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Abstract. We provide here a detailed proof of the fact that the two polynomials polU, polV,
called P1 and P2 in Section 3.2 of the main article, admit unique power series solutions inQ[[x, t]] and Q[[y, t]], respectively.

1. A Simple Example First

For illustration of the argument, consider a univariate example first. Let

P (T, t) := 512t10T 6 + 768(t − 1)t8T 5 + 64(18t2 − 12t + 7)t6T 4 + 64(t − 1)(13t2 − 2t + 2)t4T 3

+ 2(288t4 − 264t3 + 136t2 − 16t + 9)t2T 2 + (t − 1)(192t4 − 72t3 + 32t2 + 1)T

+ (118t4 − 72t3 + 16t2 − t + 1).

We want to show that there is a power series f(t) ∈ Q[[t]] with P (f(t), t) = 0. (This is the
Kreweras example with x = 2, y = 0.)

By Puiseux’s theorem, there exists a full system of solutions in the ringQ{t} :=
⋃

r∈N ⋃

α∈Q tαQ[[t1/r]].

Let us write the elements of this ring in the form

f(t) =
∑

q∈Q cqt
q

that saves us from making α or r explicit. We understand this notation so that the set of q ∈ Q
for which cq 6= 0 is such that f(t) indeed belongs to Q{t}. In particular, we will always have
cq = 0 for all sufficiently small q.

The ringQ{t} is a differential ring, and we can find with gfun (or otherwise) a differential operator
L ∈ Q(t)〈Dt〉 such that every f ∈ Q{t} with P (f, t) = 0 also satisfies L · f = 0. For the present
example, such an operator is given by

L = 2t3(3t − 1)(9t2 + 3t + 1)(31t2 + 4t − 4)(585t4 − 36t3 − 532t2 + 144t− 64)D4
t

+ t2(15668640t9 + 681372t8 − 17532936t7 + 2475135t6 − 149868t5 − 198792t4 + 122560t3

+ 11504t2 + 17600t− 5376)D3
t + 3t(23502960t9 + 457812t8 − 28669824t7 + 5360739t6

− 1540887t5 − 372544t4 + 144748t3 + 54384t2 + 15232t− 4608)D2
t + 6(15668640t9

− 70956t8 − 21136104t7 + 4870284t6 − 2066280t5 − 251411t4 + 59814t3 + 51336t2 + 4288t

− 1280)Dt + 24t(979290t7 − 27945t6 − 1475100t5 + 398520t4 − 208200t3 − 11136t2

− 384t + 3584).
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This differential operator translates into a difference operator R ∈ Q[q]〈Sq〉 which annihilates the
coefficients. In the example,

R = − 256(q + 9)(q + 10)(q + 11)(2q + 21)S9
q + 64(q + 8)(q + 9)(q + 10)(26q + 249)S8

q

− 16(q + 9)(90q3 + 451q2 − 11088q − 71533)S7
q + 4(2216q4 + 70528q3 + 831865q2

+ 4309124q + 8267412)S6
q − 2(3488q4 + 148228q3 + 1999216q2 + 10992341q + 21463437)S5

q

+ 9(4048q4 + 23828q3 − 521817q2 − 5203475q − 12531324)S4
q + 9(q + 4)(10850q3

+ 296715q2 + 2369493q + 5793714)S3
q − 216(q + 3)(q + 4)(4744q2 + 57451q + 177876)S2

q

+ 972(q + 2)(q + 3)(q + 4)(68q − 47)Sq + 979290(q + 1)(q + 2)(q + 3)(q + 4).

This operator translates into a recurrence equation

256q(q + 1)(q + 2)(2q + 3)cq = 64(q − 1)q(q + 1)(26q + 15)cq−1

− 16q(90q3 − 1979q2 + 2664q − 820)cq−2 + · · ·
+ 979290(q − 8)(q − 7)(q − 6)(q − 5)cq−9.

Whenever a series f(t) =
∑

q∈Q cqt
q ∈ Q{t} is such that P (f(t), t) = 0, then its coefficients must

satisfy this recurrence. Because of the recurrence, a particular coefficient cq can be nonzero only
for two reasons: (i) at least one of cq−1, . . . , cq−9 is also nonzero, or (ii) q(q+1)(q+2)(2q+3) = 0.
Since cq = 0 for all sufficiently small q, it follows that the support of f(t) must be a subset ofN ∪ (−1 +N) ∪ (−2 +N) ∪ (− 3

2
+N) = (−2 +N) ∪ (− 3

2
+N).

