Algorithm-Supported
Mathematical Theory Exploration:
A Personal View and Strategy

Bruno Buchberger*

Research Institute for Symbolic Computation,
Johannes Kepler University Linz,
A-4040 Linz, Austria
bruno.buchberger@jku.at

Abstract. We present a personal view and strategy for algorithm-sup-
ported mathematical theory exploration and draw some conclusions for
the desirable functionality of future mathematical software systems. The
main points of emphasis are: The use of schemes for bottom-up math-
ematical invention, the algorithmic generation of conjectures from fail-
ing proofs for top-down mathematical invention, and the possibility to
program new reasoners within the logic on which the reasoners work
(“meta-programming”).

1 A View of Algorithm-Supported Mathematical Theory
Exploration

Mathematical theories are collections of formulae in some formal logic language
(e.g. predicate logic). Mathematical theory exploration proceeds by applying,
under the guidance of a human user, various algorithmic reasoners for producing
new formulae from given ones and aims at building up (large) mathematical
knowledge bases in an efficient, reliable, well-structured, re-usable, and flexible
way. Algorithm-supported mathematical theory exploration may also be seen as
the logical kernel of the recent field of “Mathematical Knowledge Management”
(MKM), see [10] and [5]. In the past few decades, an impressive variety of results
has been obtained in the area of algorithm-supported reasoning both in terms of
logical and mathematical power as wells as in terms of software systems, see for
example, ALF [18], AuTOoMATH [12], Coq [2], ELF [21], HOL [13], IMPS [1],

* Sponsored by FWF (Osterreichischer Fonds zur Forderung der Wissenschaftlichen
Forschung; Austrian Science Foundation), Project SFB 1302 (“Theorema”) of the
SFB 13 (“Scientific Computing”), and by RICAM (Radon Institute for Computa-
tional and Applied Mathematics, Austrian Academy of Science, Linz). The final
version of this paper was written while the author was a visiting professor at Kyoto
University, Graduate School of Informatics (Professor Masahiko Sato). I would like
to thank my coworkers A. Craciun, L. Kovacs, Dr. T. Kutsia, and F. Piroi for dis-
cussions on the contents of this paper, literature work, and help in the preparation
of this paper.

ISABELLE [20], LEGO [17], M1zAR [3], NUPRL [11], OMEGA [4]. We also made an
effort in this area, see the THEOREMA [9] system.

However, as a matter of fact, these reasoning systems are not yet widely
used by the “working mathematicians” (i.e. those who do math research and/or
math teaching). This is in distinct contrast to the current math (computer al-
gebra/numerics) systems like MATHEMATICA, MAPLE, etc. which, in the past
couple of years, have finally found their way into the daily practice of math-
ematicians. In this paper, we want to specify a few features of future systems
for algorithm-supported mathematical theory exploration which, in our view,
are indispensable for making these systems attractive for the daily routine of
working mathematicians. These features are:

— Integration of the Functionality of Current Mathematical Systems: Reasoning
systems must retain the full power of current numerics and computer algebra
systems including the possibility to program one’s own algorithms in the
system.

— Attractive Syntaz: Reasoning systems must accept and produce mathemat-
ical knowledge in attractive syntax and, in fact, in flexible syntax that can
be defined, within certain limitations, by the user.

— Structured Mathematical Knowledge Bases: Reasoning systems must provide
tools for building up and using (large) mathematical knowledge libraries in
a structured way in uniform context with the algorithm libraries and with
the possibility of changing structures easily.

— Reasoners for Invention and Verification: Reasoning systems must provide
reasoners both for inventing (proposing) and for verifying (proving, disprov-
ing) mathematical knowledge.

— Learning from Failed Reasoning: The results of algorithmic reasoners (in par-
ticular, algorithmic provers) must be post-processable. In particular, also the
results of failing reasoning attempts must be accessible for further (algorith-
mic) analysis because failure is the main source of creativity for mathematical
invention.

— Meta-Programming: The process of (algorithm-supported) mathematical the-
ory exploration is nonlinear: While exploring mathematical theories using
known algorithmic reasoners we may obtain ideas for new algorithmic rea-
soners and we may want to implement them in our system and use them
in the next exploration round. Hence, reasoning systems must allow “meta-
programming”, i.e. the algorithmic reasoners must be programmed basically
in the same logic language in which the formulae are expressed on which the
reasoners work.

