## Lattice paths confined to cones

Mireille Bousquet-Mélou, CNRS, LaBRI, Bordeaux


## A typical question

Let $\mathcal{S}$ be a finite subset of $\mathbb{Z}^{d}$ (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$


## A typical question

Let $\mathcal{S}$ be a finite subset of $\mathbb{Z}^{d}$ (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).
A path (walk) of length $n$ starting at $p_{0}$ is a sequence ( $p_{0}, p_{1}, \ldots, p_{n}$ ) such that $p_{i+1}-p_{i} \in \mathcal{S}$ for all $i$.

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$


## A typical question

Let $\mathcal{S}$ be a finite subset of $\mathbb{Z}^{d}$ (set of steps) and $p_{0} \in \mathbb{Z}^{d}$ (starting point).
A path (walk) of length $n$ starting at $p_{0}$ is a sequence $\left(p_{0}, p_{1}, \ldots, p_{n}\right)$ such that $p_{i+1}-p_{i} \in \mathcal{S}$ for all $i$.

Let $C$ be a cone of $\mathbb{R}^{d}$ (if $x \in C$ and $r \geq 0$ then $r \cdot x \in C$ ).
Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$.


## A typical question

## Questions

- What is the number $a(n)$ of $n$-step walks starting at $p_{0}$ and contained in C?
- For $i=\left(i_{1}, \ldots, i_{d}\right) \in C$, what is the number $a(i ; n)$ of such walks that end at $i$ ?

Example. $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$.


## Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]

Take $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$


Example [Gouyou-Beauchamps 86], [mbm-Mishna 10]
Take $\mathcal{S}=\{10, \overline{1} 0,1 \overline{1}, \overline{1} 1\}, p_{0}=(0,0)$ and $C=\mathbb{R}_{+}^{2}$


Nice numbers
If $n=2 m+\delta$, with $\delta \in\{0,1\}$,

$$
a(n)=\frac{n!(n+1)!}{m!(m+1)!(m+\delta)!(m+\delta+1)!} .
$$

Moreover, if $n=2 m+i$,

$$
a(i, j ; n)=\frac{(i+1)(j+1)(i+j+2)(i+2 j+3) n!(n+2)!}{(m-j)!(m+1)!(m+i+2)!(m+i+j+3)!} .
$$

## Why count walks in cones?

Many discrete objects can be encoded in that way:

- in combinatorics, statistical physics...
- in (discrete) probability theory: random walks, queuing theory...


## Why count walks in cones?

Many discrete objects can be encoded in that way:

- in combinatorics, statistical physics...
- in (discrete) probability theory: random walks, queuing theory...

$+\quad$ Young tableaux of height 4 [Gouyou-Beauchamps 89]


## Many contributions

Adan, Banderier, Bernardi, Bostan, Cori, Denisov, Duchon, Dulucq, Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...
etc.

## Many contributions

Adan, Banderier, Bernardi, Bostan, Cori, Denisov, Duchon, Dulucq, Fayolle, Gessel, Fisher, Flajolet, Gouyou-Beauchamps, Guttmann, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, van Leeuwarden, MacMahon, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger...

etc.


— Systematic approach

## A too ambitious question?

- Our original question:

$$
a(n)=? \quad a(i ; n)=?
$$

## A too ambitious question?

- Our original question:

$$
a(n)=? \quad a(i ; n)=?
$$

- Generating functions and their nature

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A\left(x_{1}, \ldots, x_{d} ; t\right)=\sum_{i, n} a(i ; n) x^{i} t^{n}
$$

## A too ambitious question?

- Our original question:

$$
a(n)=? \quad a(i ; n)=?
$$

- Generating functions and their nature

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A\left(x_{1}, \ldots, x_{d} ; t\right)=\sum_{i, n} a(\boldsymbol{i} ; n) x^{i} t^{n}
$$

