
J O H A N N E S K E P L E R

U N I V E R S I T Ä T L I N Z
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Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig
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Abstract II

Abstract

This diploma thesis consists of two parts: the analysis and description of power

series methods for solving differential equations and the application to algebraic

equations.

In Chapter 1 and 2 we set the stage by introducing algebraic and analytic theo-

rems, definitions and notations.

The next three chapters deal with solving second order differential equations by

the Frobenius Method. We set in describing the method in Chapter 3, next we

have a closer look at examples for the Frobenius Method calculated with the help

of Mathematica in Chapter 4, and go on with the Existence Theory in Chapter 5

to justify and validate the derived solutions.

As a major application domain, we consider the problem of solving algebraic

equations like y(x) = y5 + xy2 − 1 = 0. In Chapter 6 we give a summary about

how to solve a general algebraic equation up to degree 4, and briefly consider

approximate solutions for higher degrees. In addition, we analyse the behavior of

solutions of the example above in an experimental way.

Solving algebraic equations with the powerful power series method expands the

range of application of the Frobenius Method. So we transform a general alge-

braic equation into a differential equation with the help of the algorithm AEtoDE,

which is described in Chapter 7.

Finally, in Chapter 8 we describe Mellin Series as another solution method for

algebraic equations, again depending on power series manipulations.



Abstract III

Acknowledgements.

I want to thank Peter Paule for supervising my diploma thesis, especially giving

me the chance to dip into the fascinating world of combinatorics. He supported

me finding helpful literature and ideas.

I also would like to thank the participants of the combinatoric seminars in Ha-

genberg for the helpful discussions and hints.

My special thanks go to Christoph Koutschan, who gave me the formative hints

for my implementation and always was willing to listen to my problems.

I want to thank my family members for their support.

Most of all I want to thank my parents, who made my dream to become a math-

ematician possible.

Support Notice.

This diploma thesis was supported by SFB grant F1305 of the Austrian Science

Funds FWF.



Contents IV

Contents

1 Algebraic and Analytic Preliminaries 1

2 Formal Power and Laurent Series 3

2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Lagrange Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Useful Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Frobenius Method 17

3.1 Solutions near an ordinary point . . . . . . . . . . . . . . . . . . . 20

3.2 Solutions near Regular Singular Points . . . . . . . . . . . . . . . 23

3.2.1 Difference c of roots is nonintegral . . . . . . . . . . . . . . 25

3.2.2 Difference c of roots is zero - equal roots . . . . . . . . . . 29

3.2.3 Difference c of roots is a positive integer - nonlogarithmic

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.4 Difference c of roots is a positive integer - logarithmic case 37

3.3 Solutions near Irregular Singular Points . . . . . . . . . . . . . . . 39

4 Frobenius Method - Examples with Mathematica 43

4.1 Solutions near an ordinary point . . . . . . . . . . . . . . . . . . . 43

4.2 Solutions near Regular Singular Points . . . . . . . . . . . . . . . 45

4.2.1 Indicial equation with difference of roots nonintegral . . . 46

4.2.2 Indicial equation with equal roots . . . . . . . . . . . . . . 48

4.2.3 Difference c of roots is a positive integer - nonlogarithmic

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.4 Difference c of roots is a positive integer - logarithmic case 53

5 Frobenius Method - Existence Theory 57

5.1 Solutions near an ordinary point . . . . . . . . . . . . . . . . . . . 57

5.2 Solutions near a regular singular point . . . . . . . . . . . . . . . 62



Contents V

5.3 Fuchsian Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 The General Algebraic Equation 73

6.1 Algebraic equations of degree 2 . . . . . . . . . . . . . . . . . . . 73

6.2 Algebraic equations of degree 3 . . . . . . . . . . . . . . . . . . . 74

6.3 Algebraic equations of degree 4 . . . . . . . . . . . . . . . . . . . 75

6.4 Algebraic equations of degree 5 or higher . . . . . . . . . . . . . . 80

6.4.1 Newton Method . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4.2 Householder Method . . . . . . . . . . . . . . . . . . . . . 80

6.5 A concrete example: numerical experiments . . . . . . . . . . . . 81

7 Transforming Algebraic Equations into Differential Equations 87

7.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.3 Sketch of the idea of the algorithm . . . . . . . . . . . . . . . . . 89

7.4 Description of the subroutine: ExtendedGCDPoly . . . . . . . . . 90

7.5 The steps of AEtoDE . . . . . . . . . . . . . . . . . . . . . . . . 91

7.6 The steps of AEtoDE: a concrete example . . . . . . . . . . . . . 94

7.7 Example: AEtoDE in connection to Frobenius Method . . . . . . 96

8 Mellin Series 99

Bibliography 109



Algebraic and Analytic Preliminaries 1

Chapter 1

Algebraic and Analytic Preliminaries

We use the notation N for {0, 1, 2, 3, . . .}, and N? for N\{0} = {1, 2, 3, . . .}

The ring of polynomials in the variable z over the coefficient ring R is denoted

as usual by R[z].

For the degree of p(z) ∈ R[z] we use the notation deg(p(z)).

Definition 1

Given p(z) ∈ C[z]. If z0 ∈ C is such that p(z0) = 0, then z0 is called a root of the

polynomial p(z).

Theorem 1 (Fundamental Theorem of Algebra)

Let p(z) ∈ C[z] with deg(p(z)) = n ∈ N. Then p(z) has exactly n complex roots

where each root is counted with its multiplicity.

Informally this means, each algebraic equation of the form

zn + an−1z
n−1 + · · ·+ a0 = 0,

ai ∈ C, has at most n different solutions.

Theorem 2 (Theorem of Abel-Galois-Ruffini) 1

The solutions of an equation of degree n ≤ 4 can be given in terms of a formula

1[19] G. Pilz, 1984.
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using arithmetic operations and (nested) radicals only. Equations of an degree

n ≥ 5 cannot be solved in terms of such expressions.

Each algebraic equation with coefficients X1, . . . , Xn ∈ C

yn + X1y
n−1 + X2y

n−2 + · · ·Xn−1y + Xn = 0,

can be transformed into the algebraic equation

yn + x1y
n−1 + x2y

n−2 + · · ·+ xn−1y − 1 = 0,

with coefficients x1, . . . , xn−1 ∈ C, by the simple transformation y → n
√
−Xny.

Definition 2

For z ∈ C\{0,−1,−2, . . .}:
z! := Γ(z + 1),

where Γ denotes the Gamma function.

Definition 3

For a ∈ C, n ∈ N:

(a)n := a(a + 1) · · · (a + n− 1) =
Γ(a + n)

Γ(a)
,

where (a)n denotes the Pochhammer symbol (also called rising factorials).

Definition 4

The falling factorials are defined as usual by

[x]m := x(x− 1) · · · (x−m + 1), m ≥ 1,

and [x]0 := 1.

Theorem 3 (Multinomial Theorem) 2

For k, n ∈ N and x1, x2, . . . , xk ∈ C the following equation holds:

(x1 + x2 + . . . + xk)
n =

∑
n1+···+nk=n

ni∈N

n!

n1!n2! . . . nk!
xn1

1 xn2
2 · · ·xnk

k .

2[9], A. Kemnitz, p. 377, 2002.
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Chapter 2

Formal Power and Laurent Series

2.1 Basic Concepts

Most of the notations and propositions in this chapter are taken from P. Paule

[15].

Throughout this chapter, F denotes a field containing the rational numbers as a

subfield.

Notation 1 (Formal Power Series)

The ring of formal power series in z over F is denoted by (F[[z]], +, ·) where

F[[z]] =

{
∞∑

m=0

amzm | am ∈ F

}
,

and where + is defined componentwise

∞∑
m=0

amzm ±
∞∑

m=0

bmzm =
∞∑

m=0

(am ± bm)zm,

and where · is the usual Cauchy product

∞∑
m=0

amzm ·
∞∑

m=0

bmzm =
∞∑

m=0

cmzm,

with

cm :=
∞∑

k=0

akbm−k.
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Note: A priori the term
∑∞

m=0 amzm is just another notation for the sequence

(am)m≥0.

Definition 5 (Convergence in the ring of formal power series)

For the sequence (fk(z))k≥0 with elements in F[[z]] and f(z) =
∑∞

m=0 amzm ∈
F[[z]] we define

lim
k→∞

fk(z) = f(z)

if and only if for all m ∈ N there exists a δ(m) ∈ N such that the coefficients of zm

of the entries fk(z) of the sequence (fk(z))k≥0 are equal to am for all k ≥ δ(m).

Note: If we impose the definition of a limit of a sequence of formal power series,

we can interpret
∑∞

m=0 amzm as follows:

∞∑
m=0

amzm = lim
N→∞

N∑
m=0

amzm.

Proposition 1 (Limit Rules in the ring of formal power series)

For the sequences (fk(z))k≥0 and (gk(z))k≥0 with elements in F[[z]] and such that

limk→∞ fk(z) = f(z) and limk→∞ gk(z) = g(z) we have

lim
k→∞

(
fk(z)

+· gk(z)
)

= f(z)
+· g(z).

Theorem 4 (Abel’s Theorem) 1

If a power series f(w) =
∑

k≥0 fkw
k converges at a point w0 on its circle of

convergence, then
∞∑

k=0

fkw
k
0 = lim

w→w0

f(w),

where w tends to w0 along a radius inside the circle of convergence.

Lemma 1 (Multiplicative Inverse)

The formal power series f(z) =
∑∞

m=0 amzm ∈ F[[z]] has a multiplicative inverse

f−1(z) if and only if a0 6= 0.

1[11], T.M. MacRobert, 1947.
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Note: For f(z) · g(z) = 1 with f(z) =
∑∞

m=0 amzm and g(z) =
∑∞

m=0 bmzm ∈
F[[z]] one writes

f−1(z) :=
1

f(z)
:= g(z).

Notation 2 (Formal Laurent Series)

The quotient field F((z)) of the ring of formal power series F[[z]] is called the field

of formal Laurent series, i. e.,

F((z)) =

{
a(z)

b(z)
| a(z), b(z) ∈ F[[z]], b(z) 6= 0

}
.

Or, in other words,

F((z)) =

{
∞∑

n=−n0

anz
n | n0 ∈ Z, an ∈ F

}
=

{
zm

∞∑
n=0

anz
n | m ∈ Z, an ∈ F

}
.

Note: For f(z) ∈ F((z)) we sometimes write f(z) =
∑∞

n=−∞ anz
n with the

understanding that there is a n0 ∈ Z such that an = 0 for all n < n0.

Theorem 5 (Transfer Principle)

Let (an)n≥0 and (bn)n≥0 be sequences in C. If
∑∞

n=0 anz
n =

∑∞
n=0 bnz

n holds for

all z ∈]− ε, ε[ for some ε > 0, then
∑∞

n=0 anz
n =

∑∞
n=0 bnz

n holds in C[[z]].

Definition 6 (Coefficient Functional)

Let f(z) =
∑∞

m=−∞ amzm ∈ F((z)). For n ∈ Z we define

[zn]f(z) := an.

Note: [zn] can be considered as a coefficient functional on F[[z]] viewed as a vector

space over F. For picking the constant term, we use the symbol L := [z0]

f(0) = [z0]f(z) = L f(z) := a0.

Note: f(z) = g(z) holds in F[[z]] if and only if n ∈ N0 applies

[zn]f(z) = [zn]g(z)

for all n ∈ N0.
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Definition 7 (Order of Power Series)

For a power series f ∈ F[[z]], we define its order by

ord f = min {m : [zm]f(z) 6= 0 and m ∈ N} .

Definition 8 (Differential Ring)

Let R be a ring, respectively field. A derivation D on R is a map D : R → R

such that for all f and g ∈ R one has:

D(f + g) = Df + Dg,

and

D(f · g) = (Df) · g + f · (Dg).

(R,D) is called a differential ring, respectively field.

Definition 9 (Derivation in the ring of formal power series)

The standard derivation d
dz

on F[[z]] is defined as the map

d

dz
: F[[z]] → F[[z]],

∞∑
n=0

anz
n 7→

∞∑
n=0

an+1(n + 1)zn

=
∞∑

n=1

annzn−1.

This turns F[[z]] into a differential ring (F[[z]], d
dz

).

Definition 10 (Derivation in the field of formal Laurent series)

The standard derivation d
dz

on F((z)) is defined as the map

d

dz
: F((z)) → F((z)),

zm

∞∑
n=0

anz
n 7→ mzm−1

∞∑
n=0

anz
n + zm

∞∑
n=1

annzn−1

This turns F((z)) into a differential field (F((z)), d
dz

).
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Notation: For convenience, we denote d
dz

by D, or d
dz

f(z) by f ′(z). We also

introduce the abbreviated notation

Df(z) = f ′(z),

Dkf(z) = f (k)(z),

for k ∈ N.

Proposition 2

Let f(z) and g(z) ∈ F[[z]] such that g(0) = [z0]g(z) = 0. Then

f(g(z))′ = f ′(g(z)) · g′(z).

Proposition 3

Let a(z) and b(z) ∈ F[[z]]. The differential equation

y′(z) = a(z) · y(z) + b(z)

always has a solution y(z) ∈ F[[z]]. The solution y(z) is uniquely determined by

the choice of y(0).

Definition 11 2

f(x) =
∑∞

n=0 anx
n ∈ K[[x]] is called holonomic, if there exist

p0(x), p1(x), . . . , pm(x) ∈ K[x],

not all zero, such that

pm(x)f (m)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0.

2[15], P.Paule, 2007.
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2.2 Lagrange Inversion

Definition 12 (Composition in the ring of formal power series)

For f(z) =
∑∞

m=0 amzm and g(z) =
∑∞

m=0 bmzm ∈ F[[z]] with g(0) = 0 the

composition of f(z) and g(z) in F[[z]] is defined in the following way

(f ◦ g) (z) := f (g(z)) :=
∞∑

m=0

am g(z)m.

Theorem 6 (Compositional Insertion Homomorphism)

For h(z) = h1z
1 + h2z

2 + · · · ∈ F[[z]] we define the mapping

ϕh : F[[z]] → F[[z]],

f(z) 7→ ϕh(f(z)) := f(h(z)).

Then ϕh is a ringhomomorphism.

Notation 3 (Residue Symbol)

Acting on formal Laurent series the coefficient functional [z−1] is called the residue

and written as M .

Lemma 2

For any f(z) ∈ F((z)) and any k, l ∈ Z, we have

[zl]f(z) = [zk+l]zkf(z).

Theorem 7 (Lagrange Inversion - first version) 3

Let f, g ∈ C[[z]] with ord g = 1. Then there exists an h ∈ C[[z]] such that

h ◦ g = f , and its coefficients cm can be found as

c0 := Lf(z),

[∀m > 0] cm :=
1

m
Mf ′(z)g(z)−m = Mf(z)g′(z)g(z)−m−1.

For the proof of the Lagrange inversion formula we need the following Lemma.

3[22] M. Rosenkranz, 1997.
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Lemma 3

Let g ∈ C[[z]] with ord g = 1. Then the residues of the formal Laurent series

g′/gn are

M
g′(z)

g(z)n+1
= δn0

for all n ∈ Z.

Proof (Lemma 3)

For the proof of the Lemma we need a case distinction.

For n 6= 0 we have

g′(z)g(z)−n−1 = − 1

n
(g(z)−n)′.

If we apply the residue functional M on both sides, we get

Mg′(z)g(z)−n−1 = M(− 1

n
(g(z)−n)′).

The residue of a derivative of a formal Laurent series is always zero, because the

[z−1]-coefficient does not appear. Hence we proved the statement for n 6= 0.

For the case n = 0 we write g(z) = z
G(z)

with ord G = 0. With this setting we

get
g′(z)

g(z)
=

G(z)−G′(z).z

G2(z)
.
G(z)

z
=

1

z
− G′(z)

G(z)
.

If we now apply the residue functional on both sides, we get

M

(
g′(z)

g(z)

)
= M

(
1

z

)
−M

(
G′(z)

G(z)

)
= 1− 0,

because 1
G(z)

and G′(z) are formal power series and the residue of a formal Laurent

series is zero.

�

Proof (Theorem 7)

Our goal is to find the coefficients cm of a power series h with h ◦ g = f .

So in the first step we take the derivative of

f(z) = h(z) ◦ g(z) =
∑
n≥0

cng(z)n,

and get (by Proposition 2)

f ′(z) =
∑
n≥0

ncng(z)n−1g′(z).
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If we divide both sides by g(z)m with m > 0, we get

f ′(z)g(z)−m =
∑
n≥0

ncn
g′(z)

g(z)m−n+1
.

Now we apply the residue functional and derive

Mf ′(z)g(z)−m = M
∑
n≥0

ncn
g′(z)

g(z)m−n+1
.

Because we know the following property

M
g′(z)

g(z)m−n+1
= δm−n,0 = δm,n,

the only term which remains in M
∑

n≥0 ncn
g′(z)

g(z)m−n+1 is m cm.

Hence, we get
1

m
Mf ′(z)g(z)−m = cm.

With the following auxiliary calculation

0 = M(f(z)g(z)−m)′

= Mf ′(z)g(z)−m −mMf(z)g(z)−m−1g′(z),

we derive the demanded equation

[∀m > 0] cm =
1

m
Mf ′(z)g(z)−m = Mf(z)g′(z)g(z)−m−1.

Since Lf(z) is the constant term coefficient c0g(z)0, we get

Lf(z) = c0.

�

For some applications, it is convenient to write g(z) as a fraction z
G(z)

like in

the Lemma before. For that we can apply the following equivalent variant of

Lagrange’s Inversion.
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Theorem 8 (Lagrange Inversion - second version) 4

Let f, G ∈ C[[z]] with ord G = 0 and set g(z) = z
G(z)

. Then there exists an

h ∈ C[[z]] such that h ◦ g = f , and its coefficients cm can be found as

c0 := [z0]f(z),

[∀m > 0] cm :=
1

m
[zm−1]f ′(z)G(z)m = [zm]f(z)g′(z)G(z)m+1.

Proof (Theorem 8)

For the proof of the fraction variant of the Lagrange inversion formula, we can

utilize the first version.

Our goal is to find the coefficients cm of a power series h with h ◦ g = f , where

g(z) = z
G(z)

.

Constituting g(z) = z
G(z)

in cm = Mf(z)g′(z)g(z)−m−1 we derive

cm = [z−1]f(z)g′(z)(
z

G(z)
)−m−1 = [z−1]z−m−1f(z)g′(z)G(z)m+1,

which is exactly

cm = [zm]f(z)g′(z)G(z)m+1.

With the auxiliary calculation

0 = M(f(z)g(z)−m)′

= Mf ′(z)g(z)−m −mMf(z)g(z)−m−1g′(z),

we get the equivalent equations

1

m
Mf ′(z)g(z)−m = Mf(z)g(z)−m−1g′(z)

1

m
[z−1]f ′(z)G(z)m(

1

z
)m = [z−1]f(z)G(z)m+1g′(z)(

1

z
)m+1

1

m
[zm−1]f ′(z)G(z)m = [zm−1]f(z)G(z)m+1g′(z)

1

z
= [zm]f(z)G(z)m+1g′(z).

Hence, we derived the demanded equation

cm =
1

m
[zm−1]f ′(z)G(z)m = [zm]f(z)g′(z)G(z)m+1.

4[22] M. Rosenkranz, 1997.
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Since Lf(z) is the constant term coefficient [z0]f(z), we get

c0 = [z0]f(z).

�

2.3 Useful Lemmas

It will be useful to consider the following situation.5

Suppose that

u = u1u2u3 · · ·un,

each of the u’s being a function of the parameter z. Let differentiation with

respect to z be indicated by primes. Then from

ln u = ln u1 + ln u2 + ln u3 + · · ·+ ln un

it follows that
u′

u
=

u′1
u1

+
u′2
u2

+
u′3
u3

+ · · ·+ u′n
un

.

