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ErsiLon: I am glad that at least Theta finally caught on. My proof can in fact
be cast in a system of which the dominant theory is logic. The conditional
statement with all the lemmas incorporated as antecedents can be proved in this
system, and we know that (relative to the given stock of formative ‘logical’
terms) there are no counterexamples to any statement which can be proved in
this way. No matter how the descriptive terms are re-interpreted, this con-
ditional statement will remain true.

Lamppa: How do ‘we know'?

Ersrion: We don’t know for certain - it is an informal theorem about logic.
But, moreover, we know that, presented with any alleged proof in such a
system, we can check completely mechanically using a procedure which is
guaranteed to produce an answer in a finite number of steps, whether or not it
is indeed a proof. In such systems, then, your ‘proof-analysis’ reduces to a
triviality.

Arera: But you would agree, Epsilon, that ‘proof-analysis” retains its im-
portance in informal mathematics; and that formal proofs are always trans-
lations of informal proofs and that the problems that have been raised about
translation are very real.

Lamspa: But anyway, Epsilon, how do we know that proof checking is
always accurate?

Ersiion: Really Lambda, your unquenchable thirst for certainty is becoming
tiresome ! How many times do I have to tell you that we know nothing for
certain? But your desire for certainty is making you raise very boring problems
~and is blinding you to the interesting ones.
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APPENDIX I

ANOTHER CASE-STUDY IN THE METHOD
OF PROOFS AND REFUTATIONS

1. Cauchy’s Defence of the * Principle of Continuity’

The method of proofs and refutations is a very general heuristic
pattern of mathematical discovery. However, it seems that it was
discovered only in the 1840s and even today seems paradoxical to
many people; and certainly it is nowhere properly acknowledged.
In this appendix I shall try to sketch the story of a proof-analysis in
mathematical analysis and to trace the sources of resistance to the
understanding and recognition of it. I first repeat the skeleton of the
method of proofs and refutations, a method which I have already
illustrated by my case-study of the Cauchy proof of the Descartes-
Euler conjecture.

There is a simple pattern of mathematical discovery - or of the
growth of informal mathematical theories. It consists of the following
stages:!

(1) Primitive conjecture.

(2) Proof (a rough thought-experiment or argument, decomposing the
primitive conjecture into subconjectures or lemmas).

(3) ‘Global’ counterexamples (counterexamples to the primitive con-
Jecture) emerge.

(4) Proof re-examined: the ‘guilty lemma’ to which the global counter-
example is a *local’ counterexample is spotted. This guilty lemma may have
previously remained * hidden’ or may have been misidentified. Now it is made
explicit, and built into the primitive conjecture as a condition. The theorem —
the improved conjecture — supersedes the primitive conjecture with the new
proof-generated concept as its paramount new feature.®
1 As I have stressed the actual historical pattern may deviate slightly from this heuristic

pattern. Also the fourth stage may sometimes precede the third (even in the heuristic
order) - an ingenious proof analysis may suggest the counterexample.

** Editors’ note: In other words this method consists (in part) of producing a series of state-
ments Py,..., P, such that P, &... & P, is supposed to be truc of some domain of
interesting objects and scems to imply the primitive conjecture C. This may turn out
not to be the case — in other words we find cases in which C is false ('global counter-
examples’) but in which P; to P, hold. This leads to the articulation of 2 new lemma
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These four stages constitute the essential kemel of proof analysis. But
there are some further standard stages which frequently occur:

(5) Proofs of other theorems are examined to see if the newly found
lemma or the new proof-generated concept occurs in them: this concept may
be found lying at cross-roads of different proofs, and thus emerge as of basic
importance.

(6) The hitherto accepted consequences of the original and now refuted
conjecture are checked.

(7) Counterexamples are turned into new examples - new fields o
inquiry open up.

I should now like to consider another casc-study. Here the primitive
conjecture is that the limit of any convergent series of continuous
functions is itself continuous. It was Cauchy who gave the first proof
of this conjecture, whose truth had been taken for granted and assumed
therefore not to be in need of any proof throughout the eightcenth
century. It was regarded as the special case of the ‘axiom’ according to
which ‘what is true up to the limit is true at the limit’.! We find the
conjecture and its proof in Cauchy’s celebrated [1821] (p. 131).

Given that this “conjecture’ had hitherto been regarded as trivially
true, why did Cauchy feel the need to prove it? Had someone criticized
the conjecture?

As we shall see, the situation was not quite so simple. With the
benefit of hindsight we can now see that counterexamples to the Cauchy
conjecture had been provided by Fourier’s work. Fourier’s Mémoire
sur la Propagation de la Chaleur? actually contains an example of what,
according to present notions, is a convergent serics of continuous
functions which tends to a Cauchy discontinuous function, namely:

cos x—%cos3x+4cos sx—... (1)

P,,; which is also refuted by the counterexample ('local counterexample’). The original
proof is thus replaced by a new one which can be summed up by the conditional state-

ment P, &...&P, &P,,, > C.

