
Algorithm Synthesis by Lazy Thinking:
Using Problem Schemes

Bruno Buchberger? and Adrian Crăciun??

Research Institute For Symbolic Computation,
Johannes Kepler University Linz,

A-4040 Linz, Austria
{bruno.buchberger, adrian.craciun}@risc.uni-linz.ac.at

Abstract. Recently, as part of a general formal (i.e. logic based) method-
ology for mathematical knowledge management we also introduced a
method for the automated synthesis of correct algorithms, which we
called the lazy thinking method. For a given concrete problem specifica-
tion (in predicate logic), the method tries out various algorithm schemes
and derives specifications for the subalgorithms in the algorithm scheme.
In this paper, we show that the lazy thinking method can be significantly
streamlined by applying it, in a preprocessing step, to problem schemes
before we apply the result of the preprocessing to concrete problems.

1 Introduction to Algorithm Synthesis by Lazy Thinking

In this paper, we want to make a contribution to a particular subproblem of
formal mathematical theory exploration (see [5]), namely the automated inven-
tion of (provenly correct) algorithms for given specifications. For this we recently
introduced a new method, called “lazy thinking”, see [3], which was quite suc-
cessful in toy examples like the generation of sorting algorithms, see [7]. Very
recently, we were able to show that the method is, in fact, quite powerful: In [4]
we showed how the first author’s Gröbner bases algorithm can be derived com-
pletely automatically from its specification by applying lazy thinking. We think
that this is a major step forward, because the construction of Gröbner bases is
a non-trivial problem, which was deemed to be outside the reach of automated
algorithm synthesis.

In this paper we will streamline the lazy thinking methodology for algorithm
invention by combining it with the idea of problem schemes. This makes the
inventions of algorithms more efficient and, at the same time, the automatically

? Sponsored by FWF (Österreichischer Fonds zur Förderung der Wissenschaftlichen
Forschung; Austrian Science Foundation), Project SFB 1302 (“Theorema”) and
by RICAM (Radon Institute for Computational and Applied Mathematics, Aus-
trian Academy of Science, Linz). Currently visiting professor at Kyoto University,
Graduate School of Informatics.

?? Supported by the Calculemus European Project and Project SFB 1302
(“Theorema”).



generated correctness proofs will be better structured and easier to understand.
This may also help to understand the lazy thinking method as a whole and to
see its naturalness.

1.1 A Rough Description of the Lazy Thinking Synthesis Method

The two main ingredients of the lazy thinking method are:

– the use of algorithm schemes, and
– the automated derivation of conjectures for the specification of the subalgo-

rithms from failing (automated) proof attempts for the correctness theorem.

An algorithm scheme is a predicate logic formula, that describes an algorithm
(recursively) in terms of unspecified subalgorithms, together with the signature
of the subalgorithms and a proof strategy to be used in the proof of the correct-
ness theorem (the specification of the algorithm).

Roughly, the lazy thinking method proceeds as follows: We start from a
formal (predicate logic) specification of the problem.

1. Try out, one after the other, various algorithm schemes stored in a library
of algorithm schemes.

2. Attempt to prove the correctness theorem w.r.t. the given specification; this
will typically fail because there is not enough knowledge about the subalgo-
rithms.

3. Generate automatically the specification for one (or more) of the subalgo-
rithms from the failing proof situation, add it to the knowledge base, and
attempt the proof again.

4. Repeat the previous step in a recursive cascade, until the proof goes through;
after the successful termination of the proof, the following will be true: Un-
der the assumption that all the ingredient subalgorithms satisfy the speci-
fications generated from the proof, the main algorithm satisfies the initial
problem specification.

5. At this point, either, in the knowledge base at hand, algorithms are available
that satisfy the specifications generated for the subalgorithms and we are
done, i.e. a correct algorithm has been synthesized for the initial problem
and its correctness proof has been generated; or subalgorithms that satisfy
the specifications can be synthesized by another application of the same
method in a next round of the procedure.

The degree of automation in the lazy thinking procedure depends on the
degree of automation in the theorem provers available for the particular math-
ematical domain and the degree of automation in the procedure for obtaining
requirements (specifications) for the subalgorithms from failing proof attempts.
For the case studies on sorting, merging, and splitting tuples in [3, 7] both in-
gredients are completely automated in the frame of the Theorema system (see
[6]) and, hence, the algorithm synthesis is completely automated. Surprisingly,
the requirements generating algorithm described in [3] is also sufficient for the



case study on Gröbner bases algorithm synthesis in [4]. However, the automated
proving necessary for this case study is not yet fully implemented in Theorema
although, in fact, the necessary automated theorem proving capability is less
sophisticated, but technically more complex, than the one for the case studies
on sorting. The implementation is under way and will be part of the PhD thesis
of the second author.

1.2 Setting the Context

The Language. According to the view of theory exploration described in [5],
one logic language frame (a version of higher order predicate logic) is sufficient
for all aspects of mathematical theory exploration.

In particular, in this paper, we will use the Theorema version of predicate
logic with sequence variables. The syntax should be self explanatory, for details
see [6]. Here are some examples of the use of sequence variables:

l[〈〉] = 0,
∀

x,x̄
(l[〈x, x̄〉] = l[〈x̄〉] + 1).