Hence

u′ = u ·
(

u′1
u1

+
u′2
u2

+
u′3
u3

+ · · ·+ u′n
un

)
. (2.1)

Next we consider an analogous situation in the context of formal power series.

Definition 13

L(z) := ln(1 + z) =
∞∑

n=0

(−1)n

n + 1
zn+1 ∈ F[[z]].

Note: The following rule for differentiation is valid:

L′(z) = D ln(1 + z) =
∞∑

n=0

(−1)nzn =
1

1 + z
.

5[20] E.D. Rainville, S. 324, 1964.
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Let f(z) ∈ F[[z]] with ord f > 0. For K(z) ∈ F[[z]] defined as

K(z) := ln(1 + f(z)) =
∞∑

n=0

(−1)n

n + 1
(f(z))n+1

= (L ◦ f)(z)

= L(f(z))

the following rule for differentiation is valid:

K ′(z) = D ln(1 + f(z))

= D(L ◦ f)(z)
F
= L′(f(z))f ′(z)

=
1

1 + f(z)
· f ′(z).

The equation F is satisfied by Proposition 2.

Now consider a formal power series analog of (2.1). Given u(z), f1(z), f2(z) ∈
F[[z]]. Suppose that

1 + u(z) = u1(z) · u2(z),

where ui(z) := 1 + fi(z). Let differentiation with respect to z be indicated by

primes.

Lemma 4

For fi(z) ∈ C[[z]] with ord(fi) > 0:

ln(1 + u(z)) = ln(1 + f1(z)) + ln(1 + f2(z)). (2.2)

Proof (Lemma 4)

We show that the left side of (2.2), denoted by a(z), fulfills the same differential

equation of order one as the right hand side of (2.2), denoted by b(z).

In view of Proposition 3, to complete the proof, we then have to show that the

initial values coincide, i. e., a(0) = b(0).

We compute the derivatives of a(z) and b(z), compare the results:
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a′(z) =
u′(z)

1 + u(z)
,

b′(z) =
1

1 + f1(z)
· f ′1(z) +

1

1 + f2(z)
· f ′2(z)

=
(1 + f2(z))f ′1(z) + (1 + f1(z))f ′2(z)

(1 + f1(z))(1 + f2(z))

=
u′(z)

1 + u(z)
.

So we found out that both sides fulfill the same differential equation. Finally we

verify that the initial values match:

[
z0
]
a(z) = ln(1 +

[
z0
]
u(z)),[

z0
]
b(z) = ln(1 +

[
z0
]
f1(z)) + ln(1 +

[
z0
]
f2(z))

= ln[(1 +
[
z0
]
f1(z)) · (1 +

[
z0
]
f2(z))︸ ︷︷ ︸

(1+[z0]u(z))

]

= ln(1 +
[
z0
]
u(z))

and observe that the initial values coincide.

�

Then from Lemma 4 it follows that

u′

1 + u
=

u′1
u1

+
u′2
u2

.

Hence

u′ = (1 + u) ·
(

u′1
u1

+
u′2
u2

)
. (2.3)

Given u(z), fi(z) ∈ F[[z]]. Suppose that

1 + u(z) = u1(z) · u2(z) · · ·un(z),

where ui(z) := 1 + fi(z). Let differentiation with respect to z again be indicated

by primes. Then from

ln(1 + u(z)) = ln(u1(z) · u2(z) · · ·un(z))

= ln(1 + f1(z)) + ln(1 + f2(z)) + · · ·+ ln(1 + fn(z))
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it follows that
u′

1 + u
=

u′1
u1

+
u′2
u2

+ · · ·+ u′n
un

.

Hence

u′ = (1 + u) ·
(

u′1
u1

+
u′2
u2

+ · · ·+ u′n
un

)
.
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Chapter 3

Frobenius Method

We want to solve holonomic differential equations, more precise we want to

find a basis for the solution space in form of power series and eventually with

logarithms.

Definition 14

Let b0(x), b1(x), . . . , bn(x) be meromorphic functions defined in some regions of

the complex plane. The differential equation

b0(x)y(n)(x) + b1(x)y(n−1) + · · ·+ bn(x)y = 0

is called holonomic, if all the bi(x) are polynomials from C[x].1

We will achieve this goal with the help of the Frobenius Method, which can

be found in [20] and [21], and which also forms the basis for our presentation.

Restricting to the holonomic paradigm, the differential equations treated here

will be confined to those with polynomial coefficients, but the results remain

essentially unchanged when the coefficients are analytic functions, or rather the

functions have power series expansions valid about some point.

In addition, we restrict the observation to differential equations of second order,

in fact of the recurrent appearance and importance.

The principle of the method is very simple. We plug the ansatz y(x) =
∑∞

n=0 anx
n

into our differential equation and obtain a recurrence for the coefficient an. The

closed form for an induces the solution. We have to look at the ordinary and

1For a detailed account of holonomic functions (i. e., solutions of holonomic differential equa-
tions) and sequences see [12].
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singular points of the differential equation to choose which variant of this principle

we have to use to get the right solution.

Definition 15 (Ordinary and singular points)

For the homogeneous linear differential equation

b0(x)y(n)(x) + b1(x)y(n−1)(x) + · · ·+ bn(x)y(x) = 0 (3.1)

with polynomial coefficients b0(x), . . . , bn(x) ∈ C[x], with b0(x) 6= 0, the point

x = x0 is an ordinary point of the equation if b0(x0) 6= 0. Any point x = x1

for which b0(x1) = 0, is a singular point of the equation.

Definition 16 (Regular singular points for order 2)

Assume that the point x = x0 is a singular point of the second order differential

equation

b0(x)y′′(x) + b1(x)y′(x) + b2(x)y(x) = 0 (3.2)

with polynomial coefficients bi(x) ∈ C[x], which do not have common roots. Due

to b0(x0) = 0, b0(x) has a factor (x−x0) to some power. By dividing by b0(x) 6= 0

we transform our equation (3.2) into

y′′(x) + p(x)y′(x) + q(x)y(x) = 0,

where p(x) and q(x) are rational functions of x. Since x = x0 is a singular point,

at least one or maybe both of p(x) and q(x) has a denominator which contains

the factor (x− x0).

We call the singular point x = x0 a regular singular point of the equation, if

both of the following conditions are satisfied:

• The denominator of p(x) does not contain the factor (x − x0) to a power

higher than one.

• The denominator of q(x) does not contain the factor (x − x0) to a power

higher than two.

We call the singular point x = x0 a irregular singular point of the equation,

if it is not a regular singular point.
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Singular points of a linear equation of a higher order than 2 are classified in much

the same way.

Example:

The singular point x = x0 of the equation

y′′′(x) + p(x)y′′(x) + q(x)y′(x) + r(x)y(x) = 0

is called a regular singular point if the factor (x − x0) does not appear in the

denominator of p(x) to a power higher than one, of q(x) to a power higher than

two and of r(x) to a power higher than three. If these conditions are not fulfilled,

then the singular point is called a irregular singular point of the equation.

We will explain the different variants of the Frobenius Method by showing exam-

ples for every case.

We concentrate on solutions valid about the origin x = 0. If we solve an equation

about the point x = x0, we obtain solutions valid in a region surrounding this

point and the solutions are expressed in powers of (x − x0). So for simplicity,

whenever we want to obtain solutions about a point other than the origin, we

translate the point x = 0 to that point and proceed with the usual techniques.

The important step is translating the axes, putting x−x0 = v and setting dy
dx

= dy
dv

.

Example:

We want to solve the equation

y′′(x) + (x− 1)2y′(x)− 4(x− 1)y(x) = 0 (3.3)

about the ordinary point x = 1. This means, we want to find a series solution of

the form

y(x) =
∞∑

k=0

yk(x− 1)k =
∞∑

k=0

ykv
k,

where v = x − 1. The differential equation (3.3) is then transformed into a

differential equation with respect to v as follows.

Consider x as a function in v, i. e.,

x = x(v) = v + 1,

and define

Y (v) := y(x(v)).



Frobenius Method 20

Observe that due to x′(v) = dx
dv

(v) = 1:

dY

dv
(v) = Dvy(x(v)) = y′(x(v)) · x′(v) = y′(x),

and
d2Y

dv2
(v) = Dvy

′(x(v)) = y′′(x(v)) · x′(v) = y′′(x).

Hence, equation (3.3) turns into

d2Y

dv2
(v) + (x(v)− 1)2dY

dv
(v)− 4(x(v)− 1)Y (v) = 0,

or equivalently:

Y ′′(v) + v2Y ′(v)− 4vY (v) = 0.

In the following section we obtain power series solutions valid near an ordinary

point of a linear equation.

3.1 Solutions near an ordinary point

We want to solve the following differential equation (see [20], Section 103, Exercice

16) of third order near an ordinary point

y′′′(x) + x2y′′(x) + 5xy′(x) + 3y(x) = 0. (3.4)

The coefficient of y′′′(x) is one and therefore never gets zero. Hence, the differen-

tial equation (3.4) has no singular point. We solve near the ordinary point x = 0.

We know from Theorem 9 in Chapter 5 that there is a solution

y =
∞∑

n=0

anx
n (3.5)

where three arbitrary complex constants pop up, namely, a0, a1 and a2.

Note: In general, for order d one can freely choose the first d coefficients of the

series, i. e., a0, . . . , ad−1.

This power series converges inside a circle with center at x = 0 which spread out

to the singular point nearest to x = 0. If there exists no singular point to (3.5),

the power series solution is valid for all x ∈ C.

Hence, we know in advance that there is a solution (3.5) valid in the complex
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plane with a0, a1 and a2 arbitrary constants.

In the first step we substitute (3.5) into our differential equation (3.4) and derive

∞∑
n=0

n(n− 1)(n− 2)anx
n−3 +

∞∑
n=0

n(n− 1)anx
n +

∞∑
n=0

5nanx
n +

∞∑
n=0

3anx
n = 0.

Since there is the same power of x in the last three sums, we can combine these

series to

∞∑
n=0

n(n− 1)(n− 2)anx
n−3 +

∞∑
n=0

(n(n− 1) + 5n + 3)︸ ︷︷ ︸
=n2+4n+3

anx
n = 0.

n2 + 4n + 3 can be factored to (n + 1)(n + 3) and so we get:

∞∑
n=0

n(n− 1)(n− 2)anx
n−3 +

∞∑
n=0

(n + 1)(n + 3)anx
n = 0.

We know that for a power series, which vanishes identically over any interval,

each coefficient in the series must be zero. So in the next step we write the two

series in a form in which the exponents on x will be the same. When we want to

determine an, we can easily pick off the coefficient of each power of x.

We shift the index in the second series, replacing n by (n− 3).

∞∑
n=0

n(n− 1)(n− 2)anx
n−3 +

∞∑
n=3

(n− 2)nan−3x
n−3 = 0.

If this should be zero the coefficient of each seperate power of x must be zero.

For n = 0, n = 1 and n = 2 the second series has not yet started, so we get

contributions from the first series only.

n = 0 : 0 · a0 = 0,

n = 1 : 0 · a1 = 0,

n = 2 : 0 · a2 = 0,

n ≥ 3 : n(n− 1)(n− 2)an + (n− 2)nan−3 = 0.

Hence, a0, a1 and a2 can be chosen arbitrarily. We use the relation for n ≥ 3 to

determine the other a’s, that means we get a relation for an in terms of a0, a1

and a2. Since we can divide

n(n− 1)(n− 2)︸ ︷︷ ︸
6=0 for n≥3

an + (n− 2)nan−3 = 0
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by n(n− 1)(n− 2), we derive a recurrence relation for an:

an = − 1

(n− 1)
an−3, n ≥ 3.

We can see that each a is determined by the a with subscript three lower than

its own. We arrange the iterated instances of the relation in three rows to derive

a general shape.

a3 = −1

2
a0, a6 = −1

5
a3, a9 = −1

8
a6, . . . , a3k = − 1

3k − 1
a3k−3

a4 = −1

3
a1, a7 = −1

6
a4, a10 = −1

9
a7, . . . , a3k+1 = − 1

3k
a3k−2

a5 = −1

4
a2, a8 = −1

7
a5, a11 = − 1

10
a8, . . . , a3k+2 = − 1

3k + 1
a3k−1

We obtain the product of corresponding members of the equation from each row.

The result,

a3k =

(
− 1

3k − 1

)(
− 1

3k − 4

)(
− 1

3k − 7

)
· · ·
(
−1

2

)
︸ ︷︷ ︸

k terms

a0,

a3k+1 =

(
− 1

3k

)(
− 1

3k − 3

)(
− 1

3k − 6

)
· · ·
(
−1

3

)
︸ ︷︷ ︸

k terms

a1,

a3k+2 =

(
− 1

3k + 1

)(
− 1

3k − 2

)(
− 1

3k − 5

)
· · ·
(
−1

4

)
︸ ︷︷ ︸

k terms

a2,

simplifies for k ≥ 1 to

a3k = (−1)k 1

2 · 5 · 8 · · · (3k − 1)
a0,

a3k+1 = (−1)k 1

3 · 6 · 9 · · · (3k)
a1,

a3k+2 = (−1)k 1

4 · 7 · 10 · · · (3k + 1)
a2.

We substitute the expressions for the a’s into the series (3.5) for y. The nature

of our obtained expressions claims to split the series into the three series

y =

[
a0 +

∞∑
k=1

a3kx
3k

]
+

[
a1x +

∞∑
k=1

a3k+1x
3k+1

]
+

[
a2x

2 +
∞∑

k=1

a3k+2x
3k+2

]
.
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Now we use the known results for a3k, a3k+1 and a3k+2 to obtain the general

solution dependent on the arbitrary constants a0, a1 and a2

y = a0

[
1 +

∞∑
k=1

(−1)kx3k

2 · 5 · 8 · · · (3k − 1)

]
+ a1

[
x +

∞∑
k=1

(−1)kx3k+1

3 · 6 · 9 · · · (3k)

]

+a2

[
x2 +

∞∑
k=1

(−1)kx3k+2

4 · 7 · 10 · · · (3k + 1)

]
.

We know from theory, e. g., ratio test, that these series converge at least for

|x| < 1.

A nonhomogeneous equation can be handled in much the same way, if the non-

homogeneous part has a power series expansion. In this case the coefficients have

to be equated in two power series.

General Remark: From now on we restrict to differential equations of order 2;

however the whole method can be extended to the case of higher orders.

3.2 Solutions near Regular Singular Points

In this section we deal with the solution of linear equations near regular singular

points. In the case of solutions near a regular singular point we have to look at the

indicial equation of the differential equation. The roots of this special equation

give us the idea how to proceed in the method. Now we want to deduce this

indicial equation for our problem.

Suppose x = 0 is a regular singular point of the differential equation

y′′ + p(x)y′ + q(x)y = 0,

where p and q are rational functions in x. The denominator of p(x) has no factor

x to a power higher than one. Therefore we can write p(x) in terms of a rational

function r(x) ∈ C(x)

p(x) =
r(x)

x
,

with r(0) ∈ C. Consequently, r(x) has a power series expansion about x = 0 of

the form

p(x) =
p0

x
+ p1 + p2x + p3x

2 + · · · .
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With the same argument we get an expansion about x = 0 for q(x) of the form

q(x) =
q0

x2
+

q1

x
+ q2 + q3x + q4x

2 + · · · ,

valid in some region surrounding the origin.

This motivates the following ansatz for a power series solution to our equation:

y =
∞∑

n=0

anx
n+c = a0x

c + a1x
c+1 + a2x

c+2 + · · · (3.6)

with appropriate chosen c and coefficients an ∈ C. The series for y, p and q are

inserted into our differential equation y′′+p(x)y′+q(x)y = 0 and we only consider

the first few terms.

c(c− 1)a0x
c−2 + (c + 1)ca1x

c−1 + (c + 2)(c + 1)a2x
c + · · ·

+
[p0

x
+ p1 + p2x + · · ·

] [
ca0x

c−1 + (c + 1)a1x
c + (c + 2)a2x

c+1 + · · ·
]

+
[ q0

x2
+

q1

x
+ q2 + q3x + · · ·

] [
a0x

c + a1x
c+1 + a2x

c+2 + · · ·
]

= 0

multiplied out gives us

c(c− 1)a0x
c−2 + (c + 1)ca1x

c−1 + (c + 2)(c + 1)a2x
c + · · ·

+p0ca0x
c−2 + [p0(c + 1)a1 + p1ca0] x

c−1 + · · ·

+q0a0x
c−2 + [q0a1 + q1a0] x

c−1 + · · · = 0.

To derive the indicial equation, we set the coefficient of xc−2 to zero and obtain

[c(c− 1) + p0c + q0] a0 = 0.

We assume a0 6= 0, because a0 is the coefficient of the lowest power of x in the

solution. Dividing by a0 delivers the indicial equation at x = 0:

c(c− 1) + p0c + q0 = 0, (3.7)

where p0 and q0 are known constants. Since the equation (3.7) is a quadratic

equation, it gives us two roots c = c1 and c = c2. We call the ’larger’ root c1, if

we have c1 ≥ c2 in case the roots are real; otherwise we call c1 the ’larger’ root if

Re(c1) ≥ Re(c2).

We call the difference of the two roots c = c1 − c2. The further steps of the

technique depend on c. If the difference c is not integral, we get a solution for

each of the two values c1 and c2 of the form (3.6), where a0 should be arbitrary.
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On the contrary, if the difference c is integral, a logarithmic term may be involved

in the solution.

Proposition 4 (Form of the solution near a regular singular point) 2

Let x = 0 be a regular singular point of the equation

y′′ + p(x)y′ + q(x)y = 0. (3.8)

Let c1, c2 ∈ C be roots of the indicial equation (3.7).

It can be proved (see Theorem 10 and 11 in Section 5.2) that equation (3.8) always

has a general solution either of the form

y = A
∞∑

n=0

anx
n+c1 + B

∞∑
n=0

bnx
n+c2

or of the form

y = (A + B ln x)
∞∑

n=0

anx
n+c1 + B

∞∑
n=0

bnx
n+c2

in which A and B are arbitrary constants. Furthermore, it can be proved that the

infinite series which occur in the above forms of solution converge in at least the

annular region bounded by two circles centered at x = 0, one of arbitrarily small

radius, the other extending to the singular point (of the equation) nearest x = 0.

We have to consider the different cases for the difference c of the roots c1 and c2

to get an idea which solution is possible or rather which is the correct one for our

problem. Step by step we examine the cases c is nonintegral, c is zero and c is a

positive integer. Again we explain the method by showing an example.

3.2.1 Difference c of roots is nonintegral

We consider the differential equation (see [20], Section 107, (1))

2xy′′(x) + (1 + x)y′(x)− 2y(x) = 0 (3.9)

2[20] E.D. Rainville, S. 317, 1964.
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with the only regular singular point x = 0. After the transformation

y′′(x) +
x + 1

2x
y′(x)− 1

2x
y = 0,

we have that

p(x) =
x + 1

2x
=

1/2

x
+

1

2

and

q(x) = − 1

2x
=

0

x2
+
−1/2

x
.

Hence the indicial equation (3.7) takes on the form

c(c− 1) +
1

2
c + 0 = 0,

or equivalently,

c2 − 1

2
c = 0.

Let us assume that there is a solution of the form

y =
∞∑

n=0

anx
n+c,

which we directly plug into our equation (3.9) and derive

∞∑
n=0

2(n+c)(n+c−1)anx
n+c−1+

∞∑
n=0

(n+c)anx
n+c−1+

∞∑
n=0

(n+c)anx
n+c−2

∞∑
n=0

anx
n+c = 0.