The (logical) truth of this conditional statement is no longer impugned by the counter-
example (since the antecedent is now false in this case and hence the conditional state-
ment truc).

Whewell [1858], 1. p. 152. Whewell is in 1858 at least ten years out of date. The principle
stems from Leibniz’s principle of continuity ([1687], p. 744). Boyer in his [1939), p. 26,
quotes a characteristic restatement of the principle from Lhuilier [1786), p. 167.

This Mémoire was awarded the grand prix de mathématiques for 1812, having been
refereed by Laplace, Legendre and Lagrange. It was published only after Fourier’s
classical Theorie de la Chaleur which appeared in 1822, a year after Cauchy’s textbook,
but the content of the Mémoire was then already well known.

-

128

CAUCHY ON THE ‘PRINCIPLE OF CONTINUITY'

Fourier’s own attitude to this series is, however, quite clear (and

clearly different from this modern one):

(a) He states that it is everywhere convergent.

(b) He states that its limit function is composed of separate straight
lines, each of which is parallel to the x-axis, and equal to the circum-
ference [that is 7). These parallels are situated alternately above and
below the axis, with a distance of #/4, and are joined by perpen-
diculars which themselves make part of the line.!

Fourier’s words about the perpendiculars in the graph are telling.
He considered these limit functions to be (in some sense) continuous.
In fact, Fourier certainly regarded anything as a continuous function
if its graph could be drawn with a pencil which is not lifted from the
paper. Thus Fourier would not have regarded himself as having
constructed counterexamples to Cauchy’s continuity axiom.? It was
only in the light of Cauchy’s subsequent characterisation of continuity
that the limit functions in some of Fourier’s series came to be regarded
as discontinuous, and thus that the series themselves came to be seen as
counterexamples to Cauchy’s conjecture. Given this new, and counter-
intuitive definition of continuity, Fourier’s innocent continuous draw-
ings seemed to become wicked counterexamples to the old, long
established continuity principle.

Cauchy’s definition certainly translated the homely concept of con-
tinuity into arithmetical language in such a way that ‘ordinary
! Fourier, op. cit., sections 177 and 178.

* After writing this T discovered that the term ‘discontinuous® appears in roughly the
Cauchy scnse in some hitherto unpublished manuscripts of Poisson (1807) and of
Fourier (1809), which were being studied by Dr. J. Ravetz, who kindly permitted me to
look at his photostats. This certainly complicates my case, though it does not refute it.
Fourier obviously had two different notions of continuity in mind at different times,
and indced these two different notions arise quite naturally from two different domains.
If we interpret a function like:

sin x - § sin 2x+ § sin 3x— ...

as the initial position of a string, it will certainly be considered as continuous, and to

cut out the perpendicular lines -~ as was to be required by Cauchy’s definition - will

seem unnatural. But if we interpret this function as, say, representing temperature along

a wire, the function will scem obviously discontinuous. These considerations suggest

two conjectures. Firstly, Cauchy’s celebrated definition of continuity, which runs

counter to the *string-interpretation’ of a function, may have been stimulated by

Fourier’s investigation of heat phenomena. Secondly, Fourier’s insistence on the

perpendiculars in the graphs of these (according to the ‘heat-interpretation’) discon-

tinuous functions may have stemmed from an effort not to come into conflict with the

Leibniz principle. *Editors’ note: For further information on Fourier’s mathematics,

see I Grattan-Guinness (in collaboration with J. R. Ravetz), Joseph Fourier, 1768-1830
(M.LT. Press, 1972).
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commonsense’ could only be shocked.! What sort of continuity is it
that implics that if we rotate the graph of a continuous function a

little, it tumns into a discontinuous one ?2

So if we replace the intuitive concept of continuity by the Cauchy
concept then (and only then!) does the axiom of continuity seem to be
contradicted by Fourier’s results. This looks like a strong, perhaps
decisive, argument against Cauchy’s new definitions (not only of
continuity, but also other concepts like that of limit). No wonder then
that Cauchy wanted to show that he could indeed prove the continuity
axiom in his new interpretation of it, thereby providing the evidence
that his definition satisfies this most stringent adequacy requirement.
He succeeded in providing the proof - and thought he had thereby
dealt 2 mortal blow to Fourier, that talented but woolly and unrigorous
dilettante, who had unintentionally challenged his definition.

Of course if Cauchy’s proof were correct, then Fourier’s examples,
despite appearances, could not be real counterexamples. One way of
showing that they were not real counterexamples would be to show
that the series apparently converging to functions which were dis-
continuous in Cauchy’s sensc were not convergent at all!

