
Predicate Logic with Sequence Variables
and Sequence Function Symbols?

Temur Kutsia and Bruno Buchberger

Research Institute for Symbolic Computation
Johannes Kepler University Linz

A-4040 Linz, Austria
{kutsia,buchberger}@risc.uni-linz.ac.at

Abstract. We extend first-order logic with sequence variables and se-
quence functions. We describe syntax, semantics and inference system
for the extension, define an inductive theory with sequence variables and
formulate induction rules. The calculus forms a basis for the top-down
systematic theory exploration paradigm.

1 Introduction

The goal of future mathematical knowledge management is the availability of
significant parts of mathematical knowledge in computer-processable, verified,
well-structured and semantically unambiguous form over the web and the pos-
sibility to easily expand, modify, and re-structure this knowledge according to
specifications defined by the user. For this, mathematical knowledge has to be
formulated in the frame of formal logics. Translation between presentations of
mathematical knowledge with respect to different logics should be automatic. A
natural standard for such logics is (any version of) predicate logic.

We believe that the goal can only be achieved by a systematic build-up of
mathematics from scratch using systematic, flexible, algorithmic tools based on
algorithmic formal logic (automated reasoning). By these tools, most of the work
involved in building up well-structured and reusable mathematical knowledge
should be automated or, at least, computer-assisted. We call the research field
that enables this type of generation of large pieces of coherent mathematical
knowledge “Computer-Supported Mathematical Theory Exploration”.

The systems and projects like ALF [27], Automath [14], Coq [2], Elf
[30], HOL [18], IMPS [1], Isabelle [29], Lego [26], Nuprl [13], Omega [4],
Mizar [3], and others have been designed and used to formalize mathematical
knowledge. Theorema [11] is one of such projects, which aims at construct-
ing tools for computer-supported mathematical theory exploration. Since then,
within the Theorema project, various approaches to bottom-up and top-down
computer-supported mathematical theory exploration have been proposed and
? Supported by the Austrian Science Foundation (FWF) under Project SFB F1302,

and Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences.



pursued with an emphasis on top-down methods. These approaches and first
results are documented in various publications and reports (see, e.g., [8, 31, 9,
10]). The approaches are summarized in the “lazy thinking paradigm” for math-
ematical theory exploration introduced by the second author in [9].

In general, mathematical theory exploration requires higher-order logic. The
version of predicate logic used in the case studies on theory exploration [31, 9, 10]
is a higher-order predicate logic with sequence variables and sequence functions.
However, the proofs in the case studies are done essentially on the first-order
level. In this paper we restrict ourselves to the first-order fragment of predicate
logic with sequence variables and sequence functions.

Sequence variables can be instantiated with finite sequences of terms. They
add expressiveness and elegance to the language and have been used in var-
ious knowledge representation systems like KIF [16] or Common Logic [19].
Isabelle [29] implements sequent calculi using sequence variables. In program-
ming, the language of Mathematica [32] successfully uses pattern matching
that supports sequence variables and flexible arity function symbols (see [7] for
more details). Sequence functions can be interpreted as multi-valued functions
and have been used (under different names) in reasoning or programming sys-
tems, like, e.g., in Set-Var [5] or RelFun [6].

The following example shows how the property of a function being “orderless”
can be easily defined using sequence variables: f(x, x, y, y, z) = f(x, y, y, x, z)
specifies that the order of arguments in terms with the head f and any num-
ber of arguments does not matter. The letters with the overbar are sequence
variables. Without them, we would need a permutation to express the same
property. Definition of concatenation 〈x〉 ³ 〈y〉 = 〈x, y〉 is another example of
the expressiveness sequence variables.

Using sequence variables in programming helps to write elegant and short
code, like, for instance, implementing bubble sort in a rule-based manner:

sort(〈x, x, y, y, z〉) := sort(〈x, y, y, x, z〉) if x > y

sort(〈x〉) := 〈x〉

Bringing sequence functions in the language naturally allows Skolemization
over sequence variables: Let x, y be individual variables, x be a sequence variable,
and p be a flexible arity predicate symbol. Then ∀x∀y∃x p(x, y, x) Skolemizes to
∀x∀y p(x, y, f(x, y)), where f is a binary Skolem sequence function symbol. An-
other example, ∀y∃x p(y, x), where y is a sequence variable, after Skolemization
introduces a flexible arity sequence function symbol g: ∀y p(y, g(y)).