In particular, if cn 6= 0 for some n ∈ Z, then c0 6= 0 or c−1 6= 0 or c−2 6= 0, and, more importantly,
if cn+1/2 6= 0 for some n ∈ Z, then c−3/2 6= 0.

Applying now Puiseux’ algorithm to the original polynomial P (T, t), we find that there exists a
solution starting as

f(t) = 1 + 2t2 + 2t3 + 8t4 + O(t5).

This must be a power series, for if that series involved some nontrivial term cqt
q with q = u/v ≥ 5,

gcd(u, v) = 1, v 6= 1, then by the above reasoning, v = 2 and there would appear a nontrivial term
c−3/2t

−3/2 in f(t), which is not the case.

2. Existence of a Solution of P1

Our actual problems are technically slightly more involved, because they have one variable more.
However, the basic idea of the construction will be the same. Let us first consider the case U(t, x).
Let P1(t, x, T ) be the guessed minimal polynomial of U(t, x). We show that there exists a unique
power series Ucand(t, x) with P1(t, x, Ucand(t, x)) = 0.

Consider solutions f(t, x) of the form

f(t, x) =
∑

p,q∈Q cp,qt
pxq

with cp,q ∈ Q, nonzero only for some appropriate set of indices. The condition in the univariate
case that the coefficients are identically zero for all indices q below some bound u translates in the
bivariate case into the condition that they be identically zero for all indices (p, q) outside of some
translate of a certain halfplane

up + vq ≤ 0.

The coefficients u, v defining this halfplane are not entirely up to our choice, but they depend on
the Newton polytope of P . According to Theorem 3.6 in [2], we can choose any (u, v) such that
u and v are linearly independent over Q and (u, v) belongs to the “normal cone” C∗(e) of some
“admissible edge” e in the Newton polytope of Q (Notions as in [2]). In our case, we can choose
the edge e = (44, 32, 24)−(4, 12, 4). Then, continuing to use notions defined in [2], the barrier
wedge is

W (e) = { (x, y, z) ∈ R3 : z ≤ 12 + x − y ∧ 3z ≤ 4 + x + y },
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the barrier cone is

C(e) = { (x, y) ∈ R2 : x + y ≥ 0 ∧ x − y ≥ 0 },
and the normal cone is

C∗(e) = { (x, y) ∈ R2 : x ≤ 0 ∧ x ≤ y ≤ −x }.

Consequently, we can choose for instance (u, v) = (−1, 1

10

√
2) ∈ C∗(e). In the figure below, the

black points form the support of Q, our edge e is drawn in red, and the two blue half planes form
the boundary of W (e).

Our choice of (u, v) was made such as to ensure the existence of a series solution whose support
belongs to (some translate of) the half plane up + vq ≤ 0 shown here:
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Next, we can find a system of differential equations L1, L2, . . . , L5 ∈ Q[t, x]〈Dt, Dx〉 such that
P1(f(t, x), t, x) = 0 implies Li ·f = 0 (i = 1, . . . , 5). These operators are posted on our website [1].
The differential operators give rise to difference operators R1, R2, . . . , R5 ∈ Q[p, q]〈Sp, Sq〉 such
that Ri · cp,q = 0 for any set of coefficients belonging to a solution f . These operators translate to
multivariate recurrence equations of the form

a1(p, q)cp,q = . . . cp+i,q+j . . .

a2(p, q)cp,q = . . . cp+i,q+j . . .

a3(p, q)cp,q = . . . cp+i,q+j . . .

a4(p, q)cp,q = . . . cp+i,q+j . . .

a5(p, q)cp,q = . . . cp+i,q+j . . .
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where

a1(p, q) = 2(9p2q + 15p2 − 9pq3 − 63pq2 − 74pq + 18q4 + 63q3 + 25q2 − 51q − 15),

a2(p, q) = 2(p + 1)(3p + 4)(−p + 3q2 + 6q + 1),

a3(p, q) = −2(9p3q + 9p3 + 36p2q + 57p2 − 126pq2 − 205pq − 9p + 63q4 + 252q3

+ 182q2 − 120q − 57)

a4(p, q) = 2(9p4 + 54p3 + 182p2 − 378pq2 − 756pq − 54p + 189q4 + 756q3 + 546q2 − 420q − 191)

a5(p, q) = 2(−15p2q − 30p2 + 90pq2 + 140pq + 9q5 − 100q3 − 70q2 + 91q + 30),

and the right hand sides are linear combinations of certain shifted versions of cp,q. The full
recurrences are available on our website. The shifts appearing in the first recurrence are given by
the picture below. The red bullet indicates the point (p, q) and a blue bullet at point (p + i, q + j)
represents a term cp+i,q+j on the right hand side of the first recurrence. The other recurrences
look similar.