I think it is fair to say that, in spite of the big progress made in the past couple
of years, none of the current reasoning systems fulfills all the above requirements.
In fact, some of the requirements are quite challenging and will need a lot more
of both fundamental research and software technology. It is not the goal of
this paper, to compare the various current systems (see the above references)
w.r.t. to these six requirements. Rather, we will first summarize how we tried
to fulfil the first three requirements in our THEOREMA system (see the web site

http://www.theorema.org/ and the papers cited the) and then, in the main
part of the paper, we will sketch a few ideas (which are partly implemented and
partly being implemented in THEOREMA) that may contribute to the other three
requirements.

2 Integration of the Functionality of Current
Mathematical Systems

Let us start from the fact that predicate logic is not only rich enough to express
any mathematical proposition but it includes also, as a sublanguage, a univer-
sal programming language and, in fact, a practical and elegant programming
language. For example, in THEOREMA syntax, the following formula

Vr(is-Grébner-basis[F| < V¢ gep reduced[S-polynomial[f, g], F] =0) (1)

can be read as a proposition (which can be proved, by the inference rules of
predicate logic, from a rich enough knowledge base K) but it can also be read
as an algorithm which can be applied to concrete input polynomial sets F', like
{x%y — 2 — 2,2y* — xy + 1}. Application to inputs proceeds by using a certain
simple subset of the inference rules of predicate logic, which transform

is-Grébner-basis|F)

into a truth value using a knowledge base that contains elementary Groébner
bases theory and the above formula (1). (Note that THEOREMA uses brackets
for function and predicate application.)

Here is another example of a predicate logic formula (in THEOREMA syntax),
which may be read as a (recursive) algorithm:

is-sorted|()]
V., is-sorted[(x)]

<
Vay,z is-sorted[(z,y,Z)] & fs—gozi’ted[@,?}].
(Formulae placed above each other should be read as conjunctions.)

In this algorithmic formula, we use “sequence variables”, which in THEO-
REMA are written as overbarred identifiers: The substitution operator for se-
quence variables allows the substitution of none, one, or finitely many terms
whereas the ordinary substitution operator for the ordinary variables of predi-
cate logic (like and y in our example) allows only the substitution of exactly
one term for a variable. Thus, for example,

is-sorted[(1,2,2,5,7)],

by using the generalized substitution operator for the sequence variable Z, may
be rewritten into

1<2
A
is-sorted[(2,2,5,7)],

etc.

(The extension of predicate logic by sequence variable is practically useful
because it allows the elegant formulation of pattern matching programs. For
example, the formula p[v, w, T, w,] = 1 says that p yields 1 if two arguments are
identical. The meta-mathematical implications of introducing sequence variables
in predicate logic are treated in [16].)

Hence, THEOREMA has the possibility of formulating and executing any
mathematical algorithm within the same logic frame in which the correctness
of these algorithms and any other mathematical theorem can be proved. In ad-
dition, THEOREMA has a possibility to invoke any algorithm from the underlying
MATHEMATICA algorithm library as a black box so that, if one wants, the en-
tire functionality of MATHEMATICA can be taken over into the logic frame of
THEOREMA.

3 Attractive Syntax

Of course, the internal syntax of mathematical formulae on which algorithmic
reasoners may be based, theoretically, is not a big issue. Correspondingly, in
logic books, syntax is kept minimal. As a means for human thinking and ex-
pressing ideas, however, syntax plays an enormous role. Improving syntax for
the formulae appearing in the input and the output of algorithmic reasoners and
in mathematical knowledge bases is an important practical means for making
future math systems more attractive for working mathematicians. Most of the
current reasoning systems, in the past few years, started to add functionalities
that allow to use richer syntax.