Although sequence variables and sequence functions appear in various appli-
cations, so far, to our knowledge, there was no formal treatment of full predicate
logic with these constructs. (Few exceptions are [20], that considers logic with
sequence variables without sequence functions, and [22], investigating equational
theories, again with sequence variables, but without sequence functions.) In this
paper we fill this gap, describing syntax, semantics and inference system for
an extension of classical first-order logic with sequence variables and sequence



functions. Although, in general, the extension is not very complicated, there are
some subtle points that have to be treated carefully.

In the extended language we allow both individual and sequence variables/fu-
nction symbols, where the function symbols can have fixed or flexible arity. We
have also predicates of fixed or flexible arity, and can quantify over individual
and sequence variables. It gives a simple and elegant language, which can be
encoded as a special order-sorted first-order theory (see [25]).

A natural intuition behind sequence terms is that they represent finite se-
quences of individual terms. We formalize this intuition using induction, and
introduce several versions of induction rules. Inductive theories with sequence
variables have some interesting properties that one normally can not observe in
their standard counterparts: For instance, the Herbrand universe is not an in-
ductive domain, and induction rules can be defined without using constructors.

The calculus G≈ that we introduce in this paper generalizes LK≈ calculus
(LK≈ is an extension of Gentzen’s LK calculus [17] with equality), and possesses
many nice proof-theoretic properties, including the extended version of Gödel’s
completeness theorem. Also, the counterparts of Löwenheim-Skolem, Compact-
ness, Model Existence theorems and Consistency lemma hold. G≈ together with
induction and cut rules forms the logical basis of the top-down theory exploration
procedure [9].

The main results of this paper are the following: First, we give the first de-
tailed description of predicate logic with sequence variables and sequence func-
tions, clarifying the intuitive meaning and formal semantics of sequence variables
that some researchers considered to be insufficiently explored (see, e.g. [12]).
Second, we describe the logical foundations of the “theory exploration with lazy
thinking” paradigm.

The contributions of the first author are defining syntax and semantics of
languages with sequence variables and sequence functions, designing and prov-
ing the properties of the calculus G≈, and showing relations between induction
rules and intended models. The second author pointed out the importance of
using sequence variables in symbolic computation (see [7]), introduced sequence
variables and sequence functions in the Theorema system, defined various infer-
ence rules for them (including induction), and designed provers that use sequence
variables.

We omit the details of proofs which can be found in the technical report [25].

2 Syntax

We consider an alphabet consisting of the following pairwise disjoint sets of
symbols: individual variables VInd, sequence variables VSeq, fixed arity individual
function symbols FFix

Ind , flexible arity individual function symbols FFlex
Ind , fixed

arity sequence function symbols FFix
Seq , flexible arity sequence function symbols

FFlex
Seq , fixed arity predicate symbols PFix, and flexible arity predicate symbols

PFlex. Each set of variables is countable. Each set of function and predicate
symbols is finite or countable. The binary equality predicate symbol ≈ is in



PFix. Besides, there are connectives ¬, ∨, ∧, ⇒, ⇔, quantifiers ∃, ∀, parentheses
‘(’, ‘)’ and comma ‘,’ in the alphabet.

We will use the following denotations: V := VInd∪VSeq; FInd := FFix
Ind ∪FFlex

Ind ;
FSeq := FFix

Seq ∪ FFlex
Seq ; FFix := FFix

Ind ∪ FFix
Seq ; FFlex := FFlex

Ind ∪ FFlex
Seq ; F :=

FFix ∪ FFlex; P := PFix ∪ PFlex. The arity of q ∈ FFix ∪ PFix is denoted by
Ar(q). A function symbol c ∈ FFix is called a constant if Ar(c) = 0.

Definition 1. We define the notion of term over F and V:

1. If t ∈ VInd (resp. t ∈ VSeq), then t is an individual (resp. sequence) term.
2. If f ∈ FFix

Ind (resp. f ∈ FFix
Seq), Ar(f) = n, n ≥ 0, and t1, . . . , tn are individual

terms, then f(t1, . . . , tn) is an individual (resp. sequence) term.
3. If f ∈ FFlex

Ind (resp. f ∈ FFlex
Seq ) and t1, . . . , tn (n ≥ 0) are individual or

sequence terms, then f(t1, . . . , tn) is an individual (resp. sequence) term.

A term is either an individual or a sequence term.

We denote by TInd(F ,V), TSeq(F ,V) and T (F ,V) respectively the set of all
individual terms, all sequence terms and all terms over F and V.

