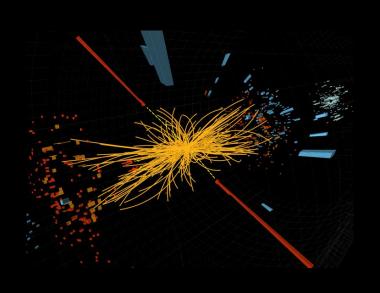
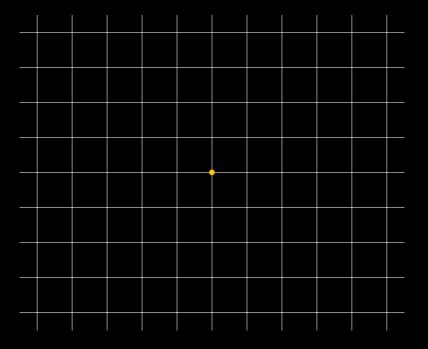
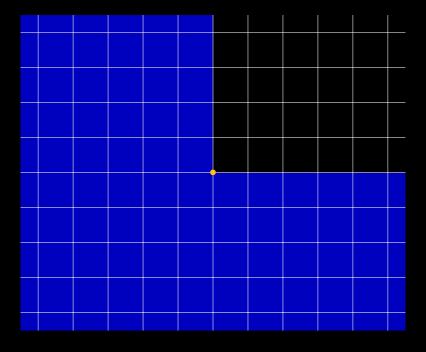
Restricted Lattice walks in Three Dimensions

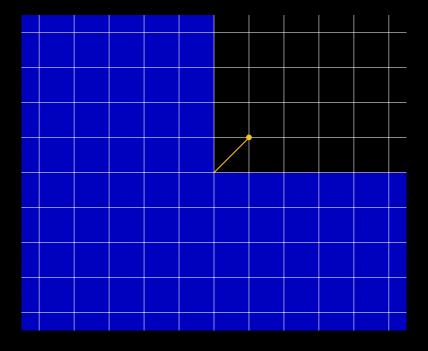
Manuel Kauers Research Institute for Symbolic Computation (RISC) Johannes Kepler University, Linz, Austria

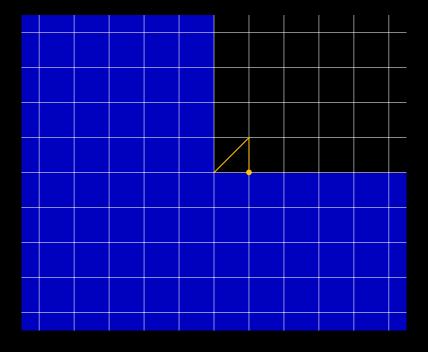
joint work with Alin Bostan, Mireille Bousquet-Mélou, and Stephen Melczer