Remarks

- $A(1, \ldots, 1 ; t)=A(t)$
- if $C \subset \mathbb{R}_{+}^{d}$, then $A(0, \ldots, 0 ; t)$ counts walks ending at $(0, \ldots, 0)$
- $A\left(0, x_{2}, \ldots, x_{d} ; t\right)$ counts walks ending on the hyperplane $i_{1}=0$


## A too ambitious question?

- Our original question:

$$
a(n)=? \quad a(i ; n)=?
$$

- Generating functions and their nature

$$
A(t)=\sum_{n \geq 0} a(n) t^{n}, \quad A\left(x_{1}, \ldots, x_{d} ; t\right)=\sum_{i, n} a(\boldsymbol{i} ; n) x^{i} t^{n}
$$

Can one express these series? Are they rational? algebraic? D-finite?
Remarks

- $A(1, \ldots, 1 ; t)=A(t)$
- if $C \subset \mathbb{R}_{+}^{d}$, then $A(0, \ldots, 0 ; t)$ counts walks ending at $(0, \ldots, 0)$
- $A\left(0, x_{2}, \ldots, x_{d} ; t\right)$ counts walks ending on the hyperplane $i_{1}=0$


## A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=P(t) / Q(t)
$$

where $P(t)$ and $Q(t)$ are polynomials in $t$.

## A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=P(t) / Q(t)
$$

where $P(t)$ and $Q(t)$ are polynomials in $t$.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t))$ if it satisfies a (non-trivial) polynomial equation:

$$
P(t, A(t))=0
$$

## A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=P(t) / Q(t)
$$

where $P(t)$ and $Q(t)$ are polynomials in $t$.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t))$ if it satisfies a (non-trivial) polynomial equation:

$$
P(t, A(t))=0
$$

- The formal power series $A(t)$ is D-finite (holonomic) if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$
P_{k}(t) A^{(k)}(t)+\cdots+P_{0}(t) A(t)=0
$$

## A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=P(t) / Q(t)
$$

where $P(t)$ and $Q(t)$ are polynomials in $t$.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t))$ if it satisfies a (non-trivial) polynomial equation:

$$
P(t, A(t))=0 .
$$

- The formal power series $A(t)$ is D-finite (holonomic) if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$
P_{k}(t) A^{(k)}(t)+\cdots+P_{0}(t) A(t)=0
$$

- Nice closure properties + asymptotics of the coefficients


## A hierarchy of formal power series

- The formal power series $A(t)$ is rational if it can be written

$$
A(t)=P(t) / Q(t)
$$

where $P(t)$ and $Q(t)$ are polynomials in $t$.

- The formal power series $A(t)$ is algebraic (over $\mathbb{Q}(t))$ if it satisfies a (non-trivial) polynomial equation:

$$
P(t, A(t))=0 .
$$

- The formal power series $A(t)$ is D-finite (holonomic) if it satisfies a (non-trivial) linear differential equation with polynomial coefficients:

$$
P_{k}(t) A^{(k)}(t)+\cdots+P_{0}(t) A(t)=0
$$

- Nice closure properties + asymptotics of the coefficients
- Extension to several variables (D-finite: one DE per variable)


## A (very) basic cone: the full space

## Rational series

If $\mathcal{S} \subset \mathbb{Z}^{d}$ is finite and $C=\mathbb{R}^{d}$, then $A(x ; t)$ is rational:

$$
a(n)=|\mathcal{S}|^{n} \quad \Leftrightarrow \quad A(t)=\sum_{n \geq 0} a(n) t^{n}=\frac{1}{1-|\mathcal{S}| t}
$$

More generally:

$$
A(x ; t)=\frac{1}{1-t \sum_{s \in \mathcal{S}} x^{s}} .
$$



## Also well-known: a (rational) half-space

Algebraic series
If $\mathcal{S} \subset \mathbb{Z}^{d}$ is finite and $C$ is a rational half-space, then $A(x ; t)$ is algebraic, given by an explicit system of polynomial equations.
[mbm-Petkovšek 00]; [Gessel 80], [Duchon 00]