In a solution f(t, x) whose coefficients are nonzero in a half plane as chosen before, a coefficient
cp,q can cease to be zero only for two reasons: (i) one of the coefficients cp+i,q+j appearing on the
right hand side of one of the recurrences is already nonzero, or (ii) a1(p, q) = a2(p, q) = a3(p, q) =
a4(p, q) = a5(p, q) = 0. The latter condition is satisfied precisely for

(p, q) ∈
{

(1, 0), (−1, 0), (− 4

3
,−1), (−2,−1), (−1,− 2

3
),

(− 5

3
,− 2

3
), (−1,− 4

3
), (− 5

3
,− 4

3
), (− 4

3
,− 5

3
), (−1,−2), (− 4

3
,− 1

3
)
}

.

The support of any solution f whose coefficients are zero in a half plane as chosen before is
therefore contained in a union of certain cones v + C for C ⊆ Z2 lying entirely in the opposite
half plane and v being one of the critical points above. Moreover, since all the shift distances i, j
in our recurrence equations are integers, such f can only have some fractional exponents if it has
a nonzero coefficient at t−4/3x−1 or at t−1x−2/3 or at t−5/3x−2/3 or at t−1x−4/3 or at t−5/3x−4/3

or at t−4/3x−5/3 or at t−4/3x−1/3.

Applying now the generalized Puiseux algorithm of [2] to P1(T, t, x) in order to find the first terms
of all the solutions f whose support lies in a half plane as chosen above, we find that there exists
a solution starting as

f(t, x) = t + x + (5 + x2)t3 + (9x + x3)t4 + further terms

This series must belong to Q((x))[[t]], because the algorithm has been carried out to a point where
all the “further terms” are guaranteed to belong to the gray region in the figure below. If f had
a term with fractional exponent in the gray region, it would have as well a term with fractional
exponent at one of the critical points (red in the figure), and in that case, they would have shown
up already.
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More precisely, the solution f(t, x) only involves terms cp,qt
pxq for (p, q) ∈ Z2 with p ≥ 1 and

2 − p ≤ q ≤ p:
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It remains to show that there are no terms with q < 0. To this end, we construct appropriate
witness recurrences. Let R1, . . . , R5 be the difference operators corresponding to the recurrences
recorded above (that came from the differential operators obtained from the polynomial equation).
Let M ∈ Q[p, q]〈Sp, Sq〉7×5 be the operator matrix posted on our website. and let R′

1, . . . , R
′

7 be
the operators obtained via











R′

1

R′

2

...
R′

7











:= M







R1

...
R5






.

Clearly, the coefficients cp,q of any solution to our equation must also be annihilated by R′

1, . . . , R
′

7.
The matrix M was chosen such that the support of the R′

i looks as follows:



6 ALIN BOSTAN AND MANUEL KAUERS

They have an isolated leading term of maximum total degree. If our solution f(t, x) has some term
cp,qt

pxq with nonzero coefficient for some q < 0, then there will be a left-most line with slope −1
which contains such a term. This term must have an index (p, q) where all the leading coefficients
of the above recurrences vanish simultaneously, because the support of these recurrence equations
is such that all the cp+i,q+j occuring on its right hand side (blue bullets in the picture) are zero in
order for the cp,q to be the left-most nonzero term. The leading terms of the recurrence equations,
however, vanish simultanously only for p, q with

(q − 2)(q − 1)q(p + q + 1)(p + q + 3)(3p + 3q + 5)(3p + 3q + 7) = 0

which is outside of the critical area, or for some finitely many additional points with non-integral
or negative p-coordinates. Therefore, no non-trivial term cp,qt

pxq with negative q can exist.

This completes the proof that f(t, x) belongs to Q[x][[t]]. According to McDonald’s algorithm,
the initial terms of all the other solutions involve fractional exponents. Therefore f(t, x) is unique.

3. Existence of a Solution of P2

Consider now the case V (t, y). Let P2(T, t, y) be the guessed minimal polynomial for this series.
This polynomial decomposes as

P2(T, t, y) = Q(t, y, t2T 2(1 + y)2 − T (3 + y))

for some Q ∈ Q[T, t, y]. We show first that Q(t, t, y) has a power series solution f(t, y), and then
lift this result to the existence of a power series solution g(t, y).