If not otherwise stated, the following symbols, with or without indices, are
used as metavariables: x, y and z – over individual variables; x, y and z – over
sequence variables; u and v – over (individual or sequence) variables; f , g and h
– over individual function symbols; f , g and h – over sequence function symbols;
a, b and c – over individual constants; a, b and c – over sequence constants.

Example 1. Let f ∈ FFlex
Ind , f ∈ FFlex

Seq , g ∈ FFix
Ind , g ∈ FFix

Seq , Ar(g) = 2, Ar(g) = 1.

1. f(x, g(x, y)) ∈ TInd(F ,V).
2. f(x, f(x, x, y)) ∈ TSeq(F ,V).
3. f(x, g(x)) /∈ T (F ,V), because x occurs as an argument of g which is of fixed

arity.
4. f(x, g(x, y)) /∈ T (F ,V), because g is unary.

Definition 2. We define the notion of atomic formula, or shortly, atom, over
P, F and V:

1. If p ∈ PFix, Ar(p) = n, n ≥ 0, and t1, . . . , tn ∈ TInd(F ,V), then p(t1, . . . , tn)
is an atom.

2. If p ∈ PFlex and t1, . . . , tn ∈ T (F ,V), n ≥ 0, then p(t1, . . . , tn) is an atom.

We denote the set of atomic formulae over P, F and V by A(P,F ,V).

The function symbol f is called the head of the term f(t1, . . . , tn). We denote
the head of t /∈ V by Head(t). The head of an atom is defined in the same way.

Definition 3. We define the set of formulae Fml(P,F ,V) over P, F and V:

Fml(P,F ,V) := A(P,F ,V) ∪ {¬A | A ∈ Fml(P,F ,V)}
∪ {A ◦B | A, B ∈ Fml(P,F ,V), ◦ ∈ {∨,∧,⇒,⇔}}
∪ {Qv.A | A ∈ Fml(P,F ,V), v ∈ V, Q ∈ {∃,∀}}.

Free and bound variables of a formula are defined in the standard way. We
denote by L≈ the language defined by F ∪ P.



3 Substitutions

Definition 4. A variable binding is either a pair x 7→ t where t ∈ TInd(F ,V)
and t 6= x, or an expression x 7→ pt1, . . . , tnq1 where n ≥ 0, for all 1 ≤ i ≤ n we
have ti ∈ T (F ,V), and if n = 1 then t1 6= x.

Definition 5. A substitution is a finite set of variable bindings

{x1 7→ t1, . . . , xn 7→ tn, x1 7→ ps1
1, . . . , s

1
k1

q, . . . , xm 7→ psm
1 , . . . , sm

km
q},

where n,m ≥ 0, x1, . . . , xn, x1, . . . , xm are distinct variables.2

Lower case Greek letters are used to denote substitutions. The empty sub-
stitution is denoted by ε.

Definition 6. The instance of a term s with respect to a substitution σ, denoted
sσ, is defined recursively as follows:

1. xσ =
{

t, if x 7→ t ∈ σ,
x, otherwise.

2. xσ =
{

t1, . . . , tn, if x 7→ pt1, . . . , tnq ∈ σ, n ≥ 0,
x, otherwise.

3. f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Example 2. f(x, x, y){x 7→ a, x 7→ pq, y 7→ pa, f(x), bq} = f(a, a, f(x), b).

By Var(Q) we denote the set of all variables occurring in Q, where Q is a
term or a set of terms.

Definition 7. Let σ be a substitution.

1. The domain of σ is the set of variables Dom(σ) = {l | lσ 6= l}.
2. The codomain of σ is the set of terms Cod(σ) = {lσ | l ∈ Dom(σ)}.
3. The range of σ is the set of variables: Ran(σ) = Var(Cod(σ)).

Note that a codomain of a substitution is a set of terms, not a set consisting of
terms and sequences of terms. For instance, Cod({x 7→ b, x 7→ pa, a, bq}) = {a, b}.

Application of a substitution on a formula is defined in the standard way.
We denote an application of σ on F by Fσ.

Definition 8. A term t is free for a variable v in a formula F if either

1. F is an atom, or
2. F = ¬A and t is free for v in A, or
1 To improve readability, we write sequences that bind sequence variables between p

and q.
2 In [24] we consider a more general notion of substitution that allows bindings for

sequence function symbols as well. That, in fact, treats sequence function symbols as
second-order variables. However, for our purposes the notion of substitution defined
above is sufficient.



