suggest that S, should be renamed to .S; since it
shifts a function in its first argument. We define shift operators (S f)(a,b) :=



fla+1,b) and (S2f)(a,b) := f(a,b+ 1) as well as multiplication operators
(mq f)(a,b) := af(a,b) and (m2f)(a,b) := bf(a,b). In this notation, we would
write equation (3) as

(Alml + Azmz)f =0 (6)

eo-52()() ()

Note that equation (3) is more readable than equation (6). We prefer the
operators Aa, Ab, a, b that act on terms like

SO060

over the operators Sy, Sz, m1, ms that act on functions like f. However, we do
not want shift operators S, and Sy to behave as (4) and (5); we want to get

Saf(b,a) = f(b,a+1) (7)

where

and

Saf(_?’av b) = f(_?’a -3, b) (8)

instead.

Our use of the word “term” comes from “hypergeometric term” by dropping
hypergeometricity. None of our proofs assume hypergeometricity, but all our
examples involve hypergeometric terms only.

An obvious candidate for the notion of “term” might be “purely syntactical
term” as used, for example, in the literature on term rewriting systems. To
avoid fixing a certain “signature”, introducing an “evaluation function” and
defining equivalence of terms modulo this evaluation function, we do not adopt
that particular notion of term.

2
To us, the term (E)Q(“tk) is simply the function that maps, for example,

the “vector” {(n,4), (k,1)} to the number (11)2(41'1)2 = 400.

Labels. In the sequel, we will frequently assume that some finite set L has
been fixed. Its elements, called labels, model the integer variables — like n and
k — occurring in hypergeometric terms. Labels will be set in sans serif font, like
n and k. The variables x, y and z range over L. For example, ) means ) ., .
By convention, different letters in sans serif denote different labels. Thus, for

example, k # n holds.

Remark: Where do we need the convention that different letters in sans serif
denote different labels? Let’s compute a difference:

Akn® = (k + 1)n® — kn® = n3.

One might be tempted to “generalize” this to

AM?JS = y3
which, of course, is wrong as can be seen by considering the particular case
r=y=k

Agkk® = 4k® + 6k* + 4k + 1.



instead of
Ak* = k2.

Thus one really needs to assume k # n for calculating Aykn3 = n3. O

The labels are assumed to be totally ordered by <. We assume that L :=
{k,n} where k < n in all examples of this section.

Vectors. X — Y denotes the set of all functions from X to Y. We will
often denote function application by using subscripts: f, means f(x).

Def. 1 (lattice vector). The set of all (lattice) vectors is V := L — Z.
Vectors will also be called “points” or “lattice points”. By convention, p and p’
range over V. As usual, vector addition and scalar multiplication are defined
pointwise:

1. (p+p)e :=ps +0,
2. (cp)y := cpa-

An example of a vector is p where py = 3 and p, = 5. Alternatively, we
write p = {(k,3),(n,5)}.

Remark: Remark: Definition 1 may seem strange, but in fact it is natural.
Usually, Z™ is used as the set of all lattice vectors. Since n = {0,1,...,n — 1}
in the usual (set theoretic) construction of N, we have Z" = Z{0:Ln=1} —
{0,1,....,n—1} = Z.

All we do is to change the index set from {0,1,...,n — 1} to something like
{k, n}. O

Intuitively, a term (or ewpression) is an object like ("F*)27% that allows
plugging in integers for the labels appearing in it: For example, plugging k = 1
and n = 7 into ("tk)Z*k yields 4. Thus we can view a term as a function from

V to C. For example, if
n—+k\_ _
T = 2
(")

p={lk1),(n,7)}

then we can evaluate the term 7" at the point p to get

T(p) = <7J1r 1) ol — 4

When speaking of terms, we always have (multivariate) hypergeometric
terms [Weg97, pp. 12-14] in mind. However, we don’t restrict ourselves to
hypergeometric terms (which we even do not define), since our theorems do not
depend on this restriction. In practice this means that all our theorems hold
for multivariate ¢-hypergeometric terms [Rie95] as well. However, our software
is presently restricted to (multivariate) hypergeometric terms.

and

Def. 2 (term). The set of terms is T : =V — C . We recursively define:

1. Let x be a label in L. Then x in T is defined by x(p) := ps-



2. Let ¢ be number in C. Then c in T is defined by c(p) := c.
3. Let f be function in C* — C. Then f in T" — T is defined by

(i(TlaT% s 7Tn)) (p) = f(Tl(p)vTQ(p)v s 7Tn(p))

(In our applications, the function f will typically be addition, subtraction,
multiplication, division, the binomial coefficient function or the factorial
function.)

To avoid heavy notation, we allow ourselves to omit underlining. We hope that
context always resolves ambiguities.

Ezample: Let p = {(k,1),(n,7)}. Then
1. k(p) =1 and n(p) =7,
2. (k+n)(p) =8, and
3. (") =s.
O

Ezample: ("7¥)27% is a term. It is the function that assigns to a point p the
number (”";"kpk)Q_pk, as can be calculated as follows:

("7t = (1) e e -
(e
O

2.2  Sums of Terms

To produce summation identities, we need to sum terms.

Def. 3 (support and sum). The support of T', supp T', consists of all lattice
points where T does not vanish. T has finite support iff supp T is finite. In
this case the sum of T is defined by

sum T := Z T(p);

pEsupp T
otherwise, sum T is left undefined.

Remark: We do not lose any infinite sum identities by insisting on the finite-
ness of supp 7. We just prove finite versions of our identities first and take
appropriate limits afterwards. O

Ezample: Let L = {a} and let n be a natural number. Then sum (7) =27 O

Ezample: Let L = {a, n}. Then (I) has infinite support and sum () is left
undefined. 0



Ezample: Let L = {a, n} and let n be a natural number. Then sum [n = n](})
is left undefined. O

The function sum is Clinear:

Proposition 1. If T, T and Ts have finite support and ¢ € C then
1. sum (¢-T)=c-sum T and
2. sum (T} + T5) = sum (T71) + sum (T5).

Remark: Recalling the definition of terms, we should have written sum (c-T')
as sum (c-T) in order to distinguish between the complex number ¢ € C and
the term c € T. O

2.3 Forms

Def. 4 (difference form). Let P(L) denote the set of all subsets of L. The
set F of all (difference) forms is defined by F := P(L) — T.

Throughout this section, we stick to the following type conventions:
e 4,5,k ,[,m and n are integers.

e z,y and z are labels (in L).

e X Y and Z are sets of labels, i.e. X,Y,Z € P(L).

e Tisaterm (in T).

e p,w and n are forms (in F).

For example, we abbreviate ), by >, we abbreviate VL by V and so on.
= TEe T

For all examples in this section we fix L = {a, b, c}.

Def. 5. For X C L, the form dX is defined by dX (V) :=[X =Y]. Forx €L,
we abbreviate d{z} by dr.

Ezample: da({a}) =1 and da({a,b})=0. O

Def. 6. Forms can be multiplied by terms and added pointwise:
1. (T w) (X):=T w(X).
2. (w+n)(X):=w(X) +n(X).

The multiplication dot may be dropped. The form T df) is abbreviated by
T'; context resolves ambiguities.

Ezample: ((:)Q_bda) (X) equals (°)27" if X = {a} and 0 otherwise. O

Ezample: (f(a,b)da+ g(a,b)db) ({a}) equals f(a,b). O



2.4 Plotting Forms

To train our intuition about difference forms, we plot them.

The difference form 2* (":k)dﬂ) is plotted as §os w7
follows: The color of a point p is determined 3 3 -
by the number v = 2% (";k) (p). If v is 0, the 5 5 3 3
. . . . . 16 4 2 2
point is left white. Otherwise, a grey dot is
. . 5 1 3 1
plotted at p and the value of v is written down vz 7 !
near p. (Unfortunately some of these num- PO SN 1 ;
bers “collide” with the numbers placed on the
axes.) !
-2
The difference form
4nl;‘"’1%3i3%1 __127n n dn+27" " dk
L 18, 16,06 T 2 k—1 k
5w PR
2k ; = ! a ] is plotted as follows: The color of a unit cube
. = R 7 in direction k, i.e. a horizontal bar, is deter-
1l = =
z 1 2 mined by the value of the term 2" (E) at the
" oy left corner of the unit cube. Similarly the color
. of a wnit cube in direction n, i.e. a vertical
bar, is determined by the value of the term
2 ’71 2-" (kil) at the lower corner of the unit
) ) cube.
Strictly speaking,
n k
27" ———dn+ 1dk
<k> <2(—n+k—1) " > [
16 | T L 8 5 T
is no diff form at all si L s s
is no difference form at all since s F,lg,li*g
n k A hopd
() sy 4
k) 2(—n+k—1) 1;*;
is no total function in V — C and therefore T N
no term. To warn about a term that is not y.
defined at a point p, we plot this term at p EI
in red color. The vertical red bars in the plot 2
stem from the denominator —n + k — 1 that
C - k
occurs in 27" (E) m
An
1 4 10 20
3
1 6 10 The difference form (“tk) dkdn is plotted as

2

follows: The color of a unit cube extending in

o B directions k and n,i.e. a square, is determined
1 by the number ("I*)(p) where p is the lower
CE left corner of that square.

10



2.5 Forms, Part 2
With respect to the operations - and + of Definition 6 we have:
Proposition 2. Multiplication is associative and distributes over addition:
1 (Th 1) w=T, - (T - w).
2. (M +1) w="T w+Tr w.
3T - (w+n)=T w+T-n.
Thus F is a T-module.
Def. 7 (sign). The sign of a pair of labels is defined by

1 if =<y
s(x,y) = 0 if xz=y
-1 if x=y

and the sign of a pair of label sets is defined by

s(X,Y) = H H s(z,y).

reX yey

Proposition 3. The sign function satisfies the following skew commutation
laws:

1. s(z,y) = —s(y,x).

2. 5(X,Y) = (=1)#X#V5(Y, X).
Proposition 4. The sign function distributes over U in the following restricted
sense:

1. s(X,)Y)s(XUY,Z) =s(X,Y)s(X,Z2)s(Y, Z).

2. 5(X,YUZ)s(Y,Z)=s(X,Y)s(X,2)s(Y, Z).

Proof. We prove 1. If XNY # 0, then s(X,Y) = 0 and (1) follows. If XNY = 0,
then s(X UY, Z) = s(X, Z) s(Y, Z) by splitting the range of the product quanti-

fier: erXUY Hyezs(xvy) = (Ha:eX HyeZ s(x,y)) (Ha:eY Hyezs(x,y)>. u

Def. 8 (exterior product). The exterior product of two forms is defined by

(WA (Z) =Y s(X,Y)w(X)n(Y).

For brevity w An may be abbreviated by wn.

Remark: Due to the fact that s(X,Y) = 0 whenever X NY # ), only summands
for complementary (with respect to L) X and Y contribute. O

Proposition 5. As expected we have skew commutation:

11



1. dvdy = —dyd.
2. dvdr =0.

Remark: Note that w An = —np Aw is not true in general. O

Proposition 6. (F, A, d0) is a monoid:
1. wAd) =dDAw = w.
2. (w1 /\UJQ) /\UJ3 = W1 A (OJQ /\UJ3).
Proof of Proposition 2.2. Let X be arbitrary. Then both ((wi Aws)Aws) (X)
and (w1 A (w2 Aws)) (X) are equal to
Z s(Y1,Y2) s(Y1,Y3) s(Y2, Y3) w1 (Y1) wa (Ya) w3 (Y3)
YiUYaUY3=X

as can be shown using Proposition 4. O

Proposition 7. The exterior product is both left and right T-linear:
1. (T -wW)An=wA(T-n) =T (wAn).
2. (w1 +wa) Anp=wi An+wa An.
3 wA(m +n)=wAn +wAns.

Proposition 6 and Proposition 7.1 will be used for dropping parentheses
without introducing ambiguities.

Sometimes it is easier to prove theorems for monomial forms first and to
extend them to arbitrary forms afterwards.

Def. 9 (monomial). A difference form w is called monomial iff there is a set
Z of labels such that
wX)#0 = X =2.

For example, T dadb is monomial while T} da db + T5 da dc is not, whenever
Tl;éOandTQ;éO.

Some proofs (as for example the proof of Proposition 43) proceed by induc-
tion on the degree.

Def. 10 (degree). A difference form is homogeneous of degree r (or has degree
r) iff
wX)#£0 = #X =r.

An r-form is a difference forms of degree r. We define F,. to be the set of all
r-forms.

An example of a 2-form is Ty dadb + Ty dbdc + Tsdadc. The form 0 is
homogeneous of degree r, for any natural number r.

12



2.6 The Inner Product of Forms

Def. 11 (inner product). The inner product of the forms p and w is defined
by
(p,w) == > p(X) - w(X)

XCL
Proposition 8. The inner product is symmetric: {p,w) = {(w, p).

Proposition 9. The inner product is both left and right T-linear:

1. (Tp,w) =T(p,w)
2. {p1 + p2,w) = (p1,w) + (p2,w)
3. (p,Tw) = T{p,w)
4. (pywi +wa2) = (p,w1) + (p,w2)

2.7 Sums of Forms over Ranges

Def. 12 (Iversons bracket). We define Iverson’s bracket function from boo-
leans to integers by

1. [true] :=1,
2. [false] :== 0.
For example, 2 =2] =1 and [2< 2] =0.

Def. 13 (sum). Let p have finite support. The sum of w over p is defined by
Zw :=sum (p, w).
P

The form p appearing under the 3° sign in ) w is said to be used as
summation range and corresponds to a manifold in the continuous case. The
form w appearing on the right of the ) sign in pr is said to be used as
summand. We typically use summation ranges involving Iverson brackets as,

for example,
p=[n=n]0<k<0]

satisfying
p(X)(p) € {_1707 1}7

but we never use this assumption. Using summation ranges involving hyperge-
ometric terms may lead to new summation identities.

Proposition 10. Let p, p1 and py have finite support and let ¢ € C. Then
1. Y ,ccw=c-),w,
2. 3 (w1 +we) =3 wi+ ), wa,
8. Y, Ww=cC3 0w,

13



4' Zpﬁ-pz W= Zm W+ sz Wy

The following proposition illustrates that we treat forms and ranges uni-
formly, in contrast to [Zei93] and to the differential forms case.

Zv

Proposition 11.

2.8 Plotting Summation Ranges

As we encode summation ranges as forms, we plot them like forms; see Section
2.4. Terms in summation ranges typically take on the values 1, 0 and —1 only.
We encode these values by colors: Green denotes 1, white denotes 0 and blue
denotes —1.