In the next step we collect terms with the same exponent of x and get

∞∑
n=0

(n + c)(2n + 2c− 1)anx
n+c−1 +

∞∑
n=0

(n + c− 2)anx
n+c = 0.

We want to derive a recurrence relation for an. Hence we shift the index from n

to n− 1 in the second sum to get the same exponent of x in both sums:

∞∑
n=0

(n + c)(2n + 2c− 1)anx
n+c−1 +

∞∑
n=1

(n + c− 3)an−1x
n+c−1 = 0.

Since the total coefficient of each power of x must vanish, we derive for the

determination of c and the an’s the following equations

n = 0 : c(2c− 1)a0 = 0,

n ≥ 1 : (n + c)(2n + 2c− 1)an + (n + c− 3)an−1 = 0.



Frobenius Method 27

Without loss of generality we assume a0 6= 0. We note that the case n = 0 delivers

the indicial equation

c(2c− 1) = 0,

with the two roots c1 = 1
2

and c2 = 0. The difference of the roots is c = c1−c2 = 1
2
,

which is nonintegral. In this case the Frobenius method always gives (see (5.9)

and (5.10) in Chapter 5) the two linearly independent solutions

y =
∞∑

n=0

anx
n+c1 and y =

∞∑
n=0

anx
n+c2 .

To determine the recurrence relation we first substitute c1 = 1
2

for the value c

n ≥ 1 : (n +
1

2
)(2n + 1− 1)an + (n +

1

2
− 3)an−1 = 0,

(n +
1

2
)2nan + (n− 5

2
)an−1 = 0,

n ≥ 1 : an = −(2n− 5)an−1

(2n + 1)2n
.

We collect the first terms in a vertical array to get a general formula for an:

a0 is arbitrary,

a1 = −(−3)a0

2 · 3
,

a2 = −(−1)a1

4 · 5
,

a3 = −(+1)a2

6 · 7
,

...

an = −(2n− 5)an−1

2n(2n + 1)
.

Iteration brings for n ≥ 1:

an = (−1)n (−3)(−1)(+1)(+3) · · · (2n− 5)a0

2 · 3 · 4 · 5 · 6 · 7 · · · 2n(2n + 1)

= (−1)n 3a0

2nn!(2n− 3)(2n− 1)(2n + 1)
.

We use a0 = 1 to write the particular solution y1 corresponding to c1 = 1
2

y1 = x
1
2 +

∞∑
n=1

(−1)n3xn+ 1
2

2nn!(2n− 3)(2n− 1)(2n + 1)
.
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In the next step we want to find also a particular solution y2 corresponding to

the second root c2 = 0, i. e., we consider the analogous recurrence with c2 = 0.

To avoid confusion we write bn instead of an for this second case

n ≥ 1 : (n + c)(2n + 2c− 1)bn + (n + c− 3)bn−1 = 0.

Again we substitute c2 = 0 for the value c and derive

n(2n− 1)bn + (n− 3)bn−1 = 0.

We obtain the following recurrence relation

bn = −(n− 3)bn−1

n(2n− 1)
.

As usual we use a vertical array for the coefficients:

b0 is arbitrary,

b1 = −(−2)b0

1 · 1
,

b2 = −(−1)b1

2 · 3
,

b3 = −0 · b2

3 · 5
,

...

bn = 0 for n ≥ 3.

With the setting b0 = 1 we calculate the only remaining coefficients b1 = 2 and

b2 = 1
3
. Therefore we found the second particular solution y2, corresponding to

the smaller root c2 = 0, to be

y2 = 1 + 2x +
1

3
x2.

Since x = 0 is the only singular point from C, the two solutions y1 and y2 are

valid at least for all x ∈ C?(= C\{0}).
The two solutions y1 and y2 are linearly independent because of the following

observation:
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xc, where c /∈ Z, is not analytic in an open disc around 0.

We reformulate the solution y1:

y1 = x
1
2 +

∞∑
n=1

(−1)n3xn+ 1
2

2nn!(2n− 3)(2n− 1)(2n + 1)

=
∞∑

n=0

(−1)n3xn+ 1
2

2nn!(2n− 3)(2n− 1)(2n + 1)

= x
1
2 ·

∞∑
n=0

(−1)n3xn

2nn!(2n− 3)(2n− 1)(2n + 1)︸ ︷︷ ︸
analytic

.

x
1
2 is not analytic in an open disc around 0, because it can be represented as

x
1
2 = e

1
2
·ln(x),

and the function ln(x) is not analytic.

The solution

y2 = 1 + 2x +
1

3
x2

is analytic for all x.

To test for linear independence we set up the following equation:

α · y1(x) = β · y2(x),

where α, β ∈ C. The equation is only fulfilled for the case α = 0 and β = 0.

We cannot get equality of something not-analytic and something analytic by

multiplication of a complex number. Hence y1 and y2 are linearly independent.

The general solution can be written as

y = Ay1 + By2,

with arbitrary constants A and B.

3.2.2 Difference c of roots is zero - equal roots

We cannot obtain two linearly independent solutions, if the indicial equation has

equal roots. In this section we present a method to get two linearly independent

solutions in this case.
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Consider the problem of solving the differential equation (see [20], Section 109,

Exercise 1)

x2y′′(x)− x(x + 1)y′(x) + y(x) = 0 (3.10)

about the regular singular point x = 0. We can set up the indicial equation as

developed in the theory above by looking at p(x) and q(x) in

y′′(x) +
−x(x + 1)

x2︸ ︷︷ ︸
p(x)

y′(x) +
1

x2︸︷︷︸
q(x)

y(x) = 0.

From p(x) = −x(x+1)
x2 = −x−x2

x2 = − 1
x
− 1 and q(x) = 1

x2 we derive p0 = −1 and

q0 = 1.

The indicial equation

c(c− 1) + p0c + q0 = 0

becomes

c(c− 1)− c + 1 = 0,

c2 − 2c + 1 = 0,

with the roots c1 = c2 = 1. Substituting c1 (= c2) for c as before in

y(x) =
∞∑

n=0

anx
n+c (3.11)

yields only one solution. From now on we call the left member of our differential

equation L(y), i. e.,

L(y) := x2y′′(x)− x(x + 1)y′(x) + y(x).

The strategy is to put (3.11) into L(y) and try to come as close as possible to
make L(y) zero without choosing c.

L(y) = x2
∞∑

n=0

an(n + c)(n + c− 1)xn+c−2 − (x2 + x)
∞∑

n=0

an(n + c)xn+c−1 +
∞∑

n=0

anxn+c

=
∞∑

n=0

an(n + c)(n + c− 1)xn+c −
∞∑

n=0

an(n + c)xn+c −
∞∑

n=0

an(n + c)xn+c+1 +
∞∑

n=0

anxn+c

=
∞∑

n=0

an[(n + c)(n + c− 1)− (n + c) + 1]xn+c −
∞∑

n=0

an(n + c)xn+c+1
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With the index shift n to n− 1 in the second sum we attain the same exponent

of x in both sums

L(y) =
∞∑

n=0

an[(n + c)(n + c− 1)− (n + c) + 1]xn+c (3.12)

−
∞∑

n=1

an−1(n + c− 1)xn+c. (3.13)

We normally derive the indicial equation, if the coefficient of xn+c, where n = 0,

is set to 0. Now we leave c as a parameter and try to make every term except

the n = 0-term in L(y) zero. More precisely, we set the coefficients to zero for all

n ≥ 1 :

[(n + c)(n + c− 1)− (n + c) + 1]an − (n + c− 1)an−1 = 0.

By simplifications we derive a recurrence relation for our coefficient an:

an =
(n + c− 1)an−1

[(n + c)(n + c− 1)− (n + c− 1)]
=

an−1

n + c− 1
.

We use a vertical array to list the coefficients iterated back to a0:

a0 is arbitrary,

a1 =
a0

c
,

a2 =
a1

c + 1
=

a0

c(c + 1)
,

a3 =
a2

c + 2
=

a0

c(c + 1)(c + 2)
,

...

an =
an−1

n + c− 1
=

a0

c(c + 1)(c + 2) . . . (c + n− 1)

We choose a0 = 1 and write the n-th coefficient in reliance only on c:

an(c) =
1

c(c + 1)(c + 2) . . . (c + n− 1)
.

This way we computed an approximation to a solution that is now depending on

c and x; namely,

y(x, c) = xc +
∞∑

n=1

an(c)xn+c,
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in which for n ≥ 1:

an(c) =
1

c(c + 1)(c + 2) . . . (c + n− 1)
.

By construction, y(x, c) has the property that L(y(x, c)) is just the summand for

n = 0 in the sum (3.12), i. e.,

L[y(x, c)] = [c(c− 1)− c + 1]a0x
c = (c− 1)2a0x

c.

The choice c = 1 makes the right member of L[y(x, c)] zero, hence c = 1 yields a

solution. The parameter c occurs with the power two in L[y(x, c)]. We know from

elementary calculus, that the derivation of a function with an exponent contains

this exponent decremented by one. Differentiating L[y(x, c)] with respect to c

yields

∂L[y(x, c)]

∂c
= 2(c− 1)a0x

c + (c− 1)2a0x
c ln x.

If we take in account that we set a0 = 1 we obtain

∂L[y(x, c)]

∂c
= 2(c− 1)xc + (c− 1)2xc ln x.

The choice c = 1 makes the right member of ∂L[y(x,c)]
∂c

zero. But the crucial point

now is that

∂L[y(x, c)]

∂c
= L

(
∂y(x, c)

∂c

)
. (3.14)

Hence two solutions of L(y) = 0 are

y1 = y(x, c) |c=1= y(x, 1) = x +
∞∑

n=1

an(1)xn+1,

and

y2 =
∂y(x, c)

∂c
|c=1= xc ln x +

∞∑
n=1

an(c)xn+c ln x +
∞∑

n=1

a′n(c)xn+c |c=1

= y1 ln x +
∞∑

n=1

a′n(1)xn+1.

Note: Essentially one needs to prove that (3.14), i. e., that interchanging the

order of differentiation (like in DcDy y(x, c) = DyDc y(x, c)) is indeed allowed.
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But we omit this step, since we use this rule only for finding (3.15) and (3.16)

below. That they are indeed two linearly independent solutions, can be verified

in a direct fashion.

Before we can calculate the solutions (3.15) and (3.16), we differentiate an(c) by

help of the formula (2.3) and get

a′n(c) = a(n) ·
(

1

c
+

1

c + 1
+

1

c + 2
+ · · ·+ 1

c + n− 1

)
.

In the following calculation we need the commonly used expression Hn for a

partial sum of the harmonic series

1 +
1

2
+

1

3
+ · · ·+ 1

n
=

n∑
k=1

1

k
= Hn.

We need to figure out an(1) and a′n(1)

an(1) =
1

1 · 2 · 3 · · ·n︸ ︷︷ ︸
n!

a′n(1) = an(1) ·
(

1

1
+

1

2
+

1

3
+ · · ·+ 1

n

)
︸ ︷︷ ︸

:=Hn

=
1

n!
Hn

We plug the calculated coefficients into our solutions y1 and y2, and obtain after

some simplifications that

y1 = x +
∞∑

n=1

1

n!
xn+1 =

∞∑
n=0

1

n!
xn+1 = xex, (3.15)

y2 = xex ln x +
∞∑

n=1

1

n!
Hnx

n+1. (3.16)

With the desired solutions we can set up the general solution valid for all finite

x ∈ C?:

y = Ay1 + By2,

with A and B arbitrary constants. y1 and y2 are linearly independent because of

the presence of ln(x) in y2. ln(x) is not analytic in an open disc around 0, therefore
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y2 is not analytic. y1 is analytic for all x. To test for linear independence we set

up the following equation:

α · y1(x) = β · y2(x),

where α, β ∈ C. The equation is only fulfilled for the case α = 0 and β = 0. We

cannot get equality of something not-analytic and something analytic by multi-

plication of a complex number. Hence y1 and y2 are linearly independent.

Summarizing we can post the following statement:

If the indicial equation has two equal roots c1 = c2, then the two linearly inde-

pendent solutions will always have the form

y1 = xc1 +
∞∑

n=1

anx
n+c1 ,

and

y2 = y1 ln x +
∞∑

n=1

bnx
n+c1 ,

where c1, an and bn are dependent upon the coefficients in the particular equation

being solved.

3.2.3 Difference c of roots is a positive integer - nonlogarithmic

case

We consider the differential equation (see [20], Section 110, (1))

xy′′(x)− (4 + x)y′(x) + 2y(x) = 0. (3.17)

Again we denote the left side as L(y) and plug in our ansatz for the general

solution y =
∑∞

n=0 anx
n+c and derive

L(y) =
∞∑

n=0

[(n + c)(n + c− 1)− 4(n + c)]anx
n+c−1 −

∞∑
n=0

(n + c− 2)anx
n+c.
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With an index shift in the second sum from n to n− 1 we get the same exponent

of x

L(y) =
∞∑

n=0

(n + c)(n + c− 5)anx
n+c−1 −

∞∑
n=1

(n + c− 3)an−1x
n+c−1.

We derive the indicial equation, if we take the summand for n = 0 in the sum

above. Hence, we get with a0 6= 0

c(c− 5) = 0.

We get the two roots c1 = 5 and c2 = 0, so the difference c = c1 − c2 = 5.

Consequently, we will get two power series solutions, one starting with a x0-term

and the other starting with a x5-term. Or, in other words, if we first use the

larger root c1 = 5, or rather use the ansatz series

y =
∞∑

n=0

anx
n+5

we cannot get two solutions, because the x0-term would never enter our solution.

But if we use the smaller root c2 = 0, our solution ansatz has the form

y =
∞∑

n=0

anx
n

and the x5-term appears too. Plugging into the left member L(y) gives

L(y) =
∞∑

n=0

n(n− 5)anx
n−1 −

∞∑
n=1

(n− 3)an−1x
n−1.

To get L(y) = 0 each coefficient in the series has to vanish

n = 0 : 0 · a0 = 0,

n ≥ 1 : n(n− 5)an − (n− 3)an−1 = 0.

The initial value a0 can be chosen arbitrarily and since we connot divide by (n−5)

until n > 5, we write the relations separately in a vertical array:
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n = 0 : a0 is arbitrary,

n = 1 : −4a1 + 2a0 = 0,

n = 2 : −6a2 + a1 = 0,

n = 3 : −6a3 + 0 · a2 = 0,

n = 4 : −4a4 − a3 = 0,

n = 5 : 0 · a5 − 2a4 = 0,

n ≥ 6 : an =
(n− 3)an−1

n(n− 5)
.

From these relations we can conclude that:

a1 =
1

2
a0,

a2 =
1

6
a1 =

1

12
a0,

a3 = 0,

a4 = 0,

0 · a5 = 0.

Since a5 again can be chosen arbitrarily, each an, where n > 5, will be calculated

with a5 as:

a6 =
3a5

6 · 1
,

a7 =
4a6

7 · 2
,

...

an =
(n− 3)an−1

n(n− 5)
.

By iterating back we derive a general formula for an with a5 arbitrary:

an =
3 · 4 · 5 · · · (n− 3)a5

(6 · 7 · 8 · · ·n)(n− 5)!
=

3 · 4 · 5a5

(n− 2)(n− 1)n(n− 5)!
.

Summarizing, the general solution is

y = a0(1 +
1

2
x +

1

12
x2) + a5

[
x5 +

∞∑
n=6

60xn

(n− 2)(n− 1)n(n− 5)!

]
, (3.18)
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with a0 and a5 arbitrary.

Summarizing if the difference c is a positive integer, we try a series ansatz of

the form y =
∑∞

n=0 anx
n+c using the smaller root c = c2. If a0 and ac both can

be chosen arbitrarily, we can go straight forward and obtain the general solution

like above. Otherwise we get a relation for ac that is impossible, while our usual

assumption a0 6= 0 stays valid. In this case the general solution will involve a

logarithmic term as in the case of equal roots, described in Section 3.2.2. This

case will be treated now.

3.2.4 Difference c of roots is a positive integer - logarithmic

case

For the differential equation (see [20], Section 110, (4), and Section 111, (1))

x2y′′(x) + x(1− x)y′(x)− (1 + 3x)y(x) = 0. (3.19)

it will turn out that a0 and ac both cannot be chosen arbitrarily. Plugging in our

ansatz for the general solution y =
∑∞

n=0 anx
n+c into the left hand side denoted

by L(y), and executing the usual simplifications and index shifts leads to

L(y) =
∞∑

n=0

(n + c + 1)(n + c− 1)anx
n+c −

∞∑
n=1

(n + c + 2)an−1x
n+c.

The indicial equation (c+1)(c−1) = 0 gives us the two roots c1 = 1 and c2 = −1.

The difference c = c1 − c2 = 2 is a positive integer. Using c = −1 we find and

write the relations

n ≥ 1 : n(n− 2)an − (n + 1)an−1 = 0,

with a0 kept arbitrarily, in a vertical array:

n = 1 : −a1 − 2a0 = 0,

n = 2 : 0 · a2 − 3a1 = 0,

n ≥ 3 : an =
(n + 1)an−1

n(n− 2)
.
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These relations get simplified to

a1 = −2a0,

0 · a2 = 3a1 = −6a0.

These relations are only satisfied if we choose a0 = 0, but then a2 will be the

only arbitrary constant and we can only derive one solution, which coincides for

the solution corresponding to the larger root c1 = 1. This is an instance where

a logarithmic term will enter the solution. The further proceeding is exactly the

same procedure like in the Section 3.2.2, where the indicial equation had equal

roots. Only one step is different than before, namely the choice for a0.

As in Section 3.2.2 we want to get L(y) = 0 without choosing c. For n ≥ 1 we

have:

an =
(n + c + 2)an−1

(n + c + 1)(n + c− 1)
,

which can be iterated further to derive:

an =
(c + 3)(c + 4) · · · (c + n + 2)a0

(c + 2)(c + 3)(c + 4) · · · (c + n + 1) · c(c + 1) · · · (c + n− 1)

=
(c + n + 2)a0

(c + 2) · c(c + 1) · · · (c + n− 1)
.

Consequently, for

y = a0x
c +

∞∑
n=1

(c + n + 2)a0x
n+c

(c + 2) · c(c + 1)(c + 2) · · · (c + n− 1)

we have that

L(y) = (c + 1)(c− 1)a0x
c.

We have seen that for the choice c = 1 we get only one solution coinciding with

that for c = −1. However, for the choice c = −1 we in principle would be able

- by following the same strategy as in Section 3.2.2 - to derive two solutions by

using y(x, c) and ∂y(x,c)
∂c

, see Section 3.2.2 for more details.

But if we choose c = −1, a problem arises because of the term (c + 1) in the

denominator. To eliminate this term and therefore the troubles, we set a0 = (c+1)

and derive:

y(x, c) = (c + 1)xc +
∞∑

n=1

(c + 1)(c + n + 2)xn+c

(c + 2) · c(c + 1)(c + 2) · · · (c + n− 1)

= (c + 1)xc +
∞∑

n=1

(c + n + 2)xn+c

(c + 2) · c(c + 2) · · · (c + n− 1)
,
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with the corresponding

L(y(x, c)) = (c + 1)2(c− 1)xc.

Then, as in Section 3.2.2 we obtain two linearly independent solutions:

y1 = y(x, c) |c=−1= y(x,−1),

y2 =

(
∂y(x, c)

∂c

)
|c=−1 .

The example in Section 3.19 shows more details.

In general the essential point for this case is to choose a0 = (c− c2), where c2 is

the smaller root of the indicial equation.