## The "next" case: intersection of two half-spaces

- The quarter plane, with $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$



## The "next" case: intersection of two half-spaces

- The quarter plane, with $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$




D-finite


D-finite


D-finite

## The "next" case: intersection of two half-spaces

- The quarter plane, with $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$




D-finite


D-finite


D-finite


Algebraic

## The "next" case: intersection of two half-spaces

- The quarter plane, with $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$




D-finite


D-finite


D-finite


Algebraic


Non-D-finite

## The "next" case: intersection of two half-spaces

- The quarter plane, with $p_{0}=(0,0)$

$$
A(x, y ; t)=\sum_{i, j, n \geq 0} a(i, j ; n) x^{i} y^{j} t^{n}=?
$$




D-finite


D-finite


D-finite


Algebraic


Non-D-finite


Non-D-finite


D-finite

## Quadrant walks with small steps: classification

- $\mathcal{S} \subset\{\overline{1}, 0,1\} \backslash\{00\} \Rightarrow 2^{8}=256$ step sets (or: models)


## Quadrant walks with small steps: classification

- $\mathcal{S} \subset\{\overline{1}, 0,1\} \backslash\{00\} \Rightarrow 2^{8}=256$ step sets (or: models)
- However, some models are equivalent:
- to a model of walks in the full or half-plane ( $\Rightarrow$ algebraic)

- to another model in the collection (diagonal symmetry)

- One is left with 79 interesting distinct models.



Singular


## Non-singular



Singular

## Classification

- What is the nature of $A(x, y ; t)$ ?
- What does it depend on?
- Can we find a systematic approach? (or several...)


## Classification

- What is the nature of $A(x, y ; t)$ ?
- What does it depend on?
- Can we find a systematic approach? (or several...)


## Preview:

The series $A(x, y ; t)$ is D-finite iff a certain group associated with $\mathcal{S}$ is finite.

## The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+x \cdot \frac{1}{y}=\bar{x}+y+x \bar{y}
$$

## The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+x \cdot \frac{1}{y}=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y})
$$

## The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+x \cdot \frac{1}{y}=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y}) .
$$

They are involutions, and generate a finite dihedral group $G$ :


## The group of the model

Example. Take $\mathcal{S}=\{\overline{1} 0,01,1 \overline{1}\}$, with step polynomial

$$
S(x, y)=\frac{1}{x}+y+x \cdot \frac{1}{y}=\bar{x}+y+x \bar{y}
$$

Observation: $S(x, y)$ is left unchanged by the rational transformations

$$
\Phi:(x, y) \mapsto(\bar{x} y, y) \quad \text { and } \quad \Psi:(x, y) \mapsto(x, x \bar{y}) .
$$

They are involutions, and generate a finite dihedral group $G$ :


Remark. $G$ can be defined for any quadrant model with small steps

## The group is not always finite

- If $\mathcal{S}=\{0 \overline{1}, \overline{1} \overline{1}, \overline{1} 0,11\}$, then $S(x, y)=\bar{x}(1+\bar{y})+\bar{y}+x y$ and

$$
\Phi:(x, y) \mapsto(\bar{x} \bar{y}(1+\bar{y}), y) \quad \text { and } \quad \psi:(x, y) \mapsto(x, \bar{x} \bar{y}(1+\bar{x}))
$$

generate an infinite group:

## When $G$ is finite: the orbit sum

Example. If $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$, the orbit of $(x, y)$ is

and the (alternating) orbit sum is

$$
O S=x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}
$$

## Classification of quadrant walks with small steps

## Theorem

The series $A(x, y ; t)$ is D-finite iff the group $G$ is finite.
It is algebraic iff, in addition, the orbit sum is zero.
[mbm-Mishna 10], [Bostan-Kauers 10]
D-finite
[Kurkova-Raschel 12]
non-singular non-D-finite
[Mishna-Rechnitzer 07], [Melczer-Mishna 13] singular non-D-finite
quadrant models: 79