This is a recursive definition of the length of tuples. In Theorema, the tuple
constructor is denoted by angle brackets. Hence, 〈2, 3, 2, 2, 1, 4〉 is the ordered
tuple (list) with the elements 2, 3, 2, 2, 1, 4; ‘x̄’ is a sequence variable. The
recursive definition says that the length of the empty list is 0 and that the
length of a list consisting of an object x and any finite sequence x̄ of objects is
the length of the list consisting of the finite sequence a plus 1. Hence,

l[〈2, 3, 1〉] = l[〈3, 1〉] + 1 = l[〈1〉] + 1 + 1 = l[〈〉] + 1 + 1 + 1 = 0 + 3 = 3.

Note that, in the first step the sequence variable ‘x̄’ is bound to 3 and 1.
For a detailed formal account of predicate logic with sequence variables, see

[17].
The programming language we use to express the algorithms is a restriction

of the full Theorema language. In short, the programming language part of
Theorema does not allow quantification over unbounded quantifiers. For more
details, see [3].

Background Knowledge. Throughout this paper, we consider the context of
general theory exploration. This means that when starting an exploration cycle,
for instance the synthesis of an algorithm in a certain domain, knowledge about
that domain will be available (possibly from previous exploration cycles).

We will present some case studies in the theory of tuples. Since we do not
have enough space to present detailed definitions and properties in this paper,
we will describe their meaning informally. For the exact definitions, refer to the
Appendixes of [3, 7].



Problem Schemes. One of the most general problem schemes we can consider
has the following form:

∀
F,I,P

(construct–direct–solution[F, I, P ] ⇔ ∀
I[X]

P [X,F [X]]),

which says that if the input to algorithm F satisfies the condition I, its output
satisfies the (output) condition P w.r.t. its input. This output condition can in
fact be a conjunction of various predicates that specify various desired properties
for the algorithm F . The output condition can have particular forms, for instance
it can describe a simplified version of the input, like in the following problem
scheme:

∀
F,I,P

(construct–simplifier[F, I, P ] ⇔ ∀
I[X]

P [F [X]]).

In practice it is useful to store schemes in which the ingredients of the output
condition are spelled out explicitly, like:

∀
F,I,P,Q

(construct–direct–simplified–solution[F, I, P, Q] ⇔
∧ {

construct–simplifier[F, I,Q]
construct–direct–solution[F, I, P ] ).

This gives hierarchical structure for the library of problem schemes. Both
‘construct–simplifier ’ and ‘construct–direct–simplified–solution’ can be seen as
instances of ‘construct–direct–solution’.

Remark. In many cases, it may also be desirable to specify the types of
the input and output of problem specifications (and also the later algorithm
schemes). In Theorema, this can be done by introducing appropriate additional
unary predicates, see the examples below.

Algorithm Schemes. Here are some algorithm schemes for the domain of
tuples:

∀
F,e,g,h

(simple-tail-recursion-empty-general[F, e, g, h] ⇔
∧

{
F [〈〉] = e
∀

x,ȳ
F [〈x, ȳ〉] = g[〈x〉, F [〈ȳ〉]] ),

∀
F,ee,eg,ge,
ggp,ggn,p

(simple-merge-recursion-empty-general–binary[F, ee, eg, ge, ggp, ggn, p] ⇔

∧





F [〈〉, 〈〉] = ee
∀

x,ȳ
F [〈〉, 〈x, ȳ〉] = eg[〈x, ȳ〉]

∀
a,b̄

F [〈a, b̄〉, 〈〉] = ge[〈a, b̄〉]

∀
a,b̄,x,ȳ

(F [〈a, b̄〉, 〈x, ȳ〉] =
{

ggp[〈a, b̄〉, 〈x, ȳ〉, F [〈a, b̄〉, 〈ȳ〉]] ⇐ p[a, x]
ggn[〈a, b̄〉, 〈x, ȳ〉, F [〈b̄〉, 〈x, ȳ〉]] ⇐ otherwise

),



∀
F,e,g,h1,h2

(double–recursion–empty–singleton–general[F, e, g, h1, h2] ⇔

∧




F [〈〉] = e
∀
x
F [〈x〉] = s[〈x〉]
∀

x,ȳ
F [〈x, ȳ〉] = g[F [h1[〈x, ȳ〉]], F [h2[〈x, ȳ〉]]]]

),

which, in fact, is a special case of the domain-independent general algorithm
scheme:

∀
F,c,s,g,h1,h2

(double–recursion[F, c, s, g, h1, h2] ⇔

∀
X

(F [X] =
{

s[X] ⇐ c[X]
g[F [h1[X]], F [h2[X]]] ⇐ otherwise )).

Note that the ‘double-recursion’ scheme is also known as the ‘divide-and-
conquer ’ scheme.

All of the above schemes are recursive. Since there is a strong connection
between induction and recursion, a natural choice for the proof strategies as-
sociated to these schemes is some sort of induction, if the domain of the input
variables is known to be inductive.

Additional conditions are attached to each scheme, such as domain preserving
specifications (i.e. signatures of the unknown subalgorithms), and – specific to
the ‘divide–and–conquer ’ scheme – the additional requirement that the prepro-
cessing functions h1 and h2 make their input smaller, in a well–founded sense,
than the output.

The Problem of Sorting. Consider the recursive definition of the unary pred-
icate ‘is-sorted ’:

is–sorted[〈〉],
∀
x
is–sorted[〈x〉],

∀
x,y,z̄

(
is–sorted[〈x, y, z̄〉] ⇔ ∧ {

x ≤ y
is–sorted[〈y, z̄〉]

)
,

and the binary predicate ‘≈’, where X ≈ Y means that, in the tuples X and
Y , the same elements occur the same number of times, see [3] for the detailed
definition.