3.3 Solutions near Irregular Singular Points

This chapter is a brief introduction to the topic of solutions near an irregular

singular point. The solutions are not obtained in a direct way like above, but

even though we will find a solution for the specific differential equation (see [20],

Section 126, (1))

x2y′′(x) + (3x− 1)y′(x) + y = 0, (3.20)

which has a irregular singular point at the origin x = 0. As above we call the left

side of (3.20) L(y). The standard proceeding, i. e., to plug the ansatz

y(x) =
∞∑

n=0

anx
n+c

into the differential equation (3.20), leads to

L(y) =
∞∑

n=0

(n + c)(n + c− 1)anx
n+c + (3x− 1)

∞∑
n=0

(n + c)anx
n+c−1 +

∞∑
n=0

anx
n+c

=
∞∑

n=0

anx
n+c ((n + c)(n + c− 1) + 3(n + c) + 1)︸ ︷︷ ︸

=n2+2nc+c2+2n+2c+1

=(n+c+1)2

−
∞∑

n=0

anx
n+c−1
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L(y) =
∞∑

n=0

(n + c + 1)2anx
n+c −

∞∑
n=0

(n + c)anx
n+c−1

=
∞∑

n=1

(n + c)2anx
n+c−1 −

∞∑
n=0

(n + c)anx
n+c−1.

The term for n = 0 delivers the indicial equation

c = 0,

which gives one root, i. e., c = 0.

The indicial equation has degenerated from a quadratic form in the case of a

regular singular point to a linear form in the case of an irregular one.

For n ≥ 1 we derive with c = 0 the following recurrence relation:

n2an−1 − nan = 0.

With a simple transformation we derive

an = nan−1 = n(n− 1)an−2 = n(n− 1)(n− 2)an−3 · · · = n!a0,

which gives the tentative solution

y1(x) = 1 +
∞∑

n=1

n!xn,

where a0 = 1. The ratio test

lim
n→∞

∣∣∣∣an+1

an

· xn+1

xn

∣∣∣∣ < 1,

together with the side calculation

an+1

an

=
(n + 1)!

n!
=

(n + 1)n!

n!
= n + 1,

leads to the following condition for x for sufficiently large n:

|x| < 1

n + 1
.

Hence the series is divergent for x 6= 0.
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Because we only found a divergent solution to (3.20), following [20], we try another

approach. We represent n! in the integral gamma function form:

n! =

∫ ∞

0

e−ttn dt,

which can be found, e. g., in [20]. The solution y1 then gets - by formal (!)

manipulation - modified to

y1 =
∞∑

n=0

(∫ ∞

0

e−ttn dt

)
xn

=

∫ ∞

0

e−t

(
∞∑

n=0

(xt)n

)
dt

=

∫ ∞

0

e−t

1− xt
dt.

Let us assume that x ≤ 0. From −xt ≥ 0 we get 1− xt ≥ 1 and therefore

0 ≤ 1

1− xt
≤ 1. (3.21)

Because of the observation∣∣∣∣∫ ∞

0

e−t

1− xt
dt

∣∣∣∣ ≤ ∫ ∞

0

e−t dt = 1

we found out that the integral

Y1(x) :=

∫ ∞

0

e−t

1− xt
dt

is absolutely and uniformly convergent on any closed interval ⊆ ] −∞, 0]. The

inequality (3.21) leads us also to the same conclusion for

Y ′
1(x) :=

∫ ∞

0

te−t

(1− xt)2
dt

because of ∣∣∣∣∫ ∞

0

te−t

(1− xt)2
dt

∣∣∣∣ ≤ ∫ ∞

0

te−t dt = 1.

A similar result holds for Y ′′
1 (x).

Finally we show that Y1(x) indeed is a particular solution of (3.20).

First we multiply Y1 by x and get

xY1 =

∫ ∞

0

xe−t

1− xt
dt.
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We differentiate the equation with respect to x and obtain

xY ′
1 + Y1 =

∫ ∞

0

xte−t

(1− xt)2
+

e−t

1− xt
dt

=

∫ ∞

0

(1− xt)e−t + xte−t

(1− xt)2
dt

=

∫ ∞

0

e−t

(1− xt)2
dt.

Multiplying the equation by x gives

x2Y ′
1 + xY1 =

∫ ∞

0

xe−t

(1− xt)2
dt =

∫ ∞

0

x

(1− xt)2︸ ︷︷ ︸
=:v′

· e−t︸︷︷︸
=:u

dt.

Integration by parts leads to

x2Y ′
1 + xY1 =

∫ ∞

0

u · v − [u′ · v]
∞
0

=

∫ ∞

0

e−t

1− xt
dt︸ ︷︷ ︸

=Y1

+

[
e−t

1− xt

]∞
0

= Y1 − 1.

Hence Y1 satisfies the equation

x2Y ′
1 + (x− 1)Y1 = −1,

which results after differentiating with respect to x in

x2Y ′′
1 + 2xY ′

1 + (x− 1)Y ′
1 + Y1 = 0

⇐⇒ x2Y ′′
1 + (3x− 1)Y ′

1 + Y1 = 0.

Summarizing, by rewriting - in a formal way - a divergent series into a well-defined

integral representation, we derived a particular solution Y1(x), x ≤ 0, of (3.20)

near an irregular singular point.
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Chapter 4

Frobenius Method - Examples with

Mathematica

In Chapter 3 we described how to derive a solution of a differential equation in

form of power series ”by hand”. Now we want to pass through every instance of

the Frobenius Method and solve the differential equations with the assistance of

Mathematica. We apply the command ClearAll[”Global′ ∗ ”] after each example

to delete the values from the previous example.

4.1 Solutions near an ordinary point

We want to solve the following differential equation of third order (see (3.4) in

Section 3.1)

y′′′(x) + x2y′′(x) + 5xy′(x) + 3y(x) = 0 (4.1)

near the ordinary point x = 0. There is a solution

y =
∞∑

n=0

anx
n,

where three arbitrary constants pop up, namely, a0, a1 and a2. We try to solve

the differential equation with Mathematica’s command DSolve.

Example:

In:= dgl1 := y′′′[x] + x2 ∗ y′′[x] + 5x ∗ y′[x] + 3 ∗ y[x]
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In:= FullSimplify[DSolve[dgl1 == 0, y[x], x]]

Out=

{{ y[x] → −C[3]− 1

6
e−

x3

3 x(−6C[2] + 2x2C[3]ExpIntegralE[
1

3
,−x3

3
]

+xC[1]ExpIntegralE[
2

3
,−x3

3
]) }}

In spite of using the command FullSimplify Mathematica provides a solution,

which contains the exponential integral function ExpIntegralE[n, z] = En[z].

Hence the Frobenius Method for solving differential equations gets more attrac-

tive.

We seek for a solution of (4.1) in form of power series. In Section 3.1 we described

how to derive a recurrence relation for an. With the help of Mathematica this

step gets simplified. For this procedure we use again Mallinger’s package Gener-

atingFunctions.m, especially the command DE2RE[dgl == 0, y[x], a[n]], which

transforms the differential equation dgl in y[x] to a recurrence relation in a[n].

Example:

In:= << GeneratingFunctions.m

In:= dgl1 := y′′′[x] + x2 ∗ y′′[x] + 5x ∗ y′[x] + 3 ∗ y[x]

In:= rec = DE2RE[dgl1 == 0, y[x], a[n]]

Out= (1 + n)(3 + n)a[n] + (1 + n)(2 + n)(3 + n)a[3 + n] == 0

In this case the command RSolve[rec == 0, a[n], n] fails to transform the recur-

rence relation rec in a[n] into a closed form for a[n] in n.

Because of the special structure of our recurrence relation we try the command

RESubsequence[rec == 0, a[n], 3 ∗ n], which transforms the recurrence relation

rec in a[n] into a recurrence relation for C1[n] where C1[n] := a[3n], n ≥ 0. Af-

terwards the gained recurrence for the subsequence is solved with the command

RSolve with the choice a[0] = 1.

In:= rec1 = RESubsequence[rec, a[n], 3 ∗ n]

Out= a[n] + (2 + 3n)a[1 + n] == 0

In:= C1[n ] := a[n]/.RSolve[{rec1, a[0] == 1}, a[n], n]//FullSimplify

Out=
{

(−1
3
)n

Γ( 2
3
)

Γ( 2
3
+n)

}
The same procedure is utilized for the other two subsequences.

We want to obtain a solution in form of three power series with 3n, 3n + 1 and

3n + 2 as powers of x.
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In:= rec2 = RESubsequence[rec, a[n], 3 ∗ n + 1]

Out= a[n] + 3(1 + n)a[1 + n] == 0

In:= C2[n ] := a[n]/.RSolve[{rec2, a[0] == 1}, a[n], n]//FullSimplify

Out=
{

(− 1
3
)n

Γ(n+1)

}
In:= rec3 = RESubsequence[rec, a[n], 3 ∗ n + 2]

Out= a[n] + (4 + 3n)a[1 + n] == 0

In:= C3[n ] := a[n]/.RSolve[{rec3, a[0] == 1}, a[n], n]//FullSimplify

Out=
{

(−1
3
)n

Γ( 4
3
)

Γ( 4
3
+n)

}
Because of Definition 2 in Chapter 1, C2[n] could be represented in the following

way:

C2[n] :=
(−1

3
)n

n!
.

We replace n by k an plug our derived coefficients into our power series solution

y =

(
a[0] +

∞∑
k=1

C1[k] ∗ x3k

)

+

(
a[1] ∗ x +

∞∑
k=1

C2[k] ∗ x3k+1

)

+

(
a[2] ∗ x2 +

∞∑
k=1

C3[k] ∗ x3k+2

)
,

with the arbitrary constants a[0], a[1] and a[2].

4.2 Solutions near Regular Singular Points

In the case of solutions near a regular singular point we have a closer look at the

indicial equation of the differential equation. The roots of this special equation

tell us how to continue the steps of the method. We consider the following cases

for the difference of the roots: nonintegral, zero or a positive integer. We start

with an example, where the difference of the roots of the indicial equation turns

out to be nonintegral.
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4.2.1 Indicial equation with difference of roots nonintegral

We consider the differential equation (see (3.9) in Section 3.2.1)

2xy′′ + (x + 1)y′ − 2y = 0,

with the regular singular point x = 0. We try to solve the differential equation

with Mathematica’s command DSolve.

Example:

In:= dgl2 := 2x ∗ y′′[x] + (x + 1) ∗ y′[x]− 2 ∗ y[x]

In:= FullSimplify[DSolve[dgl2 == 0, y[x], x]]

Out=

{{y[x] → 1

24
e

x
2 (2
√
x(5 + x)C[2] + e

x
2 (3 + x(6 + x))(24C[1] +

√
2πC[2]Erf[

√
x√
2
]))}}

In spite of using the command FullSimplify Mathematica provides a solution,

which contains the error function. We get a better result if we use the Frobenius

Method.

Like in the case for solutions near an ordinary point we compute a recurrence

relation for the coefficients. As described in Section 3.2.1, we shift n in the

whole recurrence to n − 1, associated to the index shift and so we derive only

contributions from one sum. Afterwards we transform n to n+c in the coefficients,

but leave the argument of a[n] unchanged, because of our special ansatz solution

y =
∞∑

n=0

anx
n+c.

Example:

In:= dgl2 := 2x ∗ y′′[x] + (x + 1) ∗ y′[x]− 2 ∗ y[x]

In:= rec = DE2RE[dgl2 == 0, y[x], a[n]]

Out= (−2 + n)a[n] + (1 + n)(1 + 2n)a[1 + n] == 0

In:= rec = rec/.n− > n− 1

Out= (−3 + n)a[−1 + n] + (1 + 2(−1 + n))na[n] == 0

In:= rec := (n + c− 3)a[n− 1] + (2n + 2c− 1)(n + c)a[n] == 0
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We need the recurrence in which a[0] pops up. For n = 0 the first part (n + c−
3)a[n− 1] vanishes and we get:

(2c− 1)ca[0] = 0.

Because a[0] 6= 0, we divide by a[0] and derive the indicial equation

(2c− 1)c = 0.

We proceed with Mathematica to compute the roots of our indicial equation and

the difference of the roots.

In:= indequ := (2c− 1) ∗ c

In:= roots = c/.Solve[indequ == 0, c]

Out=
{
0, 1

2

}
In:= c1 := roots[[2]], c2 := roots[[1]]

In:= s = c1− c2

Out= 1
2

Since the difference is nonintegral, we will get two linearly independent solutions

with each choice for c: c = c1 = 1
2

and c = c2 = 0. In the following we compute a

closed form for the coefficient a(n) for each choice of c and plug it into the general

form for the solution

y = xc +
∞∑

n=1

a(n) · xn+c,

where c stands for the two choices c1 = 0.5 and c2 = 0 from above. We get the

following two linearly independent solutions.

In:= c := 0.5

In:= coeff1 = a[n]/.RSolve[rec == 0, a[0] == 1, a[n], n]

Out=
{

0.282095(−0.5)nGamma[−1.5+n]
Pochhammer[2.,−1+n]Pochhammer[2.5,−1+n]

}
In:= sol1 = xc +

∑∞
n=1 coeff1 · xn+c

Out= x0.5 +
∑∞

n=1

{
0.282095(−0.5)nGamma[−1.5+n]

Pochhammer[2.,−1+n]Pochhammer[2.5,−1+n]

}
In:= c := 0

In:= coeff2 = a[n]/.RSolve[rec == 0, a[0] == 1, a[n], n]

Out=
{

45(−1)−2+n21−n
√

π
n(2−3n+n2)Gamma[1/2+n]

}
In:= sol2 = xc +

∑∞
n=1 coeff2 · xn+c
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Out=1 +
∑∞

n=1

{
45(−1)−2+n21−n

√
πxn

n(2−3n+n2)Gamma[ 1
2
+n]

}
In spite of the fact that we tried to get a simplified representation with the

Mathematica command FullSimplify, we did not succeed.

Note: Pochhammer[a, n] gives the Pochhammer symbol (a)n, which can be

found in Definition 3 in Chapter 1.

The general solution can be written as

y = A · sol1 + B · sol2,

with arbitrary constants A and B.

4.2.2 Indicial equation with equal roots

We know from theory that we get two linearly independent solutions also in this

case with a variation of the method from the previous instance of a nonintegral

difference.

Consider the problem of solving the differential equation (see (3.10) in Section

3.2.2)

x2y′′(x)− x(x + 1)y′(x) + y(x) = 0

about the regular singular point x = 0. Again we try to solve the differential

equation with Mathematica’s command DSolve.

Example:

In:= dgl3 := x2 ∗ y′′[x]− x(x + 1) ∗ y′[x] + y[x]

In:= FullSimplify[DSolve[dgl3 == 0, y[x], x]]

Out={{
y[x] → 2BesselK[0, 2

√
2
√
x]C[2]− C[1]Hypergeometric0F1Regularized[1, 2x]

2x

}}
In spite of using the command FullSimplify Mathematica provides a solution,

which contains the modified Bessel function of the second kind and moreover the

regularized confluent hypergeometric function. We get a much better result using

the Frobenius Method.

We can set up the indicial equation with Mathematica like in the previous exam-

ple.
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Example:

In:= dgl3 := x2 ∗ y′′[x]− x(x + 1) ∗ y′[x] + y[x]

In:= rec = DE2RE[dgl3 == 0, y[x], a[n]]

Out= −na[n] + n2a[1 + n] == 0

In:= rec = rec/.n− > n− 1

Out= −(−1 + n)a[−1 + n] + (−1 + n)2a[n] == 0

In:= rec := −(n + c− 1)a[−1 + n] + (n + c− 1)2a[n] == 0

We need the recurrence in which a[0] pops up. For n = 0 the first part

−(n + c− 1)a[−1 + n] vanishes and we get:

(c− 1)2a[0] = 0.

Because a[0] 6= 0, we divide by a[0] and derive the indicial equation

(c− 1)2 = 0.

We continue to compute the roots of our indicial equation and the difference of

the roots.

In:= indequ := (c− 1)2

In:= roots = c/.Solve[indequ == 0, c]

Out= {1, 1}

In:= c1 := roots[[2]], c2 := roots[[1]]

In:= s = c1− c2

Out= 0

Since the difference is zero, i. e. c = c1 = c2, we will not get two linearly indepen-

dent solutions with the ansatz

y = xc +
∞∑

n=1

an(c) · xn+c.
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In this case we know from Section 3.2.2 that two linearly independent solutions

will always have the form

sol1 = xc1 +
∞∑

n=1

an(c) |c=c1 ·xn+c1,

sol2 = sol1 · ln x +
∞∑

n=1

∂an(c) |c=c1

∂c
· xn+c1,

with the root of the indicial equation c1. First we compute the solution sol1 with

Mathematica.

In:= coeff = a[n]/.RSolve[{rec == 0, a[0] == 1}, a[n], n]

Out=
{

Gamma[c]
Gamma[c+n]

}
In:= c := 1; coeff

Out=
{

1
Gamma[1+n]

}
In:= sol1 = xc +

∑∞
n=1 coeff ∗ xn+c

Out= x +
∑∞

n=1
x1+n

Gamma[1+n]

For the second solution

sol2 = sol1 ∗ ln x +
∞∑

n=1

∂an(c)

∂c
· xn+c

we need first to calculate ∂an(c)
∂c

and then choose the value for c = c1 = 1.

In:= ClearAll[”Global′ ∗ ”]

In:= rec := −(n + c− 1)a[−1 + n] + (n + c− 1)2a[n] == 0

In:= coeff = a[n]/.RSolve[{rec == 0, a[0] == 1}, a[n], n]

Out=
{

Gamma[c]
Gamma[c+n]

}
In:= Deriv = D[coeff, c]

Out=
{

Gamma[c]PolyGamma[0,c]
Gamma[c+n]

− Gamma[c]PolyGamma[0,c+n]
Gamma[c+n]

}
In:= c := 1

In:= sol2 = sol1 ∗ Log[x] +
∑∞

n=1 Deriv ∗ xn+c

Out= sol1 Log[x] +
∑∞

n=1
x1+nHarmonicNumber[n]

Gamma[1+n]
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Because of Definition 2 in Chapter 1 the two solutions can be represented in the

following way:

sol1 = x +
∞∑

n=1

x1+n

n!
=

∞∑
n=0

x1+n

n!
= xex,

sol2 = xex ln x +
∞∑

n=1

x1+nHn

n!
,

according to the results in Section 3.2.2.

Finally we found the two solutions and can set up the general solution valid for

all finite x 6= 0:

y = A · sol1 + B · sol2,

with A and B arbitrary constants. sol1 and sol2 are linearly independent because

of the presence of ln x in sol2.

4.2.3 Difference c of roots is a positive integer - nonlogarithmic

case

We consider the differential equation (see (3.17) in Section 3.2.3)

xy′′(x)− (4 + x)y′(x) + 2y(x) = 0

about the regular singular point x = 0. We try to solve the differential equation

with Mathematica’s command DSolve.

Example:

In:= dgl4 := x ∗ y′′[x]− (4 + x) ∗ y′[x] + 2 ∗ y[x]

In:= FullSimplify[DSolve[dgl4 == 0, y[x], x]]

Out={{
y[x] →

√
x((12 + x(6 + x))(−iC[1] + C[2]) + ex(12 + (−6 + x)x)(iC[1] + C[2]))

√
π
√
−ix

}}
We get a better result using the Frobenius Method.

We calculate the indicial equation with Mathematica like in the previous exam-

ples.
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Example:

In:= dgl4 := x ∗ y′′[x]− (4 + x) ∗ y′[x] + 2 ∗ y[x]

In:= rec = DE2RE[dgl4 == 0, y[x], a[n]]

Out= (2− n)a[n] + (−4 + n)(1 + n)a[1 + n] == 0

In:= rec = rec/.n− > n− 1

Out= (3− n)a[−1 + n] + (−5 + n)na[n] == 0

In:= rec := (3− n− c)a[−1 + n] + (−5 + n + c)(n + c)a[n]

We need the recurrence in which a[0] pops up. For n = 0 the first part

(3− n− c)a[−1 + n] vanishes and we get:

(−5 + c)ca[0] = 0.