And this was a plausible guess. Fourier himself was doubtful about
the convergence of his series in these critical cases. He noticed that the
convergence was slow: ‘The convergence is not sufficiently rapid to
produce an easy approximation, but it suffices for the truth of the
equation.’

With hindsight we can see that Cauchy’s hope that in these critical
cases Fourier’s series do not converge (and thus do not represent the
function) was also justified in a way by the following fact. Where the
limit function is discontinuous, the series tends to }[ f{x +0) +f{x —0)],
and not simply to f(x). It tends to f(x) only if f(x) = }[f(x +0) +f(x—0)].
But this was not known before 1829, and in fact general opinion was at
! That is string-commonsense or graph-commonsense.

** Editors’ note: What s violated here is, perhaps, not our intuitive notion of continuity, but
rather our belief that any graph representing a function would still represent some
function when slightly rotated. Fourier's curve is continuous from an intuitive point of
view, and this intuition can still be accounted for by the ¢, & definition of continuity
(with which Cauchy is usually credited); for Fouricr’s curve, complete with perpen-
diculars, is parametrically representable by two continuous functions.

¥ Op. cit., section 177. This remark, of course, is a far cry from the discovery that the
convergence is in these places infinitely slow, which was made only after 40 years
expericnce in calculating Fourier series. And this discovery could not possibly be made
before Dirichlet’s decisive improvement on Fourier’s conjecture showing that only
those functions can be represented by Fourier series whose value at the discontinuitics

is }{ f{x + 0) +f(x - 0)].
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first behind Fourier rather than Cauchy. Fourier’s series seemed to
work and when Abel, in 1826, five years after the publication of
Cauchy’s proof, mentioned in a footnote of his [1826b],! that nrmao are
‘exceptions’ to Cauchy’s theorem, this constituted a rather intriguing
double victory: Fourier series were accepted, but so was Cauchy’s
startling definition of continuity and the theorem he had proved using it.

It was precisely in view of this double victory that it now seemed
that there must be exceptions to the specific version of the principle of
continuity we are considering, even though Cauchy had flawlessly
proved it.

Cauchy must have reached the same conclusion as Abel for in the
same year he gave, without of course giving up his characterisation of
continuity, a proof of the convergence of the Fourier series.? He must
have been very ill at ease with the situation however. The second
volume of the Cours d’ Analyse was never published. And, which is still
more suspicious, he produced no further editions of the first volume,
allowing his pupil Moigno, when the pressure for a textbook had
become too great, to publish his notes of his lectures.?

Given that Fourier’s examples were now interpreted as counter-
examples, the puzzle was evident: how could a proved theorem —.un
false, or ‘suffer exceptions’? We have already discussed how people in
the same period were puzzled by the ‘exceptions’ to the Euler theorem
despite the fact that it had been proved.

2. Seidel’s Proof and the Proof-Generated Concept of Uniform Convergence

Everybody felt that this Cauchy-Fourier case was not just a harmless
puzzle, but a fatal blemish on the whole of the new ‘rigorous’ mathe-
matics. Dirichlet in his celebrated papers about Fourier series,* while
preoccupied with showing exactly how convergent series o.m con-
tinuous functions represent discontinuous functions, and SE_.n o.v:
viously very much aware of the Cauchy version of the continuity
principle, did not mention the obvious contradiction at all. .

It was left to Seidel at last to solve the riddle by spotting the guilty
hidden lemma in Cauchy’s proof.5 But this happened only in 1847.
Why did it take so long ? To answer this question we shall have to look
at Seidel’s celebrated discovery a little more closely.

1 Abel [1826b], p. 316.

* Cauchy [1826]. The proofis based on an muno—mm:v._«. false assumption Aﬁm e Riemann,
[x868)). » Moigno [1840-1]. 4 Dirichlet [1829]. Seidel [1847).
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Let T f,(x) be a convergent series of continuous functions and, for any

n @
n, define S (x) = Zf (x) and r,(x) = Z f(x). Then the gist of

m=0 m=n+1

Cauchy’s proof is the inference from the premise:

Given any € > o:

(1) there is & such that for any b, if [b] < 8, then [S,(x +b) - S,(x)|
< ¢ (there is such a & because of the continuity of S,(x));

(2) there is an N, such that |r,(x)| < € for alln > N (therc is such
an N because of the convergence of Z f (x));

(3) there is an N such that |r,(x+b)| < efor all n > N’ (there is
such an N’ because of the convergence of Z f,(x +b));
to the conclusion that:

|fox +8) ~f()] = | Salx +b) + 1, +8) = S, () =r,()]|
< [ Sy +b) = S, (x)] + [ra(x)] + [ra(x +b)|
< 3¢ forallb < &

Now the global counterexamples provided by series of continuous
functions which converge to Cauchy-discontinuous functions show

that something is wrong with this (roughly stated) argument. But
where is the guilty lemma?