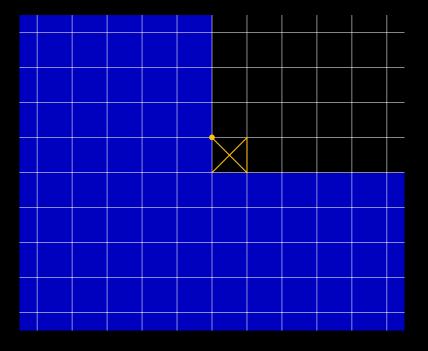


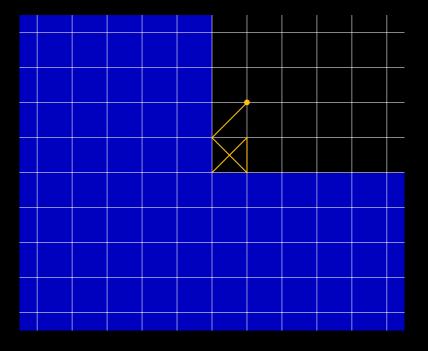


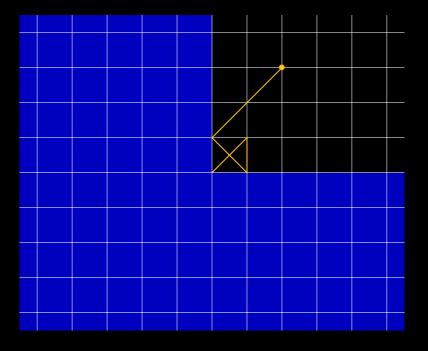


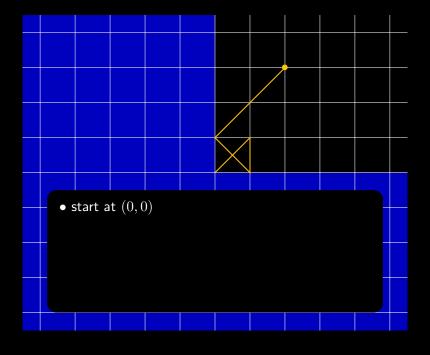


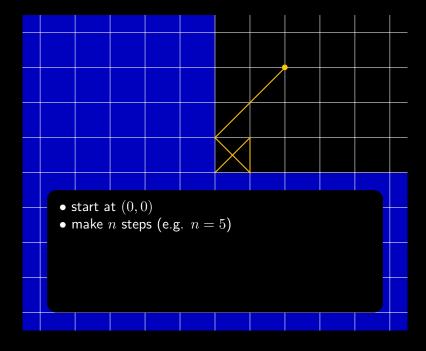


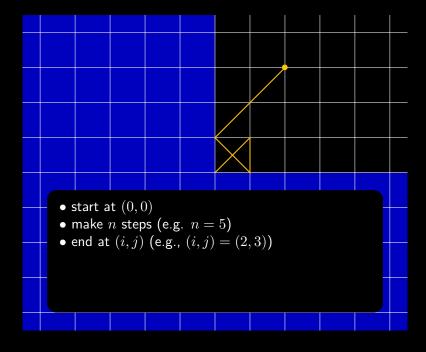


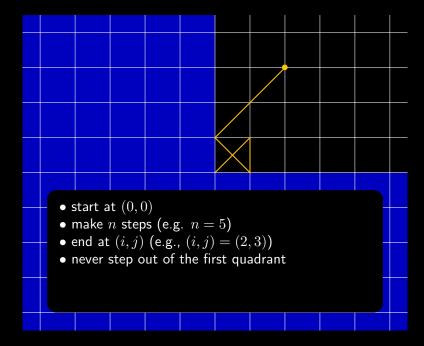


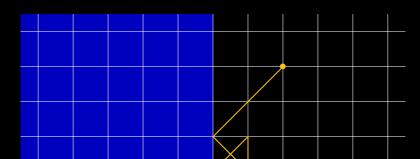




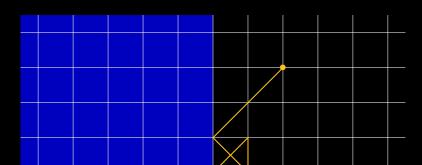








- start at (0,0)
- make n steps (e.g. n=5)
- end at (i, j) (e.g., (i, j) = (2, 3))
- never step out of the first quadrant
- use only steps taken from a prescribed "step set" (e.g., $S = \{ \nwarrow, \downarrow, \nearrow \}$)



- start at (0,0)
- make n steps (e.g. n=5)
- end at (i, j) (e.g., (i, j) = (2, 3))
- never step out of the first quadrant
- use only steps taken from a prescribed "step set" (e.g., $S = \{ \nwarrow, \downarrow, \nearrow \}$)

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

Example: For the step set we have

$$a(x, y, t) = 1 + xy t$$

$$+ (x + y^{2} + x^{2}y^{2})t^{2}$$

$$+ (2y + 2x^{2}y + 2xy^{3} + x^{3}y^{3})t^{3}$$

$$+ \cdots$$

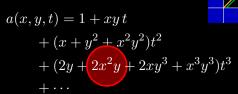
Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Example: For the step set we have



Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Example: For the step set we have

$$a(x, y, t) = 1 + (x + xy) t$$

$$+ (2 + x^{2} + y + 2x^{2}y + x^{2}y^{2})t^{2}$$

$$+ (5x + x^{3} + 6xy + 3x^{3}y + 2xy^{2} + 3x^{3}y^{2} + x^{3}y^{3})t^{3}$$

$$+ \cdots$$

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Who cares?

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Who cares?

At least:

Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Who cares?

At least:

Bernadi, Bostan, Bousquet-Mélou, Cori, Denisov, Dulucq, Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson, Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna, Niederhausen, Petkovšek, Prellberg, Raschel, Rechnitzer, Sagan, Salvy, Viennot, Wachtel, Wilf, Yeats, Zeilberger

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Note:

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Note:

ullet a(1,1,t) counts the number of walks with arbitrary endpoint.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Note:

- a(1,1,t) counts the number of walks with arbitrary endpoint.
- $\bullet \ a(0,0,t)$ counts the number of walks returning to the origin.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

Question:

How does the nature of a(x,y,t) depend on the step set?

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^{i} y^{j} t^{n}$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is D-finite : \iff

$$p_0 a + p_1 \frac{d}{dt} a + \dots + p_r \frac{d^r}{dt^r} a = 0$$

for some polynomials p_0, \ldots, p_r in x, y, t, not all zero.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x,y,t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is D-finite : \iff

$$(p_0 + p_1 D_t + p_2 D_t^2 + \dots + p_r D_t^r) \cdot a = 0$$

for some polynomials p_0, \ldots, p_r in x, y, t, not all zero.

Let $a_{n,i,j}$ be the number of walks of length n with end point (i,j).

Let

$$a(x, y, t) = \sum_{n=0}^{\infty} \sum_{i,j} a_{n,i,j} x^i y^j t^n$$

be the corresponding generating function.

More precisely: For which step sets is a(x, y, t) D-finite (or even algebraic), and for which step sets is it not D-finite?