Because a[0] 6= 0, we divide by a[0] and derive the indicial equation

(c− 5)c = 0.

We continue to compute the roots of our indicial equation and the difference of

the roots.

In:= indequ := (c− 5) ∗ c

In:= roots = c/.Solve[indequ == 0, c]

Out= {0, 5}

In:= c1 := roots[[2]], c2 := roots[[1]]

In:= s = c1− c2

Out= 5

We get the two roots c1 = 5 and c2 = 0, so the difference is c = c1 − c2 = 5.

We will get two power series solutions, one starting with a x0-term and the other

starting with a x5-term.

We have to single out relations for the first five coefficients

a1 =
1

2
a0,

a2 =
1

6
a1 =

1

12
a0,

a3 = 0,

a4 = 0,

0 · a5 = 0
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with a0 and a5 arbitrary. Since each an, with n > 5, will be calculated with a5

we get a recurrence relation for the coefficients an starting with a5

an =
(n− 3)an−1

n(n− 5)
.

We transform the recurrence relation to (n − 3)a[n − 1] − n(n − 5)a[n] = 0 and

derive the general solution by help of Mathematica.

In:= coeff = a[n]/.RSolve[{(n− 3)a[n− 1]− n(n− 5)a[n] == 0, a[0] == 1}, a[n], n]

Out=
{

(−4+n)(−3+n)C[1]
12Gamma[1+n]

}
In:= c := 5

In:= sol1 = xc +
∑∞

n=6 coeff ∗ xn

Out= x5 +
∑∞

n=6

{
(−4+n)(−3+n)xn

12Gamma[1+n]

}
The general solution is

y = a0(1 +
1

2
x +

1

12
x2) + a5

[
x5 +

∞∑
n=6

(−4 + n)(−3 + n)xn

12Gamma[1 + n]

]
,

with a0 arbitrary and a5 = 1.

Because of Definition 2 in Chapter 1 the solution can be represented in the fol-

lowing way:

y = a0(1 +
1

2
x +

1

12
x2) +

[
x5 +

∞∑
n=6

xn

12(n− 2)(n− 1)n(n− 5)!

]
,

according to the results in Section 3.2.3, but with the choice a5 = 1.

4.2.4 Difference c of roots is a positive integer - logarithmic

case

If we derive a possible relation for ac, the general solution will involve a logarithmic

term as in the case of equal roots. For the differential equation (see (3.19) in

Section 3.2.4)

x2y′′(x) + x(1− x)y′(x)− (1 + 3x)y(x) = 0.

we will detect that a0 and ac are not both arbitrary. Before we start with the usual

proceeding of the Frobenius Method, we try to solve the differential equation with
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Mathematica’s command DSolve.

Example:

In:= dgl5 := x2 ∗ y′′[x] + x(1− x) ∗ y′[x]− (1 + 3x) ∗ y[x]

In:= FullSimplify[DSolve[dgl5 == 0, y[x], x]]

Out=

{{y[x] → (−1 + x(2 + x))C[2] + exx2(3 + x)(6C[1] + C[2]ExpIntegralEi[−x]
6x

}}

In spite of using the command FullSimplify Mathematica provides a solution,

which contains the exponential integral function Ei[−x]. We try to find a better

solution with the Frobenius Method.

Example:

In:= dgl5 := x2 ∗ y′′[x] + x(1− x) ∗ y′[x]− (1 + 3x) ∗ y[x]

In:= rec = DE2RE[dgl5 == 0, y[x], a[n]]

Out= (−3− n)a[n] + n(2 + n)a[1 + n] == 0

In:= rec = rec/.n− > n− 1

Out= (−2− n)a[−1 + n] + (−1 + n)(1 + n)a[n] == 0

In:= rec := (−2− n− c)a[−1 + n] + (−1 + n + c)(1 + n + c)a[n]

We need the recurrence in which a[0] pops up. For n = 0 the first part (−2−n−
c)a[−1 + n] vanishes and we get:

(−1 + c)(1 + c)a[0] = 0.

Because a[0] 6= 0, we divide by a[0] and derive the indicial equation

(−1 + c)(1 + c) = 0.

We continue to compute the roots of our indicial equation and the difference of

the roots.

In:= indequ := (−1 + c)(1 + c)

In:= roots = c/.Solve[indequ == 0, c]

Out= {−1, 1}

In:= c1 := roots[[2]], c2 := roots[[1]]
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In:= s = c1− c2

Out= 2

Inserting the smaller root c1 in

rec := (−2− n− c)a[−1 + n] + (−1 + n + c)(1 + n + c)a[n]

gives the relation

n ≥ 1 : n(n− 2)an − (n + 1)an−1 = 0,

which results in the relations

a1 = −2a0,

0 · a2 = 3a1 = −6a0.

If we choose a0 = 0, a2 will be the only arbitrary constant and we can only

derive one solution corresponding to the larger root c1 = 1. Because of this fact

a logarithmic term enters the solution. We proceed with the same method like

in the case of equal roots. The essential step is the choice for a0. We have to

choose a0 = (c− c2), where c2 is the smaller root of the indicial equation. In our

example a0 = (c− (−1)) = (c + 1) would be the best choice.

In:= coeff = a[n]/.RSolve[REC == 0, a[0] == (c + 1), a[n], n]

Out=
{

(1+c)(2+c+n)Gamma[c]
(2+c)Gamma[c+n]

}
In:= c := 1; coeff

Out=
{

2(3+n)
3Gamma[1+n]

}
In:= sol1 = xc +

∑∞
n=1 coeff ∗ xn+c

Out= x +
∑∞

n=1

{
2(3+n)xn+1

3Gamma[1+n]

}
For the second solution

sol2 = sol1 ∗ ln x +
∞∑

n=1

∂an(c)

∂c
· xn+c

we need first to calculate ∂an(c)
∂c

and then choose the value for c = c1 = 1.

In:= ClearAll[”Global′ ∗ ”]

In:= rec := (−2− n− c)a[−1 + n] + (−1 + n + c)(1 + n + c)a[n] == 0

In:= coeff = a[n]/.RSolve[{rec == 0, a[0] == 1}, a[n], n]
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Out=
{

(1+c)(2+c+n)Gamma[c]
(2+c)Gamma[c+n]

}
In:= Deriv = D[coeff, c]

Out=

{
Gamma[c]((2+c)2+n+(1+c)(2+c)(2+c+n)PolyGamma[0,c]−(1+c)(2+c)(2+c+n)PolyGamma[0,c+n])

(2+c)2Gamma[c+n]

}
In:= c := 1

In:= Deriv = FullSimplify[Deriv]

In:= sol2 = sol1 ∗ Log[x] +
∑∞

n=1 Deriv ∗ xn+c

Out= sol1 Log[x] +
∑∞

n=1

{
x1+n(9+n−6(3+n)HarmonicNumber[n])

9Gamma[1+n]

}
Because of Definition 2 in Chapter 1 the two solutions can be represented in the

following way:

sol1 = x +
∞∑

n=1

2(3 + n)xn+1

3n!
,

sol2 = sol1 ln x +
∞∑

n=1

xn+1(9 + n− 6(3 + n)Hn)

9n!
.
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Chapter 5

Frobenius Method - Existence

Theory

In this chapter we will prove the existence of the solutions of holonomic differential

equations, which are obtained by the Frobenius Method. We execute the proofs

for linear differential equations of order two, but the analog definitions, proofs

and theorems also apply with corresponding modifications to linear differential

equations of higher order.

Our description is based on the presentation in [21].

5.1 Solutions near an ordinary point

Theorem 9 1

Let p(z), q(z) be meromorphic functions defined in a neighborhood of z0 ∈ C.

If z0 is an ordinary point of the equation

w′′(z) + p(z)w′(z) + q(z)w(z) = 0, (5.1)

then there exists a series

w(z) =
∞∑

n=0

an(z − z0)
n, (5.2)

• with a nonzero radius of convergence,

1[21], E. D. Rainville, p. 71, Theorem 16, 1972.
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• containing two arbitrary constants a0 and a1,

• satisfying the differential equation (5.1) within the circle of convergence of

the series.

Proof (Theorem 9):

Given the linear differential equation of order two (5.1) with the ordinary point

z0. From this we know that p(z) and q(z) are analytic at z0. Hence there exist

the following expansions of p(z) and q(z)

p(z) =
∞∑

n=0

bn(z − z0)
n with |z − z0| < R1,

q(z) =
∞∑

n=0

dn(z − z0)
n with |z − z0| < R2,

where R1 is the radius of convergence of the series p(z) and R2 the radius of

convergence of the series q(z), respectively. R1 and R2 are both greater than

zero, and bn, dn ∈ C.

Idea of the proof:

We prove the existence of the constants an in (5.2), such that this w solves our

differential equation (5.1) and moreover that this series w has a nonzero radius

of convergence. Hence w at z = z0 is an analytic solution of (5.1).

Steps of the proof:

The proof is split into three single steps. In the first step we derive a rule for

computing the coefficients an. In the second step we derive an upper bound for

the an. The third step presents the convergence analysis for our series w.

1. Step:

We substitute (5.2) as an ansatz into our differential equation (5.1) and obtain

∞∑
n=0

ann(n− 1)(z − z0)
n−2 + p(z)

∞∑
n=0

ann(z − z0)
n−1 + q(z)

∞∑
n=0

an(z − z0)
n = 0.

Plugging in the series expansions for p(z) and q(z) we get

∞∑
n=0

ann(n− 1)(z − z0)
n−2 +

(
∞∑

n=0

bn(z − z0)
n

)
∞∑

n=0

ann(z − z0)
n−1

+

(
∞∑

n=0

dn(z − z0)
n

)
∞∑

n=0

an(z − z0)
n = 0.
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Carrying out the multiplications in the second and third sum, we obtain

∞∑
n=0

ann(n− 1)(z − z0)
n−2 +

∞∑
n=0

n∑
k=0

kakbn−k(z − z0)
n−1

+
∞∑

n=0

n∑
k=0

akdn−k(z − z0)
n = 0.

To collect the same powers of (z − z0), we shift indices and derive

∞∑
n=0

ann(n− 1)(z − z0)
n−2 +

∞∑
n=1

n−1∑
k=0

kakbn−k−1(z − z0)
n−2

+
∞∑

n=2

n−2∑
k=0

akdn−k−2(z − z0)
n−2 = 0.

The coefficient of each power has to vanish in order to make the left side of above

identically zero:

n = 0 : 0 · a0 = 0,

n = 1 : 0 · a0 + 0 · a0b0 = 0,

n ≥ 2 : n(n− 1)an +
n−1∑
k=0

kakbn−k−1 +
n−2∑
k=0

akdn−k−2 = 0.

For n = 0 the second and third sum does not enter, and for n = 1 only the third

sum does not occur. From the first and the second condition we can conclude

that a0 and b0 are arbitrary constants. From the third condition we derive a rule

for computing the coefficient an:

an =
1

n(n− 1)

(
−

n−1∑
k=0

kakbn−k−1 −
n−2∑
k=0

akdn−k−2

)
for n ≥ 2. (5.3)

2. Step:

We want to prove an upper bound for the an. To this end we need the following

lemma that is folklore in complex analysis.

Lemma 5 2

The coefiicients an in the Taylor series

f(z) =
∞∑

n=0

an(z − z0)
n, valid in |z − z0| < R,

2[21],E. D. Rainville, p. 54, 1972.
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have the property that for any r in 0 < r < R, there exists a constant M such

that for all n ≥ 0,

|an| <
M

rn
.

The lemma guarantees the existence of positive constants r1, r2, M1, M2 such

that

|bn| <
M1

rn
1

and |dn| <
M2

rn
2

.

For simplification we introduce the constants r and M by suitable choice such

that

r < Min(r1, r2, 1),

M > Max(M1, M2, 1, |a1| , r).

a0 has no impact on the convergence of the series, hence without loss of generality

we set 0 < |a0| < 1. With the new variables we can rewrite the restrictions on bn

and dn as follows:

|bn| <
M

rn
and |dn| <

M

rn
,

because M > M1 and M > M2, respectively r < r1 and r < r2. Additionally we

can increase M (if needed) such that

|a1| <
M

r
.

We will prove an upper bound for |an| by induction.

Initial condition (n = 1):

By choice, as explained above, we have the initial conditions

|a0| <

(
M

r

)0

= 1,

|a1| <

(
M

r

)1

.

Assumption:

We assume that |ak| <
(

M
r

)k
holds for all k with 0 ≤ k < n.

To prove:

We want to prove that the n-th coefficient has an upper bound of the following

form

|an| <
(

M

r

)n

.
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From (5.3) we derive the following inequality

|an| ≤
1

n(n− 1)

(
n−1∑
k=0

k |ak| |bn−k−1|+
n−2∑
k=0

|ak| |dn−k−2|

)
.

Plugging in the assumption for ak and additionally the restrictions for bn and dn

results in

|an| <
1

n(n− 1)

(
n−1∑
k=0

k

(
M

r

)k (
M

rn−k−1

)
+

n−2∑
k=0

(
M

r

)k (
M

rn−k−2

))

=
1

n(n− 1)

(
n−1∑
k=0

k
Mk+1

rn−1
+

n−2∑
k=0

Mk+1

rn−2

)
.

In view of r < 1 and therefore rn−1 > rn, respectively M > 1 and therefore

Mk+1 < Mn, we get the next estimation

|an| <
1

n(n− 1)

(
n−1∑
k=0

k
Mn

rn
+

n−2∑
k=0

Mn

rn

)

=
1

n(n− 1)
· Mn

rn

(
n−1∑
k=0

k +
n−2∑
k=0

1

)
.

We know that
∑n

k=0 k = n(n+1)
2

and
∑n

k=0 1 = n + 1. Hence our estimation

simplifies to

|an| <
1

n(n− 1)
· Mn

rn

(
n(n− 1)

2
+ (n− 1)

)
,

respectively,

|an| <
Mn

rn
· n + 2

2n
.

This implies

|an| <
(

M

r

)n

,

which is valid for all n ≥ 0.

3. Step:

Now we have an upper bound for |an|, hence we try to find an upper bound for

the n-th series member |an(z − z0)
n| of w.
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We specify a circular neighborhood of z0 by

|z − z0| ≤
r

2M
.

Consequently the following estimation holds for all n ≥ 0:

|an(z − z0)
n| ≤

(
M

r

)n

·
( r

2M

)n

=
Mnrn

rn(2M)n

=
1

2n
.

Hence we found a convergent series
∑∞

n=0
1
2n which dominates our series w, this

means
∞∑

n=0

|an(z − z0)
n| ≤

∞∑
n=0

1

2n
.

From this inequality it follows that our series (5.2) is absolutely and uniformly

convergent in the region |z − z0| ≤ r
2M

.

Summarizing, this way we found a solution to the differential equation (5.1),

namely w =
∑∞

n=0 an(z− z0)
n, which is analytic at the ordinary point z0 of (5.1).

�

5.2 Solutions near a regular singular point

Theorem 10 3

Let p(z), q(z) be meromorphic functions defined in a neighborhood of z0 ∈ C.

If z0 is a regular singular point of the equation

w′′(z) + p(z)w′(z) + q(z)w(z) = 0, (5.4)

and if the roots c1 and c2 of its indicial equation, derived below as equation (5.7),

are arranged such that c1 ≥ c2, respectively Re(c1) ≥ R(c2). Then there exists a

series

w1(z) =
∞∑

n=0

an(z − z0)
n+c1 , (5.5)

3[21], E. D. Rainville, p. 86, Theorem 20, 1972.
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• satisfying the differential equation (5.4),

• and being convergent within the region 0 < |z − z0| < R, where R is the

distance from z0 to the nearest other singular point of (5.4).

Proof (Theorem 10):

Given the linear differential equation of order two (5.4) with the regular singular

point z0. From this we know that p(z) and q(z) are not only analytic at z0 but

also possess the following type of expansions:

p(z) =
∞∑

n=0

pn(z − z0)
n−1 with 0 < |z − z0| < R1,

q(z) =
∞∑

n=0

qn(z − z0)
n−2 with 0 < |z − z0| < R2,

where R1 is the radius of convergence of the series p(z), and R2 is the radius

of convergence of the series q(z). R1 and R2 are both greater than zero, and

pn, qn ∈ C. Because of the definition of regular singular points, we get the specific

powers above.

Idea of the proof:

We will prove that there exists a solution of (5.4), which is convergent in some

region 0 < |z − z0| < R. We look for a solution

w =
∞∑

n=0

an(z − z0)
n+c

of (5.4), which is analytic at z0 except for the factor (z − z0)
c with a special

c, which turns out to be a root of the indicial equation of (5.4). a0 6= 0 is an

arbitrary constant.

Steps of the proof:

As before the proof is split into three single steps.
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1. Step:

We substitute (5.5) into our differential equation (5.4) and obtain

∞∑
n=0

an(n + c)(n + c− 1)(z − z0)
n+c−2 +

p(z)
∞∑

n=0

an(n + c)(z − z0)
n+c−1 +

q(z)
∞∑

n=0

an(z − z0)
n+c = 0.

Plugging in the series expansions for p(z) and q(z) we get

∞∑
n=0

an(n + c)(n + c− 1)(z − z0)
n+c−2 +

∞∑
n=0

pn(z − z0)
n−1

∞∑
n=0

an(n + c)(z − z0)
n+c−1 +

∞∑
n=0

qn(z − z0)
n−2

∞∑
n=0

an(z − z0)
n+c = 0.

Carrying out the multiplications in the second and third sum and thus obtain

∞∑
n=0

an(n + c)(n + c− 1)(z − z0)
n+c−2 +

∞∑
n=0

n∑
k=0

(k + c)akpn−k(z − z0)
n+c−2 +

∞∑
n=0

n∑
k=0

akqn−k(z − z0)
n+c−2 = 0.

To collect the same powers of (z − z0), we rewrite the series as follows:

∞∑
n=0

[
an(n + c)(n + c− 1) +

n∑
k=0

ak ((k + c)pn−k + qn−k)

]
(z − z0)

n+c−2 = 0.

By splitting off the n-th term, we derive a recurrence relation for computing an:

[(n + c)(n + c− 1) + (n + c)p0 + q0] an = −
n−1∑
k=0

ak ((k + c)pn−k + qn−k) . (5.6)

To aim at the indicial equation, we evaluate at n = 0 and obtain

[c(c− 1) + cp0 + q0] a0 = 0.
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Division by a0 6= 0 leads to the quadratic indicial equation

c2 + c(p0 − 1) + q0 = 0. (5.7)

Note: We can assume a0 6= 0 without any loss of generality. Because otherwise

the problem would just result in a shifted version (i. e., in c + N instead of c) of

the indicial equation.

The roots of the indicial equation are called c1 and c2, with Re(c1) ≥ Re(c2). We

define the difference of the roots s := c1 − c2. Define

F (c) := c(c− 1) + cp0 + q0.

Because of

F (c) = (c− c1)(c− c2)

we obtain

F (n + c1) = (n + c1 − c1)(n + c1 − c2) = n(n + s),

which is used to derive from (5.6) the equivalent statement

n(n + s)an = −
n−1∑
k=0

ak ((k + c1)pn−k + qn−k) . (5.8)

From this recurrence relation we now obtain an upper bound for |an| similar as

before in the case of solutions near ordinary points.

2. Step:

We want to find an upper bound for an.

Again Lemma 5 guarantees the existence of positive constants r1, r2, M1, M2 such

that

|pn| <
M1

rn
1

and |qn| <
M2

rn
2

.