## Classification of quadrant walks with small steps

quadrant models: 79


## Exact enumeration

- the kernel method
- computer algebra
- an approach using complex analysis

Starting point: recurrence relation / functional equation

## A recurrence relation...

The numbers $a(i, j ; n)$ satisfy

$$
a(i, j ; n)= \begin{cases}0 & \text { if } i<0 \text { or } j<0 \text { or } n<0, \\ \mathbb{1}_{i=j=0} a\left(i-i^{\prime}, j-j^{\prime} ; n-1\right) & \text { otherwise } .\end{cases}
$$

$\Rightarrow$ Compute $a(i, j ; n)$ for $n$ "small" (less than a few thousands) and try to guess algebraic or differential equations ( $\rightarrow$ Gfun package of Maple).
$\ldots$ and the corresponding functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$
$A(x, y ; t) \equiv A(x, y)=1+t(y+\bar{x}+x \bar{y}) A(x, y)-t \bar{x} A(0, y)-t x \bar{y} A(x, 0)$


$\ominus$

and the corresponding functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$
$A(x, y ; t) \equiv A(x, y)=1+t(y+\bar{x}+x \bar{y}) A(x, y)-t \bar{x} A(0, y)-t x \bar{y} A(x, 0)$
or

$$
(1-t(y+\bar{x}+x \bar{y})) A(x, y)=1-t \bar{x} A(0, y)-t x \bar{y} A(x, 0),
$$

## and the corresponding functional equation

Example: $\mathcal{S}=\{01, \overline{1} 0,1 \overline{1}\}$
$A(x, y ; t) \equiv A(x, y)=1+t(y+\bar{x}+x \bar{y}) A(x, y)-t \bar{x} A(0, y)-t x \bar{y} A(x, 0)$
or

$$
(1-t(y+\bar{x}+x \bar{y})) A(x, y)=1-t \bar{x} A(0, y)-t x \bar{y} A(x, 0)
$$

or

$$
(1-t(y+\bar{x}+x \bar{y})) x y A(x, y)=x y-\operatorname{ty} A(0, y)-t x^{2} A(x, 0)
$$

- The polynomial $1-t(y+\bar{x}+x \bar{y})$ is the kernel of this equation
- The equation is linear, with two catalytic variables $x$ and $y$ (tautological at $x=0$ or $y=0$ )


## 79 models, and 79 functional equations...

D-finite transcendental

$$
(1-t(y+\bar{x}+x \bar{y})) x y A(x, y)=x y-t y A(0, y)-t x^{2} A(x, 0)
$$

Algebraic

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)
$$

$\square$ Not D-finite
$(1-t(x+\bar{x}+\bar{y}+x y)) x y A(x, y)=x y-t y A(0, y)-t x A(x, 0)$

But why?

## The kernel method

- The equation reads (with $K(x, y)=1-t(y+\bar{x}+x \bar{y})$ ):

$$
K(x, y) x y A(x, y)=x y-t x^{2} A(x, 0)-\operatorname{ty} A(0, y)
$$

- The orbit of $(x, y)$ under $G$ is

$$
(x, y) \stackrel{\Phi}{\longleftrightarrow}(\bar{x} y, y) \stackrel{\Psi}{\longleftrightarrow}(\bar{x} y, \bar{x}) \stackrel{\Phi}{\longleftrightarrow}(\bar{y}, \bar{x}) \stackrel{\Psi}{\longleftrightarrow}(\bar{y}, x \bar{y}) \stackrel{\Phi}{\longleftrightarrow}(x, x \bar{y}) \stackrel{\Psi}{\longleftrightarrow}(x, y) .
$$