Recall: a is algebraic: \iff

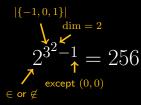
$$p_0 + p_1 a + p_2 a^2 + \dots + p_r a^r = 0$$

for some polynomials p_0, \ldots, p_r in x, y, t, not all zero.

$$2^{3^2 - 1} = 256$$

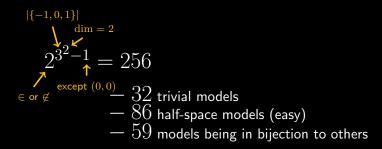
$$2^{32 - 1} = 256$$

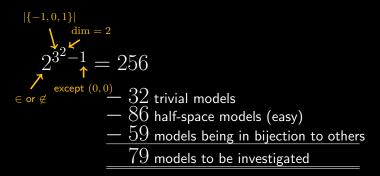
$$2^{32} \stackrel{\text{dim} = 2}{\overset{\text{dim} = 2}{\overset{\text{const.}}{\uparrow}}} = 250$$



$$\begin{array}{c} |\{-1,0,1\}| \\ \downarrow \quad \text{dim} = 2 \\ 2^{3^2-1} = 256 \\ \uparrow \quad \text{except } (0,0) \\ \in \text{ or } \not\in \end{array} = 32 \text{ trivial models}$$

$$\begin{array}{c} |\{-1,0,1\}| \\ \sqrt{\dim = 2} \\ 2^{3^2-1} = 256 \\ \in \text{ or } \notin \begin{array}{c} \exp \left(0,0\right) \\ -86 \text{ half-space models (easy)} \end{array}$$





How many of them are D-finite?

How many of them are not D-finite?

$$2^{3^2-1} = 256$$

$$0 = 0 = 0$$

$$2^{3^2-1} = 256$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0 = 0$$

$$0 = 0$$

$$0 = 0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 =$$

How many of them are D-finite?

How many of them are not D-finite?

What does it depend on?

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,i,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

Example: For the step set above we obtain

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

This functional equation uniquely describes a(x, y, t).

Example: For the step set we obtain

$$a_{i,j,n+1} = a_{i+1,j-1,n} + a_{i,j+1,n} + a_{i-1,j-1,n}.$$

Together with $a_{0,0,0} = 1$ and the boundary conditions $a_{-1,j,n} = a_{i,-1,n} = 0$, this recurrence gives rise to a functional equation for the generating function a(x, y, t).

Example: For the step set above we obtain

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

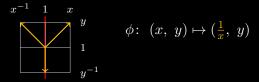
This functional equation uniquely describes a(x, y, t).

All properties of a(x, y, t) must somehow follow from it.

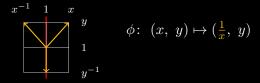
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

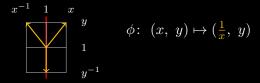
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



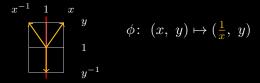
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



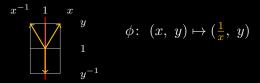
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



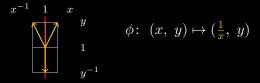
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



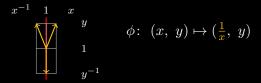
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



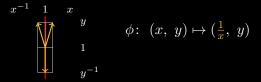
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



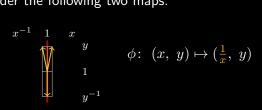
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



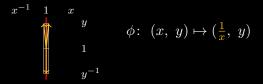
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



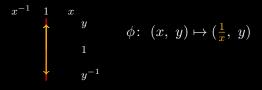
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



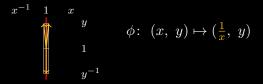
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



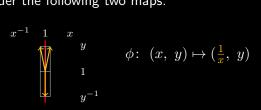
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



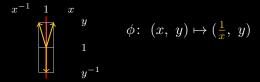
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



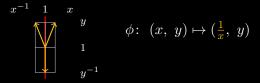
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



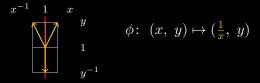
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



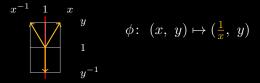
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



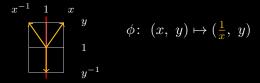
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



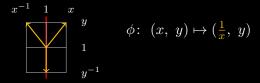
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



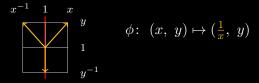
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



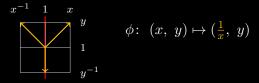
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



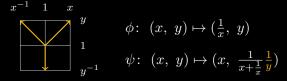
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



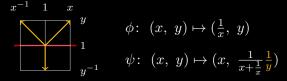
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



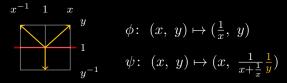
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



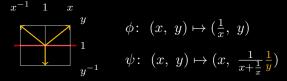
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{array}{ccccc}
x^{-1} & 1 & x \\
y & \phi \colon (x, y) \mapsto (\frac{1}{x}, y) \\
1 & \psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})
\end{array}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{array}{cccc}
x^{-1} & 1 & x \\
y & \phi \colon (x, y) \mapsto (\frac{1}{x}, y) \\
1 & \psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})
\end{array}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$x^{-1} \quad 1 \quad x$$

$$y \qquad \phi \colon (x, y) \mapsto (\frac{1}{x}, y)$$

$$1 \qquad \qquad \psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$x^{-1} \quad 1 \quad x$$

$$\phi \colon (x, y) \mapsto (\frac{1}{x}, y)$$

$$\psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$x^{-1} \quad 1 \quad x$$

$$\phi \colon (x, y) \mapsto (\frac{1}{x}, y)$$

$$\psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{array}{cccc}
x^{-1} & 1 & x \\
y & \phi \colon (x, y) \mapsto (\frac{1}{x}, y) \\
& & \downarrow & \downarrow \\
& & \psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})
\end{array}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$x^{-1} \quad 1 \quad x$$

$$\phi \colon (x, y) \mapsto (\frac{1}{x}, y)$$

$$\psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$x^{-1} \quad 1 \quad x$$

$$y \qquad \phi \colon (x, y) \mapsto \left(\frac{1}{x}, y\right)$$

$$\psi \colon (x, y) \mapsto \left(x, \frac{1}{x + \frac{1}{x}} \frac{1}{y}\right)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{array}{cccc}
x^{-1} & 1 & x \\
y & \phi \colon (x, y) \mapsto (\frac{1}{x}, y) \\
\downarrow & \downarrow & \downarrow \\
y^{-1} & \psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})
\end{array}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

