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A typical question

Let S be a finite subset of Zd (set of steps) and p0 ∈ Zd (starting point).

A path (walk) of length n starting at p0 is a sequence (p0, p1, . . . , pn)
such that pi+1 − pi ∈ S for all i .

Let C be a cone of Rd (if x ∈ C and r ≥ 0 then r · x ∈ C ).

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0)

and C = R2
+.
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A typical question

Questions
What is the number a(n) of n-step walks starting at p0 and
contained in C?
For i = (i1, . . . , id ) ∈ C , what is the number a(i ; n) of such walks
that end at i?

Example. S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0) and C = R2
+.
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(i , j) = (5, 1)



Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]

Take S = {10, 1̄0, 11̄, 1̄1}, p0 = (0, 0) and C = R2
+

(i , j) = (5, 1) '

Nice numbers
If n = 2m + δ, with δ ∈ {0, 1},

a(n) =
n!(n + 1)!

m!(m + 1)!(m + δ)!(m + δ + 1)!
.

Moreover, if n = 2m + i ,

a(i , j ; n) =
(i + 1)(j + 1)(i + j + 2)(i + 2j + 3)n!(n + 2)!

(m − j)!(m + 1)!(m + i + 2)!(m + i + j + 3)!
.
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Why count walks in cones?

Many discrete objects can be encoded in that way:
in combinatorics, statistical physics...
in (discrete) probability theory: random walks, queuing theory...
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Young tableaux of height 4 [Gouyou-Beauchamps 89]+
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A too ambitious question?

• Our original question:

a(n) = ? a(i ; n) = ?

• Generating functions and their nature

A(t) =
∑
n≥0

a(n)tn, A(x1, . . . , xd ; t) =
∑
i ,n

a(i ; n)x i tn

Can one express these series? Are they rational? algebraic? D-finite?

Remarks
A(1, . . . , 1; t) = A(t)

if C ⊂ Rd
+, then A(0, . . . , 0; t) counts walks ending at (0, . . . , 0)

A(0, x2, . . . , xd ; t) counts walks ending on the hyperplane i1 = 0
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A hierarchy of formal power series

• The formal power series A(t) is rational if it can be written

A(t) = P(t)/Q(t)

where P(t) and Q(t) are polynomials in t.

• The formal power series A(t) is algebraic (over Q(t)) if it satisfies a
(non-trivial) polynomial equation:

P(t,A(t)) = 0.

• The formal power series A(t) is D-finite (holonomic) if it satisfies a
(non-trivial) linear differential equation with polynomial coefficients:

Pk(t)A(k)(t) + · · ·+ P0(t)A(t) = 0.

◦ Nice closure properties + asymptotics of the coefficients
◦ Extension to several variables (D-finite: one DE per variable)
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A (very) basic cone: the full space

Rational series
If S ⊂ Zd is finite and C = Rd , then A(x ; t) is rational:

a(n) = |S|n ⇔ A(t) =
∑
n≥0

a(n)tn =
1

1− |S| t

More generally:

A(x ; t) =
1

1− t
∑

s∈S xs .



Also well-known: a (rational) half-space

Algebraic series

If S ⊂ Zd is finite and C is a rational half-space, then A(x ; t) is algebraic,
given by an explicit system of polynomial equations.

[mbm-Petkovšek 00]; [Gessel 80], [Duchon 00]...



The “next” case: intersection of two half-spaces

• The quarter plane, with p0 = (0, 0)

A(x , y ; t) =
∑

i ,j ,n≥0

a(i , j ; n)x iy j tn = ?

i

j
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Quadrant walks with small steps: classification

• S ⊂ {1̄, 0, 1} \ {00} ⇒ 28 = 256 step sets (or: models)

• However, some models are equivalent:
– to a model of walks in the full or half-plane (⇒ algebraic)

– to another model in the collection (diagonal symmetry)

'

• One is left with 79 interesting distinct models.
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Classification

What is the nature of A(x , y ; t)?
What does it depend on?
Can we find a systematic approach? (or several...)

Preview:

The series A(x , y ; t) is D-finite
iff a certain group associated with S is finite.
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The group of the model

Example. Take S = {1̄0, 01, 11̄}, with step polynomial

S(x , y) =
1
x

+ y + x · 1
y

= x̄ + y + xȳ

Observation: S(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .

They are involutions, and generate a finite dihedral group G :

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

Remark. G can be defined for any quadrant model with small steps
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Observation: S(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (x̄y , y) and Ψ : (x , y) 7→ (x , xȳ) .
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The group is not always finite

• If S = {01̄, 1̄1̄, 1̄0, 11}, then S(x , y) = x̄(1 + ȳ) + ȳ + xy and

Φ : (x , y) 7→ (x̄ ȳ(1 + ȳ), y) and Ψ : (x , y) 7→ (x , x̄ ȳ(1 + x̄))

generate an infinite group:

Ψ

Φ

(x , y)

· · ·

· · ·(x , x̄ ȳ(1 + x̄))

(x̄ ȳ(1 + ȳ), y)
Ψ

Φ

· · ·

· · ·

· · ·

· · ·

Φ

Ψ

Ψ

Φ



When G is finite: the orbit sum

Example. If S = {01, 1̄0, 11̄}, the orbit of (x , y) is

(x̄y , y)

(x , xȳ)

(x̄y , x̄)

(ȳ , xȳ)

Ψ

ΦΨ

Φ

(x , y)

Ψ

Φ

(ȳ , x̄)

and the (alternating) orbit sum is

OS = xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ



Classification of quadrant walks with small steps

Theorem
The series A(x , y ; t) is D-finite iff the group G is finite.
It is algebraic iff, in addition, the orbit sum is zero.

[mbm-Mishna 10], [Bostan-Kauers 10] D-finite
[Kurkova-Raschel 12] non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite

quadrant models: 79

|G |<∞: 23

OS6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite
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quadrant models: 79

|G |<∞: 23

OS6=0: 19

D-finite

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite

in probability
Random walks

Formal power
series algebra

Complex analysis

Computer algebra effective closure properties
arithmetic properties

G-functions
asymptotics

D-finite series



Exact enumeration
the kernel method
computer algebra
an approach using complex analysis

Starting point: recurrence relation / functional equation



A recurrence relation...

The numbers a(i , j ; n) satisfy

a(i , j ; n) =


0 if i < 0 or j < 0 or n < 0,

1i=j=0 if n = 0,∑
i ′j ′∈S

a(i − i ′, j − j ′; n − 1) otherwise.

⇒ Compute a(i , j ; n) for n “small” (less than a few thousands) and try to
guess algebraic or differential equations (→ Gfun package of Maple).



... and the corresponding functional equation

Example: S = {01, 1̄0, 11̄}

A(x , y ; t) ≡ A(x , y) = 1 + t(y + x̄ + xȳ)A(x , y)− tx̄A(0, y)− txȳA(x , 0)

or(
1− t(y + x̄ + xȳ)

)
xyA(x , y) = xy − tyA(0, y)− tx2A(x , 0)

• The polynomial 1− t(y + x̄ + xȳ) is the kernel of this equation

• The equation is linear, with two catalytic variables x and y (tautological
at x = 0 or y = 0)
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79 models, and 79 functional equations...

D-finite transcendental(
1− t(y + x̄ + xȳ)

)
xyA(x , y) = xy − tyA(0, y)− tx2A(x , 0)

Algebraic

(1− t(x̄ + ȳ + xy))xyA(x , y) = xy − tyA(0, y)− txA(x , 0)

Not D-finite

(1− t(x + x̄ + ȳ + xy))xyA(x , y) = xy − tyA(0, y)− txA(x , 0)

But why?



The kernel method

• The equation reads (with K (x , y) = 1− t(y + x̄ + xȳ)):

K (x , y)xyA(x , y) = xy − tx2A(x , 0)− tyA(0, y)

• The orbit of (x , y) under G is

(x , y)
Φ←→(x̄y , y)

Ψ←→(x̄y , x̄)
Φ←→(ȳ , x̄)

Ψ←→(ȳ , xȳ)
Φ←→(x , xȳ)

Ψ←→(x , y).

• All transformations of G leave K (x , y) invariant. Hence

K (x , y) xyA(x , y) = xy − tx2A(x , 0) − tyA(0, y)

K (x , y) x̄y2A(x̄y , y) = x̄y2 − tx̄2y2A(x̄y , 0) − tyA(0, y)

K (x , y) x̄2yA(x̄y , x̄) = x̄2y − tx̄2y2A(x̄y , 0) − tx̄A(0, x̄)

· · · = · · ·

K (x , y) x2ȳA(x , xȳ) = x2ȳ − tx2A(x , 0) − txȳA(0, xȳ).



The kernel method

⇒ Form the alternating sum of the equation over all elements of the orbit:

K (x , y)
(
xyA(x , y)− x̄y2A(x̄y , y) + x̄2yA(x̄y , x̄)

− x̄ ȳA(ȳ , x̄) + xȳ2A(ȳ , xȳ)− x2ȳA(x , xȳ)
)

=

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

(the orbit sum).