- All transformations of $G$ leave $K(x, y)$ invariant. Hence

$$
\begin{array}{rlcccc}
K(x, y) x y A(x, y) & =x y & - & t x^{2} A(x, 0) & - & t y A(0, y) \\
K(x, y) \bar{x} y^{2} A(\bar{x} y, y) & = & \bar{x} y^{2} & - & t \bar{x}^{2} y^{2} A(\bar{x} y, 0) & - \\
t y A(0, y) \\
K(x, y) \bar{x}^{2} y A(\bar{x} y, \bar{x}) & = & \bar{x}^{2} y & - & t \bar{x}^{2} y^{2} A(\bar{x} y, 0) & - \\
\ldots & = & t \bar{x} A(0, \bar{x}) \\
\ldots & \ldots & & \\
K(x, y) x^{2} \bar{y} A(x, x \bar{y}) & = & x^{2} \bar{y} & - & t x^{2} A(x, 0) & - \\
t x \bar{y} A(0, x \bar{y}) .
\end{array}
$$

## The kernel method

$\Rightarrow$ Form the alternating sum of the equation over all elements of the orbit:

$$
\begin{aligned}
& K(x, y)\left(x y A(x, y)-\bar{x} y^{2} A(\bar{x} y, y)+\bar{x}^{2} y A(\bar{x} y, \bar{x})\right. \\
& \left.\quad-\bar{x} \bar{y} A(\bar{y}, \bar{x})+x \bar{y}^{2} A(\bar{y}, x \bar{y})-x^{2} \bar{y} A(x, x \bar{y})\right)= \\
& x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}
\end{aligned}
$$

(the orbit sum).

## Why is this interesting?

$$
\begin{aligned}
& x y A(x, y)-\bar{x} y^{2} A(\bar{x} y, y)+\bar{x}^{2} y A(\bar{x} y, \bar{x}) \\
& -\bar{x} \bar{y} A(\bar{y}, \bar{x})+x \bar{y}^{2} A(\bar{y}, x \bar{y})-x^{2} \bar{y} A(x, x \bar{y})= \\
& \quad \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in $t$, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.


## Why is this interesting?

$$
\begin{aligned}
& x y A(x, y)-\bar{x} y^{2} A(\bar{x} y, y)+\bar{x}^{2} y A(\bar{x} y, \bar{x}) \\
& \quad-\bar{x} \bar{y} A(\bar{y}, \bar{x})+x \bar{y}^{2} A(\bar{y}, x \bar{y})-x^{2} \bar{y} A(x, x \bar{y})= \\
& \quad \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
\end{aligned}
$$

- Both sides are power series in $t$, with coefficients in $\mathbb{Q}[x, \bar{x}, y, \bar{y}]$.
- Extract the part with positive powers of $x$ and $y$ :

$$
x y A(x, y)=\left[x^{>0} y^{>0}\right] \frac{x y-\bar{x} y^{2}+\bar{x}^{2} y-\bar{x} \bar{y}+x \bar{y}^{2}-x^{2} \bar{y}}{1-t(y+\bar{x}+x \bar{y})}
$$

is a D-finite series.
[Lipshitz 88]

## The kernel method in general (finite groups)

- For all models with a finite group,

$$
\sum_{g \in G} \operatorname{sign}(g) g(x y A(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G} \operatorname{sign}(g) g(x y)=\frac{O S}{K(x, y ; t)}
$$ where $g(A(x, y)):=A(g(x, y))$.

- The right-hand side is an explicit rational series.
[mbm-Mishna 10]


## The kernel method in general (finite groups)

- For all models with a finite group,

$$
\sum_{g \in G} \operatorname{sign}(g) g(x y A(x, y ; t))=\frac{1}{K(x, y ; t)} \sum_{g \in G} \operatorname{sign}(g) g(x y)=\frac{O S}{K(x, y ; t)}
$$ where $g(A(x, y)):=A(g(x, y))$.

- The right-hand side is an explicit rational series.
- For the 19 models where the orbit sum is non-zero,

$$
x y A(x, y ; t)=\left[x^{>0} y^{>0}\right] \frac{O S}{K(x, y ; t)}
$$

is a D-finite series.
[mbm-Mishna 10]

## Classification of quadrant walks with small steps



## Classification of quadrant walks with small steps



## A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t) .
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in $x, y, t, A$ )
- Prove that $F(x, y ; t)$ is a formal power series in $t$ with polynomial coefficients in $x$ and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.