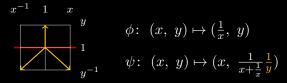
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{array}{cccc}
x^{-1} & 1 & x \\
y & \phi \colon (x, y) \mapsto (\frac{1}{x}, y) \\
1 & \psi \colon (x, y) \mapsto (x, \frac{1}{x + \frac{1}{x}} \frac{1}{y})
\end{array}$$

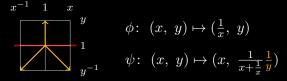
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

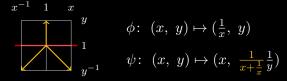
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



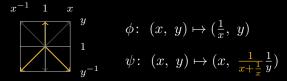
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



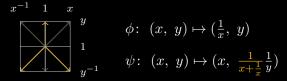
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



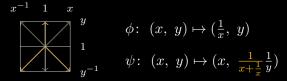
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



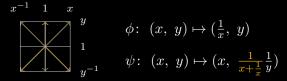
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

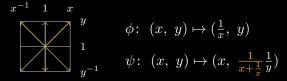


$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

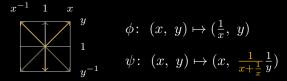


$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

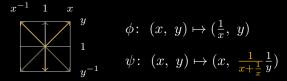
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



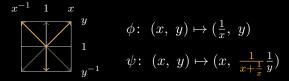
$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

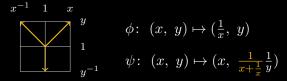


$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

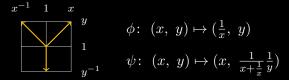


$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

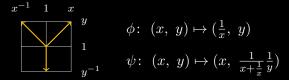


$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



These two maps together with composition generate a group, the so-called group of the model.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$



These two maps together with composition generate a group, the so-called group of the model.

For some step sets this group is finite, for others it is infinite.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

Here, $G = \{1, \phi, \psi, \phi\psi\}$ is finite.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$
$$-\phi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$
$$-\phi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$
$$-\psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$
$$-\phi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$
$$-\psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$
$$+\phi \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$- \psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$+ \phi \psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$- \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$+ \phi \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$- \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$+ \phi \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$- \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$+ \phi \psi \Big(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \Big)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

only monomials
$$x^{i}y^{j}$$
 with $i < 0$ or $j < 0$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$- \psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$+ \phi \psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

only monomials
$$x^{i}y^{j}$$
 with $i < 0$ or $j < 0$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \left(K xy a(x, y, t) \right) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \left)$$

$$- \psi \left(K xy a(x, y, t) \right) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$+ \phi \psi \left(K xy a(x, y, t) \right) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$\Rightarrow xy a(x, y, t) = [x^{>}][y^{>}] \frac{xy - \frac{1}{x}y - x \frac{1}{1 + \frac{1}{x}} \frac{1}{y} + \frac{1}{x} \frac{1}{1 + \frac{1}{x}} \frac{1}{y}}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}$$

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

only monomials
$$x^{i}y^{j}$$
 with $i < 0$ or $j < 0$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$- \psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$+ \phi \psi \left(K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t) \right)$$

$$\Rightarrow xy a(x, y, t) = [x^{>}][y^{>}] \frac{xy - \frac{1}{x}y - x\frac{1}{1+\frac{1}{x}}\frac{1}{y} + \frac{1}{x}\frac{1}{1+\frac{1}{x}}\frac{1}{y}}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}$$

rational

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

only monomials
$$x^{i}y^{j}$$
 with $i < 0$ or $j < 0$

$$K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t)$$

$$- \phi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$$

$$- \psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$$

$$+ \phi \psi (K xy a(x, y, t) = xy - xt a(x, 0, t) - y^{2}t a(0, y, t))$$

$$\Rightarrow xy a(x, y, t) = [x^{>}][y^{>}] \underbrace{xy - \frac{1}{x}y - x\frac{1}{1+\frac{1}{x}}\frac{1}{y} + \frac{1}{x}\frac{1}{1+\frac{1}{x}}\frac{1}{y}}_{\text{rational}}$$

D-finite

• if the group is infinite

- if the group is infinite
- if the right hand side adds up to 0

- if the group is infinite
- if the right hand side adds up to 0
- if several terms on the left contain monomials with positive exponents

- if the group is infinite
- if the right hand side adds up to 0
- if several terms on the left contain monomials with positive exponents

What to do then?

- if the group is infinite
- if the right hand side adds up to 0
- if several terms on the left contain monomials with positive exponents

What to do then? Try using computer algebra, as follows.