The problem specification for sorting in the theory of tuples is now obtained
from the problem scheme ‘construct-direct-simplified-solution’ by substituting
is–tuple, is-sorted and ≈ for I, P and Q, respectively:

construct-direct-simplified-solution[F, is–tuple, is-sorted,≈],

which entails

∀
is–tuple[X]

∧ {
is–sorted[F [X]]
X ≈ F [X] . (Sort.P)



As noted previously, the additional domain preserving specification

∀
is–tuple[X]

is–tuple[F [X]]

can be handled a priori and we assume this information every time. Note that
in this case the output of the algorithm F has the same domain as its input.

We could now apply the lazy thinking method directly to this concrete prob-
lem for generating, automatically, a suitable algorithm F (by using any of the al-
gorithm schemes above for F ), like in [7]. Rather, in this paper, we first apply the
lazy thinking method to the general problem scheme construct-direct-solution[F,I,P].
Then we use the result of the lazy thinking method on the general problem scheme
for any scheme that is an instance (such as construct–direct–simplified–solution)
or concrete problem in this class (or in its instances), e.g. the sorting problem.
This improves the efficiency of exploration enormously.

2 Lazy Thinking Streamlined

2.1 Synthesis of a General Algorithm

We start from the problem scheme ‘construct-direct-solution’, i.e. we want to
find an algorithm F , whose output domain is described by the predicate O, such
that

∀
I[X]

P [X,F [X]]. (P)

The formula (P) is called the correctness theorem or problem specification.
We use the algorithm scheme ‘double–recursion’, i.e. the scheme

∀
I[X]

(F [X] =
{

s[X] ⇐ c[X]
g[F [h1[X]], F [h2[X]]] ⇐ otherwise ). (DC)

Attached to the scheme are the signatures of the subalgorithms, which have
the following form:

∀
I[X]

c[X]

O[s[X]], (S.tr.dom)

∀
I[X]

¬c[X]

∧ {
I[h1[X]]
I[h2[X]] , (Spl.ntr.dom)

∀
O[X1,X2]

O[g[X1, X2]]. (C.dom)

We assume that I describes an inductive domain. Let ≺ be a well–founded
ordering on this domain. Also attached to the algorithm scheme are the following
conditions (specifications) on the splitting functions, h1 and h2:

∀
I[X]

¬c[X]

∧ {
h1[X] ≺ X
h2[X] ≺ X

(Spl.ntr.ord)



Now, for the proof of (P), we apply lazy thinking, i.e. we attempt the proof
without knowing anything about the subalgorithms c, s, g, h1, and h2 in the
algorithm scheme (except the conditions mentioned above). We use well–founded
induction on ≺:

We take X0 arbitrary but fixed such that I[X0] and assume as induction
hypothesis:

∀
I[X]

X≺X0

P [X, F [X]].

We try to prove

P [X0, F [X0]].

Case c[X0]:
In this case, by the definition of F , it suffices to prove:

P [X0, s[X0]].

At this point, the proof is stuck because there is no specific knowledge avail-
able on s that could transform the proof situation further.

Failing Proof Analysis and Conjecture Generation. Applying the tech-
nique proposed in [3], we collect the current assumptions and the unproved goal
in the formula

I[X0] ∧ c[X0] ⇒ P [X0, s[X0]],

and generalize it to
∀

I[X]

c[x]

P [X, s[X]], (Sp.tr)

by the replacement:
X0 → X,

where ‘X’ is a new variable. This is now taken as a specification for s: It is clear
that, if an s satisfies this specification, then the current goal can be proved from
the current assumptions. Hence, we store this specification and continue with
the proof.
Case ¬c[X0]:

By the definition of F , it suffices to prove:

P [X0, g[F [h1[X0]], F [h2[X0]]]].

From the domain signatures of F , and h1, h2 – (Spl.ntr.dom), we obtain:

O[F [h1[X0]]],
O[F [h2[X0]]],

By modus ponens, using (Spl.ntr.dom), (Spl.ntr.ord) and the well–founded
induction hypothesis we obtain:



P [h1[X0], F [h1[X0]]],
P [h2[X0], F [h2[X0]]].

The proof is stuck, the proof situation cannot be transformed anymore.

Failing Proof Analysis and Conjecture Generation. Applying the tech-
nique proposed in [3], we collect the current assumptions and the unproved goal
in the formula

∧





I[X0]
¬c[X0]
O[F [h1[X0]]]
O[F [h2[X0]]]
P [h1[X0], F [h1[X0]]]
P [h2[X0], F [h2[X0]]]

⇒ P [X0, g[F [h1[X0]], F [h2[X0]]]],

and generalize it to:

∀
I[X],O[X1,X2]

¬c[X]

(∧ {
P [h1[X], X1]
P [h2[X]], X2

⇒ P [X, g[X1, X2]]
)

, (Sp.ntr)

by first applying the replacements

F [h1[X0]] → X1,
F [h2[X0]] → X2,

and then X0 → X, where ‘X’, ‘X1’, ‘X2’ are new variables. This is now taken
as a specification for g, h1, and h2: It is clear that, if functions g, h1, and h2
satisfy this specification, then the current goal can be proved from the current
assumptions. Hence, we store this specification and, in fact, we are now done
with the proof.