3. F = (A ◦B) and t is free for v in B and C, where ◦ ∈ {∨,∧,⇒,⇔}, or
4. F = ∀uA or F = ∃uA and either (a) v = u, or (b) v 6= u, u /∈ Var(t) and t

is free for v in A.

We assume that for any formula F and substitution σ, before applying σ on
F all bound variables in F are renamed so that they do not occur in Ran(σ).
This assumption guarantees that for all v ∈ Dom(σ) the terms in vσ are free for
v in F .

4 Semantics

For a set S, we denote by Sn the set of all n-tuples over S. In particular, S0 =
{〈〉}. By S∞ we denote the set ∪i≥0S

i.

Definition 9. A structure S for L≈ (or, in short, an L≈-structure) is a pair
〈D, I〉, where:

– D is a non-empty set, called a domain of S, that is a disjoint union of two
sets, DInd and DSeq, written D = DInd∪¦ DSeq, where DInd 6= ∅.

– I is a mapping, called an interpretation that associates:
• To every individual constant c in L≈ some element cI of DInd.
• To every sequence constant c in L≈ some element cI of D∞.
• To every n-ary individual function symbol f in L≈, with n > 0, some

n-ary function fI : Dn
Ind → DInd.

• To every n-ary sequence function symbol f in L≈, with n > 0, some
n-ary multi-valued function fI : Dn

Ind → D∞.
• To every flexible arity individual function symbol f in L≈, some flexible

arity function fI : D∞ → DInd.
• To every flexible arity sequence function symbol f in L≈, some flexible

arity multi-valued function fI : D∞ → D∞.
• To every n-ary predicate symbol p in L≈ other than ≈, with n ≥ 0, some

n-ary predicate pI ⊆ Dn
Ind;

• To every flexible arity predicate symbol p in L≈ some flexible arity pred-
icate pI ⊆ D∞;

Definition 10. Let S = 〈D, I〉 be an L≈-structure. A state σ over S, denoted
σS, is a mapping defined on variables as follows:

– For an individual variable x, σS(x) ∈ DInd.
– For a sequence variable x, σS(x) ∈ D∞.

Definition 11. Let S = 〈D, I〉 be an L≈-structure and let σ be a state over S.
A value of a term t in S w.r.t. σ, denoted ValSσ (t), is defined as follows:

– ValSσ (v) = σS(v), for every v ∈ V.
– ValSσ (f(t1, . . . , tn)) = fI(ValSσ (t1), . . . ,ValSσ (tn)), for every f(t1, . . . , tn) ∈
T (F ,V), n ≥ 0.



Definition 12. Let v be a variable and σS be a state over an L≈-structure S.
A state ϑS is a v-variant of σS iff ϑS(u) = σS(u) for each variable u 6= v.

The set T V = {T,F} is called the set of truth values. The operations ¬TV,
∨TV, ∧TV, ⇒TV, ⇔TV are defined on T V in the standard way.

Definition 13. Let S = 〈D, I〉 be an L≈-structure and σ be a state over S. A
truth value of a formula F in S with respect to σ, denoted ValSσ (F ), is defined
as follows:

– ValSσ (p(t1, . . . , tn)) = T iff 〈ValSσ (t1), . . . ,ValSσ (tn)〉 ⊆ pI .
– ValSσ (t1 ≈ t2) = T iff ValSσ (t1) = ValSσ (t2).
– ValSσ (¬F ) = ¬TVValSσ (F ).
– ValSσ (F1 ◦ F2) = ValSσ (F1) ◦TV ValSσ (F2), where ◦ ∈ {∨,∧,⇒,⇔}
– ValSσ (∀vF ) = T iff ValSϑ (F ) = T for every ϑS that is a v-variant of σS.
– ValSσ (∃vF ) = T iff ValSϑ (F ) = T for some ϑS that is a v-variant of σS.

In Definition 9 we required the domain D to be a disjoint union of two sets
DInd and DSeq. It is justified, since on the syntactic level we distinguish between
individual and sequence terms, and it is natural to reflect this distinction on the
semantic level. In the next section we define a calculus that is complete with
respect to this semantics. Many classical results remain valid as well.

On the other side, one would naturally expect that a sequence term represents
a finite sequence of individual terms. In other words, the intuition would suggest
that the sequence terms should be interpreted as finite sequences of individual
elements of the domain. This intuition can be easily captured by structures
whose domain consists of individual elements only. We call such structures the
intended structures. In Section 6 below we show relations between induction with
sequence variables and intended structures.