(In=3]—[n=0])dk [k = 3][n < 2]dn
—n=2][k < 3]dk

[k=n]n<3][0<n]dn+([k=n—-1][n< 3+
1J[0<n=1]=[n=3][k<n][0<n=1]+]0 = 2
n][k < n][n < 3]) dk

2.9 Plotting Sums of Forms over ranges

The plot shows the sum of the form w =

St27 (")) dn+27" (}) dk over the range p = X
[n = n]dk where n = 3. (The range p is de-
picted on top of the form w.) By definition
13, 2

Y= (;) i

(which of course equals 1).
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2.10 Operators on Terms
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Def. 14. Let x € L. The unit vector in x-direction e, is defined by

(e2)y == [r =yl
For example, ex = {(k,1),(n,0)} and e, = {(k,0), (n,1)}.
Def. 15. Let x € L. The shift operator S, in T — T is defined by

(SeT)(p) :==T(p+ex)

To compute S, T in our notation of terms, it suffices to replace each occur-
rence of x textually by x+1, as justified by the following obvious proposition.
(Note that x and y are labels, not integers; thus [z = y] below tests equality of
labels, not equality of integers.)

Proposition 12. 1. Spy =z + [z =y,
2. S;c=c,
3. Suf(trs. . tn) = f(Satr.. .. Satn).
For example, Sy ("tk)Z_k = ("tﬁ'l)Z_k_l.

Def. 16. We define the difference operator A, and the dual difference operator
A; by

1. A, =—-1+S,,
2. Ny =T+ 8.1,
where operator addition and subtraction is, of course, defined pointwise.

For example, Ak! = (k 4+ 1)! — k! = kk!. and Aglk <n] =[k—1<n]—[k <
n =k <nl—Jk <n] =[k=n] (Computing A, on Iversons allows us to
compute boundaries — even of infinite ranges — symbolically.)

Proposition 13. Let T , T1 and Ty have finite support. Then,

1. sum SET = sum T,

2. sum (T - S;Ty) = sum (ST - Tv),

3. sum (Ty - AT) = sum (AT - Ty).
Def. 17. The set of shift polynomials SP is the smallest subset in T — T
satisfying

1. All shift operators S% are in SP,

2. SP is closed under composition: If A and B are in SP, then AB is in SP,

3. SP is closed under addition: If A and B are in SP, then A+ B and —A
are in SP,

4. 0 is in SP.
Thus SP = Z[Sg,, ..., Sz, ] where L = {z1,...,2,}.

15



Examples of shift polynomials include A, and G%.
Proposition 14. Let A and B be shift polynomials. Then

1. AT +To) = AT, + AT,

2. AB=DBA,

Proof. Shift operators commute with each other. O

2.11 Operators on Forms

Operators acting on terms induce corresponding operators acting on forms in a
natural way:

Def. 18. Let A be a function in T — T. Then AinF —Fis defined by

Overloading notation, we frequently abbreviate A by A.

We will use Definition 18 to lift shift operators S¥, difference operators A,
and multiplication operators (T-) from T — T to F — F. Of course, lifting
distributes over composition:

Proposition 15. Let A and B be functions in T — T. Then

(ABY= AB

Proposition 16. Difference operators in F — F commute:

A~

1 KK, = 5,4,

2. DA H=HA.

Proof. We prove 1 by reducing it to the commutation of difference operators in
T — T via Proposition 15:

AN, = (A0 = ((=1)A,A,Y = —AyAxz.

O

Def. 19. Owverloading the meaning of dr, we define the operator dx in F — F
by dr (w) == dr Aw.

Thus dr may denote a form in F or an operator in F — F depending on
context.

Proposition 17. (rw)(Z)=>. v  s({z},Y)w(Y).

{z}uy =2

Remark: The summand in Proposition 17 is nonvanishing for Y = Z'\ {z} only;
thus we could dispense of using a sum. Refraining from doing so helps in proving
Proposition 23. O
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Proposition 18. The operators dr and dy satisfy the skew commutation law

dvdy = —dydr.

Proof. By applying both operators to w and using the associativity of A, Propo-
sition 18 can be reduced to the skew commuation law drdy = —dydr for the
forms dr and dy. O
Def. 20. (dvp)(X) := s(z,X) p({r} U X).

The operators dr and dy skew commute with each other. To see this, we
need a technical lemma:

Lemma 1. The sign function satisfies
s({z}, 2) sy} {z} v 2) = —s({y}, 2) s({z}, {y} U 2)
Proof. By Proposition 4 2, the left hand side is equal to
s({z}, 2) s({y}. {z}) s({y}, 2)

and the right hand side is equal to

—s({y}, 2) s({z}.{y}) s({z}, 2).
Since s({y}, {z}) = —s({z},{y}) by Proposition 3 2, both sides are equal. O

Ag an immediate corollary of this lemma, we get:

Proposition 19. The operators dv and dy skew commute with each other:

dy = —dy o,

S

Proposition 20. Let A be a shift polynomial. Then

1. Ade = dx A.
2. Ade = dr A.
Proof. Shift operators commute with the operator dr. O

Def. 21. The exterior derivative operator d in F — F and the boundary
operator 0 in F — F are defined by

1.d:=), drA,,
2. 0:=% dvA,.

Remark: The letter d is overloaded. We use it both for constructing forms and
for denoting the exterior derivative. Since the exterior derivative of the form a
is indeed the form da, both interpretations of d agree. O

17



Remark: The operator 0 is called “boundary operator” since it computes “sign-
ed boundaries” of summation ranges; evidence is given by the following pictures:

Ok < k][n < n]dkdn = [k = k][n <
n]dn —[n =n] [k < k] dk

g dln+k < kldkdn = [n+k = k]dn —
_ [n+ k = k] dk.

5 l i T l
1 i

[0 < k] [k < n]dkdn = (=[]0 = K] [k
n+ 1]+ [k =n+1][0 < k])dn + [k
n] [0 < K] dk.

A

|

dk =kl[n<n][0<n]dn—[n=n][k<
’ k[0 < Kdk = [k =n]0 <
B n—1]—[k =] [n 0= O
B I \ n] [k = k][ k <
] ] k).

Proposition 21. Both d and 0 are additive:
1. dlw+n) =d(w) +d(n).
2. O(w+n) =0(w) +9(n).

Proposition 22. We have dd = 0 as well as 00 = 0.

Proof. We prove dd = 0. Using the additivity of A, and dy we expand dd to
>y 2n Aly, x) where A(y,x) = dydv AyA;. Now A(y,z) = —A(z,y) as can
be shown using the commutation AyA, = A;Ay and the skew commutation
dydv = —dvdy. Hence 3° 37 A(y,z) =0. O

Proposition 23. In inner products, the operator dr can be moved from the
right side to left side, getting dx:

<p7 dTW) = <(ZT p,w>.

Proof. We transform the left hand side stepwise to the right hand side. By
definition of the inner product it is

> 0(2) (drw)(Z).
z
By Proposition 17, (drw)(Z) equals E{ JJoes s({z},Y)w(Y). Thus the left
hand side equals
Y s{rhY)p(Z)w(Y).
(z}}[J.g:Z

18



The condition {x}UY = Z allows us to eliminate the sum on Z, yielding

Y s{zhY) p({r UY)w(Y).

Y

As s({x},Y) p({z} UY) = (dr p)(Y), this simplifies to

Y (drp)(Y)w(Y)

Y

which, by the definition of the inner product, is the right hand side of Proposition
23. O

In sums, operators can be moved from the summand to the summation range
by the following Proposition:

Proposition 24. Let p have finite support. Then
1.3, dew=73% 4w,
2. 3, A =35 ,w,
8.2, Apw =35 ,w-

Proof. We prove 1. It is true since (p,drw) = <(Zr p,w> by Proposition 23.
Next, we prove 2. By Definition 13, Definition 3 and the additivity of sum it is
equivalent to

Yo p(X) Ap(w(X)) = Y Au(p(X))w(X)
X

X

which is true by Proposition 13. Finally 3 can be proved using 1, 2 and the
commutation Adr = dv A, (Proposition 20(2)). O

2.12 The Theorem of Stokes—Zeilberger

We are now ready for the central theorem about difference forms.

Theorem 1 (Stokes—Zeilberger). Let p have finite support. Then
Y=Y
P op
Proof. Summing Proposition 24.3 over all x € L gives

;;drAmw:Z Z w.

T drAgp
The bilinearity of 3 w allows us to move the sums on z inside:
Sy wae= Y ow
p T S, dzAyp

Since ) dr Ay =dand ), dr A, = @ Theorem 1 follows. O
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The omnipresent telescoping trick [GKP89, p.50] is the simplest special case
of Stokes’ Theorem:

Proposition 25 (telescoping). Suppose that the functions f and F in Z — C
satisfy F(n + 1) — F(n) = f(n) for all n. Assume a < b. Then Zz;la fk) =
F(b) — F(a).

Proof. Let L := {k}, w := F(k) and p := [a < k < b]dk. Use Stokes’ Theorem.
O

Needless to say, Proposition 25 is a discrete analog of fab F'(z)dx = F(b) —
F(a).

Def. 22. We define closedness and exactness as follows:
1. The form w is d-closed, or, shorter, w is a closed form, iff dw = 0.
2. The form p is O-closed, or, shorter, p is a closed range, iff 0p = 0.

3. The form w is d-exact, or, shorter, w is an exact form, iff 3 do = w.
w

4. The form p is 0-exact, or, shorter, p is an exact range, iff 3 0p = p.
p

For the purpose of producing interesting identities, we usually do not use
the Theorem of Stokes—Zeilberger in full generality. Instead, we only use the
following immediate corollary of it.

Theorem 2 (identity mill). Let p be an exact range having finite support and
let w be closed form. Then
Z w=0.

o

Proof. Since p is an exact form, there is a form g such that p = 9p. Thus
So=Ye=Y=Yo-0
p op p p
The essential step is the use of the Theorem of Stokes-Zeilberger. O

2.13 WZ Pairs

Def. 23 (WZ pair). Let f and g be functions in Z> — Z. The pair (f,g) is
called a WZ pair[WZ90] iff

f(n+ ]-ak) _f(nak) :g(nak+ 1) _g(nak)'
WZ pairs can be encoded as closed difference forms:

Proposition 26. Let L = {k, n}. Then (f,g) is a WZ pair iff
£, K) dk -+ g(n, K)

18 closed.
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Well known propositions about WZ pairs naturally
follow from the Identity Mill Theorem. The following
proposition is part of Theorem A of [WZ90]:

Proposition 27. Let (f,g) be a WZ pair. Suppose [
that |
1 = 0. n
ngo kkgloog(n’k) 0
Then 2 T -k

Y ijf(n,m = Zk:f(O,k)

whenever both sums converge.

Proof. Let n be a fixed natural number, px = 9[-K < k < K]0 < n <
n]dkdn and w := f(n, k) dk + g(n, k) dn. The Identity Mill Theorem shows that
IV{ > pre w = 0 which implies limp 00 >°, w =01e. 37, f(n,k) =3, f(0,k).

O

The following proposition is used in [Zei93] to prove Apérys series for ((3):
Proposition 28. Let (f,g) be a WZ pair. Suppose

that
e\ZO Z%lf nZvNY |f(n7k)| <€
Then
> 9(n,0) =" (f(n,n) +g(n,n+1)) S S
n=0 n+0

whenever both sums converge.

Remark: The original version of this proposition, Theorem 7 of [Zei93], misses a

s . . _ 2k . ..
condition like EYO ]E\I7 n>VN Y |f(n, k)| <e. Plugging w = d7—=" into the original

version would yield a WZ proof of 0 = 1. O

Proposition 29. Let (f,g) be a WZ pair and let s
be a fized integer. Suppose that both f and g vanish
for negative arguments. Then

> (g(a,b) = f(a,b)) =0.

a+b=s 7 , I

Proposition 30. Let (f,g) be a WZ pair and let a
and b be fized integers. Suppose that both f and g
— e —— vanish for negative arquments. Then

T . S F k) =S gln,a).

B o 'I ‘ k<a n<b

“As is trivial to get such propositions by plugging some exact range p into
the Identity Mill Theorem (even automatically!), we stop doing this.
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2.14 WZ Forms and the Residue Calculus
In his foreword to [PWZ96], D. E. Knuth mentions the identity

k 2—k
k
Of course, it is immediately proved by comparing coefficients at z™ in
1 1 1
VI—dz T4z 1—4z

We prove it in a different way in order to point at an analogy between the WZ
method and the residue calculus.

To prove To prove
2k\ [2n — 2k < 1
4=n =1 ——dr =
; (k><n_k> ' ./—ool+x2x o
we start by searching for a range p we start by searching for a meromor-
and a closed form w such that phic function f and a path ~ such
(2K (20 — 2k that
Sw=ya - -
k n—=k _ 1
p k f(z)dz = sdz.
~ oo L+
Gosper’s algorithm helps us to find Finding f is immediate:
1
_[(2k\ /2n — 2k f(z) =
=4 -

n—k+1/2 k
1dk — dn) .
% < n—k+1 n+1 n)
We fix an integer n and the range p We fix the path § where
where

p = [n = n]dk. y(t) =t.

A0l

Im

3
ol

k Re

~
Next we extend p to an exact range Next we extend % to a nullhomo-
0, topic closed path +,
P = ﬁ + £o + Pmini-
— Y =7+ % + Ypole-
NI
N 2
k
N — ——
P B
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We carefully choose a range pmini
that is nonvanishing on a handful of
points only, and a range pg that lies
outside the support of w. Thus

> w

Pmini
= trivial to compute,

and

E w=0.

PO
Since

dw==w
P Pmini

we prove

s () () =

23

We carefully choose a path pumin;
that consists of cycles around poles
only, and a path 7y that does not
contribute to the integral. Thus

[ 10

= revealed by the residue

/% f(z)dz = 0.

we prove

0 1
[MTIEWZW



3 WZ Forms

Sometimes “WZ form” is used as a synonym for “closed difference form”. To
stress the close correspondence between differential forms and difference forms,
we reuse common terminology from differential forms and reserve the notion
WZ form for the hypergeometric case.

Def. 24 (WZ form). A WZ form is a closed difference form whose coefficient
terms are hypergeometric or q-hypergeometric.

Presently, our package wz.m is restricted to WZ forms; however, we plan to
support other coefficient domains as well in the future.

Def. 25 (trivial WZ form). A WZ form is called trivial, iff it is the exterior
derivative of another WZ form.