A slightly more careful proof analysis (using the same symbols as
before, but making explicit the functional dependencies of some of the
quantities) produces the following inference:

(1) |Salx+b) =S, (x)| < eif b < &(e, x, n)

(2") |ru(x)] < €if n > Nle, x)

(3") |ra(x+b)| < €if n > N(e, x+b)
therefore

[l +8) +r,(x +) = S,(x) =r,(x)| = |fix+b)=fx)] < 3¢
if n > max, N(e, z) and b < 8(€, x, n).

The hidden lemma is that this maximum, max, N(e, z), should
exist for any fixed €. This is what came to be called the requirement of
uniform convergence.

There were probably three major impediments in the way of making
this discovery.

The first was Cauchy’s loose usage of ‘infinitely small’ quantities.?
The second was that even if some mathematicians had noticed that the
! This prevented Cauchy from giving a clear critical appraisal of his old proof and even

from formulating his theorem clearly in his [1853) (pp. 454~0).
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assumption of the existence of a maximum of an infinite set of Ns is
involved in this proof, they may very well have made it without a
second thought. Existence proofs in maximum problems occur first
in the Weierstrass school. But the third and main obstacle was the
prevalence of Euclidean methodology — this good and evil spirit of
early nineteenth century mathematics.

But before discussing this in general let us see how Abel solves the
problem posed for the Cauchy theorem by the Fourier counter-
examples. I shall show that he solves it (or rather ‘solves’ it} by the
primitive ‘exception-barring’ method.!

3. Abel’s Exception-Barring Method

Abel states the problem, which I claim to be the basic background
problem of his cclebrated paper on the binomial series,? only in a
footnote. He writes: ‘It seems to me that there are some exceptions
to Cauchy’s theorem’, and immediately gives the example of the series

sin ¢~} sin2¢+34 sin 3¢p—...3

Abel adds that ‘as it is known, there are many more examples like
this’. His response to these counterexamples is to start guessing: * What
is the safe domain of Cauchy’s theorem?’

His answer to this question is this: the domain of validity of the
theorems of analysis in general, and that of the theorems about the
continuity of the limit function in particular, is restricted to power
series. All the known exceptions to this basic continuity principle were
trigonometrical series, and so he proposed to withdraw analysis to
within the safe boundaries of power series, thus leaving behind
Fourier’s cherished trigonometrical series as an uncontrollable jungle -
where exceptions are the norm and successes miracles.

In a letter to Hansteen dated 29 March 1826, Abel characterised
‘miserable Eulerian induction’ as a2 method which leads to false and
unfounded generalisations and he asks what the reason is for such
procedures having in fact led to so few calamities. His answer is

To my mind the reason is that in analysis one is largely concerned with func-
tions that can be represented by power-serics. As soon as other functions enter -
and this happens but rarely ~ then [induction] does not work any more and an

1 See above, pp. 24~30. 3 Abel [1826b], p. 316.
3 Abel fails to mention that precisely this example had already been mentioned in this
context by Fourier.

133




PROOFS AND REFUTATIONS

infinite number of incorrect theorems arise from these false conclusions, one
leading to the others. I have investigated several of these and I was lucky enough
to solve the problem.. .2

In Abel’s paper, we find his famous theorem — which, I claim,
stemmed from his grappling with the classical metaphysical principle
of Leibniz - in the following restricted form:

If the series
fa = vo+via+vad+ .. o am

is convergent for a given value & of a, it will also converge for every value
smaller than 4, and for steadily decreasing values of B, the function f(a— )
will approach the limit fa indefinitely, provided that & is smaller than or
equal to 8.2

Modemn rationalist historians of mathematics who consider the
history of mathematics as the history of a homogeneous growth of
knowledge on the basis of unchanging methodology, assume that
anyone who discovers a global counterexample and proposes 2 new
conjecture which is not subject to refutation by the counterexample in
question, has automatically discovered the corresponding hidden
lemma and proof-generated concept. In this way such students of
history attribute the discovery of uniform convergence to Abel. So
in the authoritative Encyclopidie der Mathematischen Wissenschaften,
Pringsheim says that Abel ‘demonstrated the existence of the property
today called uniform convergence’.® Hardy shares Pringsheim’s view.
In his [1918] paper he says that ‘the idea of uniform convergence is
1 Letter to I».Emoob ([18264]). The rest of the letter is also interesting and reflects Abel's

nmo%nouuvuﬂ-bw method: ‘When one proceeds by a general method, it is not too
n.&.ﬁ:—n but I have had to be very circumspect, for propositions once accepted without
rigorous proof (i.e. without any proof) are so rooted within me that I at cach moment
.:uw using them without further examination.” Thus Abel checked these general con-
Jectures one after the other and tried to guess the domain of their validity.

