Algebraic Methods in Kinematics

Homework 2

Let $G=(V, E)$ with labeling $\lambda: E \rightarrow \mathbb{C}$ be a rigid labelled graph with vertex set $V=\{1, \ldots, n\}$. After some linear change of coordinates, the compatibilty condition for embeddings $\rho: V \rightarrow$ $\mathbb{C}^{2}, v_{i} \rightarrow\left(\cup_{i}, \vee_{i}\right)$ is

$$
\left(\cup_{i}-\cup_{j}\right)\left(\vee_{i}-\vee_{j}\right)-\lambda_{i j}=0,(i, j) \in E,
$$

together with 2 equations $\cup_{1}=\vee_{1}=\cup_{2}+\vee_{2}=0$ that reduce equivalent realizations.
(a) Show that the bi-homogenization

$$
\begin{gathered}
\left(\cup_{i}-\cup_{j}\right)\left(\vee_{i}-\vee_{j}\right)-\lambda_{i j} \cup_{0} \vee_{0}=0,(i, j) \in E, \\
\cup_{1}=\vee_{1}=\cup_{2} \vee_{0}+\cup_{0} \vee_{2}=0
\end{gathered}
$$

has infinitely many solutions in $\mathbb{P}^{n} \times \mathbb{P}^{n}$.
(b) If G is the triangle $(n=3)$, show that the multi-homogemization

$$
\begin{gathered}
\left(\cup_{i} \cap_{j}-\cap_{i} \cup_{j}\right)\left(\vee_{i} \wedge_{j}-\wedge_{i} \vee_{j}\right)-\lambda_{i j} \cap_{i} \cap_{j} \wedge_{i} \wedge_{j}=0,(i, j) \in E, \\
\cup_{1}=\vee_{1}=\cup_{2} \wedge_{2}+\cap_{2} \vee_{2}=0
\end{gathered}
$$

has only finitely many solutions in $\left(\mathbb{P}^{1}\right)^{2 n}$.