To find nontrivial identities, we need nontrivial forms.

3.1 Gosper’s Algorithm Constructs WZ Pairs

Given a hypergeometric term and a label, Gosper’s algorithm finds out if there
is a hypergeometric antidifference to the term. In the affirmative case, the
algorithm returns this antidifference.

As shown in [WZ90], Gosper’s algorithm solves the problem of constructing
WZ pairs: Consider the Binomial Theorem. Its natural WZ-style proof is to
sum a WZ form

n xkyn—k
= — —— dk k
o= = () g s Gt

where L = {k, n}) over the exact range
( {k, n}) g
p:=01[0<n<n]dkdn

getting
:,n—k

3 (1) =0

The form w is closed iff

n xkynfk
AG(k,n) = —A, —
Gllom) (k) (z+y)

Gosper’s algorithm computes G(k,n) and we finally obtain the WZ form

= (k) (xiw ((n e dk) |

Remark: The form w receives some treatment in section 5.1. O
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3.2 Incompleteness of the WZ Forms Method

Unfortunately, the method of WZ forms is not complete for proving identities

of the form .
> flnk)=1

k=—0c0

where f(n, k) is hypergeometric in n and k. Note however that Zeilberger’s fast
algorithm [Zei91] is complete for proving all these identities.
A counterexample [PS95] for the completeness of the WZ method is

f(n.k) = (-1)" (Z) (if) (=3)7".

More generally, Paule and Schorn [PS95] proved that

fatn.) = (-1 () () -7

is a counterexample for each integer d > 3.

3.3 Singlesum Identities

All identities in this section were generated by a computer program; citations
were added by hand. All parameters appearing in the identities are assumed to
be integers. The program annotates identities with inequality constraints on the
parameters. While these constraints are sufficient, some inequalities occurring
in them may be redundant: For example, the program does not simplify “for
a>0,2a>0,a<n,n+a>0" to “for 0 < a <n”inidentity 1 below. Redun-
dant inequalities could be detected by the simplex algorithm and subsequently
removed; we have not implemented this so far.

Identity 1 (a “Moriarity” identity of Davis [Ego84, p. 52]).

L ) |k n+k 2n+1 n+a
_ k 92k — 2 (_1\" 2a
l;a( "2 <a)<2k> 2a—|—1( "2 (2a>

for a>0,2a>0,a<n,n+a>0.

Remark: The sum equals

2Fl[n-l-a+1,1—n+a;1] (—1)" 220 <n+a>.
a+§ 2a

It can be evaluated by Vandermonde’s Theorem and Gauss’s Theorem. (|

Identity 2 (—1).

i (2n- 1)n(2 n+1) <n2fk> (;a-:'al)

n=a-+

_ a+1 92k—2a—2 k
(2a+1) (2k+1) a+1
for a+1>0,2a+1>0,k>0,2k>0,a+1<k.
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Remark: The sum equals

20+2,a+2,a+%, ~k+a+1

+F3 a+l,a+2 k+a+2 1
" a+1 < 2k )
2@+1)-1) 2(a+1)+1) \k+a+1)"
It can be evaluated by Slater I11.10. O

Identity 3 ([Ego84, p. 52], corrected).
f( n—1 )( r )_(r+n—1)
S —-r+i—1) \2r —1 r—1
for 1<n,n>0,1<r,r>0,1<r+n.

Remark: The sum is a certain 5 Fj { o 1] and can be evaluated by Vander-

monde’s Theorem and Gauss’s Theorem.
Identity 4 (—3).

nil 3r2 —=2nr+3ir+r—in+i? n—1 n 2r 41
2r +1 r+i:—1 —r+n-—1 r

r=—i+1

=0
for 1<n,n>0.

Identity 5 (of Dixon, [GKP&9]).

a

S (-1 (Z:Z) (Z:‘Z) <Z:i> —a B (e 4 b+ a)!

k=—a

for a>0,0>0,b+a>0,¢>0,c+a>0,c+b>0,c+b+a>0.
Remark: The sum equals
-2a, -b—a, —c—a, o [CHa\ [c+D
3F2{b—a-|—1, c—a+1 ’1] (=1 (c—a) <b—a>'
It can be evaluated by Dixon’s Theorem (Slater III.8, terminated in the first

variable), Dixon’s Theorem (Slater III.8) and Dixon’s Theorem (Slater IIL.9).
O

Identity 6 (—5).

b

o () (5 s

c=k+1
= (-1) (-1’ <b;: 1) al™t (b—1)!

for a>0,1<b,a+1<bk+1<ba<k k+a>0,k+b>0.

26



Remark: The sum equals

P k—b+1,k+1,k+a+1.1]

k—b+a+2,2k+2 °

x (—=1)F! (_kk++bb_ 1) Kl (k—b+a+ 1) "

It can be evaluated by Saalschiitz’s Theorem (Slater III.2) and Saalschiitz’s
Theorem (Slater I11.31). O

Identity 7 (—5).

c

2o (L) (B G0

- e (5 ()

for b>0,¢>0,0+1<c,b<c, k<c,b<k,k+b>0,k+c>0.

Remark: The sum equals

2 k—c+1,k+1,k+b+1.1 (—1)F+ k kE+c
B2 k—c4b+2,2k4+2 kE—c+b+1) \~k+c—1)

9)
It can be evaluated by Saalschiitz’s Theorem (Slater I11.2). O

Identity 8 (—5).

z’“:(_l)b a+1 ~b+a\ (e+b) (k+b) _

= —c—b+a+1 —k+a b c+b)

for a+1>0,c<a+1,¢>0,k<a,k+a+1>0,¢c<k k+c>0.

Remark: The sum equals

c—a—1, -k, k+1 a a+1 k
F: ! ’ i1 . 1
s 2[ c+1, —a ’ ] (—k+a> (—c+a+1> <c> (10)

It can be evaluated by Saalschiitz’s Theorem (Slater I11.2) O

Identity 9 (—5).

z’“:(_l)c cH+b) (e+bra—1\ (k+b) (k+e\ _
gt b a—1 c+b c+a)
for 1<a,b>0,1<b+a,k+1<ba<k k+a>0,k+b>0.

Remark: The sum equals

b+a, k+1, -k b+a—1\ (k\ (k+D
i () O 00 o
It can be evaluated by Saalschiitz’s Theorem (Slater II1.2). O
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Identity 10 (—5).

S () (= (N )

for a>0,6>0,b+a>0,¢>0,c+a>0,c+b>0,c+b+a>0.

Remark: The sum equals

—2a,-b—a, —c—a o [CHa\ [c+D
3F2{b—a+1,c—a+1’1] (=1) (c—a) <b—a>' (12)
It can be evaluated by Dixon’s Theorem (Slater III.8, terminated in the first
variable) . O

Identity 11 (of Carlitz [Ego84, p. 170]).

z’”‘:(m) <n) <p-|-n+m—k> _ <p+m) <p-|-n>
Pt k k n+m m n
for m>0,n>0,n+m>0,p>0,p+m>0,p+n>0.

Remark: The sum equals

-m, —n, —p p+n+m
F: 01 . 13
’ 2[1,—p—n—m’ ] ( n+m ) 1)

It can be evaluated by Saalschiitz’s Theorem (Slater I11.2) and Saalschiitz’s
Theorem (Slater I11.31). O

Identity 12 (—11).

Er () () ()

= (1)t <:1__11> <p o + 1)

for 1<k,m<k,1<m,p>0,p+k>0, m<p+1.

Remark: The sum equals

m—k,p+l,p+1 | . p( P p+k
3F2p—k+2,p+m+1’1]( D 21) s ): (14)
It can be evaluated by Saalschiitz’s Theorem (Slater I11.2) and Saalschiitz’s
Theorem (Slater I11.31). O

Identity 13 (—11).

§(_1)p n+m+1 p+m\ [p+n _(_1)k+1 m n
= p+n+m—~k m n N k+1) \k+1
for ' E+1>0m>0,k+1<m,n>0,k+1<n,n+m+12>0.
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Remark: The sum equals

3F2

—k— 1
k=1,m+1,n+1 ] <n-|-m-|- ) (15)

n+m—-k+1,1 "~ n+m-—=k

It can be evaluated by Saalschiitz’s Theorem (Slater I11.2) and Saalschiitz’s
Theorem (Slater II1.31). O

Identity 14 (of Saalschiitz [GKP89, (5.28)]).

i (r—l—k) <—s—|—r+n> <s—r+m> _ (r) <s>

i \nt+m n—=~k k m) \n

for m>0,n>0m<r,s<r+4+n,n<s,r<s+m.
Remark: The sum equals
-n,r+1, —s+r—m r —s+r+n
3F2[r—n—m+1,—s+r+1’1] <n+m)< n ) (16)

The identity is equivalent to Saalschiitz’s Theorem (Slater III.2). O

Identity 15 (—14).

i <—r+k> (r) <s—|—r—m> _ <s> <s+r—n>
= \n—m m k n —-n+k
for E>0,n<k,n>0,r<kr>0s>0n<sk<s+r,n<s+r.
Remark: The sum equals
Bt A (), w
The identity is equivalent to Saalschiitz’s Theorem (Slater III.2). O

Identity 16 (—14).

i r—=k s s+r—mn\ _[r s+r—m
—n+m/) \n —-n+k /) \m k
n=0

for k>0,m>0,k<r,m<r,s>0,k<s+r,m<s+r,m+k<s+r.
Remark: The sum equals

—k, —m, —s ) r—k s+r
3F2[r—m—k+1, —s—r’l] ( m )( k ) (18)

The identity is equivalent to Saalschiitz’s Theorem (Slater III.2). O
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Identity 17 (—14).

s+k
Z(—s+2r—m—k)( n+k ><n+m> (r) <s r-I-m-I-k):O
= —s+r+n r—k m s—r+m

for k>0, m>0,1<n,n+k>0,n+m>0,s+1<mn,s>0.

Remark: The sum equals

—s—-m+k, —ts—Itm+lk+1,-n-—m k+1, —s
sFa| 1 1 13 2 2 i1
—58—sm+gk, —s+n+k+1, —s—m, —-m+k+1

cemmen () (L2 ) (25

It can be evaluated by Dixon’s Theorem as stated in Slater II1.12. (|

Identity 18 (—14).
Trtmdht s E+1 s\ [s+r—n
> (=1
s+r—m/ \n —n+k

_ (_1)T+m+k+1 -r+k r
n—m-—1 m+1

form+1>0n<km+1<n,r<kr4+n<m+k+1,r>0m+1<r

Remark: The sum equals

r+n—-m-k—-1,n+1,r+1 n kE+1 r
F ’ ’ ;1] (=1 (1
32[r+n—m+1,r+n—k+1’]( ) (r-l—n—m -n+k (19)
The identity is equivalent to Saalschiitz’s Theorem (Slater III.2). O

Identity 19 (of Kummer [GKP89, (5.30)]).

i(_l)k b+a b+a\ (b+a
= k+a) \k+0b) a
for a>0,0>0,b+a>0.

Remark: The sum equals

—2a, —-b—a o [b+a
It can be evaluated by Kummer’s Theorem. [l

Identity 20 (—19).

Zk:(—l)b <b+a> (k+a) <k+b>=0 for a>0,a<k k+a>0. (21)

P a b+ a b+a
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Remark: The sum equals

L [P k) (R (R, (22)
] O 0)

It can be evaluated by Vandermonde’s Theorem and Gauss’s Theorem. O

Identity 21 (—19).
k

S (-1 (““) (““) (’”b) —0 for b>0,b<k k+b>0. (23)

= a b+a) \b+a
Remark: The sum equals

-k, kE+1 E\ (k+D
A ) () oy

It can be evaluated by Vandermonde’s Theorem and Gauss’s Theorem. (|

Identity 22 (of Moriarty [Ego84, p. 11]).

Y 0 () (90 = 0 ()

k=m

for m>0,2m>0, m<n,n+m>0.

Remark: The sum equals

n+m, —-n+m 1 m [n+m
F: ’ ; —4 . 25
21{ m+ 3 7]n—}—m( ) (2m> (25)
It can be evaluated by Vandermonde’s Theorem and Gauss’s Theorem. O

Identity 23 (—22).
‘ii 2k =1\ (n+m\ _ s (k1
= n+k 2m m
for 1<k 1<2k,m+1<k, m>0,2m>0.

Remark: The sum equals

AP O e
It can be evaluated by Kummer’s Theorem. [l
Identity 24.
> (18n° —=9kn+3n—8k - 12) <3kn+_4k> =2 (k+3) (k+4) (-1)"
n for kE+4>0.
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Remark: The sum is a certain 5Fy with argument —1. There are integer dis-
tances between upper and lower entries; contiguous relations may apply. [l

Ezercise: Try to evaluate the sum with Mathematica 3.0.1. |
Identity 25 (of Grosswald [Ego84, p. 27]).
2m v
Z -1 r+2m\ (v+2r+2m = (=1)" 22, r+2m
2 v+ v N m
v=0
for m>0,r+m>0,r+2m>0,2r+2m>0.

Remark: The sum equals

2r+2m+1, =2m 1| (r+2m
F; ’ ;= . 2
It can be evaluated by Gauss’s Second Theorem . (|

Identity 26 (—25).

Z (-1)" —2r+2m —r+2m\ [ v+2m 0
~ =2r+2m—-1\-v—-2r+2m-1 m —r+2m/)

for m>0,v+1>0,v+2m>0.

Remark: The sum equals

2
—v—m+3 ’

o 1 (—1)" v+2m 2v+2m
204+2m—1 m v+2m—1)°

It can be evaluated by Vandermonde’s Theorem, Gauss’s Theorem and S2105.
O

_1._ 1 _ 1., _
2F1[ sU—m+ 3, v m—l—l.l]

Identity 27 ([Ego84, p. 27]).

2 e () (172 = (1)

for n+1>0,2n+2>0.

Remark: The sum equals

n—1.11 -1 2n
F: P23 ]| —— . 2
R[] =5 () (28)
It can be transformed by T3204, T3205, T3206, T3207, T3217, T3237, u, T3240,

T3261, T3262, T3263, T3264, T3267 and T3268. Since there are integer dis-
tances, contiguous relations may apply. [l
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Identity 28 (—27).

z"": 3n—2k—1 —2n+2k\ (2n) _ -1 (2k+2
(—n+k+1)(n+1) \ —n+k n) 2 \k+1

n=0
for E4+1>0,2k+2>0.