The THEOREMA system put a particular emphasis on syntax right from
the beginning, see the papers on THEOREMA on the home page of the project
http://www.theorema.org/. We allow two-dimensional syntax and user-prog-
ramming of syntax, nested presentation of proofs, automated generation of nat-
ural language explanatory text in automated proofs, hyperlinks in proofs etc. In
recent experiments, we even provided tools for graphical syntax, called ”logico-
graphic” syntax, see [19]. The implementation of these feature was made com-
paratively easy by the tools available in the front-end of MATHEMATICA which
is the programming environment for THEOREMA. Of course, whatever syntax is
programmed by the user, the formulae in the external syntax is then translated
into the internal standard form, which is a nested MATHEMATICA expression,
used as the input format of all the THEOREMA reasoners. For example,

. _ <y
Vayz (zs-sorted[(m,y7z)] & is-sorted|(y, %])

internally is the nested prefix expression:

TMForAll|

erange[esimpleRange[evar[z]],
esimpleRange[evar[y]],
esimpleRange[evar|eseq[z]]]],

True,

T™Tff[is-sorted["™ Tuple[evar|z], evar[y], evar|eseq[z]]]],

™ And[™LessEqual[evar[z], evar[y]],
is—sorted["™Tuple[evar|y|, evar|eseq[z]]]]]]]

Translators exist for translating formulae in the syntax of other systems to
the THEOREMA syntax and vice versa. A translator to the recent OMDOC [15]
standard is under development.

4 Structured Mathematical Knowledge Bases

We think that future math systems need “external” and “internal” tools for
structuring mathematical knowledge bases.

External tools are tools that partition collections of formulae into sections,
subsections, etc. and maybe, in addition, allow to give key words like ‘Theorem’,
‘Definition’ etc. and labels to individual formulae so that one can easily reference
and re-arrange individual formulae and blocks of formulae in large collections of
formulae. Such tools, which we call “label management tools”, are implemented
in the latest version of THEOREMA, see [23].

In contrast, internal structuring tools consider the structure of mathemati-
cal knowledge bases itself as a mathematical relation, which essentially can be
described by “functors” (or, more generally, “relators”). The essence of this func-
torial approach to structuring mathematical knowledge can be seen in a formula
as simple as
zéy)

Va,y (xwy@ygx

In this formula, the predicate ~ is defined in terms of the predicate <. We
may want to express this relation between ~ explicitly by defining the higher-
order binary predicate AR:

x <y
Vo < (AR[Nag] & Vay (I ~Ye y < x))

We may turn this “relator” into a “functor” by defining, implicitly,

Ve (vm (ARl y) & z § i))

(In this paper, we do not distinguish the different types of the different variables
occurring in formulae because we do not want to overload the presentation with
technicalities.)

Functors have a computational and a reasoning aspect. The computational
aspect of functors already received strong attention in the design of programming
languages, see for example [14]: If we know how to compute with < then, given
the above definition of the functor AF', we also know how to compute with the
predicate AF[<].

However, in addition, functors have also a reasoning aspect which so far has
received little attention in reasoning systems: For example, one can easily prove
the following “conservation theorem”:

AR[~, <] : iy
Vo< (istmnsz’tive[ﬁ] = ds-transitivel~] |

where

V< (istmnsitive[g] & Vm’%z(; § ‘Z = < z)>

In other words, if we know that < is in the “category” of transitive predicates
and ~ is related to < by the relator AR (or the corresponding functor AF') then
~ also is in the category of transitive predicates. Of course, studying a couple of
other conservation theorems for the relator AR, one soon arrives at the following
conservation theorem

Vo< (AR[N’ <] = isequivalence[w])
==\ is—quasi-ordering[<] ’

which is the theorem which motivates the consideration of the relator AR.
After some analysis of the propositions proved when building up mathemat-

ical theories, it should be clear that, in various disguises, conservation theorems

make up a considerable portion of the propositions proved in mathematics.
Functors for computation, in an attractive syntax, are available in THEO-

REMA, see for example the case study [6]. Some tools for organizing proofs of

conservation theorems in THEOREMA where implemented in the PhD thesis [24]

but are not integrated into the current version of THEOREMA. An expanded

version of these tools will be available in the next version of THEOREMA.