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right) a(x, y, t) = 1 - \frac{t}{y} a(x, 0, t) - \frac{yt}{x} a(0, y, t)$$

$$\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+xy\right)t\right)}_{=0 \text{ for } y=Y(x,t):=\frac{x-\sqrt{x(x-4t^2(1+x^2))}}{2t(1+x^2)}=t+\left(x+\frac{1}{x}\right)t^3+\cdots$$

$$\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+xy\right)t\right)}_{=0 \text{ for } y=Y(x,t):=\frac{x-\sqrt{x(x-4t^2(1+x^2))}}{2t(1+x^2)}=t+\left(x+\frac{1}{x}\right)t^3+\cdots$$

$$0 = 1 - \frac{t}{Y(x,t)}a(x,0,t) - \frac{Y(x,t)t}{x}a(0,Y(x,t),t)$$

$$\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+xy\right)t\right)}_{=0 \text{ for } y=Y(x,t):=\frac{x-\sqrt{x(x-4t^2(1+x^2))}}{2t(1+x^2)}=t+\left(x+\frac{1}{x}\right)t^3+\cdots$$

$$a(x,0,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 a(0, Y(x,t), t)$$

$$\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+xy\right)t\right)}_{=0 \text{ for } y=Y(x,t):=\frac{x-\sqrt{x(x-4t^2(1+x^2))}}{2t(1+x^2)}=t+\left(x+\frac{1}{x}\right)t^3+\cdots$$

$$a(x,0,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 a(0, Y(x,t), t)$$

Setting $x \rightsquigarrow Y^{-1}(x,t)$ in this equation and rearranging terms gives

$$a(0,x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} a(Y^{-1}(x,t),0,t)$$

g

$$\underbrace{\left(1-\left(\frac{y}{x}+\frac{1}{y}+xy\right)t\right)}_{=0 \text{ for } y=Y(x,t):=\frac{x-\sqrt{x(x-4t^2(1+x^2))}}{2t(1+x^2)}=t+\left(x+\frac{1}{x}\right)t^3+\cdots$$

$$a(x,0,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 a(0, Y(x,t), t)$$

Setting $x \rightsquigarrow Y^{-1}(x,t)$ in this equation and rearranging terms gives

$$a(0,x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2}a(Y^{-1}(x,t),0,t)$$

g

Now consider the following system of functional equations for two unknown power series U(x,t), V(x,t):

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Observe:

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Observe:

This system has a unique solution.

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Observe:

- This system has a unique solution.
- By construction, the solution must be

$$U = a(x, 0, t)$$
 and $V = a(0, x, t)$.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Now turn on the computer...

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Now turn on the computer...

• generate lots of coefficients of a(x,0,t), and a(0,x,t).

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Now turn on the computer...

- generate lots of coefficients of a(x, 0, t), and a(0, x, t).
- guess a system of D-finite differential equations possibly satisfied by these series.

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Now turn on the computer...

- generate lots of coefficients of a(x, 0, t), and a(0, x, t).
- guess a system of D-finite differential equations possibly satisfied by these series.
- prove that the series solutions of the guessed D-finite system solve the functional equations.

$$U(x,t) = \frac{Y(x,t)}{t} - x Y(x,t)^2 V(Y(x,t),t)$$
$$V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t)x^2} U(Y^{-1}(x,t),t)$$

Conclude:

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Conclude:

• a(x,0,t) and a(0,x,t) are D-finite.

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Conclude:

- a(x,0,t) and a(0,x,t) are D-finite.
- Because of

$$\left(1 - \left(\frac{y}{x} + \frac{1}{y} + xy\right)t\right)a(x, y, t) = 1 - \frac{t}{y}a(x, 0, t) - \frac{yt}{x}a(0, y, t)$$

$$\begin{split} U(x,t) &= \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ V(x,t) &= \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

Conclude:

- a(x,0,t) and a(0,x,t) are D-finite.
- Because of

$$a(x,y,t) = \frac{1 - \frac{t}{y} a(x,0,t) - \frac{yt}{x} a(0,y,t)}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}$$

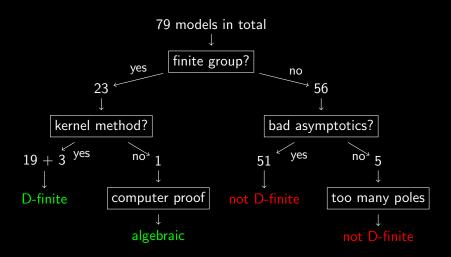
$$\begin{split} &U(x,t) = \frac{Y(x,t)}{t} - x \, Y(x,t)^2 \, V(Y(x,t),t) \\ &V(x,t) = \frac{1}{txY^{-1}(x,t)} - \frac{1}{Y^{-1}(x,t) \, x^2} U(Y^{-1}(x,t),t) \end{split}$$

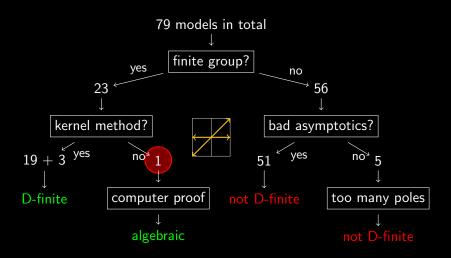
Conclude:

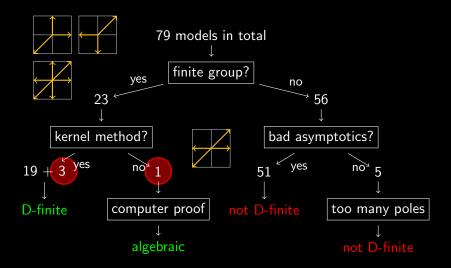
- a(x,0,t) and a(0,x,t) are D-finite.
- Because of

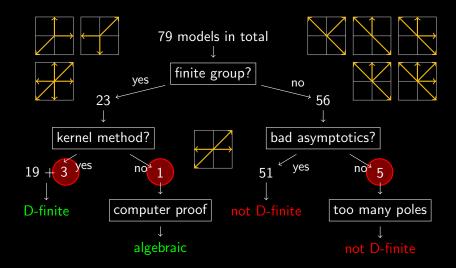
$$a(x, y, t) = \frac{1 - \frac{t}{y} a(x, 0, t) - \frac{yt}{x} a(0, y, t)}{1 - (\frac{y}{x} + \frac{1}{y} + xy)t}$$

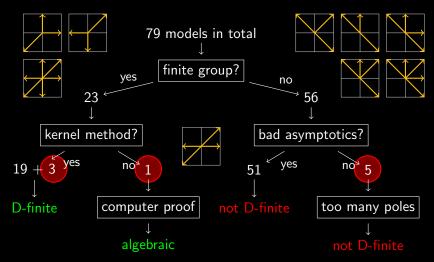
it follows that also a(x, y, t) is D-finite.











A posteriori observation:

D-finite generating function \iff finite group.

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	D-finite	D-finite	D-finite
	algebraic	algebraic	algebraic
	algebraic	algebraic	algebraic
	D-finite	algebraic	D-finite
	D-finite	D-finite	D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	algebraic	not D-finite	not D-finite
	algebraic	not D-finite	not D-finite
	algebraic	algebraic	algebraic
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	algebraic	not D-finite	not D-finite
	algebraic	not D-finite	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

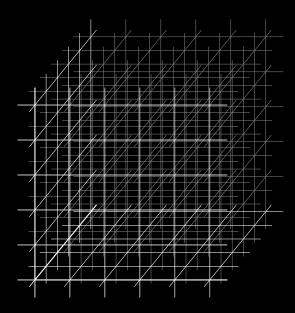
step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	algebraic	not D-finite	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite

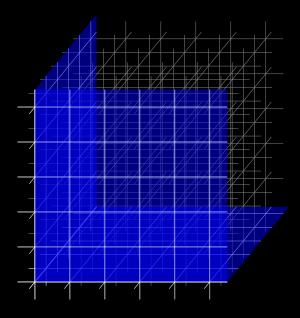
step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite

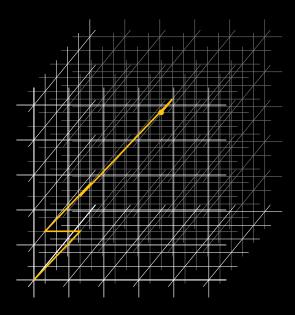
step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	D-finite	D-finite	D-finite
	algebraic	algebraic	algebraic
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	algebraic	D-finite

step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite

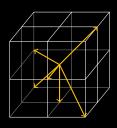
step set	a(0, 0, t)	a(1,1,t)	a(x, y, t)
	not D-finite	not D-finite?	not D-finite
	D-finite	D-finite	D-finite
	not D-finite	not D-finite?	not D-finite
	not D-finite	not D-finite?	not D-finite



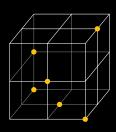




- start at (0,0,0)
- make n steps (e.g., n=7)
- ullet end at (i,j,k) (e.g., (i,j,k)=(3,4,2))
- never step out of the first octant
- use only steps taken from a prescribed step set, e.g.,



- start at (0,0,0)
- make n steps (e.g., n=7)
- ullet end at (i,j,k) (e.g., (i,j,k)=(3,4,2))
- never step out of the first octant
- use only steps taken from a prescribed step set, e.g.,



For which step sets is a(x,y,z,t) D-finite, and for which step sets is it not D-finite?

For which step sets is a(x,y,z,t) D-finite, and for which step sets is it not D-finite?

For which step sets is a(x,y,z,t) D-finite, and for which step sets is it **not** D-finite?

$$2^{33 - 1} = 67108864$$

$$\underset{\text{e or } \notin}{\overset{\text{dim } = 3}{\underset{\text{except } (0,0,0)}{\text{dim}}}} = 67108864$$

For which step sets is a(x,y,z,t) D-finite, and for which step sets is it not D-finite?