Remark: The sum equals

2k 2 —k—1,41 ] —2k-1 (2k
| 3kt3 oy by 2P , 29
I |7 (5 e

It can be transformed by T4301, T4302, T4303, T4304 and T4362. Since there
are integer distances, contiguous relations may apply. O

Identity 29 (a companion of [Ego84, p. 49]).

z‘“: 1 (—2n+2k\ (g+2n\ 1 [q¢+2k
q+2n -n+k n g k

n=0
for E>0,¢q+k>0,q+2k>0.

Remark: The sum equals

1 1 1
56—k, 5q9+5 | 1(2k
3F2{—k+%,q+1’1] q(k ‘ (30)

It can be evaluated by Saalschiitz’s Theorem (Slater I11.2) and Saalschiitz’s
Theorem (Slater I11.31). O

Identity 30 (a companion of [Ego84, p. 49]).

i —q+2n-1\ (¢+2k\ _ n+k+1 2n +2k+2
it n—1 k S 2@n+2k+1) \ n+k+1

for k>0,1<n,n+k+1>0,2n+2k+22>0.

Remark: The sum equals

—n—k k+1 2n+k—1
It can be evaluated by Vandermonde’s Theorem and Gauss’s Theorem. (|

Identity 31 (of Le-Jen Shoo [Ego84, p. 52]).

S (0 (= ()

for m>0,2m>0,n>0,n+m >0.
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Remark: The sum equals

gg[ﬂm‘m%_”u]<”+2m). (32)

1, —=n—-2m 2m

It can be evaluated by Saalschiitz’s Theorem (Slater I11.2) and Saalschiitz’s
Theorem (Slater II1.31). O

Identity 32 (—31). Assume 0 <n <k and

p(m)=3mn—2kn—-2n+4m?> —3km -2k —2.

m =0.
b m n+2m-—k n
m
Remark: The sum is a certain 7 Fs with integer distances; contiguous relations
may apply. O

Then

Identity 33 (—31).

lil(—l)” 2m+1 n-+m 2:(_1)k+1 m \’
= n+2m-—=~k n kE+1
for E+1>0,m>0,k+1<m,2m+1>0.

Remark: The sum equals

m+1,m+1, -k—1 ] <2m+1>

g@{ L2m—k+1 2m—k)’ (33)

It can be evaluated by Saalschiitz’s Theorem (Slater III.2) and Saalschiitz’s
Theorem (Slater I11.31). O

3.4 Partial Sums of Hypergeometric Series

Some identities involving partial sums of hypergeometric series can be proven
by the WZ-forms method. As an example, consider the following identity (it
appears as (2.6.4) in [Sla66]):

Identity 34 (Bailey 1931).
Tle4+m)T(y +m
Pm)T(z+y+m

_T@+n)T(y+n
S I(m)T(z+y+n

z,y,v+m—1
ng{ Y

vV, +Yy+m
z,y,v+n—1
v, r+y+n

;1] ton terms

)
)
;3F2

;1] to m terms
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Proof. We aim to find a WZ style proof of Identity 34. We rewrite Identity 34
using a* = T'(a + k) /T(a):

L(z+m)T(y +m)

TC(m)T(x 4+ y+m)

Z e+ Mly+i)Tlv+m-1+4) I(v) Tle+y+m) 1
Mz) Ty Tw4+m-1) T+l (z+y+m+i)i!

:F(x+n)F(y+n) (34)
IF(n)C(z+y+n)

" Z x+] Ty+j)Tw+n—-1+75) T(v) Fz+y+n) 1
T(y) Fv+n-=1) Tw+j))T(xz+y+n+y) !

0<j<m

Inspection shows that both summands differ by a rational factor only. Exploiting
this observation we rewrite Equation 34 as

-1 -1
E mLt(i7m) - E nL_t(n,i) (35)
- v+m—1+1 - v4+n—147
0<i<n 0<j<m

where

Tx+)T(y+i) T(x+5)T(y+7) Clvo+i+7)T(v)
i'T(v +1) JITw+yj) TE+y+i+))T(@)T(y)

t(i,j) = (36)
Equation 35 suggests a WZ style proof which indeed works. Let L = {i,j}

(we allow ourselves to use italic letters for label constants from now on) and
v+j—1 . ov+i—1

w=j—— " (i, j)di+7i

—t(¢,5)dj.
vtit+j—1 v+i+j—1 (i) dj

with the motive of writing Equation 35 as

Zw:Zw (37)

where
p1=[0<i<n]j=m]di and p» =[i =n][0 < j < m]dj.

Fortunately, w is closed (as can be checked by our package wz.m). Therefore,

> w=0. (38)

0 [i<n][j<m] didj

By the support of w only the edges p; and ps of the rectangle 9 [i < n][j <
m]didj contribute to the sum in Equation 38. Equation 37is equivalent to
Equation 38 and therefore proved. O

Note that finding WZ style proofs requires some luck: A proposed form w
might well turn out to be non-closed. We do not know an algorithm for finding
WZ style proofs.

Open Problem: Find a closed multivariate analog to the difference form w of
the proof above. O

Following [Sla66, p. 81], we consider the special case m — oo of Identity 34.
To do so, we use:
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Lemma 2. Let x and y be complex numbers and let k be a natural number.
Then

1. limy o0 (%) / (Z—T,) =1 and

As m — oo, Identity 34 reduces to:

Identity 35.

r r -1
2F1[x’y;1] ton terms = (@ +n) Ty +n) F [I’ yvtn '1}
v

T T(x+y+n)® | v,o4+y+n’

Plugging in x =y = % and v = 1 yields the following identity of Ramanujan
(which appears as (2.6.1) in [Sla66]):

Identity 36.

11 1 /T(n+1) ? L1l
Fyl 2 21| ¢ t e Fyl 27277
21{ 1 ’} o terms n( T'(n) P, n+ 1
Note that the special case n = 1 gives us a series for 1/7:

1 1
iy R 4
1=2.,R 221
421|: 7:|

3.5 Wegschaider’s Algorithm Constructs WZ r-forms

Given an r-fold hypergeometric summation identity, Kurt Wegschaider’s algo-
rithm allows us to construct a WZ form of degree r in r+1 variables from it.
Consider the identity [Den96]

ZZ(_l)b —s+k\ (s\ [—2v+Ek _ g-2v+h —-v+k
=5 2v—0b b s—b —2v+k
which is valid for 0 < 2v < k. Let

b ()OI (208

be the result of dividing the summand by the right hand side. To show that

YN fbks) =1
b s

we run Wegschaider’s algorithm by typing

<<MultiSum.m; summand=(-1)"b
Binomialls,b]Binomial[k-s,2v-b]Binomial [k-2v,s-b];
rhs=Binomial [k-v,k-2v]2" (k-2v); fbks=summand/rhs;
rek=FindCertificate[fbks,k,0,{b,s},{1,0},1]; reki=rek[[1]];

at the Mathematica command line, getting the answer

36



2 (1+k-2 v) (1+k-v) F[k,-1+b,s]
- 2 (1+k-2 v) (1+k-v) F[1+k,-1+b,s]
== Deltalb,- (1+k-2 v) (b+k-2 v) F[k,-1+b,s]
- 2 (-2+4b-s) (1+k-v) F[1+k,-1+4b,1+s]]
+Deltal[s,- 2 (-1+b-s) (1+k-v) F[1+k,-1+b,s]].

Up to a shift in b this means that
(P1Sk — p2I + Ap Ay + AsAz) f(b, k,s) =0
where L = {b, k,s} (note that v ¢ L),
pr=p2=-2(1+k—=20)(1+k—0),

Ar=—(1+k—20)(1+b+k—20)T —2(=1+b —s)(1 +k —v)SkSs

and
Ay = =2(b—s)(1 +k —v)Sk.

Both p; and ps are free of b and s (by design of Wegschaider’s algorithm).
Furthermore, p; = py (since ), >~ f(b,k,s) = 1). These two properties of p;
and po allow us to transform the recurrence to

1 1
(Ak +Ay,—A + AS_A2)f(b7 ka S) =0.
P1 P1
The latter recurrence asserts the closedness of
1 1
w = —f(b, k,s)dbds + p—Alf(b7 k,s)dkds + p—Agf(b7 k,s)dbdk.
1 1

Straightforward computation gives

o (k=20 [ k=v\ ' [ =s+k )\ [s
o= () (05 (G 6)
y (b—1)b(-s+k+b—2v—-1) (=s+k+b—20v)’
2(b—2v—1) (=k+v—1) (—s+b—2) (=s+b—1)
—b (=s+ k+b—20v)’
(b—2v—1) (—=s+b—1)
b(k—2v+1) (—s+k+1)
T b—20—1) (ck+v—1) (—s+b-1)

> dk ds

db ds

db dk) .

Remark: The idea of dividing by the right hand side before running Wegschai-
der’s algorithm is due to Wilf [Wil98]. O

3.6 Some Multisum Identities

Identity 37 ([Den96]).
ZZ(_l)b —s+k\ (s\ [2v+Ek _ 9—2vtk -v+k
5 2v—> b s—0b —2v+k
for 0<2v<k.
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Identity 38 (—37).
c(s+b—=2\ [(s+b—1 s+ k v—1
—1)t 2k (7 =
;;( ) < s—1 )(21}—]6)(21}—6-}—1) (—v+k) 0
for 1<s,1<w.

Remark: The annotation “(—37)” above indicates that identity 38 is obtained
as a companion of identity 37. O

Identity 39 (—37).

. (D ([2v—=b—=2\ [2v—k—=1\ [2v—k—1
—2)" =
Sy (o) (o) (it Ol ) =0
for b>0,1<wv,b+2<20.

Identity 40 ([AP93]).

ZZ <]+Z>2 (n+m—j—i>2 _ 1 (2n+2m+2>
5 7 n—7 2 2n+1
for m >0,n>0.
Identity 41 (—40). Let j and m be natural numbers. Define the polynomial
p(i,n) by

p(i,n) = —2j5n®+in®—n®+5imn®> —2imn®+2mn?® —4;%n?
—2ijn? —=2jn? +2%n* —2in> —4jimin—m*n+62mn
+dijmn+2jmn+2imn—253n—-3ij°n—j3%n—2ijn

—2n=22m>+ P m+2i2m.

Then

=i () () (570 -
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4 Transformations

4.1 WZ Pairs Yield New WZ Pairs

Tewodros Amdeberhan [AZ97], Ira Gessel[Ges95], Herbert Wilf and Doron Zeil-
berger [WZ90] found transformations of known WZ pairs to new WZ pairs. They
are stated as Propositions 33-36 on pp. 42-42. Applications of these transfor-
mations range from discovering new summation identities to obtaining faster
and faster convergent series for ((3) [Amd96]. A common feature of all known
transformations is that they do not mix the labels n and k. We aim to find more
general transformations that do mix n and k. Note that the transformations we
find were independently discovered by Tra Gessel [Ges99].
A naive attempt that fails. Consider the form

n n—2k—1 n—2k+1
= 27" dk d
“ <k> ( PR T g ")
which is closed as could be checked by computation. To obtain a new closed

form, we try to apply the substitution n — n+ k to w. A reasonable guess is to
proceed just as in the case of differential forms, replacing dn by dn + dk.

, n+k\ _,_x/n—k—-1 n—k+1
“ < k ) ( 1 Ko ntdl (39)
n+k\ _n(n—k—1 n—k+1 n—k+1
< k ) ( ket +2(—n—1)d”+2(_n_1)d> (40)
n+k\ .ok (20 +k?—2nk —n—2k—3 n—k+1
= 27" k 41
< k > ( 2+ Dk +1) e+ pdn) (Y

Since computation reveals that w’ is not closed, our substitution has not pre-
served closedness. Thus we learn that difference forms require a different method
for substituting closedness-preservingly.

A method based on cheating. Note that w = d(¢(n, k)) where

é(n, k) = <E> 2,

All we need to do is to apply n — n+k to the potential term ¢(n, k) of w instead
of applying it directly to w getting

k
¢I(n7 k) — (n + >2nk
k
and choose w' := d(¢'(n, k)). Calculation yields
, n+k\ _,_x/n—k—-1 k—n—-1
= 2 dk d

“ < k ) TS T CE S
As W' is exact by its definition, it is closed. Summarizing, we reached w’ by a
detour via ¢(n, k) and ¢'(n, k):

substitute

¢(n7 k) — ¢’(n7 k)

| |4

w — w'
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Unfortunately, our method depends on having a hypergeometric potential
term of w. Thus it works for trivial forms only. * But we should not give up
too early, we just need an additional trick.

A general method. Consider Example 1 of [WZ90):

w = f(n,k)dk + g(n,k)dn

n —n
(1):
n k
27n71
(k) k—n—-1

Since Gosper’s algorithm [Gos78] shows that there is no hypergeometric term
o(n, k) satisfying d(¢(n,k)) = w we cannot cheat any more. A discrete coun-
terpart of Poincaré’s Lemma (which we do not prove) assures us that there is
some term ¢(n, k) satisfying d(o(n,k)) = w. Of course, ¢(n, k) might well fail to
be hypergeometric; it seems that we loose in that case. A simple trick rescues
us. Assume that w = d(¢(n, k)), this is, w = f(n, k)dk + g(n, k)dn where

f(nak) = ¢(nak+1)_¢(nvk)a
g(nak) = ¢(n+1ak)_¢(nvk)'

We define ¢'(n, k) := ¢(n + k, k) and w’ := d(¢'(n,k)) in order to imitate the
substitution n — n + k somehow. Straightforward computation gives

where

f(n,k)

g(n, k)

W' = f'(n,k)dk + g'(n, k)dn
where
fi(n k) = Awp(n+k, k)
= o(n+k+1,k+1)—o(n+k,k),
g,(na k) = Anﬂé(n +k, k)
= o(n+k+1,k)—o(n+k,k).

Next we simply eliminate all occurrences of the unknown potential function ¢
by expressing differences of ¢ by f and g only:

f'(n, k)
=p(n+k+1,k+1)—d(n+k+1,K +p(n+k+1,k) — ¢(n+k,k)

f(n+k+1,k) g(n+k,k)

g (n, k) = g(n+ k, k).

Note that we don’t need to know ¢(n, k) any more! In a nutshell, our trick is to
pretend to know the potential function ¢.

3[Zei93] calls a form trivial iff there is a hypergeometric term ¢(n, k) satisfying d(¢(n, k)) =
w.
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Proposition 31. If
f(n,k)dk + g(n, k)dn

is closed, then
(f(n+k+1,k) + g(n 4+ k,k))dk + g(n + k, k)dn
is closed, too.