This Cartesian self-imposed restriction to the absolutely clear power-series explains
Abel's particular concern about the rigorous treatment of the Taylor-expansion:
‘Taylor’s theorem, the basis of all the infinitesimal calculus is not better founded. I have
only found one rigorous demonstration and that is M. Cauchy’s in his Résumé des legons
sur le caleul infinitesimal, where he demonstrated that one will have

Plc+a) = P(x) +ad'(x) +a'P"(x) + ...

as Jong as the serics is convergent; but one employs it without attention in all cases.’
(Letter to Holmbo# [1825].)

Abel [18268), L. p. 314. The text is a retranslation from German, (Crelle translated the
original French into German).* Editors’ note: It scems that Abel forgot the modulus sign
around a. 8 Pringsheim [1916], p. 34.
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present implicitly in Abel’s proof of his celebrated theorem’.! Bourbaki
is even more explicitly false: according to him, Cauchy

did not at first perceive the distinction between simple convergence and uni-
form convergence, and considered himself able to demonstrate that every
convergent series of continuous functions has as its sum a continuous function.
The error was almost as soon revealed by Abel, who proved at the same time
that every complete [?] series is continuous in the interior of its interval of
convergence by the reasoning which has become classical and which uses
essentially, in this particular, the idea of uniform convergence. It only remained
to disentangle the latter in a general manner, which was done independently by
Stokes and Seidel in 1847-8 and by Cauchy himself in 1853.2

So many sentences, so many mistakes. Abel did not reveal Cauchy’s
mistake in identifying the two sorts of convergences. His proof does
not exploit the concept of uniform convergence any more than does
Cauchy’s. Abel’s and Seidel’s results are not in the relation of ‘special’
and ‘general’ - they are on quite different levels. Abel did not even
notice that it is not the domain of eligible functions which has to be
restricted, but rather the way they converge! In fact for Abel there is only
one sort of convergence, the simple one; and the secret of the sham certainty
of his proof lies in his cautious (and lucky) zero-definitions:3 as we now
know, in the case of power series, simple convergence coincides with
uniform convergence !¢

1 Hardy [1918], p. 148.
% Bourbaki [1949], p. 65 and [1960), p. 228. 3 Cf. above, pp. 24-30.
¢ There were two mathematicians who noticed that Abel’s proof was not quite flawless.
One was Abel himself, who comes to grips with the problem again - without success -
in his posthumously published paper ‘Sur les Séries’ ([1881], p. 202). The other was
Sylow, the coeditor of the second edition of Abel's Collected Works. He added a
critical footnote to the theorem, in which he pointed out that we have to require uniform
convergence in the proof and not simple convergence, as Abel does. But he did not use
the term ‘uniform convergence’ about which he did not secem to know, (the second
edition of Jordan's Cours d’ Analyse had not then appeared) and he referred instead to 2
later generalisation of du Bois-Reymond, which only shows that even he did not see
clearly the nature of the flaw. Reiff, in his [1889)], rejected Sylow’s criticism with the
naive argument that Abel’s theorem is valid. Reiff says that while Cauchy was
the founder of the theory of convergence, Abel was the founder of the theory of
the continuity of series:
Briefly summarizing the achicvement of Cauchy and of Abel, we can say: Cauchy
discovered the theory of the convergence and divergence of infinite scries in his Analyse
Algébrigue, and Abel discovered the theory of the continuity of series in his Treatise on
the Binomial Series. ({1889), pp. 178-9.)
To say this in 1889 was certainly a piece of pompous ignorance.
But of course the validity of Abel’s theorem is due to the very narrow zero-definition,
and not to the proof. Abel’s paper was later published in Ostwald’s Klassiker (Nx. 71),
Leipzig, 1895. In the notes Sylow’s remarks are reproduced without any comment.
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Whilst I am criticizing the historians I should just mention that the
first counterexample to Cauchy’s theorem has generally been attributed
to Abel. That it occurs in Fourier was noticed only by Jourdain. But
he, in the ahistorical spirit already noted, draws from this fact the
consequence that Fourier, for whom Jourdain had a great admiration,
came close to discovering the concept of uniform convergence.! The
point that a counterexample may have to fight for recognition, and
when recognised it still may not lead automatically to the hidden
lemma and thereby to the proof-generated concept in question, has
been missed by all historians so far.

4. Obstacles in the Way of the Discovery of the Method of Proof-Analysis

But now let us return to the main problem. Why did the leading
mathematicians from 1821 to 1847 fail to find the simple flaw in
Cauchy's proof and improve both the proof-analysis and the theorem?