How many step sets are there?

$$2^{33} \stackrel{\text{dim} = 3}{\longrightarrow} = 67108864$$

$$\text{except } \stackrel{(0,0,0)}{\longrightarrow} 56034639 \text{ models in bijection to others}$$

16

For which step sets is a(x,y,z,t) D-finite, and for which step sets is it **not** D-finite?

$$\begin{array}{c} |\{-1,0,1\}| \\ \text{\downarrow dim = 3$} \\ 2^{3^3-1} = 67108864 \\ \text{\downarrow or $\not\in$} & \text{\downarrow except $(0,0,0)$} 56034639 \text{ models in bijection to others} \\ & -11038677 \text{ models with } |\cdot| > 6 \end{array}$$

For which step sets is a(x,y,z,t) D-finite, and for which step sets is it **not** D-finite?

$$2^{33} \stackrel{\text{dim} = 3}{\uparrow} = 67108864$$

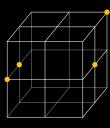
$$except (0,0,0) 56034639 \text{ models in bijection to others} \\ -11038677 \text{ models with } |\cdot| > 6$$

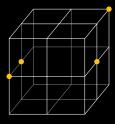
$$35548 \text{ models to be investigated}$$

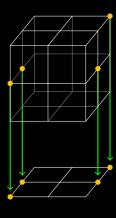
- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

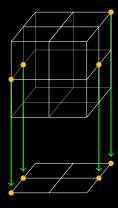
- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

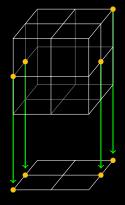




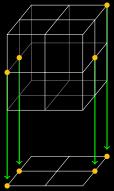




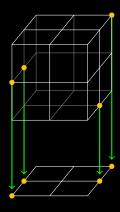
Models are in bijection!

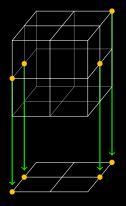


Models are in bijection!

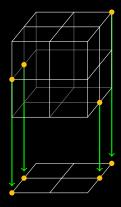




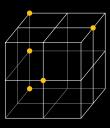


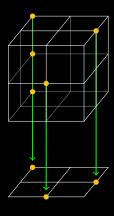


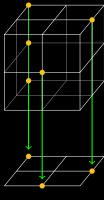
Models are in bijection!



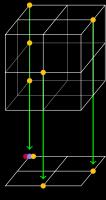
Not a valid bijection!



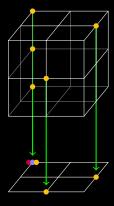




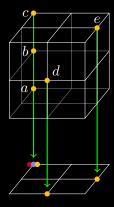
Bijection?



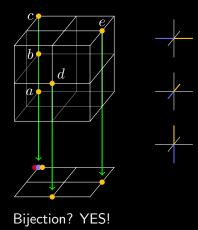
Bijection?

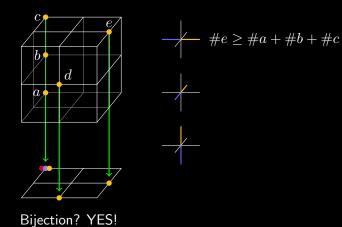


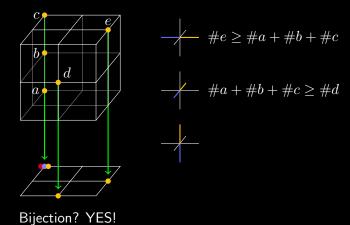
Bijection? YES!

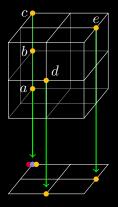


Bijection? YES!

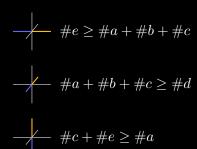


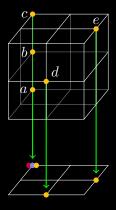




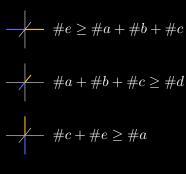


Bijection? YES!



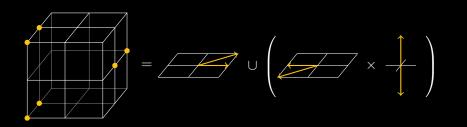


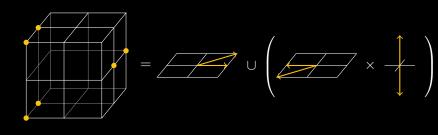
Bijection? YES!

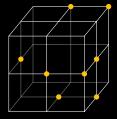


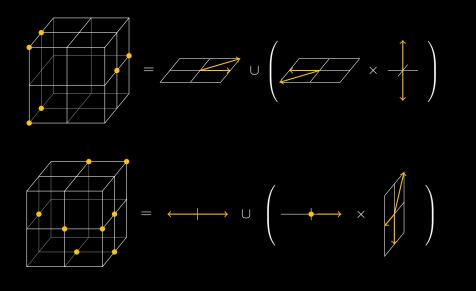
- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.









Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

Consider the following three properties that a step set may have.

- The model has a finite group (defined like for 2D models).
- The model can be faithfully projected to a 2D model.
- The model can be faithfully decomposed into lower dimensional models.

			redu deco finit				
\downarrow	\downarrow	↓	3	4	5	6	Σ
T	T	T					
Т	Τ	F					
Т	F	Т					
Т	F	F					
F	T	Т					
F	Т	F					
F	F	Т					
F	F	F					
		Σ					

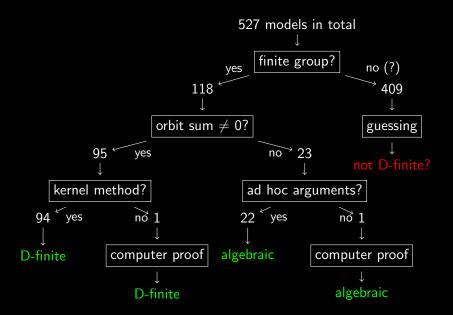
	_		- redi	ucible	to 2D		
			dec	ompos	able		
		Γ	finit	e grou	ıp		
\downarrow	\downarrow	\downarrow	3	4	5	6	\sum
T	T	T	8	47	110	175	340
T	Т	F	46	437	1864	4821	7168
T	F	Т	0	0	0	0	0
T	F	F	18	275	1599	5344	7236
F	Т	Т	0	18	47	82	147
F	Т	F	0	9	125	411	545
F	F	Т	0	8	0	15	23
F	F	F	1	185	2680	17223	20089
		\sum	73	979	6425	28071	35548