Proof. The proof is an easy calculation (that does not use the Lemma of Poin-
caré). Lemma. O

Let’s go back to Example 1 of [WZ90],

AL P N\ o _n_y k
w-(k>2 dk+<k>2 7k—n—1dn'

Proposition 31 gives

1 __ n+k —n—k l _ k
v _( K )2 (Qdk 2(n+1)d"

which is closed indeed. To get rid of ugly rational factors w’ we try some shifts
on it, and S, ! succeeds in the sense that w” := S, 'w’ looks nice:

" n+k\_ _,_« n _ k
w _<n,k>2 —n+kdk n+kdn .

Grasping the pattern in w' allows us to find an infinite sequence of closed forms;
see page 3.
We close with two remarks on Proposition 31.

Remark: Naive substitution of n — n + k into f(n, k)dk + g(n, k)dn yields
W' = f(n+k,k)dk + g(n + k, k)d(n + k)
= (f(n+k,k)+ g(n +k,k)) dk + g(n + k, k)
which differs from the form in Proposition 31 just by a shift. (|

Herb Wilf [Wil99] obtains the following Proposition by iterating the trans-
formation of Proposition 31. To obtain it directly via potential functions, we
use ¢'(n, k) = ¢(n + rk, k).

Proposition 32. Let f(n,k)dk + g(n,k)dn be closed and let r be a natural
number. Define

f'(n,k)

fn+rk+rk) + Z gln+rk+7,k),
0<j<r

g’(nak) = g(n+rk,k).
Then f'(n,k)dk + ¢'(n,k)dn is closed.

A transformation of Ira Gessel can be obtained via ¢'(n, k) := ¢(—n, k).
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Proposition 33 (Theorem 3.1 (iv) of [Ges95]). If
f(n,k)dk 4+ g(n, k)dn

is closed, then
f(=n,k)dk — g(—n — 1,k)dn

is closed.
Similarly, ¢'(n, k) := —¢(n, —k + 1) yields:
Proposition 34 ([Ges95], Theorem 3.1 (v)). If
f(n,k)dk + g(n, k)dn

is closed, then
f(n,—=k)dk — g(n,—k 4+ 1)dn

is closed.

A transformation from Rational Functions Certify Combinatorial Identities
[WZ90] can be found using ¢'(n, k) := —¢(—k, —n).

Proposition 35 ([WZ90], part of Theorem B). If
£(n, K)dk + g(n, K)dn

is closed, then
g(=k —=1,n)dk + f(=k,—n = 1)dn

is closed.
A transformation of Tewodros Amdeberhan can be obtained via ¢'(n, k) :=
o(sn, k).
Proposition 36 ([AZ97]). Let s be a positive integer and let
f(n,k)dk 4+ g(n, k)dn

be a closed form. Then

flsn, k)dk + Z g(sn +i,k)dn

0<i<s

18 closed.

4.2 WZ 1-Forms Yield New WZ 1-Forms

The method of substituting in potential functions extends to 1-forms in an
arbitrary number of variables and any integer linear substitutions in a straight-
forward way.

As a first application, we show that closedness preserving substitution in
1-forms partially explain the dualize and specialize miracle [Zei95]. Consider
the Vandermonde identity

2 <Z> <Z> - (QZ”) fora > 0 and n > 0. (42)

k
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Its associate identities are just other instances of the Vandermonde identity.
However, its special case

zn: (2‘)2 - <2n”> for n > 0 (43)

k=0

yields, as an associate identity,

Zk:(3n—2k)(z>2<2n"> —0 fork>0, (44)

n=0
or, equivalently,
_ —_2k 1
y T3

which first appears in [Zei95]:

This is a brand new identity, unknown to Askey. It has a g-analog
derived from the ¢-version of WZ, that was unknown to Andrews,
and even whose limiting case was brand new, and it took George
Andrews three densely packed pages, using five different identities,
to prove.

Let’s look at this from the point of view of closedness preserving substitutions.
To prove identity 42, we could use the form

<E>(E)<a:n)_l (1dk+(n—k+1;2(a+n+1)d“) (46)

which is closed with respect to L = {k,n}. However, let us use the form

Lo W

X (1dk+(n—k+1) (a+n+1)dn+(a_k+1) (a+n+1)da>

— which is closed with respect to L = {k,n,a} —instead. (It is a remarkable fact
that it is usually possible to extend hypergeometric WZ 1-forms in two variables
to hypergeometric WZ 1-forms in more than two variables. In our example this

is obvious since
a\ /n\ /a+n\ !
k/ \k a

is symmetric under exchanging a and n.) Closedness preserving substitution
{a = n}* yields

2 -1
2 k? (2k—-3n—-3
{a—)n}*w=<n> ( ”) 1dk + @k=3n-3 .
k n 2(n—k+1)" (2n+1)
and a shadow of this form proves identity 44. It remains to disclose what is
going on in the closedness preserving substitution {a — n}*.
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Proposition 37. Assume that
f(k,n,a)dk + g(k,n,a)dn + h(k,n,a) da
is closed with respect to L = {k,n,a}. Then
f(k,n,n)dk + (g(k,n,n +1) + h(k,n,n)) da

is closed with respect to L = {k,n}.

4.3 Transforming Forms of Arbitrary Degree

Unfortunately, the simple substitution trick (as described in [Ges99] or section
4.1) does not generalize to forms of higher degree. Therefore we needed to de-
velop a completely different method; it is presented in the following subsections.

Note that substitution is more important in the domain of higher degree
forms than in the domain of forms of degree 1. This is due to a lack of known
nontrivial higher degree forms. In fact, as far as I know, only a single higher
degree forms has been known so far

To find higher degree forms, we start with a well known multisum
closed form identity, and we would need a multivariate analog of
Gosper’s algorithm. I am presently developing such an algorithm,
but until T succeed, all I can present is the r-form arising out of the
multinomial identity ...which produces ....

To find other higher degree forms, we use two methods:
1. We use Kurt Wegschaider’s algorithm [Weg97] as shown in section 3.5.

2. We transform known closed difference forms to new ones. The transfor-
mation algorithm developed in this section is implemented in our Math-
ematica package wz.m. Using this package, transformation theorems can
be produced by pressing a few keys.

4.4 Substitutions

A substitution o assigns a term to each label in L. If the term t is assigned to
the label z (this is, if o(z) = t), then we say that ¢ is substituted for x. The
set of all substitutions is L — T. We adopt special notation for substitutions:

{(z1,t1),...,(Tn,t,)} is written {z1 — t1,...,2, — t,}. Furthermore, x — 2
may be dropped. Thus the substitution {(n, n + k), (k, k)} can be written
{n = n+k}.

Applying substitutions to terms. An example of an application of a
substitution to a term is

— k
{n—n+k kK (E)Q - (”: )2”.
———r’

substitution

term

If we had introduced terms syntactically, we could easily define the application
of a substitution o to a term ¢ by turning Proposition 38 on page 45 into a
definition; it would be the obvious recursive definition of substitution that is
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used in most functional and logic programming languages, as for example in
Prolog, Haskell and Mathematica. For simplicity (to hide unimportant detail)
we have not defined terms syntactically; for us, a term is a function in V — C.
Still, substitutions following Proposition 38 are import to us: We have used them
already when computing shifts — the operator S, is nothing but the substitution
{n — n+1} —and we will use them heavily in the method of closedness preserving
substitutions. Thus we want to define substitutions. Of course, substitutions
should obey Proposition 38. Indeed, knowing Proposition 38, together with
Proposition 39, is all one needs to know about substitutions; the technical but
trivial rest of this section may be skipped at no risk.

Let us avoid parentheses by two conventions in this section. First, fz :=
f(x) denotes the application of f to z. Second, function application associates to
the left: F' f x denotes (F' f) x which would be usually written (F'(f))(z). The
so-called A-notation for functions turns out to be handy in this section. Using
A-notation, Va : increment(z) = z 4+ 1 can be written increment = Ax.z + 1,
and Vx : square(r) = 22 can be written square = \a.a? — the name of the
variable “bound by \” does not matter. A-notation allows us to use functions
in intermediate steps of proofs without giving names to these functions. For
example, we might calculate (Az.z —1)4 = 3 and (\y.y>) 4 = 64.

Def. 26. Let o be a substitution and t be a term. The application of the
substitution o to the term t is denoted by 6t and defined by

otp = t(\x.oxp).

Ezample: Let 0 = {n — n+k, k = k} and t = (])27". Let us check if Definition

26 gives the expected result ¢ = ("tk)2’“’k. Let n and k£ be arbitrary but
fixed integers and let p = {(n,n),(k,k)}. We want to see if indeed 6tp =
(e

Note that onp = n+ k and ockp = k. Taken together, these equations
show that Az.ozp is the function {(n,n + k), (k,k)}. By definition of 6t we
thus have 6tp = t (A\z.ozp) = (”:k)Z*”. O

The result 6t = ("tk)Z_”_k could have been obtained immediately by the
following proposition; it shows the close analogy of our notion of term to syn-
tactical terms and justifies the our use of the word “substitution”.

Proposition 38. Letce€ C, z €L, feC" - Cando €L — T. Then
1.

2.

8.6 (f(tr,... tn)) = f(Ot1,....0t,).
Proof. We prove (1). Let p be an arbitrary point. Then 6¢p = c(Ax.ocxp) =
cp.

We prove (2). Let p be an arbitrary point. Then 6zp = z(Az.02p) =
(Mz.ozp)(z) = oxp = o(z)p.

We prove (3). Let p be an arbitrary point. Then & (f(t1,...,t,))p
(tla"'v )(Ax O-xp)
t1(Az.oxp),... .t (Ax.cxp))

(
(Gtip,... atnp)
(th,.. )p O

Q>
[
I

Q>
1=

= o(v).

f
f
f
f
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Def. 27. A term t is integer linear iff it is integer-valued and additive:

1. teV > Z.

2. pjev t(p+q) = tp) + t(q).

For example, 2n — 3k is integer linear. The term %n — 3k is not integer linear

since it is not integer-valued. The term 2n — 3k 4+ 1 is not integer linear since it
is not additive.

Def. 28. A substitution o is integer linear iff o(x) is an integer-linear term
for each label x. In this case we define oy, the coefficient of y in o(x) by
Opy = 0T ey.

For example, 0 = {n — 2n+3k, k — 4n+5k} is an integer linear substitution
and o, = 3.
One more convention: [], f, denotes the composition of the functions f,,
oy fz, where {z1,...,2,} = Land 2y < -+ < z,. It does not denote a
product. Shifts can be “moved to the right of substitutions” as follows:

Proposition 39. Lety € L and let o be an arbitrary integer linear substitution
i L—T. Then
Syo5=d0][ST. (47)
xT

For example,
Sko({n — 2n+3k, k = 4n+5k}) = Sk o ({n — 2n+ 3k, k — 4n +5k})o S3 0 S}

as can be checked by applying both operators to the term f(n,k) — the result
is f(2n + 3k + 3, k — 4n + 5k + 5) either way. Of course, Proposition 39 is a
triviality. With an eye towards automatic proof-checking, we prove it anyway.
To this end, we need a lemma;:

Lemma 3. Let d be a vector. Then t(p+d) = (], Sg(x)t)(p).
Proof. Expand d = )" d(x)e, and use t(p + me,) = STt p. O

Proof of Proposition 39. Let t be an arbitrary but fixed term and p be an arbi-
trary but fixed vector. We have to show

Syodtp = &OHSg*?’tp.
xT

We transform the left hand side to the right hand side. By the definition of the
shift, the left hand side is equal to 6¢(p + e,). By the definition of substitu-
tion application, this equals t(A\z.o 2 (p + e,)); from this point on, A-notation
comes in handy. The term oz is additive since ¢ is assumed to be integer lin-
ear. We thus obtain ¢(Az. (0 x p) + (0 x ey)). By pointwise vector addition, used
“backwards”, this equals t((Az.o zp) + (Az.o zey)). By Lemma 3, this equals
(I1, 52 ““)t (Ax.cxp). Using the definition of substitution application back-
wards, this equals (6 o [T, S7 * )t p which can be written as (6o [[, S2"")tp
by definition of oy. O
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We do not use the convention that fz = f(z) any more. In the following
pages, fg will denote the composition of f and g most of the times: (fg)(z) =
f(g(x)). Furthermore we abbreviate 6 by o; context resolves ambiguities. Thus
Proposition 39 will be written

Syo = crH STev,

4.5 Guessing o*, Part 1

How to transform a closed difference form w to a new closed form w’? Let us
look at the continuous counterpart — differential forms — for inspiration. Put
loosely, a function f induces a pullback f* that preserves closedness: dw = 0
implies df*w = 0. Closedness preservation is implied by the following properties
of the pullback:

1. df*w = f*dw,
2. f*0=0,

which can be proved as follows: Assuming dw = 0 and df*w = f*dw and f*0 =0
we have to show that df*w = 0. And indeed, df*w = f*dw = f*0 = 0.

We return to difference forms. The function f corresponds to an integer
linear substitution ¢ in T — T; the restriction to integer linearity ensures that
o preserves hypergeometricity. For each substitution o we aim to construct a
nontrivial operator ¢* in F — F such that the following three properties hold:

1. do*w = o*dw,
2. 0*0 =0,
3. 0" (w1 +we) = 0wy + 0*wsy
By the argument given above, o* will be a closedness preserving substitution:
dw=0 = do*w=0. (48)

Let us try to find a definition for the function x that satisfies do*w = o*dw
by motivated guessing. We first look at Equation do*w = o*dw in the special
case where w is a 0-form — this is, a term — T'.

do*T = o*dT (49)

Unfortunately we cannot compute either side of Equation 49 since both sides
involve the function x whose definition is still unknown to us. However, since
0-forms are just terms, we may reasonably define

o'T :=0T (50)
for all forms T of degree 0. Thus Equation 49 reduces to
doT = o*dT (51)

whose left hand side does not involve any undefined function.
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Our plan is to expand both sides of Equation 51 using the definition of d
and to read off a suitable definition of ¢* by “comparing coefficients”.
Clearly, the right hand side of Equation 51 equals

0"y daA,T (52)

which can be transformed to

> otdA,T (53)

since o* is additive.
We turn to the left hand side of Equation 51. By definition of d, it equals

> dyA,oT. (54)

Y

“Comparing coefficients” between 54 and 53 is hindered by the operator A which
appears on the left of ¢ in 54 but on the right of ¢* in 53. To make Equation
54 more similar to Equation 53 we try to move the operator A to the right of o
in 54; we aim to express Ayo as > oA, A, for suitable operators A,.