The first reply is that they did not know about the method of proofs
and refutations. They did not know that after the discovery of a
counterexample they had to analyse their proof carefully and try to
find the guilty lemma. They dealt with global counterexamples with
the help of the heuristically sterile exception-barring method.

In fact, Seidel discovered the proof-generated concept of uniform
convergence and the method of proofs and refutations at one blow. He
was fully conscious of his methodological discovery? which he stated
in his paper with great clarity:

Starting from the certainty just achieved, that the theorem is not universally
valid, and hence that its proof must rest on some extra hidden assumption, one
then subjects the proof to a more detailed analysis. It is not very difficult to
discover the hidden hypothesis. One can then infer backwards that this condi-
tion expressed by the hypothesis is not satisfied by series which represent dis-
continuous functions, since only thus can the agreement between the otherwise
correct proof sequence, and what has been on the other hand established, be
restored.3

What prevented the generation before Seidel from discovering this?
The main reason (which we already mentioned) was the prevalence of
Euclidean methodology.

1 Jourdain [1912], 2, p. 527.
% Rationalists doubt that there are methodological discoveries at all. They think that
method is unchanging, eternal. Indeed methodological discoverers are very badly

treated. Before their method is accepted it is treated like a cranky theory; after, it is
treated as a trivial commonplace. 3 Seidel [1847], p. 383.
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The Cauchy revolution of rigour was motivated by a conscious
attempt to apply Euclidean methodology to the Calculus.! He and his
followers thought that this was how they could introduce light to
dispel the ‘tremendous obscurity of analysis’.? Cauchy proceeded in
the spirit of Pascal’s rules: he first set out to define the obscure terms of
analysis — like limit, convergence, continuity, etc.—in the perfectly
familiar terms of arithmetic, and then he went on to prove everything
that had not previously been proved, or that was not perfectly obvious.
Now in the Euclidean framework there is no point trying to prove
what is false, so Cauchy had first to improve the extant body of
mathematical conjectures by jettisoning the false rubbish. In order to
improve the conjectures, he applied the method of looking out for
exceptions and restricting the domain of validity of the original, rashly
stated conjectures to a safe field, i.e. he applied the exception-barring
method3

A writer in the 1865 edition of the Larousse (probably Catalan)
rather sarcastically characterised Cauchy’s search for counterexamples.
He wrote:

He has introduced into science only negative doctrines. . .it is in fact almost
always the negative aspect of the truth which he came to discover, that he takes
care to make evident: if he had found some gold in whiting, he would have
announced to the world that chalk is not exclusively formed of carbonate of
lime.

A part of a letter which Abel wrote to Holmboé is further evidence of
this new heartsearching mood of the Cauchy school:

I have begun to examine the most important rules which (at present) we
ordinarily sanction in this respect, and to show in which cases they are not
proper. This goes well enough and interests me infinitely.*

What was considered by the rigourists to be hopeless rubbish, such
as conjectures about sums of divergent series, was duly committed to
the flames.’ ‘ Divergent series are’, wrote Abel, ‘the work of the devil’.
They only cause ‘calamities and paradoxicalities’.®
But while constantly endeavouring to improve their conjectures by
1 ‘As for methods, I have had to give them all the rigour that one demands in geometry,
$0 a8 never to resort to reasons drawn from the generality of algebra.’ (Cauchy [1821],
Introduction.) t Abel {18264], p. 263.

3 *To bring useful restrictions to too extended assertions.” (Cauchy, [1821].)

¢ Abel [1825], p. 258.

5 Contemporaties certainly regarded this purge as °a little harsh’. (Cauchy, [1821],
Introduction.) ¢ Abel [1825], p. 257.
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exception-barring, the idea of improving by proving never occurred to
them. The two activities of guessing and proving are rigidly separated
in the Euclidean tradition. The idea of a proof which deserves its
name and still is not conclusive was alien to the rigourists. Counter-
examples were regarded as grave and disastrous blemishes: they showed
that a conjecture was wrong and that one had to start proving again
from scratch.

This was understandable in view of the fact that in the cighteenth
century pieces of shabby inductive reasoning were called proofs.! But
there was no way of improving these ‘proofs’. They were rightly
scrapped as ‘not rigorous proofs - that means, no proofs at all’?
Inductive argument was fallible — therefore it was committed to the flames.
Deductive argument took its place - because it was held to be infallible. ‘I
make all uncertainty disappear’, announced Cauchy.? It is against this
background that the refutation of Cauchy's ‘rigorously’ proved
theorem has to be appreciated. And this refutation was not an isolated
case. Cauchy’s rigorous proof of the Euler formula was, as we have
seen, followed likewise by papers stating the well known ‘exceptions’.