Why is this interesting?

xyA(x , y)− x̄y2A(x̄y , y) + x̄2yA(x̄y , x̄)

− x̄ ȳA(ȳ , x̄) + xȳ2A(ȳ , xȳ)− x2ȳA(x , xȳ) =

xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ
1− t(y + x̄ + xȳ)

• Both sides are power series in t, with coefficients in Q[x , x̄ , y , ȳ ].

• Extract the part with positive powers of x and y :

xyA(x , y) = [x>0y>0]
xy − x̄y2 + x̄2y − x̄ ȳ + xȳ2 − x2ȳ

1− t(y + x̄ + xȳ)

is a D-finite series.
[Lipshitz 88]



Why is this interesting?

xyA(x , y)− x̄y2A(x̄y , y) + x̄2yA(x̄y , x̄)
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The kernel method in general (finite groups)

• For all models with a finite group,∑
g∈G

sign(g)g(xyA(x , y ; t)) =
1

K (x , y ; t)

∑
g∈G

sign(g)g(xy) =
OS

K (x , y ; t)
,

where g(A(x , y)) := A(g(x , y)).

• The right-hand side is an explicit rational series.

• For the 19 models where the orbit sum is non-zero,

xyA(x , y ; t) = [x>0y>0]
OS

K (x , y ; t)

is a D-finite series.

[mbm-Mishna 10]
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Classification of quadrant walks with small steps

quadrant models: 79

|G |<∞: 23

OS6=0: 19

D-finite

Kernel method

OS=0: 3 + 1

algebraic

|G |=∞: 56

Not D-finite

Half-orbit sum computer algebra
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D-finite
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OS=0: 3 + 1

algebraic
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Not D-finite

Half-orbit sum computer algebra



A computer algebra approach

Example. When S = {1̄0, 01̄, 11}, the equation reads

(1− t(x̄ + ȳ + xy))xyA(x , y ; t) = xy − tyA(0, y ; t)− txA(x , 0; t).

Naïve route: guess and check!
Guess a polynomial equation Pol satisfied by A(x , y ; t)
(degrees [18, 18, 17, 12] in x , y , t,A)
Let F (x , y ; t) be the solution of Pol that coincides with A(x , y ; t) up
to high order (in t)
Prove that F (x , y ; t) is a formal power series in t with polynomial
coefficients in x and y ⇒ F (x , 0; t) and F (0, y ; t) are well-defined
By taking resultants, prove that F (x , y ; t) satisfies the above
functional equation.
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(1− t(x̄ + ȳ + xy))xyA(x , y ; t) = xy − tyA(0, y ; t)− txA(x , 0; t).

Naïve route: guess and check!
Guess a polynomial equation Pol satisfied by A(x , y ; t)
(degrees [18, 18, 17, 12] in x , y , t,A)
Let F (x , y ; t) be the solution of Pol that coincides with A(x , y ; t) up
to high order (in t)
Prove that F (x , y ; t) is a formal power series in t with polynomial
coefficients in x and y ⇒ F (x , 0; t) and F (0, y ; t) are well-defined
By taking resultants, prove that F (x , y ; t) satisfies the above
functional equation.



A computer algebra approach

Example. When S = {1̄0, 01̄, 11}, the equation reads
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A computer algebra approach

Example. When S = {1̄0, 01̄, 11}, the equation reads

(1− t(x̄ + ȳ + xy))xyA(x , y ; t) = xy − tyA(0, y ; t)− txA(x , 0; t).

A better route...

Work with A(x , 0; t) = A(0, x ; t) only



A computer algebra approach: climax

Algebraicity of Gessel’s model [Bostan-Kauers 10]

• When S = {10, 1̄0, 11, 1̄1̄}, the series A(x , y ; t) is algebraic (degree 72).

• In particular, the series A(0, 0; t), which counts loops, has degree 8, and
the following expansion:

A(0, 0; t) =
∑
n≥0

16n (5/6)n(1/2)n

(5/3)n(2)n
t2n, (1)

with (i)n = i(i + 1) · · · (i + n − 1).

(??): Conjectured around 2001, first proof by [Kauers, Koutschan &
Zeilberger 09] using computer algebra.