4.6 Differences and Substitutions

Lemma 39 on page 46 shows us how to move a shift to the right of a substitution:

Syo = o[ S (55)

We want to move a difference to the right of a substitution. Subtracting Io
from both sides of 47 yields

Ayo =o(-T+[[S7). (56)
By telescoping according to the pattern
T4 Spmvgitey | glany (57)
=T+ 8 (58)
— S g S g e (59)
_ S?lzlysézzy n S£z1ysf212y5;43139 (60)
(61)
S S g g gty gk (62)

we express —I + []. 577 in terms of “long differences” —I + S;"* as follows:

T+ [se=> (- [se+[I57 ) => (H sgzv> (=I + S7=v)

x z=<z 2= r \z<z
By telescoping again, we can reduce “long differences” to differences using
—I+ SJ=v =G A,. (63)
where the operator G¥ is defined by:
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Def. 29. The geometric shift polynomial G¥ is defined by

T+S,+--+S1 4f k>0
GF = 0 if k=0
~I—S;1—.- = S7kL f k<0

In this subsection we have proved:

Proposition 40. Let y € L and let o be an arbitrary integer linear substitution

inT—=T. Then
Ayjo=0) (H sgw) G A,.

T z=<T

4.7 Guessing o, Part 2
Plugging Proposition 40 into Equation 54 on page 48 yields
doT = dyoy (H sgzy> G A, T (64)
Yy T z<T

which by additivity of o equals

doT =" dyo (H sgw) GT A, T. (65)
Ty

z<T

Thus our goal
doT = o*dT (66)

can be restated as
Z Z dyo (H ngy> G A\, T = Z o deA,T. (67)
T y z=<T T

As a naive first attempt at obtaining equality we try to make both sums
equal by equating corresponding summands:

> dyo (H sgzy> G A, T = o*dzA,T. (68)
Yy z2<T

Next we replace A,T by T'. Note that this requires additional faith since x has
occurrences outside A, too.

> dyo (H sgzy> GoT' = o*daT'. (69)
Yy z=<T
Read from right to left this defines ¢* on all monomial 1-forms
ot dT = dyo (H sgw> G T, (70)
Yy z<x

and, by additivity of ¢*, on all 1-forms.
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To define o on forms of arbitrary degree we need one more guess (fortunately
our last). We extend Equation 70 to the recursion

o'drw := Zdya* Z (H Sg“’> Gomvw (71)
y

T z<z

(Note that o* appears on the right hand side of Equation 71).

4.8 Closedness Preserving Substitutions
Equation 71 leads us define:

Def. 30. Let o be an integer linear substitution and x,y € L. Then the shift
polynomial Pyyy in F — F is defined by

Pyryy =G [] 57

z<T

Proposition 41. The following commutation relations hold:
1. Pooyys Poooys = Poasys Poayy, -

2. Prpydz = Pyyydz.
Proof. Py, is a shift polynomial. O

Proposition 42. Let o be an integer linear substitution. Then there is exactly
one function o in F — F satisfying

1. cr*(w1 -|-w2) = G*Ldl + O'*CUQ.
2. o*drw = Zy dyo* Pyyyw,
3. o*T =0T,

Proof. Let w be an arbitrary but fixed form. Since the listed rules allow us to
compute o*w in at least one way, there can be at most one such function o*.

To show the existence of ¢*, we have to show that the rules listed do not
lead to a contradiction. In other words, we have to show that computing o*w in
different ways cannot lead to different results. Rules (1) and (3) cannot lead to
different results. We show that rule (2) cannot lead to different results either.
Since dxy1drs = —dxadry, we have to show that o(dzidrs) = o(—dxadry) in
order to rule out a contradiction (By checking this transposition, we cover w.l.o.g
all permutations). Indeed,

o (drydrow) =Y dy10* Prgyyydvow =Y dy10*dry Prg,y,w

Y1 Y1

= Z dy1dy20" Prryys Pogyyw
Y1y2

agrees with
0" (—dzradri)w) = — Z dy2dy10" Pryyy, Pogsy,w
Y1y2

where we have used commutation properties of the shift polynomials. [l
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Proposition 42 allows us to define:

Def. 31. Let o be an integer linear substitution. We define the closedness
preserving substitution operator c* in F — F by

1. 0" (w1 +w2) == 0*wi + 0*ws,

2. ofdrw := Ey dyo* Pypyw,

3. 0T :=0oT.
Remark: Clearly, o*dxw := ... is an implicit definition. It would be nice to
replace it by an equivalent explicit definition o*(w)(X) := ... but we failed to
do so. O

Proposition 43 (Lifting Lemma). Suppose the shift polynomials A and B
and the substitution o satisfy
Ao =o0B.

Then . .
Ac* = 0" B.
Proof. Since both Ac* and o* B are additive, it suffices to prove
Ac*w = o*Bw

for any monomial w. We proceed by induction on the degree of w.
If the degree of w is zero, then w is a term and Ac*w = ¢*Bw reduces to
Ao =0B.
If the degree of w is positive, then we can find x and w’ such that w = dxw’.
We have to show that . .
Ac*drw’ = 0" Bdaw'.
We compute
Ac*drw’ = A Z dyo* Pypyw' = Z dyflo*(PMyw')
y Y
and
0" Bdzw' = o*dzBw' = Z dyo™* PypyBuw' = Z dyo* B(Pypyw')
y y

using the definition of ¢* and commutation properties of shift polynomials.
Since P,gyw’ is a monomial form of lesser degree than w, the induction hypoth-
esis shows that . .
Ao* (Pypyw') = 0 B(Pyyyw').
O

Proposition 43 allows us to lift Proposition 39 to the level of closedness
preserving substitutions on forms:

Proposition 44. Let y € L and let o be an arbitrary integer linear substitution
inT—=T. Then

AyO'* = U*ZpamyAz-
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Proof. By Proposition 40,

Ayo=0o Z PrpyA,.

Since both Ay and 0 )", Pyyzy A, are shift polynomials, we can lift this to Propo-
sition 44 by Proposition 43. (|

Proposition 45. The operators d and o* commute:
do* =o"d.
Proof. By Proposition 44,
do* = dyAyo* = dyo* ProyA,.
y o,y
By definition of o*,
o'd = Z ordz A\, = Z Ayo™ PyyyAg.
x Ty
Both sides agree. O
Proposition 46 (Closedness Preserving Substitutions). .
The operator o* preserves d-closedness: If dw = 0, then do*w = 0.
Proof. Suppose dw = 0. Then do*w = c*dw = "0 = 0. O
We have found a tool for constructing new forms and we are ready to apply

it.

5 Some New WZ Forms

5.1 The Symmetric Multinomial Form

We use the derivation of the symmetric multinomial form for illustrating how
new WZ forms — and therefore summation identities — can be found by the
method of closedness preserving substitutions and some guesswork.

Consider the form ([WZ90]; or see section 3.1),

©= (k, .- k) (ikzny; <<n e dk) |

Tts asymmetry provokes us to substitute {n — a + b, k — a}* (using computer
algebra) getting

a+b 2y y a y
— b, k = al*w = db — d
{n—a+b, ajiw (a,b)(x+y)a+b (x+yb+1 T4y )
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which looks somehow better. At this point it seems that “fine tuning” suffices
to reach a nice closed form. We try some substitutions like {a — a &+ 1}* and
{b = b+ 1}*; and indeed, one of them is more than successful:

. . a+b xy a b
{b—=b-1} {b—>a+b}w—<a, b)(x+y)a+b <a+bdb -|-bda>

Impressed by the beauty of our new form, we stop substituting. We absorb
rational factors into factorials getting

_ ag b _ a, b
a+b-1 iy da— (2 1+b %y b,
a, b—1) (z +y)tb a—1, b/ (z+y)th

A pattern pops up now:

w2 = <a_]_7 b)(m+ya+b %db
a+b-1 2y )
<a, b—1>W(—1> da%
a—l+b+c 22ybz
ws = <a—1, b, C)W %dbdc
at+b—-1+4c 22yb 2
vy~ 1y p
! <a, b-1, C)(l’+y+z)a+b+c a% C
a+b+c—-1 ﬂ?aybzc
(12 L ~\atbtc 2 da db
<a7 b, C_l)(x+y+z)3+b+c a %

(Alternatively, w3 can be found from the trinomial theorem by dividing through
the right hand side and running Kurt Wegschaider’sWegschaider, Kurt algorithm
FindRecurrence which is contained in his Mathematica package Multisum). We
are led to consider an infinite sequence of WZ forms of higher and higher degree:

Def. 32. Fiz a natural number n, let L := {a1,...,a,} and define the nth

symmetric multinomial form w, to be

i 31+""|‘3u71+au_1+au+1‘|‘""|‘3n x1% - xy, e
n (a’;l 4+ .. +xn)al+"'+an,

—\an, ..., a1, a, — 1, ap41, ..., a

x(=1)""tday... da, dxu dayy1 ... da,,

Theorem 3. For each natural number n, the nth symmetric multinomial form
wy, 18 closed.

In order to avoid an abundance of dots, we resist proving Theorem 3 in full
generality and confine ourselves to the case n = 3.

for n = 3. We recall

3—1+b+c xaybzc .

- o u g el 1 db d

w3 (a—l, b, c)(x+y+z)a+b+c( ) % c
a+b—-—1+c xaybzc )

o (e e 0 da e

a+b+c-1 2ybc )
_ Ty .
+ (3, b, C—1>(Z+y+z)a+b+c( ) dadch
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By definition of the exterior derivative d,

a—1l+b+c xyP=C
A ——= — — dadbd
: (a—l7 b, c)(x+y+z)a+b+° ° c

a+b—-1+4c zaybze
A A
i <a, b—1, C)(x+y+z)a+b+c da db dc

at+b+c—1 2ayb2c
A Tyt
c (a’ b, C_1>(9ﬂ+y+z)a+b+c da db dc,

d(ws)

+

where we have used that “sorting the ds” introduces an alternating sign which
cancels the alternating sign appearing in wz. For example, in the second line,
(=)t db da dc = (—1)'*! da db dc = da db dc. Computing differences gives

d(W3
a+b+c a—1l+b+c 22yb e
- ——————————dadbd
< +y+z< a, bv C) (3_1, b, C)) (x+y+z)a+b+c a c
at+b+c at+b—-1+c 22y
- ————————dadbd
i <Z+y+z< a, b, C) (a, b—-1, C)) (x-|-y+z)a+b+c a c

_ a,b.c
z <a+b+c>_(a+b+c 1)) 2yPz s db de.

r+y+2 \a, b, ¢ a, b, c—1 (x 4y + z)atbte

Adding up columnwise yields

a,b.c
d(ws) = r+y+z fa+b+c) (fa+b+c Ldadbdc,
r+y+z\a b, c a, b, ¢/ ) (z4y+ z)2tbte

where we have used
a—1l+b+c N at+b—-1+4c N at+b+c—-1\ [(a+b+c
a—1, b, ¢ a, b—1, ¢ a, b, c—=1) \a, b, ¢/’
which is correct by combinatorial interpretation. Hence d(ws3) = 0. O

Remark: It is trivial to reformulate

N\ k. n—k
nzozh:(k>x Y= (e +y)"
as

L+

v = .

LA (7 )atw = v
itj=n

with the motive of symmetry. This should not mislead us to believe that it is

trivial to guess ws directly. O

Remark: Note that (an asymmetric version of) the multinomial form appears
in the very first paper [Zei93] on WZ forms as equation (7.14):

n!
keleookel(k—ky — - =k + D)(r + 1)"

x ((n—kl—---—k,~+1)dk1--- dky + > ki dn dky - CX dkr>.

=1

WMULTINOMIAL ‘=
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Computation reveals that wyurrrnvomrarz is not closed for r = 2; Hence the
definition of wyuLTINOMIAL MuUst contain an error somewhere. How to fix it
quickly? Closedness preserving substitutions help us in this task: We start from
wy, as defined in Definition 32,
i (31+""|‘3u1+3u—1+3u+1 ‘|‘""|‘3n> 218z,

(331 4+ -+ xn)a1+~~~+an

—\an, ..., a1, a, — 1, apy1, ..., ap

><(—1)”_1 day ... da,_ 4 %V dayyq ... day,

and apply a certain closedness preserving substitution (left as an exercise) to
get a debugged definition of WMULTINOMIAL:

5 n!
WMULTINOMIAL == 3 T n — kg — - — kp + D)I(r + 1)
x ((n—kl—---—k,.+1)(r+1)dk1--- dk,
+ Y ki(=1)" dn dk; - -- % dkr>
i=1
(The necessary patches are underlined). O

5.2 Identities from the Symmetric Multinomial Form

To our knowledge, Identities 43, 47, 48, 49 and 50 are new. All calculations in
this section can be done by hand almost effortlessly; computer algebra support
is superfluous.

We start with an obvious application of ws.

Identity 42 (Binomial Theorem).
A i n
RS (z )x y'=(wty)

i,7 ']

itj=n

Proof of Identity /2. Assume n > 0. Define
-1 a, b -1 a, b
wa (ATIERy 2 (aEb=Ty 2y
a—1, b/ (x+y)2tP a, b—1/ (z+y)2tP

p =00 (0<a,0<b,1<a+b<n]dadb).

and

Since w is closed by Theorem 3 and p is exact we know that
Z p-w=0.
a,b

We aim to compute >, , p - w.
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The diagram shows that p decomposes into
p = po + p1 + p2 + p3 where

po = [a=0,b=1]da—[a=1,b=0]db,

pm = —-[0<a0<b,at+b=n]da
+[0<a,0<b,a+b=n]db,

p2 = [1<a<n,b=0]da,

ps = —[a=0,1<b<n]db.

6 7
we com-

5

The diagram further shows that 3, po-w =0, 3, p3-w =0, and
pute
0+0\ vy 0+0\ =
= R
- 0, 0)x+y 0, 0)x+y

i+5\ 'y’

W= . . _—

Soe= T () ey
’ itj=n

Adding these four sums gives

R AV .
cw=—1 'yl (x
> +;<i7j)y<+y> ,
’ itj=n

which is zero as it is the sum of a closed form over an exact range. Identity 42
follows. O

By summing the same form over different ranges we usually get completely
different identities; for example, both Identity 42 and Identity 43 are obtained
from wo.

Identity 43. Let p and q be natural numbers. Then

() S0 6565 TS )

We postpone the proof of Identity 43 to page 57. It might seem redundant
to list special cases of more general identities explicitly. However, this helps us
to see that Identity 43 is a generalization of well known identities. Substituting
1 for z and y reduces Identity 43 to Identity 44 which appears in [FC88].