2.2 Summary of the Result

By the lazy thinking method for algorithm synthesis, we have automatically
obtained the following theorem:

∀
I[X]

F [X] =
{

s[x] ⇐ c[X]
g[F [h1[X]], F [h2[X]]] ⇐ otherwise , (DC)

∧



∀
I[X]

c[X]

O[s[x]]∧

∀
I[X]

¬c[X]

∧ {
I[h1[X]]
I[h2[X]] ∧

∀
O[X1,X2]

O[g[X1, X2]]∧

∀
I[X]

¬c[X]

∧ {
h1[X] ≺ X
h2[X] ≺ X

∧

∀
I[X]

c[x]

P [X, s[X]]∧

∀
I[X],O[X1,X2]

¬c[X]

(∧ {
P [h1[X], X1]
P [h2[X], X2]

⇒ P [X, g[X1, X2]]
)

(Specs)

⇒

∀
I[X]

P [X, F [X]] . (P)

where (Specs) stands for the conjunction of (S.tr.dom), (Spl.ntr.dom), (C.dom),
(Spl.ntr.ord), (Sp.tr) and (Sp.ntr), the specifications for the unknown subalgo-
rithms in the recursive definition (DC).

This theorem can be read in two useful ways:

– Either we can consider the theorem as a kind of preprocessing of the lazy
thinking approach for synthesizing algorithms for problems of the form: Find
F such that (P) holds. In this interpretation, the theorem tells us that an
algorithm F can be found by defining F by the formula (DC), with any
subalgorithms s, g, h1, h2 and predicate c that satisfy the requirements
(Specs). In this reading, we call the conditions (Specs) the subalgorithm
specifications for the problem scheme (P) and the algorithm scheme (DC).

– Or, we consider the theorem as an inference rule for verifying that an al-
gorithm of the form (DC) with concrete operations s, g, h1, h2 and c is
correct with respect to the specification (P), for concrete predicates P , D.
The conditions (Specs) are sufficient conditions for the partial correctness
of the algorithm F .

2.3 Remarks

Partial Correctness vs. Total Correctness. For the above problem scheme
and the above algorithm scheme we have proved that the algorithm is correct and
terminates under the assumption that the auxiliary functions meet the specifi-
cations synthesized and the additional specifications associated to the algorithm
scheme. Termination is ensured by the use of well–founded induction as the
proof strategy. In general (due to the correspondence between induction and
recursion), the use of (some sort of) induction (e.g. structural induction) to



prove correctness of recursive schemes (e.g. the tail–recursion scheme) ensures
termination.

For other algorithm schemes, termination may be a difficult problem that
can only be handled by specific techniques for the specific auxiliary functions.

Problem Schemes Hierarchies. As pointed out in the previous section,
‘construct–direct–simplified–solution’ can be seen as an instance of the ‘construct–
direct–solution’ problem scheme, (P). It is easy to specialize the result above for
the ‘construct–direct–simplified–solution’ problem scheme, by appropriately sub-
stituting the predicate P in (P) with a conjunction of predicates. Due to space
limitations, we will not spell this out here, but will use the special form of the
result in the subsequent case study.

3 Application to Concrete Algorithm Synthesis

3.1 The Case Studies

In this section, we will present a few synthesis case studies (sorting in the theory
of tuples) which are not new (see [3, 7, 8]), and were carried out using the method
of lazy thinking applied on concrete problems. We will mention the concrete
problems and the algorithm schemes used in the respective case studies. We will
then show how these problems and corresponding algorithm schemes can be seen
as instances of the general synthesis problem presented in the previous section,
which allows us to use directly the results of preprocessing lazy thinking, which
provides the obvious advantage that we need not carry out several proofs/proof
attempts.

3.2 Sorting of Tuples

We try to solve the sorting problem in the theory of tuples, i.e. find an algorithm
F that satisfies (Sort. P), using the algorithm scheme:

∀
is-tuple[X]

F [X] =
{

s[X] ⇐ is–trivial–tuple[X]
c[F [ls[X]], F [rs[X]]] ⇐ otherwise , (Sort.DC)

with additional specifications

∀
is–tuple[X]

¬is–trivial–tuple[X]

∧ {
ls[X] ≺ X
rs[X] ≺ X

. (Sort.Sp.ntr.ord)

and

∀
is–tuple[X]

is–trivial–tuple[X]

is–tuple[s[X]], (Sort.S.tr.dom)

∀
is–tuple[X]

¬is–trivial–tuple[X]

∧ {
is–tuple[ls[X]]
is–tuple[rs[X]] , (Sort.Spl.ntr.dom)

∀
is–tuple[X1,X2]

is–tuple[c[X1, X2]]. (Sort.C.dom)



In the above, ≺ is the well–founded ordering on the domain of tuples, with
the intuitive meaning ‘has shorter length’, ‘is–tuple’ is the tuple detector, ‘is–
trivial–tuple’ describes either the empty tuple or singleton tuples (see [8] for the
discussion on how to choose this predicate for the trivial case).