The reasoning is mostly the same as before. We just give the corresponding data.

• We choose the edge e = (22, 24, 12)−(6, 8, 4) (red in the figure below) and obtain the
barrier wedge

W (e) = { (x, y, z) ∈ R3 : −2 ≤ x + 2y − 6z ∧ −2 ≤ x − 2z }

(its boundary half planes are blue in the figure below). The resulting barrier cone and
normal cone are

C(e) = { (x, y) ∈ R3 : 0 ≤ x + 2y ∧ x ≥ 0 },
C∗(e) = { (x, y) ∈ R3 : x ≤ 0 ∧ 2x ≤ y ≤ 0 },

respectively.
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• From the normal cone C∗(e), we choose (u, v) = (−1,−
√

2), defining the half plane de-
picted below. Observe that the boundary line has a slope of nearly −0.70.
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• Five differential operators L ∈ Q[t, y]〈Dt, Dy〉 which annihilate any series solution of our
polynomial equation are posted on the website.

• The recurrences corresponding to these differential operators are posted on the website.
Call them R1, . . . , R5. These operators involve shifts cp+i,q+j for (i, j) according to the
following picture (red bullet = left hand side, blue bullets = right hand side):

Observe that the support is compatible with the half plane we have selected before:
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• The points where all the leading coefficients of all the recurrences in the recurrence system
vanish are

(− 4

3
,−2), (− 2

3
,−2), (−2,−2), (2, 0), (2,−4), (0,−3), (− 2

3
,− 8

3
),

(−2,− 4

3
), (− 2

3
,− 7

3
), (− 4

3
,− 7

3
), (−2,− 5

3
), (− 4

3
,− 5

3
).

• There exists a solution starting like

f(t, y) = −(y + 3)t2 − 2(y2 + 7y + 12)t4 + (−5y3 − 44y2 − 161y − 218)t6 + further terms

-2 2 4 6

-4

-2

2

4

We can conclude that there exists a solution f(t, y) which has nonzero terms cp,qt
pyq only

for p, q ∈ Z with q ≥ 2 − p and q ≥ 1 − p/2.

-2 2 4 6

-2

2

4

6

• This solution has no terms in the (+,−) quadrant. For, multiplying the operator ma-
trix posted on our website to the operator vector (R1, . . . , R5) gives an array of six new
operators, also posted on the website, whose support looks as follows.
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If there was some coefficient with negative q then there would be a left-most line with slope
− 1

2
containing such a coefficient. By the shape of the recurrences above, such coefficients

can only appear at indices (p, q) where all the leading coefficients of these recurrence
equations vanish simultaneously. All these points, however, have irrational coordinates or
lie outside the critical area.

• There are also no terms in the (−, +) quadrant. For, multiplying a second operator
matrix, posted on our website, to the operator vector (R1, . . . , R5) gives an array of two
new operators (posted on the website) whose support looks as follows.

If there was some coefficient with negative p then there would exist a lowest line with slope
−1 containing such a coefficient. By the shape of the recurrences above, such coefficients
can only appear at indices (p, q) where the leading coefficients of these operators vanish
simultaneously. This is the case on the algebraic curve

−18900p3 + 40797p2q2 + 262989p2q + 437004p2 + 71784pq3 + 680238pq2 + 2081878pq

+ 2021080p + 44586q4 + 581004q3 + 2789486q2 + 5822204q + 4427280 = 0

which lies outside of the ciritical area (because, according to CAD, the defining polynomial
is positive there), and several isolated points all of which are outside the area or have
irrational coordinates.

• Conclusion: There is a power series solution for Q(t, y, f(t, y)) = 0.
• Now consider the equation

Q(t, y, t2g(t, y)2(1 + y)2 − g(t, y)(3 + y)) = 0.

The implicit function theorem applies here directly:

t2T 2(1 + y)2 − T (3 + y) − f(t, y)
∣

∣

∣

T,t,y→0
= 0

d

dT

(

t2T 2(1 + y)2 − T (3 + y) − f(t, y)
)∣

∣

∣

T,t,y→0
= −3 6= 0
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• Conclusion: There is a power series solution for P (t, y, g(t, y)) = 0. According to McDon-
ald’s algorithm, the initial terms of all the other solutions involve fractional exponents.
Therefore g(t, x) is unique.
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