For simplification we introduce the new constant

r = Min(r1, r2),

which causes

|pn| <
M1

rn
and |qn| <

M2

rn
.
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For k = 0 in (5.8) we get the summand c1pn + qn, for which we determine an

upper bound

|c1pn + qn| ≤ |c1| · |pn|+ |qn| < |c1| ·
M1

rn
+

M2

rn
=
|c1|M1 + M2

rn
.

We introduce the new constant

M = Max(M1, M2, |c1|M1 + M2, 1),

which gives the new estimates

|pn| <
M

rn
, |qn| <

M

rn
, |c1pn + qn| <

M

rn
.

With this preparatory work we will prove an upper bound for |an| by induction.

Initial condition (n = 1):

By choosing a0 = 1 and with the two facts

• 1(1 + s)a1 = −a0(c1p1 + q1) (case n = 1),

• |1 + s| ≥ Re(1 + s) = 1 + Re(s) ≥ 1,

we get the following estimation

|a1| =
c1p1 + q1

|1 + s|
<

M

r
.

Assumption:

We assume that |ak| <
(

M
r

)k
holds for all k with 0 ≤ k < n.

To prove:

We want to prove that the n-th coefficient has an upper bound in the following

form

|an| <
(

M

r

)n

.

From (5.8) we get

|an| =
1

n |n + s|

∣∣∣∣∣
n−1∑
k=0

ak ((k + c1)pn−k + qn−k)

∣∣∣∣∣
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|an| =
1

n |n + s|

∣∣∣∣∣
n−1∑
k=0

kakpn−k +
n−1∑
k=0

ak(c1pn−k + qn−k)

∣∣∣∣∣
≤ 1

n |n + s|

(
n−1∑
k=0

k |ak| · |pn−k|+
n−1∑
k=0

|ak| · |c1pn−k + qn−k|

)
.

Plugging in the assumption for ak and additionally the restrictions for pn and qn

results in

|an| <
1

n |n + s|

(
n−1∑
k=0

k

(
M

r

)k

· M

rn−k
+

n−1∑
k=0

(
M

r

)k

· M

rn−k

)

=
1

n |n + s|

(
n−1∑
k=0

k
Mk+1

rn
+

n−1∑
k=0

Mk+1

rn

)
.

Because of M ≥ 1 and therefore Mk+1 < Mn, 0 ≤ k ≤ n − 1, we get the next

estimation:

|an| <
1

n |n + s|

(
n−1∑
k=0

k
Mn

rn
+

n−1∑
k=0

Mn

rn

)

=
1

n |n + s|

(
Mn

rn

n−1∑
k=0

k +
n−1∑
k=0

1

)

=
1

n |n + s|

(
M

r

)n(
n(n− 1)

2
+ n

)
.

Because of Re(s) ≥ 0 we get the fact that |n + s| ≥ n and therefore we derive

|an| ≤ 1

n2

(
M

r

)n
n(n− 1) + 2n

2

=
n + 1

2n

(
M

r

)n

.

Hence we get the estimation

|an| ≤
(

M

r

)n

for n ≥ 0.

3. step:

The third step is analogous to the third step of the case of solutions near ordinary

points.
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With this approach we found only one solution of (5.4):

w1(z) =
∞∑

n=0

an(z − z0)
n+c1 , (5.9)

which is convergent in the specified region 0 < |z − z0| < R = r
2M

. But this is

sufficient to complete the proof of Theorem 10.

�

The second, linearly independent solution is more complicated to find. The solu-

tion method splits into two cases:

(A) s /∈ N and (B) s ∈ N.

In case (A) one can apply the approach described above for the second root c2 of

the indicial equation. This way one obtains another series solution

w2(z) =
∞∑

n=0

bn(z − z0)
n+c2 (5.10)

convergent in some region 0 < |z − z0| < R̃. Hence for case (A) we summarize:

Theorem 11

Let c1 and c2 be the roots of the indicial equation (5.7) arranged such that Re(s) ≥
0 for s := c1 − c2. If s /∈ N, let w1(z) and w2(z) be the power series solutions of

the form as in (5.9) and (5.10) - obtained by the method described above. Then

(5.9) and (5.10) are linearly independent (over C) solutions of (5.4).

Proof (Theorem 11):

The two solutions w1 and w2 are linearly independent because of the following

observation:

Suppose there exist α, β ∈ C such that

α · w1(z) = β · w2(z).

This means we have

α(z − z0)
c1−c2

(
a0 + a1(z − z0)

1 + · · ·
)

= β
(
b0 + b1(z − z0)

1 + · · ·
)
,
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where a0 6= 0 and b0 6= 0. On the left hand side we have a function that is analytic

in an open disc around z0. The function on the right hand side is not analytic on

such a disc since c1 − c2 /∈ Z. Hence we can conclude that α = β = 0.

For the case (B), s = c1 − c2 ∈ N, we have to consider the two different cases:

(B1) c1 = c2 =: c and (B2) c1 6= c2.

In case (B1) we only get one power series solution with c:

w1(z) =
∞∑

n=0

an(z − z0)
n+c.

In general, the second solution involves a logarithm in the following form:

w̃2(z) = w1(z) ln(z − z0) +
∞∑

n=0

dn(z − z0)
n+c.

Suppose there exist α, β ∈ C such that

α · w1(z) = β · w̃2(z).

We divide by (z − z0)
c and get

α ·
∞∑

n=0

an(z − z0)
n

︸ ︷︷ ︸
analytic

= β · w1(z) ln(z − z0)

(z − z0)c︸ ︷︷ ︸
not−analytic

+ β ·
∞∑

n=0

dn(z − z0)
n

︸ ︷︷ ︸
analytic

.

We cannot get equality of something not-analytic and something analytic by

multiplication of a complex number. Hence we can conclude that α = β = 0.

The case (B2) is similar to case (B1), because in general one can guarantee only

the existence of a solution of type (5.9) corresponding to the root c1.

�

For the series

w̃2(z) = w1(z) ln(z − z0) +
∞∑

n=0

dn(z − z0)
n+c2

we omit the details of a further discussion on existence, and restrict ourselves to

pointing to the examples given in the Chapters 3 and 4.
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Remark: Computation of the indicial equation

Assume the following setting:

z0 is a regular singular point of w′′ + p(z)w′ + q(z)w = 0 with the expansions

p(z) =
∞∑

n=0

pn(z − z0)
n−1,

q(z) =
∞∑

n=0

qn(z − z0)
n−2.

The summand for n = 0 delivers the indicial equation

c2 + (p0 − 1)c + q0 = 0, (5.11)

where p0 and q0 are the constant terms of p(z) and q(z). In order to compute p0

and q0 via taking a limit, we reformulate the expansion for p(z) and obtain

p(z) =
p0

z − z0

+
∞∑

n=1

pn(z − z0)
n−1,

(z − z0)p(z) = p0 +
∞∑

n=1

pn(z − z0)
n,

which leads to

p0 = lim
z→z0

[(z − z0)p(z)] . (5.12)

We also reformulate the expansion for q(z) and get

q(z) =
q0

(z − z0)2
+

∞∑
n=1

qn(z − z0)
n−2,

(z − z0)
2q(z) = q0 +

∞∑
n=1

qn(z − z0)
n,

which leads to

q0 = lim
z→z0

[
(z − z0)

2q(z)
]
. (5.13)

The two equations (5.12) and (5.13) allow us to calculate the coefficients p0 and

q0 in the indicial equation (5.11) at any regular singular point z0.
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5.3 Fuchsian Equations

In the Chapter 3 we introduced a power series method for solving a linear dif-

ferential equation about any ordinary or regular singular point of the equation.

Hence if we study an equation which has no irregular singular points, we are in

the position to solve this equation about any point in C. The following definition

and theorems are taken from [21].

Definition 17 (Fuchsian Equation)

A linear equation, for which any singular point is a regular singular point, is

called Fuchsian Equation.

Hence, a Fuchsian Equation has no irregular singular point.

Theorem 12

The number of singular points of a Fuchsian Equation of order two is finite.

For the application of the Frobenius Method for solving also algebraic equations,

see Chapter 7, the following theorem is very important. Namely, as a consequence,

when dealing with holonomic differential equations, we do not meet irregular

singular points.

Theorem 13 4

The coefficients in a Fuchsian Equation of order two are rational functions

of the independent variable.

Theorem 12 and 13 are also true for Fuchsian Equations of order greater than

two.

4[21], E. D. Rainville, Theorem 22, page 144, 1972.
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Chapter 6

The General Algebraic Equation

As an application for power series techniques we envision applications related to

algebraic equations. In this chapter we briefly review classical aspects of solving

the general univariate algebraic equation of degree n,

yn + x1y
n1 + x2y

n2 + · · ·+ xpy
np + x0 = 0, (6.1)

where the coefficients xi are complex numbers, and with natural numbers ni such

that

n > n1 > n2 > · · · > np ≥ 1.

In the introduction we pointed out that - because of working over C, the constant

term x0 can be normalized to −1. However, for the purpose of this chapter, we

prefer to treat things without this normalization.

Because of the fundamental theorem of algebra (Theorem 1), we know that there

exist n solutions for this problem (counting multiplicities accordingly). The way

to solve the problem is dependent on the degree of the equation.

The question arises how to solve such equations dependent on the degree.

For degree 1 up to degree 4 we have formulas or rather algorithms which give us

the quested solutions.

6.1 Algebraic equations of degree 2

Given an algebraic equation of degree 2,

y2 + ay + b = 0,
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where a, b ∈ C. There exist at most two solutions of the form

y1,2 = −a

2
±
√

a2

4
− b.

6.2 Algebraic equations of degree 3

If we have an algebraic equation of degree 3 in the form

y3 + ay2 + by + c = 0,

where a, b, c ∈ C, we can get the three solutions by use of the formula of Cardano1.

Before we use this formula, we make the substitution z = y+ a
3
. We do not reduce

the degree of the equation, but the term with the power 2 vanishes. The new

transformed equation is

z3 + 3pz + 2q = 0

with 2q = 2a3

27
− ab

3
+ c and 3p = 3b−a2

3
.

The basic step in the procedure of Cardano is a substitution for z. If we set

z = u + v, then the equation z3 + 3pz + 2q = 0 becomes

u3 + v3 + (u + v)(3uv + 3p) + 2q = 0.

This equation is fulfilled, if u3 + v3 = −2q and uv = −p are valid. We can write

uv = −p in the form u3v3 = −p3. So u3 and v3 are not known, but their sum and

also their product are given by the equations above. Because of this fact, u3 and

v3 can be seen as solutions of the quadratic equation

(w − u3) · (w − v3) = w2 − (u3 + v3)w + u3v3 = w2 + 2qw − p3 = 0.

We get w1 = u3 = −q+
√

q2 + p3 and w2 = v3 = −q−
√

q2 + p3. For the solution

z of the equation z3 + 3pz + 2q = 0 the formula of Cardano arises:

z = u + v =
3

√
−q +

√
q2 + p3 +

3

√
−q −

√
q2 + p3.

Because the equation w1 = u3 yields three solutions, we would get nine different

solutions for our equation, but because of the fact uv = −p the number of solu-

1[18] P. Pilz, 2003.
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tions is reduced to three. So with the formula of Cardano we derive the following

three solutions for z3 + 3pz + 2q = 0:

z1 = u1 + v1,

z2 = u1(−
1

2
+

i

2
)
√

3 + v1(−
1

2
− i

2
)
√

3,

z3 = u1(−
1

2
− i

2
)
√

3 + v1(−
1

2
+

i

2
)
√

3.

u1 and v1 have to be the cubic roots with the condition u1v1 = −p.

6.3 Algebraic equations of degree 4

If we have an algebraic equation of degree 4 in the form

x4 + ax3 + bx2 + cx + d = 0, (6.2)

where a, b, c, d ∈ C, we can find the four solutions by the use of a trick of

L. Ferrari2. In the first step we utilize the following transformation rule, similar

as in the case for equations of degree 3,

y = x +
a

4
,

to eliminate the term with the third power and obtain the following new equa-

tion

(y − 1

4
a)4 + a(y − 1

4
a)3 + b(y − 1

4
a)2 + c(y − 1

4
a) + d = 0.

We collect terms with the same power and rename the coefficients in the following

way

y4 + y2 (b− 3a2

8
)︸ ︷︷ ︸

=:p

+y (c− ab

2
+

a3

8
)︸ ︷︷ ︸

=:q

+ d− ac

4
+

a2b

16
− 3a4

256︸ ︷︷ ︸
=:r

= 0.

2[4], J. Bewersdorff, p. 25, 2007.
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We transformed our equation in such a way that the degree stays the same, but

we removed the term with degree 3 in our equation, and arrived at

y4 + py2 + qy + r = 0.

The next step is to reformulate our equation by manipulating

y4 + py2 = −qy − r,

such that the left side of the equation becomes a perfect square

y4 + 2py2 + p2 = −qy − r + py2 + p2,

(y2 + p)2 = py2 − qy − r + p2.

Now we add a new variable z on the left side and correct the right hand side by

the missing members

(y2 + p + z)2 = py2 − qy − r + p2 + 2pz + 2y2z + z2

= y2(p + 2z)− qy + (p2 − r + 2pz + z2)︸ ︷︷ ︸
=:RHS

. (6.3)

In the next step we aim at writing RHS also as a perfect square. To this end,

choose s and t such that

s2 = p + 2z, (6.4)

2st = −q, (6.5)

t2 = p2 − r + 2pz + z2. (6.6)

Then

RHS = s2y2 + 2sty + t2

= (sy + t)2.

Having in mind that (2st)2 − 4s2t2 = 0, we combine the 3 equations (6.4), (6.5)

and (6.6) into one, and obtain:

(−q)2 − 4(p + 2z)(p2 − r + 2pz + z2) = 0.
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This equation can be rewritten as a polynomial equation of degree 3 in z:

z3 +
5

2
pz2 + z(2p2 − r) +

1

2
(p3 − rp− q2

4
) = 0, (6.7)

which we solve for z. For the next step, for simplicity we group and rename the

coefficients in (6.3) as follows:

(y2 + p + z︸ ︷︷ ︸
α

)2 = y2 (p + 2z)︸ ︷︷ ︸
β

−qy + (p2 − r + 2pz + z2)︸ ︷︷ ︸
γ

. (6.8)

We form the perfect square on the right hand side of equation (6.8), and obtain

(y2 + α)2 = (y
√

β −√
γ)2,

respectively the quadratic equations in y:

y2 − y
√

β +
√

γ + α = 0,

and

y2 + y
√

β −√
γ + α = 0.

These can be solved by

y1,2 = +

√
β

2
±
√

β

4
−√

γ − α,

and

y3,4 = −
√

β

2
±
√

β

4
+
√

γ − α.

One can easily verify that for any solution z of (6.7): y solves (6.8) if and only

if x = y − a
4

solves (6.2). Hence with the backward transformation x = y − a
4

we get four (taking multiplicities in account) solutions for x independent of the

choice of the three possible z. In other words, we only need one solution of (6.7)

to obtain a complete set of solutions.

As an illustration we calculate the four solutions of

x4 − 2x3 − x2 + 2x = 0, (6.9)

where Mathematica provides the following result:

In:= Solve[x4 − 2x3 − x2 + 2x == 0, x]
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Out= {{x→ −1}, {x→ 0}, {x→ 1}, {x→ 2}}.

We define the coefficients of (6.9) as follows:

a := −2, b := −1, c := 2, d := 0.

To eliminate the term with the third power, we perform the transformation

y = x +
a

4
= x− 1

2
.

We derive the new equation

y4 + py2 + qy + r = 0, (6.10)

with the coefficients

p = b− 3a2

8
= −5

2
,

q = c− ab

2
+

a3

8
= 0,

r = d− ac

4
+

a2b

16
− 3a4

256
=

9

16
.

With the above remodeling we obtain the equation (6.7) of degree 3

z3 − 6.25z2 + 11.9375z − 7.109375 = 0,

which we can solve by use of the formula of Cardano, which is described in

Section 6.2.

In this example we solve this equation with Mathematica and obtain

In:= Solve[z3 − 6.25z2 + 11.9375z− 7.109375 == 0, z]

Out= {{z→ 1.25}, {x→ 1.75}, {x→ 3.25}}.

Therefore we derived three different solutions for z, i. e.,

z1 = 1.25, z2 = 1.75, z3 = 3.25.

To get the four solutions of (6.10):

y1,2 = +

√
β

2
±
√

β

4
−√

γ − α,
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and

y3,4 = −
√

β

2
±
√

β

4
+
√

γ − α,

we have to calculate α, β and γ:

α = p + z1 = −1.25,

β = p + 2z1 = 0,

γ = p2 − r + 2pz1 + z2
1 = 1.

Step by step we compute the four solutions y1, y2, y3 and y4 of (6.10) and the

corresponding solutions to our original equation (6.9) x1, x2, x3 and x4:

y1 = +

√
β

2
+

√
β

4
−√

γ − α = 0.5,

x1 = y1 −
a

4
= 0.5 + 0.5 = 1,

y2 = +

√
β

2
−
√

β

4
−√

γ − α = −0.5,

x2 = y2 −
a

4
= −0.5 + 0.5 = 0,

y3 = −
√

β

2
+

√
β

4
+
√

γ − α = 1.5,

x3 = y3 −
a

4
= 1.5 + 0.5 = 2,

y4 = −
√

β

2
−
√

β

4
+
√

γ − α = −1.5,

x4 = y4 −
a

4
= −1.5 + 0.5 = −1.

Hence we derived the right solutions to (6.9):

x1 = 1, x2 = 0, x3 = 2, x4 = −1,

with the choice z1. With the options z2 and z3 we derive up to the order the same

solutions y1, y2, y3 and y4 of (6.10) and therefore the same solutions x1, x2, x3 and

x4 of (6.9).

Depending on the application, numerical methods might be applied also for solv-

ing equations of degree 3 and 4. Short descriptions of numerical methods applica-

ble also for higher degrees are given below.
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6.4 Algebraic equations of degree 5 or higher

The general algebraic equations of degree 5 or of higher degree than 5 cannot be

solved by a general formula involving only arithmetical operations and roots. We

have to apply numerical methods, e. g. the Newton Method or the Householder

Method.

The following methods, for which we give only informal descriptions, are iteration

methods, which proceed via approximated values xk towards an approximated

solution of the equation f(x) = 0. In other words, we produce a sequence of

approximate solutions xk, which converge to an exact solution x∗, i.e. f(x∗) = 0,

feasibly fast.

6.4.1 Newton Method

For solving the equation f(x) = 0, the Newton Method has the following iteration

rule:

xn+1 = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2 . . . ,

where some suitable x0 has to be given as a starting point. So for calculating the

new approximation xn+1, only the values of f(x) and of the derivative of f(x) at

x = xn are necessary. The Newton Method converges locally, so the approximate

values xi have to be in a neighborhood of the exact solution, denoted by x∗.

If the Newton Method converges, then the number of accurate positions doubles

in each iteration step. In this case one speaks of quadratic convergence.

6.4.2 Householder Method

The Householder Method is an extension of the Newton Method. The iteration

rule contains the d-th and the (d−1)-th derivative of fH(x) := 1/f(x) at x = xn.

xn+1 = xn + d
f

(d−1)
H (xn)

f
(d)
H (xn)

, n ≥ 0.

The convergence rate of the method depends only on the choice of d, more pre-

cisely, the rate of convergence can be proven to be d + 1.
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6.5 A concrete example: numerical experiments

Now we consider a concrete example, solving the algebraic equation

y5 + x · y2 − 1 = 0. (6.11)

In fact, we want to solve (6.11) by means of an algorithm, which transforms the

algebraic equation into a differential equation, which is described in the next

chapter, and afterwards solve the differential equation by the Frobenius Method.

However first we want to analyse the problem with help of our general knowledge

in algebra.

We use the Mathematica command ImplicitP lot, which is included in the Math-

ematica package Graphics‘ImplicitP lot‘, to get an idea how the graph looks like.