The algebraicity of A(x , y ; t) has just been re-proved using a complex
analysis approach [Bostan, Kurkova & Raschel 13(a)]
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A complex analysis approach

Markov chains with small steps in the quadrant: stationary distribution(s)
[Malyshev 71+]

Le petit livre jaune
[Fayolle, Iasnogorodski & Malyshev 99]

⇒ Reduction to a boundary value problem of the Riemann-Carleman type



A complex analysis approach

An expression of Q for any non-singular model S

K̃ (x , 0; t)A(x , 0; t)− K̃ (0, 0; t)A(0, 0; t) = xY0(x ; t)+

1
2iπ

∫ x2(t)

x1(t)
u [Y0(u; t)− Y1(u; t)]

[
∂uw(u; t)

w(u; t)− w(x ; t)
− ∂uw(u; t)

w(u; t)− w(0; t)

]
du

where Y0, Y1, x1 and x2 are explicit algebraic series and w is explicit/
very well understood.

In particular, w is D-finite (in fact, algebraic!) iff the group is finite.

[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of A(x , y ; t)
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A complex analysis approach: climax(es)

Theorems
• If S has an infinite group and is not singular, then A(x , y ; t) is not
D-finite in x (≡ no differential equation with respect to x)

[Kurkova & Raschel 12]

• A new proof of the algebraicity of Gessel’s model

[Bostan, Kurkova & Raschel 13(a)]



Asymptotics
Random walks in a cone
Asymptotics of coefficients of D-finite series

⇒ A(0, 0; t) is not D-finite if S has an infinite group and is not singular



Random walks in a cone

For loops in the quadrant [Denisov & Wachtel 12(a)]
For a non-singular models S, the number of n-step loops satisfies

a(0, 0; n) ∼ κµnn−γ

where
γ =

π

arccos(−c)
+ 1,

with c an algebraic number that can be described in terms of S.

Possible asymptotic behaviours
If B(t) =

∑
n b(n)tn is D-finite with integer coefficients and

b(n) ∼ κµnn−γ ,

then γ is rational.
(connection with G-functions [André 89], [Chudnovsky2 85], [Katz 70])



Random walks in a cone + asymptotics of D-finite series

For loops in the quadrant [Denisov & Wachtel 12(a)]
For a non-singular models S, the number of n-step loops satisfies

a(0, 0; n) ∼ κµnn−γ

where
γ =

π

arccos(−c)
+ 1,

with c an algebraic number that can be described in terms of S.

Possible asymptotic behaviours
If B(t) =

∑
n b(n)tn is D-finite with integer coefficients and

b(n) ∼ κµnn−γ ,

then γ is rational.
(connection with G-functions [André 89], [Chudnovsky2 85], [Katz 70])



Random walks in a cone + asymptotics of D-finite series

Strategy for proving non-D-finiteness of A(0, 0; t)

Prove that γ is irrational, that is, that arccos(−c) is not a rational
multiple of π.

For any of the 51 non-singular models with an infinite group, A(0, 0; t) is
not D-finite.

[Bostan, Raschel & Salvy 14]



Perspectives
larger steps
intersections of three half-spaces: walks in the 3D octant
and more...



Larger steps

• Define (and use) a group G for models with larger steps?

• Example: When S = {01, 11̄, 2̄1̄}, there is an underlying group that is
finite and

xyA(x , y ; t) = [x>0y>0]
(x − 2x̄2)(y − (x − x̄2)ȳ)

1− t(xȳ + y + x̄2ȳ)

[Bostan, mbm & Melczer]
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Three-dimensional walks in the positive octant

• Take S ⊂ {1̄, 0, 1}3 \ {000}, p0 = (0, 0, 0) and study walks confined to
the positive octant R3

+

• Problem: there are 11 074 225 distinct interesting models ⇒ Focus on
those of cardinality at most 6

• Outcome:

some non-D-finite models with a finite group?

Example. The model {111, 1̄00, 01̄0, 001̄} has a finite group of order 24.
The orbit sum vanishes. Is it D-finite?

[Bostan, mbm, Kauers, Melczer 14(a)]
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Et encore...

Non D-finiteness of A(1, 1; t) (which counts all quadrant walks by
length), via probabilistic results [Denisov-Wachtel 12] or [Duraj 14]
Bostan, Raschel, Salvy...
Exact asymptotics for D-finite cases (using [Pemantle & Wilson 13],
asymptotics of coefficients of multivariate rational series)
Melczer, Mishna...
Closed form expressions for D-finite cases in terms of integrals of
hypergeometric series
Bostan, Chyzak, Kauers, Pech, van Hoeij...
Simpler solution of Gessel’s algebraic model?
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