5 Schemes for Invention

Given a (structured) knowledge base K (i.e. a structured collection of formulae
on a couple of notions expressed by predicates and functions), in one step of
the theory exploration process, progress can be made in one of the following
directions:

— invention of notions (i.e. axioms or definitions for new functions or predi-
cates),

— invention and verification of propositions about notions,

— invention of problems involving notions,

— invention and verification of methods (algorithms) for solving problems.

The results of these steps are then used for expanding the current knowledge
base by new knowledge. For verifying (proving propositions and proving the
correctness of methods), the current reasoning systems provide a big arsenal of
algorithmic provers. In the THEOREMA system, by now, we implemented two
provers for general predicate logic provers (one based on natural deduction, one
based on resolution) and special provers for analysis, for induction over the
natural numbers and tuples, for geometric theorems (based on Grébner bases
and other algebraic methods), and for combinatorial identities. We do not go
into any more detail on algorithmic proving since this topic is heavily treated
in the literature, see the above references on reasoning systems. Rather, in this
paper, our emphasis is on algorithmic invention. For this, in this section, we
propose the systematic use of formulae schemes whereas, in the next section, we
will discuss the use of conjecture generation from failing proofs. In a natural way,
these two methods go together in an alternating bottom-up/top-down process.

We think of schemes as formulae that express the accumulated experience of
mathematicians for inventing mathematical axioms (in particular definitions),
propositions, problems, and methods (in particular algorithms). Schemes should
be stored in a (structured) schemes library L. This library could be viewed as
part of the current knowledge. However, it is conceptually better to keep the
library L of schemes, as a general source of ideas for invention, apart from the
current knowledge base K that contains the knowledge that is available on the
specific notions (operations, i.e. predicates and functions) of the specific theory
to be explored at the given stage.

The essential idea of formulae schemes can, again, be seen already in the
simple example of the previous section on functors: Consider the formula

<y
that expresses a relation between the two predicates < and ~. We can make this
relation explicit by the definition

<y
V~,<<AR[N’<]©VI*’ (xwy@ ny))

This scheme (which we may also conceive as a “functor”) can now be used
as a condensed proposal for “inventing” some piece of mathematics depending
on how we look at the current exploration situation:

Invention of a new notion (definition, axiom):

If we assume that we are working w.r.t. a knowledge base K in which a
binary predicate constant P occurs, then we may apply the above scheme by
introducing a new binary predicate constant () and asserting

AR[Q, P).

In other words, application of the above scheme “invents the new notion @
together with the explicit definition”

Invention of a new proposition:

If we assume that we are working w.r.t. a knowledge base K in which two
binary predicate constants P and @ occur, then we may apply the above scheme
by conjecturing

AR[Q, P],

Plz,y|
(Q[xay] < P[y,x]>'

We may now use a suitable (automated) prover from our prover library and
try to prove or disprove this formula. In case the formula can be proved, we may
say that the application of the above scheme “invented a new proposition on the
known notions P and @Q”.

Invention of a problem:

Given a binary predicate constant P in the knowledge base K, we may ask
to “find” a @ such that

i.e.

AR[Q, P).

In this case, application of the scheme AR “invents a problem”. The nature
of the problem specified by AR depends on what we allow as “solution” Q.
If we allow any binary predicate constant occurring in K then the problem is
basically a “method retrieval and verification” problem in K: We could consider
all or some of the binary predicate constants @ in K as candidates and try to
prove/disprove AR[Q, P]. However, typically, we will allow the introduction of a
new constant () and ask for the invention of formulae D that “define” () so that,
using K and D, AR[Q, P] can be proved. Depending on which class of formulae
we allow for “defining” @ (and possible auxiliary operations), the difficulty of
“solving the problem” (i.e. finding @) will vary drastically. In the simple example
above, if we allow to use the given P and explicit definitions, then the problem
is trivially solved by the formula AR[Q, P] itself, which can be considered as an
“algorithm” w.r.t. the auxiliary operation P. If, however, we allow only the use
of certain elementary algorithmic functions in K and only the use of recursive
definitions then this problem may become arbitrarily difficult.

Invention of a method (algorithm):

This case is formally identical to the case of invention of an axiom or def-
inition. However methods are normally seen in the context of problems. For
example if we have a problem

PR[Q, R]

of finding an operation @) satisfying PR in relation to certain given operations
R then we may try the proposal

AR[Q, P]

as a method. If we restrict the schemes allowed in the definition of Q (and
auxiliary operations) to being recursive equalities then we arrive at the notion
of algorithmic methods.