It is now near at hand to see that (Sort.P) and (Sort.DC) are instances of
(P) and (DC), respectively, that ‘is-tuple’ describes objects from an inductive
domain with a well–founded ordering,≺. We can now apply the preprocessed lazy
thinking, taking also in account that (Sort.P) is in fact an instance of ‘construct–
direct-simplified–solution’, which yields the following specifications for s, ls, rs,
c (we leave out the domain preserving specifications, since for the purpose of
this presentation, they do not play any role in synthesis):

∀
is-tuple[X]

is–trivial–tuple[X]

∧ {
is–sorted[s[X]]
X ≈ s[X] , (Sort.Sp.tr)

∀
is–tuple[X]

¬is–trivial–tuple[X]

∧ {
ls[X] ≺ X
rs[X] ≺ X

, (Sort.Sp.ntr.ord)

∀
is–tuple[X,X1,X2]

¬is–trivial–tuple[X]




∧




is–sorted[X1]
ls[X] ≈ X1

is–sorted[X2]
rs[X] ≈ X2

⇒ ∧ {
is–sorted[c[X1, X2]]
X ≈ c[X1, X2]


 . (Sort.Sp.ntr)

Now we see that the lazy thinking method applied to algorithms schemes
and problem schemes and the subsequent application to the concrete problem
instance yields the natural specifications for the subalgorithms and not just some
contrived and artificial conditions without any intuitive interpretation: In par-
ticular, the specifications for c, ls, and rs are the natural specifications anybody
would propose for merging function c and splitting functions ls and rs.

The specifications for the subalgorithms in the (Sort.DC) scheme were pro-
duced directly, by using the result of the preprocessing of the problem scheme
(P) by lazy thinking with the algorithm scheme (DC), with the appropriate in-
stantiations of their ingredients. When we applied the lazy thinking method to
the concrete problem (Sort.P), with the algorithm scheme (Sort.DC), in Theo-
rema, it took approximately 5 minutes runtime on a Pentium 4 machine to get
the same result (see [7]).

If one now wants to go on with the synthesis of the subalgorithms for the
concrete problem of sorting, it is essential to use the special knowledge available
for the predicates ‘is-sorted ’ and ≈: For example, for synthesizing s, using all
available knowledge on ‘is-sorted ’ and ≈, it turns out that the only possible
function s satisfying the requirement is the identity.

For synthesizing c, ls, and rs, using available knowledge from the theory of
tuples, it turns out that the above requirements can be replaced by the following



(stronger) decoupled requirements (see [3] for details):

∀
is–tuple[X]

¬is–trivial–tuple[X]

{
ls[X] ≺ X
rs[X] ≺ X

, (Sort.Spl.ord)

∀
is–tuple[X]

¬is–trivial–tuple[X]

(ls[X] ³ rs[X]) ≈ X, (Sort.Spl)

∀
is–tuple[X1,X2]

({
is–sorted[X1]
is–sorted[X2]

⇒
{

is–sorted[c[X1, X2]]
c[X1, X2] ≈ (X1 ³ X2)

)
. (Sort.Comb)

In the above, the first two are specifications for the splitting functions, and
the last is the specification for merging. One can now go on and apply the same
method for synthesizing algorithms for splitting and merging.

3.3 Sorting of Tuples, Continued: Splits

Starting with the problem given by the decoupled specifications for splits –
(Sort.Spl.ord) and (Sort.Spl), after some analysis which yielded the definitions
for the trivial cases, we showed in [8] that the following scheme can be used with
the lazy thinking method, to synthesize the splitting algorithms (note that we
use the explicit representation of tuples, i.e. in terms of the tuple constructor
‘〈〉’):

∀
x,y

{
ls[〈x, y〉] = 〈x〉
rs[〈x, y〉] = 〈y〉 ,

∀
x,y,z

{
ls[〈x, y, z〉] = 〈x, z〉
rs[〈x, y, z〉] = 〈y〉 ,

∀
x,y,z,t,z̄

{
ls[〈x, y, z, t, z̄〉] = cL[〈x〉, ls[〈z, t, z̄〉]]
rs[〈x, y, z, t, z̄〉] = cR[〈y〉, rs[〈z, t, z̄〉]] .

However, applying lazy thinking directly here has two disadvantages: (1) a
lengthy, although not logically very deep, induction proof and (2) the need for a
very particular structural induction rule, given by the structure of the recursive
call (see [8]), meaning either that some analysis mechanism to produce this
particular induction method must be available, or the user has to implement
this particular scheme in the system. This example shows that the application
of the lazy thinking method to concrete problems and algorithm schemes may
lead to nontrivial issues concerning the theorem prover used to carry out the
proofs.

Instead, by the observation (see details in [9]) that we can see the scheme
above as an instance of the double-recursion scheme (DC) (with the prepro-
cessing functions h1[〈x, y, z, t, z̄〉] = 〈x, y〉 and h2[〈x, y, z, t, z̄〉] = 〈z, t, z̄〉, which
clearly satisfy (Spl.ntr.ord) and (Spl.ntr.dom)), and the problem is a version
of ‘construct-direct-solution’, we can apply the preprocessed lazy thinking, and
without the need for a proof, we get the specifications for the unknown subal-
gorithms cL and cR:



∀
x,y,is–tuple[X, Y, Z]

(
∧





Y ≺ X
Z ≺ X
Y ³ Z ≈ X,

⇒

∧




cL[〈x〉, Y ] ≺ (〈x, y〉 ³ X)
cR[〈y〉, Z] ≺ (〈x, y〉 ³ X)
cL[〈x〉, Y ] ³ cR[〈y〉, Z] ≈ (〈x, y, 〉 ³ X)

).

These specifications are (not surprisingly) the same as in the case of the
application of lazy thinking to the concrete problem and algorithm scheme. In
[8] we show how given these specifications, we can retrieve 1 from the knowledge
base that the concatenation function, ³, satisfies the specifications for cL and
cR respectively, which means we are done with the synthesis of the splits.