Example:

In:= << Graphics‘ImplicitPlot‘

In:= ImplicitPlot[y5 + xy2 − 1 == 0, {x,−10, 10}]

Out=

-10 -5 5 10

-2

-1

1

2

In:= ImplicitPlot[y5 + xy2 − 1 == 0, {x,−1.5, 4}]

Out=

-1 1 2 3 4

-1.5

-1.0

-0.5

0.5

1.0

We do not want to enter the theory of algebraic curves. However, we note that

already from the plots we can see that we only get one real solution in the in-

terval [−∞,≈ 1.9]. The singularity in the neighbourhood of 1.9 is confirmed by

the numerical tests. With the Mathematica function NSolve we can solve the

equation for specific x-values.
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In:= NSolve[y5 + xy2 − 1 == 0/.x→ 1.96, y]

Out= {{y→ −0.922101− 0.00436396i}, {y→ −0.922101 + 0.00436396i},
{y→ 0.589157− 1.19124i}, {y→ 0.589157 + 1.19124i},
{y→ 0.665889}}

In:= NSolve[y5 + xy2 − 1 == 0/.x→ 1.97, y]

Out= {{y→ −0.960384}, {y→ −0.884863},
{y→ 0.590295− 1.19247i}, {y→ 0.590295 + 1.19247i},
{y→ 0.664657}}

In the interval [singularity ≈ 1.96, +∞] three real solutions pop up. The singu-

larity has to lie between 1.96 and 1.97.

Now we want to compare these observations with the numerics of Mellin series.

The Mellin series for a solution of our algebraic equation (6.11) is

y =
∞∑

k=0

(
(2k + 1)/5

k

)
(−x)k

2k + 1
.

The general form of the Mellin series for a principal solution of a general algebraic

equation can be found in the Chapter 8.

We try to get a closer look at the solution with help of the following plots from

Mathematica:

Example:

In:= Y[x , N ] := Sum[Binomial[(2k + 1)/5, k](−x)k/(2k + 1), {k, 0, N}]
In:= Plot[Y[x, 100], {x,−4, 4}]
Out=

-4 -2 2 4

-4. ´ 1018

-3. ´ 1018

-2. ´ 1018

-1. ´ 1018

In:= Plot[Y[x, 40], {x,−3, 3}]
Out=
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-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

In:= Plot[Y[x, 400], {x,−3, 3}]
Out=

-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

In:= Plot[Y[x, 100], {x,−1, 1}]
Out=

-1.0 -0.5 0.5 1.0

0.9

1.0

1.1

1.2

These plots give us a first impression about convergence. For a precise statement

we need to calculate the radius of convergence.

First of all we find out that the ratio test cannot be applied.

In:= c[k ] := Abs[Binomial[(2k + 1)/5, k]/(2k + 1)]

In:= N
[
c[k+1]
c[k]

/.k→ 30000
]

Out= 0.825431

In:= N
[
c[k+1]
c[k]

/.k→ 30001
]

Out= 0.

In:= N
[
c[k+1]
c[k]

/.k→ 30002
]

Out= ComplexInfinity

In:= N
[
c[k+1]
c[k]

/.k→ 30003
]
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Out= 0.315287

In:= N
[
c[k+1]
c[k]

/.k→ 30004
]

Out= 0.510144

In:= N
[
c[k+1]
c[k]

/.k→ 30005
]

Out= 0.825431

Consequently, we apply Cauchy’s test (”Wurzelkriterium”).

In:= N
[
(c[k])(1/k)/.k→ 30000

]
Out= 0.509877

In:= N
[
(c[k])(1/k)/.k→ 30001

]
Out= 0.509886

In:= N
[
(c[k])(1/k)/.k→ 30002

]
Out= 0.

In:= N
[
(c[k])(1/k)/.k→ 30003

]
Out= 0.509886

In:= N
[
(c[k])(1/k)/.k→ 30004

]
Out= 0.509877

In:= N
[
(c[k])(1/k)/.k→ 30005

]
Out= 0.509877

For the inverse of the largest value we obtain R = 1.96122 as an experimentally

determined estimate for the radius of convergence. We note that this numerical

value is quite good in comparison to that given by (8.12), namely 1.96013.

In:=Show[ImplicitPlot[y5 + xy2 − 1 == 0, {x,−8, 8}],
ImplicitPlot[y5 + xy2 − 1 == 0, {x,−1.96, 1.96}, PlotStyle→ {Red, Thick}]]

Out=

-5 5

-2

-1

1

2

Next we deal with the imaginary solutions. The question arises how to obtain on

the interval [−R,R] the four imaginary solutions by the Mellin approach. The
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computational experiments above suggest that the Mellin series solution does not

converge on a significantly bigger interval than [−R,R]. Therefore we restrict

our attention to [−R,R]. For example, for x = 1
2
∈ [−R,R] the Mathematica

command NSolve computes

In:=NSolve[y5 + xy2 − 1 == 0/.x→ 0.5, y]

Out={{y→ −0.839678− 0.491654i}, {y→ −0.839678 + 0.491654i},
{y→ 0.389139− 1.01031i}, {y→ 0.389139 + 1.01031i},
{y→ 0.901077}}

The real solution for our choice x = 1
2

can be (alternatively to NSolve) derived

by the following calculation.

In:=sol1 = Sum[Binomial[2k+1
5

, k] (−0.5)
k

2k+1
, {k, 0, 100}]

Out=0.901077

Finally, the imaginary solutions (at x = 1
2
) can be simply achieved by modifying

the Mellin series solution (at x = 1
2
) with the 5th roots of unity, denoted by ru[i].

The general formula for this multiplication can be found in the Chapter 8.

In:=ru[i ] := (Cos[2π ∗ i/5] + i ∗ Sin[2π ∗ i/5])//N

In:=sol2 = (Sum[Binomial[2k+1
5

, k]−0.5∗(ru[1])
2)k

2k+1
), {k, 0, 100}]) ∗ ru[1]

Out=0.389139 + 1.01031i

In:=sol3 = (Sum[Binomial[2k+1
5

, k]−0.5∗(ru[2])
2)k

2k+1
), {k, 0, 100}]) ∗ ru[2]

Out=−0.839678 + 0.491654i

In:=sol4 = (Sum[Binomial[2k+1
5

, k]−0.5∗(ru[3])
2)k

2k+1
), {k, 0, 100}]) ∗ ru[3]

Out=−0.839678− 0.491654i

In:=sol5 = (Sum[Binomial[2k+1
5

, k]−0.5∗(ru[4])
2)k

2k+1
), {k, 0, 100}]) ∗ ru[4]

Out=0.389139− 1.01031i

Hence, the numerical solutions coincide with the solutions obtained by the Mellin

series, even the imaginary ones.

In the following chapter we transform a general algebraic equation into a differen-

tial equation. Hence we can apply the Frobenius Method also to solve algebraic

equations.
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Chapter 7

Transforming Algebraic Equations

into Differential Equations

7.1 Strategy

The goal of this chapter is to describe the transformation of a general algebraic

equation into a differential equation. With this approach we, for instance, apply

the transformation routine on an algebraic equation, like y5 + xy2 − 1 = 0, and

afterwards solve the gained differential equation by the Frobenius Method, which

is described in Chapter 3.

We want to transform an algebraic equation defining a function y = y(x) into a

linear differential equation with rational function coefficients, satisfied by y(x).

To this end we use an algorithm described by D.V. Chudnovsky and G.V. Chud-

novsky in [7] without a reference. As noted in Mallinger [12], it has been stated

by Comptet [8] in 1964. However, according to Flajolet its story is much older

and traces back to Abel.1 Despite based on a simple idea, the steps are non-trivial

and therefore we present a more detailed account of it.

In the following, (K, D) is a differential field extension of the differential field

(k(x), d
dx

) of rational functions in k(x) with derivative d
dx

being the standard

derivative.

Elements of K are denoted by f(x) and the derivative D on K is viewed as a

derivative with respect to x. We indicate this explicitly by writing alternatively

df/dx or f ′ for Df(x).

1P.Paule: private communication
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Definition 18

An element f = f(x) ∈ K is called algebraic over k(x), if there exists a polyno-

mial P (x, y) ∈ k[x, y] such that

P (x, f) = 0.

7.2 Algorithm description

Context: (K, D) is a differential field extension of the differential field (k(x), d
dx

)

of rational functions in k(x) with derivative d
dx

being the standard derivative.

Input:

P (x, y) ∈ k[x, y] of degree m in y, defining an algebraic element f = f(x) ∈ K in

the sense of Definition 18.

Output:

A linear differential equation with polynomial coefficients bi ∈ k[x] satisfied by

f = f(x):

m−1∑
i=0

bi(x)
dif

dxi
= 0. (7.1)

Note: Chudnovsky and Chudnovsky claim that this algorithm yields a linear

differential equation corresponding to P (x, f) = 0 of the smallest possible order.

We implemented this algorithm in Mathematica 5.0. We do not need additional

packages.

Notation: Polynom:=P (x, y)

The routine AEtoDE[Polynom, y, x] transforms the first input variable Polynom

into a differential equation.

Remark: Note that this algorithm is a constructive version of the following

statement:

Theorem 14 2

If f(x) ∈ K[[x]] is algebraic, then f(x) is holonomic.

2[12], C. Mallinger, p.16, 1996.
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Note: Because of Definition 11 f(x) fulfills the following equation:

pm(x)f (m)(x) + · · ·+ p1(x)f ′(x) + p0(x)f(x) = 0,

with p0(x), p1(x), . . . , pm(x) ∈ K[x], not all zero.

7.3 Sketch of the idea of the algorithm

For a given algebraic function f = f(x) from K we show below that its derivative

f ′ = df/dx is again an element of K and expressable as a linear combination of

powers of f with coefficients from k(x), i.e.,

f ′ ∈
〈
f 0, f1, . . . , fm−1

〉
k(x)

,

where m is the degree of f , more precisely: m = degyP (x, y). This results in the

following representation for f ′:

f ′ = r0f
0 + r1f

1 + · · ·+ rm−1f
m−1,

where r0, r1, . . . , rm−1 ∈ k(x). This gives us the following representation for f ′′:

f ′′ = r′0f
0 + r0 (f 0)′︸︷︷︸

=0

+r′1f
1 + r1f

′ + · · ·+ r′m−1f
m−1 + rm−1(m− 1)fm−2f ′.

Consequently, for f ′′ = d2f/dx2:

f ′′ ∈
〈
f 0, f1, . . . , fm−1

〉
k(x)

.

Proceeding in the same way we derive the same condition for the N -th deriva-

tive:

f (N) ∈
〈
f 0, f1, . . . , fm−1

〉
k(x)

.

We found out that
〈
f 0, f ′, f ′′, f (3), . . .

〉
k(x)

is a subspace of 〈f 0, f1, . . . , fm−1〉k(x).

Hence

〈
f 0, f ′, f ′′, f (3), . . .

〉
k(x)

≤
〈
f 0, f1, . . . , fm−1

〉
k(x)

and

dim
〈
f 0, f ′, f ′′, f (3), . . .

〉
k(x)

≤ dim
〈
f 0, f1, . . . , fm−1

〉
k(x)

≤ m.
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Now then we can express all derivatives f (0), f ′, f ′′, . . . , f (m) as powers of f . From

this step we derive a system of equations for the coefficients ci(x) in

c0(x)f (0) + c1(x)f ′(x) + · · ·+ cm(x)f (m) = 0.

We have m + 1 unknowns

(c0(x), c1(x), . . . , cm(x)) ∈ k(x)m+1

and we know that dim 〈f 0, f1, . . . , fm−1〉k(x) = m. Hence this shows existence of

a nontrivial differential equation (7.1).

This theoretical idea can be made constructive as shown below.

7.4 Description of the subroutine:

ExtendedGCDPoly

The routine AEtoDE needs the subroutine ExtendedGCDPoly[a, b, c].

Input:

Two polynomials a and b ∈ k[x, y] and c being either x or y.

Output:

If c = x it computes the Extended GCD of a and b in F [x] where F = k(y).

If c = y it computes the Extended GCD of a and b in G[y] where G = k(x).

In both cases the output is a triple {g, {r, s}} such that r · a + s · b = g.

Example:

We calculate the ExtendedGCDPoly of the polynomial y5 +xy2−1 and its deriv-

ative 5y4 + 2xy with respect to the variable y.

In:= ExtendedGCDPoly[y5 + x ∗ y2 − 1, 5 ∗ y4 + 2 ∗ x ∗ y, y]

Out= {3125− 108x5, {−3125 + 108x5 + 450x3y− 1875xy2 + 270x4y3,

225x2 + (625− 54x5)y− 90x3y2 + 375xy3 − 54x4y4}}

Verification:

In:= FullSimplify[(−3125 + 108x5 + 450x3y− 1875xy2 + 270x4y3)∗
(y5 + x ∗ y2 − 1) + (225x2 + (625− 54x5)y− 90x3y2 + 375xy3 − 54x4y4)∗
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(5 ∗ y4 + 2 ∗ x ∗ y)]

Out= 3125− 108x5

Definition 19

Given a, b ∈ k[x, y] we define

gcdx(a, b) := g,

where g is determined by ExtendedGCDPoly[a, b, y] = {g, {r, s}}. Analogous we

define

gcdy(a, b) := g,

where g is determined by ExtendedGCDPoly[a, b, x] = {g, {r, s}}.

In the new version, Mathematica 6.0, the subroutine ExtendedGCDPoly is al-

ready implemented, called PolynomialExtendedGCD.

7.5 The steps of AEtoDE

For those with a special interest in the algorithm, we explain the procedure step-

by-step. We start with the input as specified above.

For simplicity we write P for P (x, y), Py for dP/dy and Px for dP/dx, where d/dy

and d/dx are the standard partial derivatives with respect to y, respectively x.

In the first step we have to calculate the derivative of our polynomial P with

respect to y. Without loss of generality we assume that P (x, y) is square-free with

respect to y. This means, r(x) := gcdy(P, Py) is independent of y, i. e., r(x) ∈ k[x].

By means of the routine ExtendedGCDPoly we compute (A(x, y), B(x, y)), such

that

A(x, y) · P (x, y) + B(x, y) · Py(x, y) = r(x). (7.2)

A(x, y) and B(x, y) are polynomials in x and y of degrees m− 2 and m− 1 in y.

Recall that f = f(x) is a solution of our algebraic equation P (x, f) = 0. On the

one hand with the trivial relation

A(x, f(x)) · P (x, f(x)) = 0
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our equation (7.2) simplifies to

B(x, f(x)) · Py(x, f(x)) = r(x),

where r(x) := gcd(P, Py). On the other hand by differentiating P (x, f) = 0 with

respect to x we obtain

Px(x, f(x)) +
df

dx
· Py(x, f(x)) = 0 or

df

dx
= −Px(x, f(x))

Py(x, f(x))
.

Taking the two facts from above into account we obtain

df

dx
=
−B(x, f(x)) · Px(x, f(x))

r(x)
. (7.3)

Up to now the method is expressed in [8], from now on the steps can be found in

[12].

With the Mathematica command PolynomialRemainder and by help of our al-

gebraic equation P (x, f) = 0 we can eliminate from the numerator of (7.3) all

powers of f(x) higher than m− 1 and get the following result

df

dx
=

R1(x, f)

r(x)
, (7.4)

where R1 = R1(x, f) is a polynomial in f of degree m− 1. The coefficients of R1

are rational functions in x. By differentiating (7.4) we get

d2f

dx2
=

1

r(x)2

(
R1

dR1

dy
+ r(x)

dR1

dx
−R1

dr(x)

dx

)
.

Again we use the command PolynomialRemainder and P (x, f) = 0 to eliminate

all powers of f(x) higher than m− 1 and obtain

d2f

dx2
=

R2(x, f)

r(x)2
,

where R2 = R2(x, f) is a polynomial in f of degree m− 2. The coefficients of R2

are rational functions in x. We have to repeat this procedure m− 2 times more.

Consequently, we obtain a system of m− 1 equations

dif

dxi
=

Ri

r(x)i
= ri,0f

0 + · · ·+ ri,m−1f
m−1, i = 1, . . . ,m− 1.
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By solving this system of equations in the unknowns ri,j ∈ k(x) we derive a linear

relation
m−1∑
i=0

ci(x)
dif

dxi
r(x)i = 0.

By multiplying this relation by the common denominator of the m rational func-

tions c0, c1, . . . , cm−1 in x, we obtain a linear differential equation on y with poly-

nomial coefficients in x

m−1∑
i=0

bi(x)
dif

dxi
= 0, (7.5)

with an order at most m − 1. At least one of the coefficients b0(x), . . . , bm−1(x)

should be nonzero to end with a differential equation. Our derived differential

equation (7.5) corresponds to the output as specified in (7.1). Hence the solution

of the differential equation (7.5) solves the algebraic equation P (x, f) = 0.

By use of our routine AEtoDE we now transform our algebraic equation

y(x)5 + x ∗ y(x)2 − 1 = 0

into a differential equation.

Example:

In:= AEtoDE[y5 + x ∗ y2 − 1, y, x] == 0

Out= (−3125 + 108x5)3(−72x3y[x] + 1080x4y′[x]− 6250y′′[x] + 2706x5y′′[x]+

6250xy(3)[x]− 3125x2y(4)[x] + 108x7y(4)[x]) == 0

We simplify the coefficients with the Mathematica command FullSimplify.

In:= FullSimplify[AEtoDE[y5 + x ∗ y2 − 1, y, x] == 0]

Out= (−3125 + 108x5)(−72x3y[x] + 1080x4y′[x] + (−6250 + 2706x5)y′′[x]+

x(2(3125 + 567x5)y(3)[x] + x(−3125 + 108x5)y(4)[x])) == 0

To compare our result with the Mellin series solution, we plug the Mellin series

or rather the corresponding derivatives of the Mellin series into our output of the

two procedures. Correctness is already shown with the first ten series members.
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Example:

In:= sol[n ] := Sum[Binomial[(2k + 1)/5, k] ∗ (−x)k/(2k + 1), k, 0, n]

In:= dgl = AEtoDE[y5 + x ∗ y2 − 1, y, x];

In:= dgl/.y[x]− > sol[10]/.Derivative[i ][y][x]− > D[sol[10], x, i]//Expand

Out= 2871618750000x9 − 1320944625000x11 − 530630100000x12+

337549212000x13 − 297729432000x14 + 136955538720x16 + · · ·

We observe that the first series members vanish. Hence the Mellin series solves

the differential equation.

7.6 The steps of AEtoDE: a concrete example

We have a closer look at the particular steps of the method by computing a

differential equation satisfying the algebraic function

P (x, y(x)) = y5 + xy2 − 1.

Derivation with respect to y gives

Py(x, y) = 5y4 + 2xy.