Case Studies:

The creative potential of using schemes, together with failing proof analysis,
can only be seen in major case studies. At the moment, within the THEOREMA
project, three such case studies are under way: One for Grobner bases theory,
[7], one for teaching elementary analysis, and one for the theory of tuples, [8].
The results are quite promising. Notably, for Grobner bases theory, we managed
to show how the author’s algorithm for the construction of Grébner bases can be
automatically synthesized from a problem specification in predicate logic. Since
the Grobner bases algorithm is deemed to be nontrivial, automated synthesis
may be considered as a good benchmark for the power of mathematical invention
methods.

Not every formula scheme is equally well suited for inventing definitions,
propositions, problems, or methods. Here are some examples of typical simple
schemes in each of the four areas:

A Typical Definition Scheme:

Vp.o (alternatmgquantiﬁcation[Q, P & VY <Q[f] S Vy 3y Ve P[f,x,y,z}))

Many of the notions in elementary analysis (e.g. “limit”) are generated by
this (and similar) schemes.
A Typical Proposition Scheme:

Vig.h (ishomomorphic[f,g,h] & Vo y(h[flz,y]] = g[h[x],h[y]]))

Of course, all possible ”algebraic” interactions (describable by equalities be-
tween various compositions) of functions are candidates for proposition schemes.
A Typical Problem Scheme:

Va,rq (eazplicitpmblem[A,P, Q) & Vs g?[ﬁ%x]ﬁ

This seems to be one of the most popular problem schemes: Find a method
A that produces, for any x, a “standardized” form A[z] (that satisfies P[A[z]])
such that A[x] is still in some relation (e.g. equivalence) @ with z. (Examples:
sorting problem, problem of constructing Grébner bases, etc.)

Two Typical Algorithm Schemes:

divide—and—conquer|[F, c, s, g, h1, ha] <
vFﬁvSnglhhfz < _ S[:L‘] - C[‘T] >
(F[x]) glF[h1[x]], Fhe|z]]] < otherwise)

This is of course the scheme by which, for example, the merge-sort algo-
rithm can be composed from a merge function g, splitting functions A1, ho, and
operations ¢, s that handle the base case.

VG lc,df

critical-pair-completion|G, le, df] <
Ve (G[F] = G[F, pairs[F]])
Ve (GIF, ()] = F)

vFﬂl ,92,P

G[F, ((g1,92),P)] =

where | f = lclg1, g2], h1 = trd[rd[f, 1], F], he = trd[rd[f, g2], F],

G[F, <ﬁ>] <= hy = ho
{G[F ~ dfh1, ha], (p) = <<Fk,df[h1,h2]> ’k:l ,,,, ‘F‘>] &= Otherwise:|

This is the scheme by which, for example, the author’s Grobner bases algo-
rithm can be composed from the function lc (“least common reducible”, i.e. the
least common multiple of the leading power products of two polynomials) and
the function df (“difference”, i.e. the polynomial difference in the polynomial
context). The algorithm scheme can be tried in all domains in which we have a
reduction function rd (whose iteration is called trd, “total reduction”) that re-
duces objects f w.r.t. to finite sets F' of objects. The algorithm (scheme) starts
with producing all pairs of objects in F' and then, for each pair (g1, ¢g2), checks
whether the total reduction of lc[g1, go] w.r.t. g1 and g2 yields identical results
hi and he, respectively. If this is not the case, df[h1, hso] is added to F.

6 Learning from Failed Reasoning

Learning from failed reasoning can be applied both in the case of proving propo-
sitions and in the case of synthesizing methods (algorithms). In this paper, we
will sketch the method only for the case of method (algorithm) synthesis.

Let us assume that we are working with some knowledge base K and we are
given some problem, e.g.

explicit-problem[A, P, Q)],

where the predicates P and @ are “known”, i.e. they occur in the knowledge
base K. For example, P and @) could be the unary predicate is-finite-Gréibner-
basis and the binary predicate generate-the-same-ideal, respectively. (The exact
definitions of these predicates are assumed to be part of K. For details see [7]).