3.4 Sorting of Tuples, Continued: Merging

Starting from the problem (Sort.Comb), we have showed in [7, 8] that we can
using the algorithm scheme:

c[〈〉, 〈〉] = cee,
∀

y,ȳ
c[〈〉, 〈y, ȳ〉]] = ceg[y, ȳ],

∀
x,x̄

c[〈x, x̄〉, 〈〉]] = cge[x, x̄],

∀
x,y,x̄,ȳ

c[〈x, x̄〉, 〈y, ȳ〉] =
{

cgg[〈x〉, c[〈x̄〉, 〈y, ȳ〉]], ⇐ p[x, y]
cgg[〈y〉, c[〈x, x̄〉, 〈ȳ〉]], ⇐ ¬p[x, y] ,

where cee, ceg, cge, cgg are subalgorithms of the scheme and p is an unknown
predicate, we can synthesize the merging function:

c[〈〉, 〈〉] = 〈〉,
∀

y,ȳ
(c[〈〉, 〈y, ȳ〉] = 〈y, ȳ〉),

∀
x,x̄

(c[〈x, x̄〉, 〈〉] = 〈x, x̄〉),

∀
x,x̄,y,ȳ

c[〈x, x̄〉, 〈y, ȳ〉] =
{ 〈x〉 ³ c[〈x̄〉, 〈y, ȳ〉] ⇐ x > y
〈y〉 ³ c[〈x, x̄〉, 〈ȳ〉] ⇐ ¬x > y

,

where ³ is the concatenation in the theory of tuples.
Here we try to “cast” this problem scheme and algorithm scheme to match the

general problem scheme (P) and general algorithm scheme (DC). The problem
is that here we have a function with two arguments. Instead, we consider the
arguments to be sequences of two tuples. In [9] we have shown that on this
domain we can define a well–founded ordering, which makes it inductive.

Moreover, by taking

∀
x,y,x̄,ȳ

h1[bseq[〈x, x̄〉, 〈y, ȳ〉]] =
{

bseq[〈x〉, 〈〉] ⇐ x ≥ y
bseq[〈〉, 〈y〉] ⇐ otherwise ,

∀
x,y,x̄,ȳ

h2[bseq[〈x, x̄〉, 〈y, ȳ〉]] =
{

bseq[〈x̄〉, 〈y, ȳ〉] ⇐ x ≥ y
bseq[〈x, x̄〉, 〈ȳ〉] ⇐ otherwise ,

1 It is here where the domain preservation specifications (signatures) play a role. How-
ever this is out of the scope of this paper. For details, see [8].



where bseq is a binary symbol that identifies the elements in the domain of binary
sequences of tuples (the explicit representation of the objects in this domain),
we can “cast” the above scheme into (DC). For details, see [9].

The specifications generated by the preprocessed lazy thinking in this case
(translated back from the bseq formulation), for the subalgorithms cee, ceg, cge,
cgg:

∧ {
is–sorted[cee]
cee ≈ 〈〉 ,

∀
y,ȳ

(
is–sorted[〈y, ȳ〉] ⇒ ∧ {

is–sorted[ceg[y, ȳ]]
ceg[y, ȳ] ≈ 〈y, ȳ〉

)
,

∀
x,x̄

(
is–sorted[〈x, x̄〉] ⇒ ∧ {

is–sorted[cge[x, x̄]]
cge[x, x̄] ≈ 〈x, x̄〉

)
,

∀
x,y,x̄,ȳ,is–tuple[Y ]




∧





x ≥ y
is–sorted[〈x, x̄〉]
is–sorted[〈y, ȳ〉]
is–sorted[Y ]
Y ≈ 〈x̄, y, ȳ〉

⇒ ∧ {
is–sorted[〈x〉, Y ]
cgg[〈x〉, Y ] ≈ 〈x, x̄, y, ȳ〉




,

∀
x,y,x̄,ȳ,is–tuple[Y ]




∧





x < y
is–sorted[〈x, x̄〉]
is–sorted[〈y, ȳ〉]
is–sorted[Y ]
Y ≈ 〈x, x̄, ȳ〉

⇒ ∧ {
is–sorted[cgg[〈x〉, Y ]]
cgg[〈y〉, Y ] ≈ 〈x, x̄, y, ȳ〉




,

lead to the merging algorithm presented above (see [8, 9] for complete details).
We have now completed the synthesis of the merge–sort algorithm, a solution

for the problem (P).

3.5 Sorting of Tuples: Other Algorithms

As we already pointed out, the sorting problem (Sort.P) is an instantiation of
the construct–direct–simplified–solution problem scheme:

∀
I[X]

∧ {
P [F [X]]
Q[X,F [X]] .

The preprocessing of lazy thinking can be applied to this problem scheme at
some lower level, applying it to a scheme lower in the hierarchy of schemes, for
instance the following, that depends on the domain of tuples (meaning that I is
replaced with ‘is–tuple’):

∀
x,y,z̄





F [〈〉]
F [〈x〉] = d[x]
F [〈x, y, z̄] = i[x, F [〈y, z̄〉]]

,

with the attached proof strategy being structural induction on tuples.



We obtain completely automatically by the application of the lazy thinking
method, the following subalgorithm specifications for the subalgorithms c, d, i:

P [c],
Q[〈〉, c],
∀
x

(∧ {
P [d[〈x〉]]
Q[〈x〉, d[〈x〉]]

)
,

∀
x,y,z̄,

is–tuple[Y ]

(∧ {
P [Y ]
Q[〈y, z̄〉, Y ] ⇒

∧ {
P [i[x, Y ]]
Q[〈x, y, z̄〉, i[x, Y ]]

)
.