There were only two ways out: either to revise the whole infallibilist
philosophy of mathematics underlying the Euclidean method, or
somchow to hush up the problem. Let us first see what would be
involved in revising the infallibilist approach. One would certainly
have to give up the idea that all mathematics can be reduced to in-
dubitably true trivialities, that there arc statements about which our
truth-intuition cannot possibly be mistaken. One had to give up the
idea that our deductive, inferential intuition is infallible. Only these
two admissions could open the way to the free development of the
method of proofs and refutations and its application to the critical
appraisal of deductive argument and to the problem of dealing with
counterexamples.*

1 The cightcenth-century ‘formalism® was sheer inductivism. Cf. p. 133, Cauchy
rejects in the Preface of his {1821] inductions which are only ‘appropriatc to sometimes
present the truth’,

% Abel, [18264], p. 263. For Cauchy and Abel *rigorous’ means deductive, as opposed to
inductive. 3 Cauchy [1821], Introduction.

4% Editors’ note: This passage seems to us mistaken and we have no doubt that Lakatos, who
came to have the highest regard for formal deductive logic, would himself have changed
it. First order logic has arrived at a characterisation of the validity of an inference which
(relative to a characterisation of the *logical’ terms of a language) does make valid
inference essentially infallible. Thus, one need make only the first of the two admissions
mentioned by Lakatos. By a sufficiently good ‘proof analysis” all the doubt can be

thrown onto the axioms (or antecedents of the theorem) leaving none on the proof
itself. The method of proofs and refutations is by no means invalidated (as is suggested
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As long as a counterexample was a blemish not only to a theorem
but to the mathematician who advocated it, as long as there were only
proofs or non-proofs, but no sound proofs with weak spots, mathe-
matical criticism was barred. It was the infallibilist philosophical back-
ground of Euclidean method that bred the authoritarian traditional
patterns in mathematics, that prevented publication and discussion of
conjectures, that made impossible the rise of mathematical criticism.
Literary criticism can exist because we can appreciate a poem without
considering it to be perfect; mathematical or scientific criticism cannot
exist while we only appreciate 2 mathematical or scientific result if it
yields perfect truth. A proof is a proof only if it proves; and it cither
proves or it does not. The idea - expressed so clearly by Scidel - that
a proof can be respectable without being flawless, was a revolutionary
one in 1847, and, unfortunately, still sounds revolutionary today.

It is no coincidence that the discovery of the method of proofs and
refutations occurred in the 1840s, when the breakdown of Newtonian
optics (through the work of Fresnel in the 18105 and 1820s), and the
discovery of non-Euclidean geometries (by Lobatschewsky in 1829 and
Bolyai in 1832) shattered infallibilist conceit.!

in the text) by refusing to make the second of these admissions: indeed it may be by this
method that proofs are improved so that all the assumptions that have to be made in
order that the proof be valid, are made explicit.

! In the same decade Hegel's philosophy offered both a radical break with its infallibilist
predecessorsand a powerful start for a thoroughly novel approach to knowledge. (Hegel
and Popper represent the only fallibilist traditions in modern philosophy, but even they
both made the mistake of reserving a privileged infallible status for mathematics.) A
passage from de Morgan shows the new fallibilist mood of the forties:

‘A disposition sometimes appears to reject all that offers any difficulty, or does not
give all its conclusions without any trouble in examination of apparent contradictions.
If by this it be meant that nothing should be permanently used, and implicitly trusted,
which is not true to the full extent of the assertion made, 1, for one, should offer no
opposition to 30 rational a course. But if it be implied that nothing should be produced
to the student, with or without warning, which cannot be understood in all its generality,
1 should, with deference, protest against a restriction which would tend, in my opinion,
not only to give false views of what is actually known, but to stop the progress of
discovery. It is not true, out of geometry, that the mathematical sciences are, in all their
parts, those models of finished accuracy which many suppose. The extreme boundaries
of analysis have always been as imperfectly understood as the tract beyond the boundar-
ies was absolutely unknown. But the way to enlarge the settled country has not been
by keeping within it, [this remark is against the exception-barring method] but by
making voyages of discovery, and I am perfectly convinced that the stdent should be
exercised in this manner; that is, that he should be taught how to examine the boundary,
as well as how to cultivate the interior, I have therefore never scrupled, in the latter part
of the work, to use methods which I will not call doubtful, because they are presented
as unfinished, and because the doubt is that of an expectant learner, not of an unsatisfied
critic. Experience has often shown that the defective conclusion has been rendered
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Before the discovery of the method of proofs and refutations the
problem posed by the succession of counterexamples to a ‘rigorously
proved’ theorem could be ‘solved’ only by the exception-barring
method. The proof proves the theorem, but it leaves the question open of
what is the theorem’s domain of validity. We can determine this domain by
stating and carefully excluding the ‘exceptions’ (this euphemism is character-
istic of the period). These exceptions are then written into the formulation of
the theorem.