Then we can try out various algorithm schemes in our algorithm schemes library
L. In the example, let us try out the general scheme critical-pair-completion, i.e.
let us assume

critical-pair-completion[A, lc, df .

(It is an interesting, not yet undertaken, research subject to try out for this
problem systematically all algorithm schemes that are applicable in the context
of polynomial domains and study which ones will work. Interestingly, in the
literature, so far all methods for constructing Grébner bases rely on the critical-
pair-completion scheme in one way or the other and no drastically different
method has been found!)

The scheme for the unknown algorithm A involves the two unknown auxil-
iary functions lc and df. We now start an (automated) proof of the correctness
theorem for A, i.e. the theorem

v (z’sﬁm’teGr()’bnerbasis[A[F]])
F\ generate-the—same—ideal[F, A[F]] |

Of course, this proof will fail because nothing is yet known about the aux-
iliary functions lc and df. We now analyze carefully the situation in which the
proof fails and try to guess requirements lc and df should satisfy in order to be
able to continue with the correctness proof. It turns out that a relatively simple

requirements generation techniques suffices for generating, completely automat-
ically, the following requirement for lc

Iplg1] | lc[gl, 2]
Iplg2] | lc[gl, g2]

Yg1,92
95 Iplgl] | p
Yp <lp[g2] | p = (10[91792} | P))

)

where Ip[f] denotes the leading power product of polynomial f. This is now
again an explicit problem specification, this time for the unknown function lc.
We could again run another round of our algorithm synthesis procedure using
schemes and failing proof analysis for synthesizing lc. However, this time, the
problem is easy enough to see that the specification is (only) met by

lelgr, g2] = lem[lp[g1], Ip[ga]],

where lem|[p, q] denotes the least common multiple of power products p and gq.
In fact, the specification is nothing else then an implicit definition of lcm and we
can expect that an algorithm satisfying this specification is part of the knowledge
base K.

Heureka! We managed to get the main idea for the construction of Grobner
bases completely automatically by applying algorithm schemes, automated theo-
rem proving, and automated failing proof analysis. Similarly, in a second attempt
to complete the proof of the correctness theorem, one is able to derive that, as
a possible df, we can take just polynomial difference.

The current requirements generation algorithms from failing proof, roughly,
has one rule. Given the failing proof situation, collect all temporary assumptions
Tl[xo,...,A[..], ...] and temporary goals G[zo,...m[...,A[...],...]], where m
is (one of) the auxiliary operations in the algorithm scheme for the unknown
algorithm A and xg, etc. are the current “arbitrary but fixed” constants, and
produce the following requirement for m:

Vorom,... Tlz,....y,...] = Glz,...,m[...,y,...]]).

yeun

This rule is amazingly powerful as demonstrated by the above nontrivial
algorithm synthesis. The invention of failing proof analysis and requirements
generation techniques is an important future research topic.

7 Meta-Programming

Meta-programming is a subtle and not widely available language feature. How-
ever, we think that it will be of utmost practical importance for the future
acceptance of algorithm-supported mathematical theory exploration systems. In
meta-programming, one wants to use the logic language both as an object and a
meta-language. In fact, in one exploration session, the language level may change
several times and we need to provide means for governing this change in future
systems. For example, in an exploration session, we may first want to define (by
applying the divide-and—conquer scheme) a sorting algorithm

Y, <sort[x] — {x < is-short-tuple|z) > '

merge[z, sort[le ft[z]], sort[right[z]]] < otherwise

Then we may want to apply one of the provers in the system to prove the
algorithm correct, i.e. we want to prove

v, (is-sorted [sort|[z]])

contain-the-same-elements|z, sort]z]]

by calling, say, a prover tuple-induction

‘) is-sorted[sort[z]]
Va tuple-induction [(contain—the—same—elements [z, sort[z]] Kol

and checking whether the result is the constant ‘proved’, where Kj is the knowl-
edge base containing the definition of sort and is-sorted and definitions and
propositions on the auxiliary operations.