This example shows that sometimes it pays off to specialize a general scheme
to a certain domain. Again, this suggests a hierarchy of algorithm schemes.

When we apply this to the problem of sorting, we obtain insertion sorting.

4 Comparison to Related Work

In this section we will briefly point out some of the similar approaches to algo-
rithm synthesis and compare the similarities and differences between these and
the lazy thinking approach (and in particular the preprocessing of lazy think-
ing). Then we will mention the connection to other related efforts in program
verification.

Program synthesis is a well–studied field. Several approaches have been in-
vestigated, see [1] for an overview.

Constructive and deductive synthesis can be viewed from the same perspec-
tive: in both cases deduction is used to synthesize programs by solving unknowns
during the applications of rules. In the context of proof planning in [15, 16], a
proof of the correctness of an algorithm is set up, and the unknown parts of
the algorithm (existential parts of the specification) are replaced with metavari-
ables (middle–out reasoning), which will be instantiated as the proof planning
progresses. Proof critics (see [13, 14]) are used to overcome failure of proofs and
generate new lemmata. Lazy thinking is similar to this approach in that it also
attempts to prove the correctness conjecture, and it uses the failure of the proof
to generate conjecture and complete the proof. However, in the context of lazy
thinking, conjectured lemmas are specifications of unknown subalgorithms in the
schema. The use of schemas makes the proofs more efficient.

Algorithm schemas in the context of lazy thinking are similar to those in
schema–based synthesis, with a template that captures the flow of the program
and specifications (constraints) on the ingredients of the template.

In [11], a notion of generic correctness (modulo correctness of subalgorithms
in the schema) of schemas – steadfastness – is used, and programs are synthesized
by transforming steadfast schemas into correct programs. Similarly, preprocess-
ing of lazy thinking ensures a notion of correctness of a schema (by the proof of
the correctness theorem in the preprocessing of lazy thinking).

One of the most successful approaches to schema–based synthesis is that
of D.R. Smith (see [20]), who uses a category theory framework to represent



schemes and transformations. This setting ensures that transformations are cor-
rect. Moreover, a large library (hierarchy) of algorithm schemes is available and
used to guide the synthesis.

Preprocessing lazy thinking gives a similar transformational flavor to our
synthesis method. It allows to take offline some of the more difficult proof obli-
gations – we apply once and for all lazy thinking and then all we need to do is
show that the concrete problem and algorithm scheme selected are instances of
a problem scheme and algorithm scheme that have been preprocessed.

All of the above approaches use some sort of declarative formalism: either
functional programming (like in [20]) or logic programming (like [16, 11]). This
is motivated by the goals of each approach. The aim of lazy thinking is to
provide support for invention of new concepts (algorithms in this case) in the
context of systematic theory exploration, see [5]. Therefore we use as the pro-
gramming language (a restriction of) predicate logic. This allows us to remain
in the same language frame throughout the synthesis process, and in all its as-
pects. The same is also achieved to some level (in the sense that algorithms and
their specifications are expressed in the same language) in the logic program-
ming setting (see [1] for a discussion), and in [12] a unified view of schemes and
proof planning, which would allow natural integration of the proof tasks in the
synthesis/transformation process is proposed.

Once an algorithm is synthesized in a certain language (in particular pred-
icate logic), it can be transformed into an algorithm expressed in some other
logic or formal system (see [18] for an overview of how this can be achieved).

There is a strong connection between verification and synthesis, as already
pointed out in this paper. In fact the result presented here was motivated by
the work of N. Popov, also in the frame of Theorema, see [19], who used Scott
induction [10] (induction on the number of recursive calls) to derive sufficient
verification conditions for the partial correctness of recursive functional algo-
rithms of the form (DC), considered here. These are the same as those obtained
by lazy thinking, (Specs). The difference between the two approaches is that here
we allow only input from inductive domains, thus ensuring termination, while
in [19] there is no restriction on the input, but the termination has to be proved
separately.

5 Conclusions and Future Work

We have shown how the lazy thinking method can be significantly streamlined
by applying it, in a preprocessing step, to problem schemes before we apply the
result of the preprocessing to concrete problems. This saves a lot of proving effort
and gives an easy structure to the resulting correctness proofs – from several
minutes needed to produce proofs that turned out to be similar in structure to
instant results using the preprocessed rules.

In particular, we have preprocessed a well–known algorithm scheme, divide
and conquer. The algorithms synthesized by preprocessed lazy thinking using



this scheme always terminate, due to the use of well–founded induction as a
proof strategy for the correctness proof.

We have demonstrated the idea by a couple of case studies. In the ongoing
PhD thesis of the second author under the guidance of the first author, an imple-
mentation of this approach is under way. In a first version of the implementation,
we will provide a general lazy thinking module, which allows to synthesize the
specification of the subalgorithms for arbitrary problem schemes and algorithms
schemes in the area of tuple theory. A second version will then generalize the
module to arbitrary inductive domains.

We will also study other algorithm schemes, such as critical–pair comple-
tion (CPC), first identified and described in [2], a quite general scheme, which
captures common features of the Gröbner bases algorithm, Knuth–Bendix com-
pletion and resolution.

Additional properties of algorithms (as, for example, time and space complex-
ity) may be formulated in a way which is similar to formulating other properties
of algorithms. However some subtle points about language layers have to be
taken into account, which we did not yet study completely.