## A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in $x, y, t, A$ )
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in $t$ )
- Prove that $F(x, y ; t)$ is a formal power series in $t$ with polynomial coefficients in $x$ and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.


## A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in $x, y, t, A$ )
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in $t$ )
- Prove that $F(x, y ; t)$ is a formal power series in $t$ with polynomial coefficients in $x$ and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined


## A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

Naïve route: guess and check!

- Guess a polynomial equation Pol satisfied by $A(x, y ; t)$ (degrees $[18,18,17,12]$ in $x, y, t, A$ )
- Let $F(x, y ; t)$ be the solution of Pol that coincides with $A(x, y ; t)$ up to high order (in $t$ )
- Prove that $F(x, y ; t)$ is a formal power series in $t$ with polynomial coefficients in $x$ and $y \Rightarrow F(x, 0 ; t)$ and $F(0, y ; t)$ are well-defined
- By taking resultants, prove that $F(x, y ; t)$ satisfies the above functional equation.


## A computer algebra approach

Example. When $\mathcal{S}=\{\overline{1} 0,0 \overline{1}, 11\}$, the equation reads

$$
(1-t(\bar{x}+\bar{y}+x y)) x y A(x, y ; t)=x y-t y A(0, y ; t)-t x A(x, 0 ; t)
$$

A better route...
Work with $A(x, 0 ; t)=A(0, x ; t)$ only

A computer algebra approach: climax

Algebraicity of Gessel's model [Bostan-Kauers 10]

- When $\mathcal{S}=\{10, \overline{1} 0,11, \overline{1} \overline{1}\}$, the series $A(x, y ; t)$ is algebraic (degree 72 ).


## A computer algebra approach: climax

Algebraicity of Gessel's model [Bostan-Kauers 10]

- When $\mathcal{S}=\{10, \overline{1} 0,11, \overline{1} \overline{1}\}$, the series $A(x, y ; t)$ is algebraic (degree 72 ).
- In particular, the series $A(0,0 ; t)$, which counts loops, has degree 8 , and the following expansion:

$$
\begin{equation*}
A(0,0 ; t)=\sum_{n \geq 0} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} t^{2 n}, \tag{1}
\end{equation*}
$$

with $(i)_{n}=i(i+1) \cdots(i+n-1)$.

## A computer algebra approach: climax

## Algebraicity of Gessel's model [Bostan-Kauers 10]

- When $\mathcal{S}=\{10, \overline{1} 0,11, \overline{1}\}$, the series $A(x, y ; t)$ is algebraic (degree 72 ).
- In particular, the series $A(0,0 ; t)$, which counts loops, has degree 8 , and the following expansion:

$$
\begin{equation*}
A(0,0 ; t)=\sum_{n \geq 0} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} t^{2 n}, \tag{1}
\end{equation*}
$$

with $(i)_{n}=i(i+1) \cdots(i+n-1)$.
(??): Conjectured around 2001, first proof by [Kauers, Koutschan \& Zeilberger 09] using computer algebra.

## A computer algebra approach: climax

Algebraicity of Gessel's model [Bostan-Kauers 10]

- When $\mathcal{S}=\{10, \overline{1} 0,11, \overline{1}\}$, the series $A(x, y ; t)$ is algebraic (degree 72 ).
- In particular, the series $A(0,0 ; t)$, which counts loops, has degree 8 , and the following expansion:

$$
\begin{equation*}
A(0,0 ; t)=\sum_{n \geq 0} 16^{n} \frac{(5 / 6)_{n}(1 / 2)_{n}}{(5 / 3)_{n}(2)_{n}} t^{2 n} \tag{1}
\end{equation*}
$$

with $(i)_{n}=i(i+1) \cdots(i+n-1)$.
(??): Conjectured around 2001, first proof by [Kauers, Koutschan \& Zeilberger 09] using computer algebra.