By applying the subroutine ExtendedGCDPoly[P, Py, y] we obtain

(−3125 + 108x5 + 450x3y − 1875xy2 + 270x4y3)︸ ︷︷ ︸
A(x,y)

(y5 + xy2 − 1) +

(225x2 + 625y − 54x5y − 90x3y2 + 375xy3 − 54x4y4)︸ ︷︷ ︸
B(x,y)

(5y4 + 2xy) = 3125− 108x5,

and with the command PolynomialRemainder[−B∗Px, P, y] we eliminate powers

of y higher than 4 and we derive

dy

dx
=

=:R1︷ ︸︸ ︷
−375x + 54x4y + 150x2y2 − 625y3 + 90x3y4

3125− 108x5︸ ︷︷ ︸
=r(x)

. (7.6)
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By differentiating (7.6) further we compute d2y
dx2 , . . . ,

d4y
dx4 and the corresponding

R2, . . . , R4

d2y

dx2
=

1

(3125− 108x5)2
(3(2916x8y + 546875xy2 − 187500x4y3 + 125000x2y4 +

14580x7y4 + 390625(−1 + y5) + 6750x5(−9 + 4y5) + 2700x6y2(9 + 4y5)−

18750x3y(−10 + 7y5))),

R2 = −101250x5 + (168750x3 + 8748x8)y + (468750x + 24300x6)y2 −

168750x4y3 + (375000x2 + 11340x7)y4,

d3y

dx3
=

1

(3125− 108x5)3
((168750x3 + 8748x8 + 2(468750x + 24300x6)y −

506250x4y2 + 4(375000x2 + 11340x7)y3)(−375x + 54x4y + 150x2y2 −

625y3 + 90x3y4) + (3125− 108x5)(−506250x4 + (506250x2 +

69984x7)y + (468750 + 145800x5)y2 − 675000x3y3 + (750000x +

79380x6)y4) + 1080x4(−101250x5 + (168750x3 + 8748x8)y +

(468750x + 24300x6)y2 − 168750x4y3 + (375000x2 + 11340x7)y4)),

R3 = −1019531250x4 − 46777500x9 + (292968750x2 + 263250000x7 +

2361960x12)y + (1464843750 + 686250000x5 + 7338600x10)y2 +

(−1699218750x3 − 77962500x8)y3 + (1757812500x + 426937500x6 +

2828520x11)y4,

d4y

dx4
=

1

(3125− 108x5)4
((292968750x2 + 263250000x7 + 2361960x12 +

2(1464843750 + 686250000x5 + 7338600x10)y + 3(−1699218750x3 −

77962500x8)y2 + 4(1757812500x + 426937500x6 + 2828520x11)y3) ·

(−375x + 54x4y + 150x2y2 − 625y3 + 90x3y4) + (3125− 108x5) ·

(−4078125000x3 − 420997500x8 + (585937500x + 1842750000x6 +

28343520x11)y + (3431250000x4 + 73386000x9)y2 + (−5097656250x2 −

623700000x7)y3 + (1757812500 + 2561625000x5 + 31113720x10)y4) +

1620x4(−1019531250x4 − 46777500x9 + (292968750x2 +

263250000x7 + 2361960x12)y + (1464843750 + 686250000x5 +

7338600x10)y2 + (−1699218750x3 − 77962500x8)y3 + (1757812500x +

426937500x6 + 2828520x11)y4)),
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R4 = −8349609375000x3 − 2099671875000x8 − 28179495000x13 +

(−3662109375000x + 4144921875000x6 + 296611875000x11 +

892820880x16)y + (11337890625000x4 + 799621875000x9 +

3109914000x14)y2 + (−13916015625000x2 − 3499453125000x7 −

46965825000x12)y3 + (3662109375000 + 8813671875000x5 +

430170750000x10 + 1027190160x15)y4,

and receive a system of equations. The solution-vector is derived by the command

NullSpace from Mathematica and the entries are exactly the coefficients of the

differential equation, which we are looking for. We multiply by the common

denominator of the entries and in conclusion we obtain the differential equation

corresponding to the algebraic equation y5 + xy2 − 1 = 0

(−3125 + 108x5)3(−72x3y + 1080x4y′ − 6250y′′ + 2706x5y′′ + 6250xy(3) +

1134x6y(3) − 3125x2y(4) + 108x7y(4)) = 0.

In the end we cancel out common factors and join the same powers to get

−72x3y + 1080x4y′ + (−6250 + 2706x5)y′′ +

x(2(3125 + 567x5)y(3) + x(−3125 + 108x5)y(4)) = 0.

7.7 Example: AEtoDE in connection to Frobenius

Method

By use of the routine AEtoDE we transform the algebraic equation

y4 + xy2 − x = 0

into a differential equation and solve this derived differential equation with the

Frobenius Method.

Example:

In:= << GeneratingFunctions.m

In:= dgl = AEtoDE[y4 + x ∗ y2 − x == 0, y, x]

Out= 3y[x] + 2x2y′[x] + 4(4x2 + x3)y′′[x] == 0
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We derived a holonomic differential equation of second order with x = 0 a regular

singular point.

We compute the indicial equation and its roots like in the Chapter 4.

In:= rec = DE2RE[dgl, y[x]a[n]]

Out= 2n(−1 + 2n)a[n] + (1 + 4n)(3 + 4n)a[1 + n] == 0

In:= rec = rec/.n− > n− 1

Out= 2(−1 + 2(−1 + n))(−1 + n)a[−1 + n]+

(1 + 4(−1 + n))(3 + 4(−1 + n))a[n] == 0

In:= rec := 2(−1 + 2(−1 + n + c))(−1 + n + c)a[−1 + n]+

(1 + 4(−1 + n + c))(3 + 4(−1 + n + c))a[n] == 0

We seek for the indicial equation. For n = 0 the first part

2(−1 + 2(−1 + n + c))(−1 + n + c)a[−1 + n]

vanishes and we get:

(1 + 4(−1 + c))(3 + 4(−1 + c))a[0] = 0.

We divide by a[0] 6= 0 and by simplifications we derive the indicial equation

3 + 16(c− 1)c = 0.

We proceed with Mathematica to compute the roots of our indicial equation and

the difference of the roots.

In:= indequ := 3 + 16(c− 1)c

In:= roots = c/.Solve[indequ == 0, c]

Out=
{
1
4
, 3
4

}
In:= c1 := roots[[2]], c2 := roots[[1]]

In:= s = c1− c2

Out= 1
2

Since the difference is nonintegral, we will get two linearly independent solutions

with each choice for c: c = c1 = 3
4

and c = c2 = 1
4
. In the following we compute a
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closed form for the coefficient a(n) for each choice of c and plug it into the general

form for the solution

y = xc +
∞∑

n=1

a(n) · xn+c,

where c stands for the two choices c1 and c2 from above. We get the following

two linearly independent solutions.

In:= c := 0.75

In:= C1 = a[n]/.FullSimplify[RSolve[rec == 0, a[0] == 1, a[n], n]]

Out=

{
(− 1

4)
n
Gamma[ 12+2n]√

πGamma[2+2n]

}
In:= sol1 = xc +

∑∞
n=1 C1 · xn+c

Out= x0.75 +
∑∞

n=1

{
(− 1

4)
n
Gamma[ 12+2n]x0.75+n

√
πGamma[2+2n]

}
In:= c := 0.25

In:= C2 = a[n]/.FullSimplify[RSolve[rec == 0, a[0] == 1, a[n], n]]

Out=

{
− (−1)nPochhammer[ 34 ,−1+n]Pochhammer[ 54 ,−1+n]

16Gamma[1+2n]

}
In:= sol2 = xc +

∑∞
n=1 C2 · xn+c

Out=x0.25 +
∑∞

n=1

{
− (−1)nPochhammer[ 34 ,−1+n]Pochhammer[ 54 ,−1+n]x0.25+n

16Gamma[1+2n]

}
We tried to get a simplified representation with the Mathematica command

FullSimplify, but we did not succeed.

Note: Pochhammer[a, n] gives the Pochhammer symbol (a)n, which can be

found in Definition 3 in Chapter 1.

The general solution can be written as

y = A · sol1 + B · sol2,

with arbitrary constants A and B.
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Chapter 8

Mellin Series

In this chapter we want to solve algebraic equations again with the help of power

series, more precise, we derive the solutions of an algebraic equation via Mellin

series.

Mellin [13] solved our equation (see (6.1) in Chapter 6)

yn + x1y
n1 + x2y

n2 + · · ·+ xpy
np − 1 = 0 (8.1)

in terms of multivariate power series in the coefficients x1, . . . , xp ∈ C, not all 0.

This means, the form of the solution is

y(x1, . . . , xp) =
∑

k1,...,kp≥0

c(k1, . . . , kp)x
k1
1 . . . xkp

p ,

where c(k1, . . . , kp) is given in explicit form. All other solutions can be obtained

from y by multiplication with the nth roots of unity; see below.

In 1915 H. Mellin utilized power series to obtain solutions of an algebraic equa-

tion. Due to complicated integrals occuring in his approach, Mellin’s method has

not been studied in detail for a long time. 1988 J. D. Louck found a new deriva-

tion of Mellin series without using integrals. In his problem transformation an

identity had arosen, for which he had not found a proof in the literature. At the

Oberwolfach conference on combinatorics in July 1988 he stated the respective

formula as a conjecture:

Let a = (a1, . . . , ap) ∈ Np, b = (b1, . . . , bp) ∈ Np, z = (z1 . . . , zp) ∈ Cp.

We define [x]0 := 1 and if n ≥ 1,

[x]n := x(x− 1) · · · (x− n + 1).
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In addition, the following rules for multivariate variables are valid:

|a| := a1 + · · ·+ ap,

a · z := a1z1 + · · ·+ apzp,(
a

b

)
:=

(
a1

b1

)(
a2

b2

)
· · ·
(

ap

bp

)
.

We define r0(u, z) := 1 if 0 = (0, . . . , 0) ∈ Np, and if a 6= 0,

ra(u, z) := u[u− 1 + a · z]|a|−1.

Louck’s conjecture:

For all u, v ∈ C:

ra(u + v, z) =
∑
b∈Np

(
a

b

)
rb(u, z)ra−b(v, z).

V. Strehl [23] gave a combinatorial proof of Louck’s conjecture. P. Paule proved

the identity by use of multivariate Lagrange inversion [14]. Moreover, he dis-

covered in [16] that one can obtain the Mellin Series without the integrals via a

univariate setting of Lagrange inversion.

Below we follow Paule’s approach from [16], this means, inspired by Mellin and

Louck we derive power series solutions to the general algebraic equation. We get

the principal solution of (8.1), i. e., the Mellin series solution, where the constant

term of the series is equal to 1.

The series

g(z) = g1z
1 + g2z

2 + · · ·

is an analytic function defined in some open set U ⊆ C containing the origin. If

g1 6= 0 then g : U → V is a conformal map for some open set V ⊆ C. We can

deduce that there exists a conformal map h : V → U ,

h(z) = h1z
1 + h2z

2 + · · · ,

where h1 6= 0, such that

g(h(z)) = h(g(z)) = z.

In other words, for the setting w := g(z) we obtain

z = h1w
1 + h2w

2 + · · · . (8.2)
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Lagrange inversion provides a formula not only for computing the coefficients hk

in (8.2), but also for the coefficients of any analytic function y(z) expanded in

terms of w = g(z); namely:

y(z) = y(0) +
∞∑

k=1

ck
wk

k!
, (8.3)

with

ck = LDk−1y′(z)ϕk(z), (8.4)

where

w = g(z) =
z

ϕ(z)

for some power series ϕ(z) with ϕ(0) 6= 0.

Our goal is to solve the general algebraic equation (8.1) and represent the principle

solution in the form of a multivariate power series in the coefficients xi. All other

solutions will be obtained from the principle solution by multiplication with the

nth roots of unity.

We define

w := g(z) :=
1− y(z)n

x1y(z)n1 + x2y(z)n2 + · · ·+ xpy(z)np
. (8.5)

If we choose y(z) such that (8.5) suits the setting of Lagrange inversion, we can

find a series expansion of y(z) like in (8.3), where the coefficients ck are dependent

on the xi and n, and such that

1− y(z)n = (x1y(z)n1 + x2y(z)n2 + · · ·+ xpy(z)np)w. (8.6)

This can be achieved by setting

y(z) := (1− z)1/n =
∞∑

k=0

(
1/n

k

)
(−1)kzk (8.7)

and

ϕ(z) := x1y(z)n1 + x2y(z)n2 + · · ·+ xpy(z)np . (8.8)

Hence g(z) is an analytic function of the form

g(z) =
z

ϕ(z)
= g1z

1 + g2z
2 + · · · ,



Mellin Series 102

where g1 6= 0. In addition,

y(z) = 1 +
∞∑

k=1

ck
wk

k!
,

with

ck = LDk−1y′(z)ϕk(z)

= − 1

n
LDk−1(1− z)

1
n
−1
(
x1(1− z)

n1
n + · · ·+ xp(1− z)

np
n

)k

= − 1

n
LDk−1

∑
j1+···+jp=k

j1,...,jp≥0

k!

j1! . . . jp!
xj1

1 · · ·xjp
p (1− z)

1
n
−1+

n1
n

j1+···+np
n

jp

= (−1)k 1

n

∑
j1+···+jp=k

j1,...,jp≥0

k!

j1! . . . jp!
xj1

1 · · ·xjp
p

[
1

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
k−1

.

For the above expansion in terms of a multivariate sum, we used the multinomial

theorem; see Theorem 3 in Chapter 1.

Consequently,

y(z)

= 1 +
1

n

∞∑
k=1

(−w)k
∑

j1+···+jp=k

j1,...,jp≥0

xj1
1 · · ·x

jp
p

j1! . . . jp!

[
1

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
k−1

= 1 +
1

n

∑
j1+···+jp≥1

j1,...,jp≥0

(−w)j1+···+jp
xj1

1 · · ·x
jp
p

j1! . . . jp!

[
1

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
j1+···+jp−1

.

Referring to Mellin’s original work, Louck [10] states that the series

∑
j1+···+jp≥1

j1,...,jp≥0

(−1)j1+···+jp
xj1

1 · · ·x
jp
p

j1! . . . jp!

[
1

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
j1+···+jp−1

is absolutely convergent for all (x1, . . . , xp) ∈ U , where U is the generalized com-

plex disc

U := {(x1, . . . , xp) ∈ Cp : |xj| < min(r1, . . . , rp)},
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where

rj :=
1

j

(nj

n

)−nj
n
(
1− nj

n

)nj
n
−1

. (8.9)

We apply Abel’s Theorem (see Theorem 4 in Chapter 2) with w0 = 1 to the

expansion y(z) = 1 +
∑∞

k=1 ck
wk

k!
and derive the following theorem:

Theorem 15 1

Let n1, . . . , np and n be positive integers. The multivariate power series

y = y(x1, . . . , xp) :=

1 +
1

n

∑
j1+···+jp≥1

j1,...,jp≥0

(−1)j1+···+jp
xj1

1 · · ·x
jp
p

j1! . . . jp!

[
1

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
j1+···+jp−1

satisfies the algebraic equation (8.1) as a relation in C[[x1, . . . , xp]]. Furthermore,

for (x1, . . . , xp) ∈ U the series y = y(x1, . . . , xp) is absolutely convergent in U and

is a solution of the algebraic equation (8.1). The remaining n−1 roots y1, . . . , yn−1

are pairwise different and are obtained from y = y(x1, . . . , xp) by multiplication

of the roots of unity ρm := e2πim/n as follows:

ym = ym(x1, . . . , xp) := ρmy(ρn1
m x1, . . . , ρ

np
m xp), 1 ≤ m ≤ n− 1.

The proof, that the ym, 1 ≤ m ≤ n − 1, are indeed the remaining roots of the

algebraic equation (8.1), can be found in [17].

This Theorem guarantees the existence of n different roots of the equation (8.1) for

two different algebraic settings, firstly if (8.1) is viewed as an algebraic equation

in the ring C[[x1, . . . , xp]] of formal power series in the xj and secondly if (8.1)

is viewed as the usual algebraic equation with complex coefficients (x1, . . . , xp)

taken from U .

Finally we note that in the analog way we can also obtain the multivariate series

expansion for the c-th power yc of the principle solution y of (8.1).

We define

f(z) := y(z)c,

1[17], P. Paule, 2009.
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where y(z) and ϕ(z) as in (8.7) and (8.8). Then we obtain

f(z) = y(z)c = 1 +
∞∑

k=1

Ck
wk

k!
,

with

Ck = LDk−1f ′(z)ϕk(z)

= − c

n
LDk−1(1− z)

c
n
−1
(
x1(1− z)

n1
n + · · ·+ xp(1− z)

np
n

)k

= − c

n
LDk−1

∑
j1+···+jp=k

j1,...,jp≥0

k!

j1! . . . jp!
xj1

1 · · ·xjp
p (1− z)

c
n
−1+

n1
n

j1+···+np
n

jp

= (−1)k c

n

∑
j1+···+jp=k

j1,...,jp≥0

k!

j1! . . . jp!
xj1

1 · · ·xjp
p

[ c

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
k−1

.

We apply Abel’s Theorem (see Theorem 4 in Chapter 2) again with w0 = 1 and

derive:

y(z)c = (8.10)

1 +
c

n

∑
j1+···+jp≥1

j1,...,jp≥0

(−1)j1+···+jp
xj1

1 · · ·x
jp
p

j1! . . . jp!

[ c

n
− 1 +

n1

n
j1 + · · ·+ np

n
jp

]
j1+···+jp−1

.

Again this series is absolutely convergent for all (x1, . . . , xp) ∈ U .

We will now have a closer look at a simple example to show how powerful the

technique of Mellin’s series is. We consider

yp + xyq − 1 = 0 with p > q ≥ 1.

The Mellin series for the principal solution is

y(x) =
∑
k≥0

(
(qk + 1)/p

k

)
(−x)k

qk + 1
.

This formula also pops up in Ramanujan’s notes; see e. g. Ramanujan’s Quaterly

Report 1.6 in [2].
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From Theorem 15 we obtain

y(x) = 1 +
1

p

∑
k>0

(−1)k

[
1

p
− 1 +

q

p
k

]
k−1

xk

k!

The expression
[

1
p
− 1 + q

p
k
]

k−1
has to be interpreted as falling factorials (see

Definition 4 in Chapter 1), this means in fact that

[
1

p
− 1 +

q

p
k

]
k−1

=
( q

p
k + 1

p
− 1)!

( q
p
k + 1

p
− 1− k + 1)!

=
( qk+1−p

p
)!

( qk+1−kp
p

)!
.

Next,

y(x) = 1 +
1

p

∑
k>0

( qk+1−p
p

)!

( qk+1−kp
p

)!

(−x)k

k!
,

because of
( qk+1−p

p
)!

( qk+1−kp
p

)!p
=

( qk+1
p

− 1)!

( qk+1
p

− k)!p
=

( qk+1
p

)!

( qk+1
p

− k)!(qk + 1)
,

is equivalent to

y(x) = 1 +
∑
k>0

( qk+1
p

)!

( qk+1
p

− k)!(qk + 1)

(−x)k

k!
.

Finally, because of ( qk+1
p

k

)
=

( qk+1
p

)!

k!( qk+1
p

− k)!
,

we obtain

y(x) =
∑
k≥0

(
(qk + 1)/p

k

)
(−x)k

qk + 1
, (8.11)

the Mellin series for our simple example yp + xyq − 1 = 0.

Note: Here z! = Γ(z + 1), i. e., the gamma function introduced in Definition 2

in Chapter 1.

A problem with the Mellin series arises when we consider convergence of the

series. The coefficients have to lie in a circle with a small radius, depending on

the given powers of the equation. For example, according to (8.9), the series

(8.11) converges only for all x ∈ U , with

U = {x ∈ C : |x| < r1},
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where

r1 =

(
q

p

)− q
p
(

1− q

p

) q
p
−1

. (8.12)

Finally consider the algebraic equation2

xqyp + yq − 1 = 0, (8.13)

where x ∈ R, x > 0, and p, q ∈ N? with 0 < q < p, Ramanujan found the

following expansion for yn, n ∈ N?, in nonnegative powers of x:

yn(x) =
n

q

∞∑
k=0

Γ((n + pk)/q) · (−qx)k

Γ((n + pk)/q − k + 1) · k!
. (8.14)

This is nothing but a variant of the generalized Mellin Series (8.10).

According to (8.9) the series (8.14) converges for all

x < (p)−
p
q (p− q)

p−q
q .

Ramanujan derived (8.14) differently; see [B.C.Berndt, chapter 3, Entry 14].

2[3], B.C.Berndt, page 306, 1985.
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gèbrique, L’Enseignment Mathèmatique 10, 1984.
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