Identity 44.
~ (p+k —~ (q+k
—p—k —q—k _
q¥0p\go ;( k >2 +kz_0< k >2 =%

Finally, substituting m for p and ¢ reduces Identity 44 to Identity 45, which
appears as “unexpected identity” (5.20) in [GKP8&9, p. 167].

Identity 45.

~ m+k —k _ om
nio§:< A )2 =™,

k=0
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Note that Identity 43 and Identity 44 are nontrivial in the sense that their
sums cannot be expressed in closed form, as can be proved by Gosper’s algo-
rithm.

Proof of Identity /3. Assume p > 0 and ¢ > 0. We define
_ a,,b _ a, b
e a—1+b 2y db — a+b—-1 2%y Ja
a—1, b/ (z+y)ath a, b—1) (z +y)2+b

p:=0([0<a<p 0<b<qg]dadb).

and

Since w is closed by Theorem 3 and p is exact we know that
Z prw=0.
a,b

We aim to compute ), p-w.

The diagram shows that p decomposes into
p = po+ p1+ p2+ ps + ps where

po = [a=0,b=1]da—[a=1,b=0]db,
pr = [1<a<pb=0]da,

p2 = [a=p+1,0<b<q]db,

ps = —[0<a<pb=g+1]da,

ps = —[a=0,1<b<g]db.

The diagram further shows that 3, p1-w=0and }_,  ps - w

tion yields
Z = — 0+0 L_ 0+0 xT -1
abpo “\00)zry \00 )4y 7

q . 1.4
D+ xp+ y]
ey (M)
" \py J) (@ y)Pr
and 4
i+q iyl
w= L
Zp3 ;(L q> (x+y)z+q+1

Adding these five sums gives
_ p+j\_amtlyl —~ (i+q) @yt
Zp W= _1"‘2( D, ) (z + y)p+iti "'; i, q¢) (@ +y)tert

which is zero as it is the sum of a closed form over an exact range. Identity 43
follows upon renaming summation indices. (|

Of course, w3 can be used to prove the Trinomial Theorem.
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Identity 46 (Trinomial Theorem).

TR\ ok _ n
it

Note that the Trinomial Theorem is trivial in the sense that its double
sum can be transformed into closed form by iteratively applying the Binomial
Theorem, as expected from (z +y + 2)" = (z + (y + 2))".

Proof. Assume n > 0. We define
a—1l+b+c Y’z
= db d
“ (a—l, b, c)(m+y+za+b+c% ¢

a+b—1+c 2yP=C
(a, b—1, )(x+y+za+b+° : c

a+b+c—1 2y°z
(a, b, c—1>(x+y+za+b+° dadch

p:=0(0<2a,0<b,0<c,1<a+b+c<n]dadbdc);

the range p is the surface of a “discrete tetrahedron”. Since w is closed by
Theorem 3 and p is exact we know that >°_ | p-w =0. As

t+7+k xlyd 2k
=1 gz
IPRES P DI (AR P =

a,b,c ijk 75
itithk=n

and

Identity 46 is proved. O

The triviality of the Trinomial Theorem should not mislead us to discard ws
which proves Identity 47, a (truly) double sum identity.

Identity 47. Let p, ¢ and r be natural numbers. Then

) 2200 ) )
r+y+z ; p, 7, k r+y+z r+y+z

7=0 k=0

(= )“ii@“’“)( ) ()
r+y—+z 2, (q, r+y—+z r+y—+z

=0 k=0

r+y+z i, J T+y+z rT+y+z

=0 j=0

Identity 47 is a trivariate analog of Identity 43.
Proof of Identity /7. Assume p > 0, ¢ > 0, and r > 0. We define

a—1l+b+c xy°z
= db d
“ <a—1, b, c)(m+y+za+b+c% ¢

at+b—1+c r2y°z
— ——d d
<a, b—1 c)(x+y+z)a+b+c a% ¢

b

at+b+c—1 22yP2¢
d db%.
<a, b, c—1>(9£-|-y+z*’+b+c ?
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and

p=0(([0<a<p,0<b<q 0<c<r]—[a=0,b=0,c=0]) dadb).

As w is closed by Theorem 3 and p is exact we know that

Zp-w:().

a,b,c

We aim to compute >, p-w.

The range p can be found by looking on the diagrams above or by compu-
tation. Both methods yield p = ps + pp + pb + po + p’ where

pa = [a=p+1,0<b<q,0<c<r]dbdec,
pw = —[0<a<pb=¢g+1,0<c<r]dade,
pe = [0<a<p,0<b<q,c=r+1]dadb,
PO = —Pa—Pb— Pc at  p=q=r=0,
p’ =

We compute

D pew=
a,b,c
x pHii p+i+k Y J z k
r+y+z S \p s k) \ety+z r+y+z)

(ores) S (0000 Gees) )
T+y+z — =~ \i, q k r4+y+z r+y+z)

z Tﬂii i1+jJ+r T : y J
T+y+z i 4 i, j, T r4+y+z r+y+z)
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Adding yields
Z(pa +pb+pc) s W

a,b,c

< () ZEOB ) ()
rT+y+z iToimo \ P I r+y+=z rT+y+z
* ()

ii z-l-q-l-k
x+y+z == k +y+z x+y+z
r+y+z == x+y+z r+y+z)
As po = —(pa+po+pc) at p=gq=r =0, we derive 3°_ | po-w = —1 as
a particular case of >, (pa + pb + ) - w. 1nally, Db P w=0. Adding

these three sums we get

dopw

a,b,c

- () 2200 o) )
- \z+y+z — e \p, j, k) \v+y+z) \at+y+z

() 22 ) )
r+y+z == 1, ¢, k r+y+z r+y+z
TP 4 ity . i y j
+ o
(x+y+z> ;;(% 75 r)<x+y+z) <x+y+z)
- L

which is zero as it is the sum of a closed form over an exact range. Identity 47
follows. O

Upon substituting 1 for z, y, and z, Identity 47 reduces to a (truly) double
sum analog of Identity 44.

Identity 48.
q r .
. pPHI+RN,
p\go qgo r\go 3 Z 0 <p7 j7 k k

P r .
+ 374 Z Z <le+ q +:) 3—i—k

q7
B Y E T R Y
ey

Upon substituting m for p, ¢, and r, Identity 48 reduces to a (truly) double
sum analog of Identity 45.

Identity 49.
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Note that it is easily possible to generalize Identities 43 and 47 to an arbitrary
number of summations. In order to save space, we resist this temptation and
confine ourselves to looking at the special cases Identity 45 and Identity 49:

™M = qm
m Y
m

m+7’ —1 _ m
L) =

i=0
m m . .
Z <m+l+]>3_z_] — 3m
i=0j=0 N b J

Grasping a pattern we conjecture a sequence of multisum identities.

Identity 50.

m m . .
E:”.§:<m*71+ +@)@+1)ﬁmiv:(y+1wh
h ; m, 1, ...,

11 =0 1, =0

Ly

5.3 A new WZ form from an identity of S. Dent
An certain identity of S. Dent [Den96] leads to the WZ form

e (2 () (G )

X( (b—1)b (=s+k+b—2v—1) (=s+k+b—2v)°

> dkds
2 (b—2v—1) (~k+v—1) (~s+b—2) (~s+b—1)

—b (=s+ k+b—20v)*
(b—2v—1) (—s+b—1)
b (k—2v+1) (—=s+k+1)

T 201 (ktv-1) (s+b_1)

dbds

db dk) .

Closedness preserving substitution {b — b + s}* leads to

(_1)S+b o—kt2v k—2wv k—o\ "' —s+k s
—b k—2wv —s—b+2v/) \s+b

(k+b—2v)° (s+b) (s+k+b—2v)

2(b—-1)° (—=k+v—1) (s+b—2v—1)

—(k+b—=2v)% (s+b)

(b—=1)% (s+b—2v—1)
(k=2v+1) (=s+k+1) (s+b)

(b—1) (~k+v—1) (s+b—2v—1)

dkds

db ds

k).
+2 dbd)
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Consider the following shadow of the last form:

_:ih%;?ﬁfiﬁ(_1)b2“*” <kfiv> (_kleU) <f;> (_stf;;F2v)

(k+b—=20)° (s+b) (s+k+b—2v)

2(b—-1)7°(—k+v—1) (s+b—2v—1)

—(k+b—2v)* (s+1b)

(b—1)* (s+b—2v-1)
(k=2v+4+1) (=s+k+1) (s+b)

(b—1) (~k+v—=1) (s+b—-2v-1)

dk ds

dbds

dbdk ) .
+s )

It leads, by straightforward manipulation, to the identity

Z;Qk@””_b_k)(g) (2vb—k> (zﬂf_ﬁ <kiv) =0

k

which holds provided that b > 0 and v > 0.
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A How to Use the Package wz

This appendix may help the reader to use our package wz.m. Explanations apply
to the package wz.m as of February 00 running under Mathematica 3.x.
Download the files wz.m and wzManual .nb from
http://www.risc.uni-linz.ac.at/research/combinat/risc/.
Under Unix, put these files into some directory (for example, your home direc-
tory) and start the Mathematica frontend in that directory by typing
Mathematica&
to a shell. From within Mathematica, load the package wz.m by executing
(Shift-Return)
In[1] .= << wzm

loading wz.m Oct 28, 1999...
Under Windows, create a directory C:\wz (using the Explorer), put the files
wz.m and wzManual.nb into C:\wz and start Mathematica by double-clicking
on C:\wz\wzManual.nb. From within Mathematica, load the package wz.m by
executing (Shift-Return)
In|2] := $Path = Append[$Path, “c : /uz];

<< wzm
(When loading wz.m, you will get some "multiple context” warnings; you can
safely ignore them.)

The notebook file wzManual . nb contains appendix A. A quick way to get started
is to modify and rerun the following examples.

A.1 Constructing Forms

Using precomputed examples. The easiest way to get a closed form is to
call a precomputed example; these examples are listed in appendix B.

]n[3] =wl = exa.mple[“dixon”]
k a+b a+c b+ c
Oul[3] = 0o e ) Coqr ) Uy )aivte ( —(b+k) (c+k)
N (a+b+c)! 2(1+a+b+c) (1+a—k)
(a+k) (c+k) (a+k) (b+k)
"2(1+a+b+o) (1+b—k)db+_2(1+a+b+c) (1+c—k)dc+1dk>

Using Gosper’s algorithm to construct closed 1-forms. If we know a
definite single hypergeometric sum identity involving free variables we can try
to construct a closed form from it by using Gosper’s algorithm in the imple-
mentation of Peter Paule and Markus Schorn. Download the file Zb.m from
http://www.risc.uni-linz.ac.at/research/combinat /risc/ . Under Unix, copy this
file into your Mathematica directory; under Windows9x/NT, put it into C:\wz.
The function ccf (”complete to a closed form”) returns a WZ form. Note that
ccf calls the function Gosper of Peter Paule and Markus Schorn, which does the
difficult part of the computation.

In[4] := term = toPht[Binomial[n, k]2 — n;

w2 = ccf[term, {k}, {n, k}]

Ouf4] = (27 ( ) (1ax + mdn)
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The third argument of ccf]...] determines the set of labels. For example

In[5] := term = toPht[Binomial[n, k|Binomial[a, k]/Binomial[a -+ n,n]J;
w5 = ccf[term, {k}, {k,n}]
()M .
Outfs) = —————— (1dx+ E S ey an)

(2

n
is different from
In[6] := w6 = ccf[term, {k}, {k,n,a}]

a n

k ( k ) k2 k2

() <_(1+a—k) fagm 2ttt Ty (1—|—a—|—n)dn>

n

Out[6] =

Using Kurt Wegschaider’s package to construct closed forms of higher
degree. To execute the examples of this subsection, you need Kurt Wegschai-
der’s package multisum.m. It is available at
http://www.risc.uni-linz.ac.at/research/combinat/risc/. Under Unix,
put the file multisum.m into your Mathematica directory; under Windows, put
it into C:\wz.

Suppose we want to prove the following (trivial) double sum analog of Vander-

monde’s identity:
Z R\ (S T _(R+S+T
i)\j)\n—i—j) n ’

ij

We divide by the right hand side and enter the resulting summand.
In[7] := 1hs = bi[R, i] bi[S, j] bi[T,n — i — j];

rhs = bi[R+ S+ T,n];

summand = lhs/rhs;
We compute a recurrence for the summand by Kurt Wegschaider’s package.
In[8] := rek = FindCertificate[summand,n,

{{1,0,0},{0,0,0}}, {4, 3} { {{0,0,0}},{{o,0,0}} }, 1][[
1]
Out[8] = —n MultiSum‘F[—1 +n, i, j] + n MultiSumF[n, i, j] ==
Delta[i, —i MultiSum‘F[n, i, j]] + Delta[j, —j MultiSum‘F[n, i, j]]

This recurrence yields a closed form:

In[9] := w3 = TermRekToForm[summand, rek]
R S T
(i) 05005 5400)
outl9] = ——— 1ot
( R+S+T )

n

(i+j—n)(-1+n—R—-8S-T) . . j X i X
- did =dnd ——dnd
( n(—-1—i—j+n—T) 1J—i_nnl—i_ nnJ>

Entering forms manually. Suppose we want to enter the form

_ a _b —a—b a+b _ b a
Oulg) = (3 (9™ (372 )) (= Draat 2a)
at the keyboard. First we enter the common hypergeometric factor. Note that
we have to call the function toPht to convert it to our internal representation
for hypergeometric terms.
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In[10] := hyp = Multinomialla,b] x"a y"b (x +y)"(—a — b)// toPht

a —a— + b
Oul10] =x*y* (x+9) 7" (7))
Next we input the rational function coefficients of the desired form:
]n[ll] := ratl = toPht[a/(a + b)]

Out[11] = i .
a

and
In[12] := rat2 = toPht[—b/(a + b)]

ouff12] = —> )
-

Finally we "assemble” the desired form.
In[13] := w4 = hyp * (ratl d[b] + rat2 d[a])

Oulf13] = (x* y* (e+y) > (22 ) (

b

—a—>b

a
da + ——db)
a+b

A.2 Closedness Preserving Substitutions

WZ forms yield new WZ forms by closedness preserving substitutions. If <rule>
is a substitution, or a list of substitutions, then cps[<rule>]is the corresponding
closedness preserving substitution. As a first example, we explain a “dualize and
specialize-miracle” of D. Zeilberger by a closedness preserving substitution.