The algebraicity of $A(x, y ; t)$ has just been re-proved using a complex analysis approach [Bostan, Kurkova \& Raschel 13(a)]

## A complex analysis approach

Markov chains with small steps in the quadrant: stationary distribution(s) [Malyshev 71+]

Le petit livre jaune [Fayolle, lasnogorodski \& Malyshev 99]

$\Rightarrow$ Reduction to a boundary value problem of the Riemann-Carleman type

## A complex analysis approach

An expression of $Q$ for any non-singular model $\mathcal{S}$

$$
\tilde{K}(x, 0 ; t) A(x, 0 ; t)-\tilde{K}(0,0 ; t) A(0,0 ; t)=x Y_{0}(x ; t)+
$$

$$
\frac{1}{2 i \pi} \int_{x_{1}(t)}^{x_{2}(t)} u\left[Y_{0}(u ; t)-Y_{1}(u ; t)\right]\left[\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(x ; t)}-\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(0 ; t)}\right] d u
$$

where $Y_{0}, Y_{1}, x_{1}$ and $x_{2}$ are explicit algebraic series and $w$ is explicit/ very well understood.
[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of $A(x, y ; t)$


## A complex analysis approach

An expression of $Q$ for any non-singular model $\mathcal{S}$

$$
\tilde{K}(x, 0 ; t) A(x, 0 ; t)-\tilde{K}(0,0 ; t) A(0,0 ; t)=x Y_{0}(x ; t)+
$$

$$
\frac{1}{2 i \pi} \int_{x_{1}(t)}^{x_{2}(t)} u\left[Y_{0}(u ; t)-Y_{1}(u ; t)\right]\left[\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(x ; t)}-\frac{\partial_{u} w(u ; t)}{w(u ; t)-w(0 ; t)}\right] d u
$$

where $Y_{0}, Y_{1}, x_{1}$ and $x_{2}$ are explicit algebraic series and $w$ is explicit/ very well understood.
In particular, $w$ is D-finite (in fact, algebraic!) iff the group is finite.
[Raschel 12] + Fayolle, Kurkova

+ other formulas that complete the characterization of $A(x, y ; t)$


## A complex analysis approach: climax(es)

## Theorems

- If $\mathcal{S}$ has an infinite group and is not singular, then $A(x, y ; t)$ is not

D-finite in $x$ ( $\equiv$ no differential equation with respect to $x$ )
[Kurkova \& Raschel 12]

- A new proof of the algebraicity of Gessel's model
[Bostan, Kurkova \& Raschel 13(a)]


## Asymptotics

- Random walks in a cone
- Asymptotics of coefficients of D-finite series
$\Rightarrow A(0,0 ; t)$ is not D-finite if $\mathcal{S}$ has an infinite group and is not singular


## Random walks in a cone

For loops in the quadrant [Denisov \& Wachtel 12(a)]
For a non-singular models $\mathcal{S}$, the number of $n$-step loops satisfies

$$
a(0,0 ; n) \sim \kappa \mu^{n} n^{-\gamma}
$$

where

$$
\gamma=\frac{\pi}{\arccos (-c)}+1
$$

with $c$ an algebraic number that can be described in terms of $\mathcal{S}$.

## Random walks in a cone + asymptotics of D-finite series

For loops in the quadrant [Denisov \& Wachtel 12(a)]
For a non-singular models $\mathcal{S}$, the number of $n$-step loops satisfies

$$
a(0,0 ; n) \sim \kappa \mu^{n} n^{-\gamma}
$$

where

$$
\gamma=\frac{\pi}{\arccos (-c)}+1
$$

with $c$ an algebraic number that can be described in terms of $\mathcal{S}$.

## Possible asymptotic behaviours

If $B(t)=\sum_{n} b(n) t^{n}$ is D-finite with integer coefficients and

$$
b(n) \sim \kappa \mu^{n} n^{-\gamma},
$$

then $\gamma$ is rational.
(connection with G-functions [André 89], [Chudnovsky² 85], [Katz 70])

## Random walks in a cone + asymptotics of D-finite series

Strategy for proving non-D-finiteness of $A(0,0 ; t)$
Prove that $\gamma$ is irrational, that is, that $\arccos (-c)$ is not a rational multiple of $\pi$.