References

1. D.Basin, Y.Deville, P. Flener, A. Hamfelt, J.F. Nilsson. Synthesis of Programs in
Computational Logic. In M. Bruynooghe, K.–K. Lau (eds), Program Development
in Computational Logic, Springer-Verlag, LNCS Series, Vol. 3049, June 2004, pp.
30–65.

2. B. Buchberger. History and Basic Features of The Critical–Pair/Completion Pro-
cedure. Journal of Symbolic Computation, Vol. 3, 1987, pp.3–38.

3. B. Buchberger. Algorithm Invention and Verification by Lazy Thinking. In: D.
Petcu, V. Negru, D. Zaharie, T. Jebelean (eds), Proceedings of SYNASC 2003,
5th International Workshop on Symbolic and Numeric Algorithms for Scientific
Computing Timisoara, Romania, October 1 – 4, 2003, Mirton Publishing, ISBN
973-661-104-3, pp. 2-26.

4. B. Buchberger. Towards the Automated Synthesis of a Gröbner Bases Algorithm.
To appear in RACSAM (Review of the Spanish Royal Academy of Sciences), 2004.

5. B. Buchberger. Algorithm–Supported Mathematical Theory Exploration: A Per-
sonal View and Strategy. In: J. Campbell (ed.), Proceedings of AISC 2004 (7th
Conference on Artifiicial Intelligence and Symbolic Computation, Sep. 22–24, 2004,
Research Institute for Symbolic Computation, Hagenberg, Austria), Lecture Notes
in Artificial Intelligence, Springer, to appear 2004.

6. B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W.
Windsteiger. The Theorema Project: A Progress Report. In: M. Kerber and M.
Kohlhase (eds.), Symbolic Computation and Automated Reasoning (Proceedings
of CALCULEMUS 2000, Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning, August 6-7, 2000, St. Andrews, Scotland), A.K. Peters,
Natick, Massachusetts, ISBN 1–56881–145–4, pp. 98–113.

7. B. Buchberger, A. Crăciun. Algorithm Synthesis by Lazy Thinking: Examples and
Implementation in Theorema. in: F. Kamareddine (ed.), Proc. of the Mathematical
Knowledge Management Workshop, Edinburgh, Nov. 25, 2003, Electronic Notes



on Theoretical Computer Science, Vol. 93, www.elsevier.com/locate/entcs.
Elsevier, ISBN 044451290X, 18 Feb. 2004, pp. 24-59.

8. A. Crăciun, B. Buchberger. Algorithm Synthesis Case Studies: Sorting of Tuples
by Lazy Thinking. Risc Technical Report, 04–16, 2004.

9. A. Crăciun, B. Buchberger. Preprocessed Lazy Thinking: Synthesis of Sorting Al-
gorithms. RiscTechnical Report, 04–17, 2004.

10. J. W. de Bakker, D. Scott. A Theory of Programs. IBM Seminar, Vienna, Austria,
unpublished notes, 1969.

11. P. Flener, K.–K. Lau, M. Ornaghi, J.D. C. Richardson. An Abstract Formalization
of Correct Schemas For Program Synthesis. Journal of Symbolic Computation,
30(1), 2000, pp. 93–127.

12. P. Flener, J. Richardson. A Unified View of Programming Schemas and Proof
Methods. In A. Bossi (ed.), Proceedings 9th International Workshop on Logic Pro-
gram Synthesis and Transformation (LOPSTR’99), LNCS, Vol. 1817, Venezia,
Italy, ISBN 3–540–67628–7, Springer–Verlag, 2000, pp.75–82.

13. A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs. In A.
Voronkov (ed.), International Conference on Logic Programming and Automated
Reasoning – LPAR 92, St. Petersburg, Lecture Notes in Artificial Intelligence, No.
624, Springer–Verlag 1992, pp. 178–189.

14. A. Ireland, A. Bundy. Productive Use of Failure in Inductive Proof. Special Issue
of the Journal of Automated Reasoning, 16(1–2), 1996, pp. 79–111.

15. I. Kraan. Logic Program Synthesis via Proof Planning. Phd. thesis, Department
of Artificial Intelligence, University of Edinburgh, 1993.

16. I. Kraan, D. Basin, A. Bundy. Middle–out reasoning for Synthesis and Induction.
Journal of Automated Reasoning, 16(1–2), 1996, pp. 113–145.

17. T. Kutsia, B. Buchberger, Predicate Logic with Sequence Variables and Sequence
Function Symbols. To appear in A. Asperti, G.Bancerek, A. Trybulec (Eds.): Pro-
ceedings of Mathematical Knowledge Management, Third International Conference,
MKM 2004, LNCS 3119, Springer–Verlag.

18. J. Meseguer. Formal Interoperability. In Proceedings of the 1998 Conference on
Mathematics in Artificial Intelligence, Fort Laurerdale, Florida, January 1998, url:
citeseer.ist.psu.edu/meseguer98formal.html.

19. N. Popov. Verification of Simple Recursive Programs: Sufficient Conditions. RISC
Technical Report 04–06, RISC Linz, Austria, 2004

20. D. R. Smith. Mechanizing the Development of Software. In M. Broy and R. Stein-
brueggen (eds.), Calculational System Design, Proceedings of the NATO Advanced
Study Institute, IOS Press, ISBN 9051994591, Amsterdam, 1999, pp. 251–292.