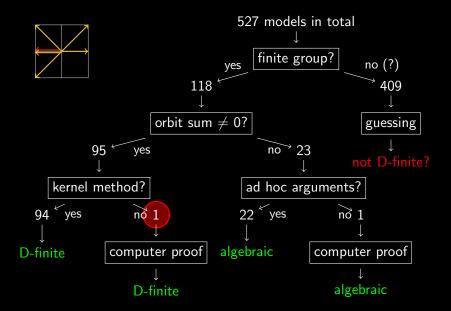
			- redı	ıcible	to 2D			
			deco	ompos	able			
		Γ	finit	e grou	ıp			
\downarrow	\downarrow	\downarrow	3	4	5	6	\sum	
Т	T	Т	8	47	110	175	340	
Τ	Т	F	46	437	1864	4821	7168	
Τ	F	Т	0	0	0	0	0	
Τ	F	F	18	275	1599	5344	7236	
F	Т	Т	0	18	47	82	147	
F	Т	F	0	9	125	411	545	
F	F	Т	0	8	0	15	23	
F	F	F	(1)	185	2680	17223	20089	
		Σ	73	979	6425	28071	35548	

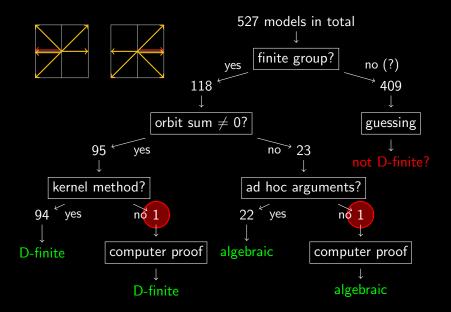
	_		- red	ucible	to 2D			
			dec	ompos	able			
\downarrow	\downarrow	\downarrow	3	4	5	6	\sum	
Т	T	Т	8	47	110	175	340	
T	Т	F	46	437	1864	4821	7168	
T	F	Т	0	0	0	0	0	
Т	F	F	18	275	1599	5344	7236	
F	Т	Т	0	18	47	82	147	
F	Т	F	0	9	125	411	545	not D-finite?
F	F	Т	0	8	0	15	23	
F	F	F	1	185	2680	17223	20089	not D-finite?
		Σ	73	979	6425	28071	35548	

	_		- red	ucible	to 2D			
			dec	ompos	able			
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ	
T	T	Т	8	47	110	175	340	
T	Т	F	46	437	1864	4821	7168	
T	F	Т	0	0	0	0	0	
Τ	F	F	18	275	1599	5344	7236	
F	Τ	Т	0	18	47	82	147	D-finite!
F	Τ	F	0	9	125	411	545	not D-finite?
F	F	Т	0	8	0	15	23	
F	F	F	1	185	2680	17223	20089	not D-finite?
		Σ	73	979	6425	28071	35548	

		\mathcal{C}	finit	e grou	ıp			
\downarrow	\downarrow	\downarrow	3	4	5	6	Σ	
T	T	T	8	47	110	175	340	look at the
Τ	Т	F	46	437	1864	4821	7168	527 resulting
Τ	F	Т	0	0	0	0	0	2D models
Τ	F	F	18	275	1599	5344	7236) 2D models
F	Т	Т	0	18	47	82	147	D-finite!
F	T	F	0	9	125	411	545	not D-finite?
F	F	Т	0	8	0	15	23	not so clear
F	F	F	1	185	2680	17223	20089	not D-finite?
		Σ	73	979	6425	28071	35548	







				ucible				
			dec	ompos	able			
		\mathcal{C}	finit	te grou	ıp			
\downarrow	\downarrow	\downarrow	3	4	5	6	\sum	
Т	T	Т	8	47	110	175	340	look at the
T	Т	F	46	437	1864	4821	7168	527 resultin
T	F	Т	0	0	0	0	0	2D models.
Т	F	F	18	275	1599	5344	7236) 2D models.
F	Т	Т	0	18	47	82	147	D-finite!
F	Т	F	0	9	125	411	545	not D-finite?
F	F	Т	0	8	0	15	23	not so clear
F	F	F	1	185	2680	17223	20089	not D-finite?
		\sum	73	979	6425	28071	35548	

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

The remaining 19 models are mysterious. Even on a super-computer we were not able to find any evidence for possible differential equations. Can it be that they are not D-finite?

There are 23 models in 3D which are not reducible to 2D, which are not decomposable, and which have a finite group. For 4 of them, the orbit sum is nonzero and the kernel method implies that they are D-Finite.

The remaining 19 models are mysterious. Even on a super-computer we were not able to find any evidence for possible differential equations. Can it be that they are not D-finite?

This would imply that the equivalence between D-finiteness and a finite group does not carry over to walks in three dimensions.