For any of the 51 non-singular models with an infinite group, $A(0,0 ; t)$ is not D-finite.
[Bostan, Raschel \& Salvy 14]

## Perspectives

- larger steps
- intersections of three half-spaces: walks in the 3D octant
- and more...


## Larger steps

- Define (and use) a group G for models with larger steps?


## Larger steps

- Define (and use) a group G for models with larger steps?
- Example: When $\mathcal{S}=\{01,1 \overline{1}, \overline{2} \overline{1}\}$, there is an underlying group that is finite and

$$
x y A(x, y ; t)=\left[x^{>0} y^{>0}\right] \frac{\left(x-2 \bar{x}^{2}\right)\left(y-\left(x-\bar{x}^{2}\right) \bar{y}\right)}{1-t\left(x \bar{y}+y+\bar{x}^{2} \bar{y}\right)}
$$

[Bostan, mbm \& Melczer]

## Three-dimensional walks in the positive octant

- Take $\mathcal{S} \subset\{\overline{1}, 0,1\}^{3} \backslash\{000\}, p_{0}=(0,0,0)$ and study walks confined to the positive octant $\mathbb{R}_{+}^{3}$
- Problem: there are 11074225 distinct interesting models $\Rightarrow$ Focus on those of cardinality at most 6
[Bostan, mbm, Kauers, Melczer 14(a)]


## Three-dimensional walks in the positive octant

- Take $\mathcal{S} \subset\{\overline{1}, 0,1\}^{3} \backslash\{000\}, p_{0}=(0,0,0)$ and study walks confined to the positive octant $\mathbb{R}_{+}^{3}$
- Problem: there are 11074225 distinct interesting models $\Rightarrow$ Focus on those of cardinality at most 6
- Outcome:
some non-D-finite models with a finite group?
[Bostan, mbm, Kauers, Melczer 14(a)]


## Three-dimensional walks in the positive octant

- Take $\mathcal{S} \subset\{\overline{1}, 0,1\}^{3} \backslash\{000\}, p_{0}=(0,0,0)$ and study walks confined to the positive octant $\mathbb{R}_{+}^{3}$
- Problem: there are 11074225 distinct interesting models $\Rightarrow$ Focus on those of cardinality at most 6
- Outcome:
some non-D-finite models with a finite group?
Example. The model $\{111, \overline{1} 00,0 \overline{1} 0,00 \overline{1}\}$ has a finite group of order 24 . The orbit sum vanishes. Is it D-finite?
[Bostan, mbm, Kauers, Melczer 14(a)]


## Et encore...

- Non D-finiteness of $A(1,1 ; t)$ (which counts all quadrant walks by length), via probabilistic results [Denisov-Wachtel 12] or [Duraj 14] Bostan, Raschel, Salvy...
- Exact asymptotics for D-finite cases (using [Pemantle \& Wilson 13], asymptotics of coefficients of multivariate rational series) Melczer, Mishna...
- Closed form expressions for D-finite cases in terms of integrals of hypergeometric series
Bostan, Chyzak, Kauers, Pech, van Hoeij...
- Simpler solution of Gessel's algebraic model?


## Et encore...

- Non D-finiteness of $A(1,1 ; t)$ (which counts all quadrant walks by length), via probabilistic results [Denisov-Wachtel 12] or [Duraj 14] Bostan, Raschel, Salvy...
- Exact asymptotics for D-finite cases (using [Pemantle \& Wilson 13], asymptotics of coefficients of multivariate rational series) Melczer, Mishna...
- Closed form expressions for D-finite cases in terms of integrals of hypergeometric series
Bostan, Chyzak, Kauers, Pech, van Hoeij..
- Simpler solution of Gessel's algebraic model?