Now, tuple-induction itself is an algorithm which the user may want to define
himself or, at least, he might want to inspect and modify the algorithm available
in the prover library. This algorithm will have the following structure

tuple-induction|[V, F, K] =
and[tuple-induction[Fy_, K],
tuple—z'nductz'on[FzF<w0’m>, append[K, F, <W>H’

T

where « is substitution and xg and g are “arbitrary but fixed” constants (that
must be generated from z, F', and K).

Also, tuple-induction itself needs a proof that could proceed, roughly, by
calling a general predicate logic prover in the following way

general-prover
[VLF’K ((tuple-induction [VwF, K] = “proved”) = (append[ind, K| E VIF)) } ,

where ind are the induction axioms for tuples and F denotes logic consequence.

Of course, the way it is sketched above, things cannot work: We are mixing
language levels here. For example, the ‘v’ in the previous formula occurs twice
but on different language layers and we must not use the same symbol for these
two occurrences. Similarly, the ‘v’ in the definition of tuple-induction has to be
different from the ‘v’ in the definition of sort. In fact, in the above sketch of an
exploration session, we are migrating through three different language layers.

We could now use separate name spaces for the various language layers. How-
ever, this may become awkward. Alternatively, one has to introduce a “quoting
mechanism”. The problem has been, of course, addressed in logic, see [22] for
a recent discussion but we think that still a lot has to be done to make the
mechanism practical and attractive for the intended users of future reasoning
systems. In THEOREMA, at present, we are able to define algorithms and formu-
late theorems, apply algorithms and theorems to concrete inputs (“compute”)
and prove the correctness of algorithms and theorems in the same session and
using the same language, namely the THEOREMA version of predicate logic. For
this, the name spaces are automatically kept separate without any action needed
from the side of the user. However, we are not yet at the stage where we could
also formulate provers and prove their correctness within the same language and
within the same session. This is a major design and implementation goal for the
next version of THEOREMA. An attractive solution may be possible along the
lines of [25] and [26].

8 Conclusion

We described mathematical theory exploration as a process that proceeds in a
spiral. In each cycle of the spiral, new axioms (in particular definitions), propo-
sitions, problems, and methods (in particular algorithms) are introduced and
studied. Both invention of axioms, propositions, problems, and methods as well
as verification of proposition and methods can be supported by algorithms (“al-
gorithmic reasoners”). For this, at any stage of an exploration, we have to be able
to act both on the object level of the formulae (axioms, propositions, problems,
methods) and the meta-level of reasoners. We sketched a few requirements future
mathematical exploration systems should fulfil in order to become attractive as
routine tools for the exploration activity of working mathematicians.

A particular emphasis was put on the interaction between the use of schemes
(axiom schemes, proposition schemes, problem schemes, and algorithm schemes)

and the algorithmic generation of conjectures from failing proofs as a general
heuristic, computer-supportable strategy for mathematical invention. The po-
tential of this strategy was illustrated by the automated synthesis of the author’s
Grobner bases algorithm. The ideas presented in this paper will serve as work
plan for the next steps in the development of the THEOREMA system.

References

1. An Interactive Mathematical Proof System. http://imps.mcmaster.ca/.

2. The CoQ Proof Assistant. http://coq.inria.fr/.

3. The Mi1zAR Project. http://www.mizar.org/.

4. The OMEGA System. http://www.ags.uni-sb.de/“omega/.

5. A. Asperti, B. Buchberger, and J. H. Davenport, editors. Mathematical Knowl-

10.

11.

12.

13.

14.

15.

edge Management: Second International Conference, MKM 2003 Bertinoro, Italy,
February 16-18, 2003, volume 2594 of Lecture Notes in Computer Science.
Springer-Verlag, 2003.

B. Buchberger. Groebner Rings in THEOREMA: A Case Study in Functors and
Categories. Technical Report 2003-46, SFB (Special Research Area) Scientific
Computing, Johannes Kepler University, Linz, Austria, 2003.

B. Buchberger. Towards the automated synthesis of a Grobner bases algorithm.
RACSAM (Review of the Spanish Royal Academy of Sciences), 2004. To appear.
B. Buchberger and A. Craciun. Algorithm synthesis by lazy thinking: Examples
and implementation in THEOREMA. In Proc. of the Mathematical Knowledge Man-
agement Symposium, volume 93 of ENTCS, pages 24-59, Edunburgh, UK, 25-29
November 2003. Elsevier Science.