The dominance of the exception-barring method shows how the
Euclidean method can, in certain crucial problem situations, have
deleterious effects on the development of mathematics. Most of these
problem situations occur in growing mathematical theories, where
growing concepts are the vehicles of progress, where the most exciting
developments come from exploring the boundary regions of
concepts, from stretching them, and from differentiating formerly
undifferentiated concepts. In these growing theories intuition is in-
experienced, it stumbles and errs. There is no theory which has not
passed through such a period of growth; moreover, this period is the
most exciting from the historical point of view and should be the most
important from the teaching point of view. These periods cannot be
properly understood without understanding the method of proofs and

refutations, without adopting a fallibilist approach.

This is why Euclid has been the evil genius particularly for the
history of mathematics and for the teaching of mathematics, both on
the introductory and the creative levels.!

intelligible and rigorous by persevering thought, but who can give it to conclusions
which are never allowed to come before him? The effect of exclusive attention to those
parts of mathematics which offer no scope for the discussion of doubtful points is a
distaste for modes of proceedings which are absolutely necessary to the extension of
analysis. If the cultivation of the higher parts of mathematics were left to persons trained
for the purpose, there might be some show of reason for keeping out of the ordinary
student’s reach, not only the unsettled, but even the purely speculative parts of the
abstract sciences; reserving them for those persons whose business it would then be to
render the former clear and the latter applicable. As it is, however, the few in this country
who pay attention to any difficulty of mathematics for its own sake come to their
pursuit through the casualties of taste or circumstances; and the number of such casualties
should be increased by allowing all students whose capacity will let them read on the
higher branches of applied mathematics, to have each his chance of being led to the
cultivation of those parts of analysis on which racher depends its future progress than its
present use in the sciences of matter.” (de Morgan [1842), p. vii).

According to R. B. Braithwaite, ‘the good genius of mathematics and of unselfconscious
science, Euclid has been the evil genius of philosophy of science - and indeed of meta-
physics’. (Braithwaite [1953], p. 353.) This statement, however, originates in a static
logicist conception of mathematics.
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Note: In this appendix the supplementary stages s, 6, and 7 (cf. P 128) of .ﬂ_ﬁ
method of proofs and refutations have not been manﬁm..&. 1 would just mention
here that a methodical hunt for uniform convergence in other proofs (stage 5)
would very quickly have yiclded the refutation vnm improvement om” another
theorem proved by Cauchy: the theorem that m._n. S.anmn»_ of the limit of any
convergent series of continuous functions is the limit .om the sequence of the
integrals of the terms, or briefly, that in the case of series of continuous func-
tions, the limit and the integral-operations can be interchanged. This rum. _coo.n
uncontested throughout the cighteenth century, and even Gauss applied it
without giving it a second thought. (Sec Gauss [1813], Knopp [1928] and Bell
—bew it did not occur to Seidel, who discovered _Smmon.q. convergence in
1847, to look at other proofs to see if it had been implicitly assumed there.
Stokes, who discovered uniform convergence in the same yeat - though not
with the help of the method of proofs and refutations - uses in m:.m same paper
the false theorem about integration of scrics, referring to Moigno Am.no_nnm
[1848]). (Stokes made another mistake: he thought he had proved that _._:_mo_ws
convergence was not only sufficient but necessary for the continuity of the
limit function.) . . .

This delay in discovering that the proof that the integration of series also
depends on the assumption of uniform convergence may have been due to the
fact that this primitive conjecture was refuted by a concrete counterexample
only in 1875 (Darboux [1875]), by which date w_..oom.uau.g_a .r»m already traced
uniform convergence in the proof without the analysis being catalysed Gx a
counterexample. The hunt for uniform convergence once fully under way with
Weierstrass at its head soon discovered the concept in proofs concerning term
by term differentiation, double limits, etc.

The sixth stage is to check the hitherto accepted consequences of the Rm:.n&
primitive conjecture. Can we rescue these consequences, or mOo.u the _.o?S:Q—
of the lemma lead to a disastrous holocaust? Term by term integration, for
instance, was a cornerstone of the Dirichlet proof of Fourier’s conjecture. Du
Bois-Reymond describes the situation in dramatic terms: .nro theory of trigono-
metric series is ‘cut to the heart’, its two key theorcms have had the ground
cut from under them’ and

with one blow the general theory was pushed back to the state in which it had been before
Dirichlet, back even before Fourier.

(du Bois-Reymond [1875], p. 120.) It makes an intriguing study to sce how the
*lost ground’ has been regained. .

In mEm process a spate of counterexamples was unearthed. But their study -
the seventh stage of the method ~ started only in the last years of ..ro century.
(E.g. Young’s work on the classification and distribution of points of non-
uniform convergence; Young [1903-4].)
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