In[14] := w6

a n )
k k k2 K2
da + 1dk +

Ouif14] = (atn) <_(1+a—k)(1+a+n) (—1+k—n)(1+a+n)dn>

In[15] := w—new = w6/.cps[a— > n]
2

n
k )) 2 (_ _
Out[15] = <1dk+ K (842 1; sn) dn)
(2n 2(-1+4+k—n)° (1+2n)
n
For another example, we show how to symmetrize the form
In[16] := w2

p— —n n k
Ouf[16] = (27" (| )) (1dk+ Y +k_n)dn>
!
which contains a binomial coefficient m To get rid of its ugly asym-

metric denominator, we substitut n->n+k:
In[17] := w—halfdone = w2/.cps[n— > n + k]
_ —k—n k+n 1 _ k
Oulf17) = (277 ( * ™)) (2dk+ 5 (1+n)dn>
Now the denominator of the pure hypergeometric factor is symmetric. We

wonder if the rational coefficients can be made symmetric too, and we try a
couple of shifts. One of them is indeed successful:

In[18] := w—symmetric = shift[n, —1][w—halfdone]
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n

Ouf[18] = (27 (17 ) (

Kk dk + —

— dn)
k+n k+n

A.3 Computing Exterior Derivatives

The application d[w] computes the exterior derivative of w (which must be
a form). Since all forms introduced so far are closed by construction, their
respective exterior derivatives are zero. For example,

In[19] := d[w—symmetric]
Out[19] =0

A.4 Ranges and Boundaries.

Entering ranges. Suppose we need the range (—[a+b ==k])da+ ([a+Db ==
k])db. We can either enter it directly at the keyboard

In[20] := r1 = —i[a + b == k]d[a] + i[a + b == k]d[b]
Out[20] =1 ((—[a+b ==k])da + ([a+ b ==k])db)
or we define it as the boundary of a halfspace:
]n[?l] := interior—of—rl = ifa + b < k] d[a, b]
Out[21] =1 (([a + b < k])dadb)

In[22] := r1 = boundary[interior—of—r1]
Out[22] =1 ((—[a+b ==k])da + ([a+ b ==k])db)

The second method is recommended for all but the simplest ranges. For exam-
ple,
In[23] := interior—of—r2 = ila+b < k| i[a >= 0]i[b >= 0] d[a, b];
r2 = boundary[interior—of —r2]
Out[23] =1 ((—[a+b==k] [a> 0] [b > 0] + [b ==0]
(a+b=—1[a>0][b>0] - [a ==

[a>0] [a+b<1+k])da+
0] [b>0] [a+b < 1+k])db)

would be hard to enter directly.

Plotting ranges. To check if we get indeed the ranges we have in mind we
plot them.
In[24] := Block[{k = 3},

dstPlot[{0,r1,0}]];
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In[25] := Block[{k = 3},
dstPlot[{0,r2,0}]];

Of course we have to set all parameters, like k in the example above, of the range
to be plotted to fixed integers. This can be conveniently done by wrapping a
Block[{k=...},...] around.

A.5 Summing Forms over Ranges
We sum the form
In[26] := w4

b
Oulf26] = (& y* (x4 (7)) (T pdet Spav)

over the range

In[27] :==r1

Oul[27] =1 ((—[a+ b ==k])da + ([a + b ==k])db)
by issuing the command

In[28] := wwSum|r1, w4

Ouf[28] = 3~ Y by ()

aba b==k a, b

A.6 Bugs

Please report bugs to B.Zimmermann@risc.uni-1linz.ac.at.
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B Some Closed Forms

All closed forms in the following list are included in the package wz.m.

-1
ka0 (k=20 k—wv —s+k s
1e["d n o _1b2 k+2v
example["dent"] = (—1) s—b k—2wv —b+2wv b

2 2
( (b—1)b(—=s+k+b—2v—1) (—=s+k+b—2v) _dkds + —b (—s+k+b—2v) _dbds
2(b—2v—1) (—k+v—1) (—s+b—2) (—s+b—1) (b—2v—1) (-s+b—1)
b(k—2v+1) (—s+k+1)
P =20 =1) (mk+v=1) (—s+b—1) Pk
[Den96]
" nl — iV 2 n—j—i+ 2 ont2m42y 1
example["jaegers"] = 2 (Jj )7 ( Jn_j ™ A )
<7(i71)2i2 (Cntitizm—1)2 (in—n—mj—j) 5 1o n —i?j? (—n+jt+i—m—1)?
—m 12 GH- 12 GH)2n@ntl) Y —m—1)% (H-1)? (+)2 (- 17 n 2nt1)

(2jn® —in® —n® —42n? = 2ijn? + 5mjn? +11jn? +2i%n? —2min? = 2in? = 3mn? —=5n? +2¥n+3ij2n—6mj*n—11}n
—4mijn—=8ijn+4m?jn+18mjn+18jn+i2n+2min+3in—3m?n—10mn—-8n+mp2 + 2 +2mij? +2i> — 2m? j?
—TmP? =52 —4mij—4ij+4m?j+11mj+7j+2mi+2i—2m? —5m —3) didn

i j2 (—n—l—j—&—i—m—l)2 (n+m+1) 2n+2m+1) )

M Ve ey e e TS

[ ]

" " ot ; ; -1 -1 i i —q(q+i—7) (q+i—v) (q+n—v—7) (q®+iq—2q—i—rv+1

exa-mp]-e[ hong 1= <_1) o (—qI-H") (—ql+-v) (:) (Z) (?) (nq I) (q+:—-1IJ—T) (n—7) (n=v) (q—r—1) (q—v—1) (q—$—i—v—r—1) (q—n+i—1)) dq dn
nq(q+i—7) (@+i—v) (g+n—v—r—1) (q+n—v—r) 4 —(a=ba(a+i=1) (9+i—7) (q+i—v) (+n—v—r—1) (q+n—v—7) q

o e e e o) dqdi 4 (S G ey e ol e dndi)

[Hon96, |

1 _ — — _
example ["gkp5.22"1 = (1) (,2,) (7fn) " (5t ds + sty dr + o din + 2 dm 4+ 1dk)
[GKPS89, 5.22]
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exalnple["gkp5.23"] :( | )( S )( s+l )*1 ( (m-+k) (n+k) dS—|— —m—k dn—|— —n—k dm—l— (m-+k) (n+k) d|+1dk)

m-+k/ \n+k/ \n—m+I (—s+n+k—1) (s+14+1) —s+n—m —n+m—]| (m—I4+k—1) (s+14+1)
[GKP89, 5.23]
-1
" w1 1y—m—ltk | s+k\ [s—m
example ["gkp5.24"] = (—1) <m+k)< ) >(n—|)
m + k —(m+k) (s=n+k) —s+n—k (m+k) (s—n-+k)
<—s—|—m—1ds (n+1)(—s+n+m—|)dn+—s+n+m—ldm+(m—I+k—1)(—n+I)d|+1dk
[GKP89, 5.24]
-1
n Wy — (_1y—m—Il+k I —k S s—m-—1
example ["gkp5.25"] = (—1) ( N > <—n+k) (—n—m+|>
(=l+k—=1) (=n+k) —(=l+k—=1) (=n+k) (=I+k—=1) (—=n+k) —(=l4+k—=1) (—n + k)
<(—s+m) Gtk ) T T m N ikt D " T T mr D nrm=1) T o k=1 (s—nti+n ATk

[GKPS89, 5.25]
" w1 1=k (qky (gt =k —(=I+k=1) (q—n+k —I+k—1) (q=n-+k —(—l4k=1) (q—ntk
example["gkp5.26"1 = (" *) (1) (A'ny) <q+¢§ dq + (r$+l) (*q)+(nq+mfl)) dn + ((m+1) (fgiqnmf?) dm + ((7|+k—1)) ((?1+|+2)) dl + 1dk)
[GKPS9, 5.26]

" nl — (r S s+ry—1 k (s—n+k —k (s—n+k
example["gkp5.27"1 = () (,%,) (°}) <s+rk+1 ds + (—r+k(i1) (s+)r+1) dr + (—n+k—(1s) (—s—)r—l—n) dn + 1dk)
[GKP89, 5.27]




0L

-1 -1
wesprerigss.zn = (1) (700) () (2) ()

< k(r—=n—m+k) (—s+r+k) ds+—k(—s+2r—m+k+1) ; —k (r=n—m+k) (=s+r+k)
(=s+r—m+k—1)(=s+r+n) (s+1) (r+1) (=s+r—m) (=n+k—=1)(n+m+1) (—s+n)
k(r=n—m+k) (—s+r+k)
+(n—|—m+1) (=r+m) (s—r+m—k—|—1)dm+1dk
[GKPS89, 5.28]
b+ + +b)  [c+b) [ctbta)
" W — (1)K a C a C C C a
example ["gkp5.29"] = (—1) <k+a) (k—f—c) ( b ) <k+b) ( ) >
—(k+a) (k+b) —(k+a) (k+¢) —(k+b) (k+c¢) )
1dk
( et T eTbras ) (chr et D) “ T Tcrbrary) (ckt b+ D) P T I cabrarl) (krarD @
[GKP89, 5.29]
—1 e e

example["gkp5.30"] = (~1)* (*7*) ™ (212) (712) (Ldk+ g5ty db+ o565y da)

[GKP89, 5.30]
n B —1 [/ _(9k—1)(— C(9Kk—1) (—

example["ep11"] = (—1) 7" 4 mrk (X) () () 7 (RIS dn 4 SRR g 4+ 24 k)

[Ego84, p.11]
; _— —3n+k _x k(—18n%4+9kn—15n+k—1 _

example["ep24rest0"] = (-1) (3 nk ) <2(—3 n+2(k—3) (—3nt+2k—2) (-3 n)+2 k—1) dn + 2(—33nn+k) dk)
[Ego84, p.24]

example["ep27"] = (—1)7""" 27 vtam ("2 m)_l (ST () (1 N+ = It s mﬂf{fff;rmgv(f&rz m+2) dm)

[Ego84, p.27]
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_ —k(—krP+ar’+rP+Kk2r®—akr?—2kr® 4+ 4+k% r—2 k r+r+ak—k—a+1 kK
example["epa7"] = (—1)* (}) rI~! < : kD) (1) r (D) )dr+<—k+a) dk + Tda>

[Ego84, p.47]

example["e2.6"1 = (3) (717) 7 (1 1) (e e ey dn + ey k)
[Ego84, 2.6]

example["ep48"] = 272tk p!l=1 (n — K)!=1 (2n — Kk)! (% dn + 1dk)
[Ego84, p.48]

example["ep49"] = (
[Ego84, p.49]

2n—2 k) (q+2k) (q+2 n)*l ((2k(—2n+2 k—1)

—2k(=2n+2k—1) q(q+k) q
N2k (at2k) (@t sdn+ dk)

q+2k) (g+2n+1) dq + (—n+k—1) (q+2k) (q+2n+1) (g+2n+2 q+2k

o 2 ndm\—2 /n4+2m—k —k? (—n—2m+k—1) —k? (=n—2m+k—1) (—Sm n+2kn—3n—4m?+43km—8m+3 k—4)
example["ep52"] = (Y)" (") " ("o 5 ) <(—n+k—n1) (ntmt1)2 dn + 2 (—m+k—1)Z (2m+1) (nfm+1)Z dm + 1dk

[Ego84, p.52]

—n+k - -1 2(2a+1) (—k+a) (2k—=1) (n+1 2a+1 (2a+1) (—k+a) (2k—1)
example["e2.18;1"] = (—1) Trg2k-2a (:) (n;aa) (n2+kk) ((7n(+kafl))((n+a+al))((2 n+1))((2n+)3) dn + 2ﬁil dk + 2(—n+a) (nta+tl) (2nt1) da)
[Ego84, 2.18;1]

example["ep59"] = (

[Ego84, p.59]

example["gauss"] =n!=! (['(c)) ' I'(c—a) T (c—b) (D(c—b—a))~ ' a"bic" ' (1 dn + —f— de + F L db + St da)

" " Kt ] i i k) (Gp—iptptik—iktitl) 5o |, —(—k+i) Gp—iptik—ik—ktitl)
example["e3. 17" = (=" (1) (314) (g dp + 1k + SEHIESELIC ) ) + ~(ARr e ki) di)
[Ego84, 3.17]

\ e K+ /iy (k k) Gkoikbt D) g (k) (ko ik ktitl)
examplele3.4.2;1"1 = (~1)** () (5) (1ak-+ (LG, di+ el Ein, )
[Ego84, 3.4.2;1]

_ -1 (—r+i) (—r+i+1) (3 rP42nr—3ir+5r—in+2 n+i272i+2) (—=r4i) (=r+i+1) .
Erii) (zrrtll) () < (2 -2) (—2r1—1) (—r—nD) (rint D) dr + ==y (s dn + 1 di




(@)

example["e3.4.2;2"] = (—1)* <

(=k+])) (mjp+ip—p—jk+ik+2j>—2ij+2j—i)

—p+i—1

P—J> <p—|§) <&dp+1dk
p—k/ \p—i

(=j+i—1) (=j+i) (=p+1])

[Ego84, 3.4.2;2]

example["e3.4.2;3"] = (—1)k+j (

[Ego84, 3.4.2;3]
example["dixon"] = (—1)k (:1:
— (keb) (k)
t3 (ctbtat1) (—k+a+1) da)

) (

) (

ko (

-1
s 5) ) 2

1))

k—1
j—1

c+b
k+b.

dj +

(=i+1) (i+i4+1) (—k+i+1)

2+J2+|)

—(—k+j) (Jk—ik—k+i® j—j—i®+2i+1)

(=i+i=1) (=+) i (+1)

)itji=? <1 gk -+ A G el

dj +

— (k+2) (k+b)

(—j40) (—jFi+1) (—k+i+1)

—(kta) (ko)

Jalblc! (c+b+a)~! (1dk+ 5

—1
p+n p+n+m-—k
n n-+m

—k2 (_p—n—m+k—1)

c+b+a+1) (—k+c+1

dn +

)dc+2

(c+b+a+1) (—k+b+1)

—k2 (_p—n—m-l-k—l)

—(=k+) (jp—ip+ik—ik—k=2ij—j+2+2i+1) di)

:

db

(Gr=neintne

—p+k—1) (p+m+1) (p+n+1)

[Ego&4, p.170]

dp +

(—n+k—1)(n+m+1) (p+n+1)

(—=m+k—=1) (n+m+1) (p+m+1)

dm + 1dk)
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