B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The THEOREMA project: A progress report. In M. Kerber and
M. Kohlhase, editors, Proc. of Calculemus’2000 Conference, pages 98-113, St. An-
drews, UK, 6—7 August 2000.

B. Buchberger, G. Gonnet, and M. Hazewinkel, editors. Mathematical Knowledge
Management: Special Issue of Annals of Mathematics and Artificial Intelligence,
volume 38. Kluwer Academic Publisher, 2003.

R. Constable. Implementing Mathematics Using the NUPRL Proof Development
System. Prentice-Hall, 1986.

N. G. de Bruijn. The mathematical language AUTOMATH, its usage, and some of its
extensions. In M. Laudet, D. Lacombe, L. Nolin, and M. Schiitzenberger, editors,
Proc. of Symposium on Automatic Demonstration, Versailles, France, volume 125
of LN in Mathematics, pages 29-61. Springer Verlag, Berlin, 1970.

M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, 1993.

R. Harper. Programming in Standard ML. Carnegie Mellon University. www-
2.cs.cmu.edu/“rwh/smlbook/online.pdf, 2001.

M. Kohlhase. OMDoc: Towards an internet standard for the administration, distri-
bution and teaching of mathematical knowledge. In J.A. Campbell and E. Roanes-
Lozano, editors, Artificial Intelligence and Symbolic Computation: Proc. of the
International Conference AISC’2000, volume 1930 of Lecture Notes in Computer
Science, pages 32-52, Madrid, Spain, 2001. Springer Verlag.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

T. Kutsia and B. Buchberger. Predicate logic with sequence variables and sequence
function symbols. In A. Asperti, G. Bancerek, and A. Trybulec, editors, Proc. of the
8rd Int. Conference on Mathematical Knowledge Management, MKM’04, volume
3119 of Lecture Notes in Computer Science, Bialowieza, Poland, 19-21 September
2004. Springer Verlag. To appear.

Zh. Luo and R. Pollack. LEGO proof development system: User’s manual. Technical
Report ECS-LFCS-92-211, University of Edinburgh, 1992.

L. Magnusson and B. Nordstrém. The ALF proof editor and its proof engine. In
H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, volume 806
of LNCS, pages 213-237. Springer Verlag, 1994.

K. Nakagawa. Supporting user-friendliness in the mathematical software system
THEOREMA. Technical Report 02-01, PhD Thesis. RISC, Johannes Kepler Univer-
sity, Linz, Austria, 2002.

L. Paulson. ISABELLE: the next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361-386. Academic Press, 1990.

F. Pfenning. ELF: A meta-language for deductive systems. In A. Bundy, editor,
Proc. of the 12th International Conference on Automated Deduction, CADE’9/,
volume 814 of LNAI, pages 811-815, Nancy, France, 1995. Springer Verlag.

F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Hand-
book of Automated Reasoning, chapter 17, pages 1063-1147. Elsevier Science and
MIT Press, 2001.

F. Piroi and B. Buchberger. An environment for building mathematical knowledge
libraries. In A. Asperti, G. Bancerek, and A. Trybulec, editors, Proc. of the 3rd
Int. Conference on Mathematical Knowledge Management, MKM’04, volume 3119
of Lecture Notes in Computer Science, Bialowieza, Poland, 19-21 September 2004.
Springer Verlag. To appear.

E. Tomuta. An architecture for combining provers and its applications in the
THEOREMA system. Technical Report 98-14, PhD Thesis. RISC, Johannes Kepler
University, Linz, Austria, 1998.

M. Sato. Theory of judgments and derivations. In Arikawa, S. and Shinohara,
A. eds., Progress in Discovery Science, Lecture Notes in Artificial Intelligence 2281,
pp- 78 — 122, Springer, 2002.

M. Sato, T. Sakurai, Y. Kameyama and A. Igarashi. Calculi of meta-variables.
In Baaz M. and Makowsky, J.A. eds., Computer Science Logic, Lecture Notes in
Computer Science 2803, pp. 484 — 497, Springer, 2003.