5 The Gentzen-Style System G�

In this section we present a Gentzen-style sequent calculus for L≈.

Definition 14. A sequent is a pair of sequences of formulae. A sequent 〈Γ,∆〉
is denoted by Γ → ∆.

In a sequent Γ → ∆, Γ is called the antecedent and ∆ is called the succedent.
If Γ is the empty sequence, the corresponding sequent is denoted as → ∆. If ∆ is
empty, the corresponding sequent is denoted as Γ →. If both Γ and ∆ are empty,
we have the inconsistent sequent →. Below the symbols Γ, ∆,Λ will be used to
denote arbitrary sequences of formulae and A,B to denote formulae. Note that
Γ, ∆,Λ are sequence variables on the meta level. The set of free variables of a
formula A is denoted by FVar(A).

Definition 15. A position within a term or atom E is a sequence of positive
integers, describing the path from Head(E) to the head of the subterm at that
position. By E[s]p we denote the term or atom obtained from E by replacing the
term at position p with the term s.



Definition 16. The sequent calculus G≈ consists of the following 17 inference
rules.

Γ, A, B, ∆ → Λ

Γ, A ∧B, ∆ → Λ
(∧ →)

Γ → ∆, A, Λ Γ → ∆, B, Λ

Γ → ∆, A ∧B, Λ
(→ ∧)

Γ, A, ∆ → Λ Γ, B, ∆ → Λ

Γ, A ∨B, ∆ → Λ
(∨ →)

Γ → ∆, A, B, Λ

Γ → ∆, A ∨B, Λ
(→ ∨)

Γ → ∆, A, Λ Γ, B, Λ → ∆

Γ, A ⇒ B, Λ → ∆
(⇒→)

Γ, A → ∆, B, Λ

Γ → ∆, A ⇒ B, Λ
(→⇒)

Γ, ∆ → A, Λ

Γ,¬A, ∆ → Λ
(¬ →)

A, Γ → ∆, Λ

Γ → ∆,¬A, Λ
(→ ¬)

In the quantifier rules below

1. x is any individual variable;
2. y is any individual variable free for x in A and y /∈ FVar(A) \ {x};
3. t is any individual term free for x in A;
4. x is any sequence variable;
5. y is any sequence variable free for x in A and y /∈ FVar(A) \ {x};
6. s1, . . . , sn, n ≥ 0, is any sequence of terms each of them free for x in A.

Γ, A{x 7→ t}, ∀xA, ∆ → Λ

Γ, ∀xA, ∆ → Λ
(∀I →)

Γ → ∆, A{x 7→ y}, Λ
Γ → ∆, ∀xA, Λ

(→ ∀I)

Γ, A{x 7→ y}, ∆ → Λ

Γ, ∃xA, ∆ → Λ
(∃I →)

Γ → ∆, A{x 7→ t},∃xA, Λ

Γ → ∆, ∃xA, Λ
(→ ∃I)

Γ, A{x 7→ ps1, . . . , snq}, ∀xA, ∆ → Λ

Γ, ∀xA, ∆ → Λ
(∀S →)

Γ → ∆, A{x 7→ y}, Λ
Γ → ∆, ∀xA, Λ

(→ ∀S)

Γ, A{x 7→ y}, ∆ → Λ

Γ, ∃xA, ∆ → Λ
(∃S →)

Γ → ∆, A{x 7→ ps1, . . . , snq}, ∃xA, Λ

Γ → ∆, ∃xA, Λ
(→ ∃S)

In the rule (≈) below A is an atom and p is a position.

Γ, (s ≈ t ∧A[s]p) ⇒ A[t]p → ∆

Γ → ∆
(≈)



Note that in both the (→ ∀I)-rule and the (∃I →)-rule, the variable y does
not occur free in the lower sequent. Similarly, in both the (→ ∀S)-rule and the
(∃S →)-rule, the variable y does not occur free in the lower sequent.

The axioms of G≈ are all sequents Γ → ∆ such that Γ and ∆ contain
a common formula, and sequents of the form Γ → ∆, s ≈ s, Λ. Validity and
provability of sequents are defined in the standard way.

The following version of Gödel’s extended completeness theorem holds for
the calculus G≈:

Theorem 1 (Completeness of G≈). A sequent (even infinite) is valid iff it
is provable in G≈.

The classical results like Löwenheim-Skolem, Compactness, Model Existence
theorems, and Consistency Lemma remain valid for L≈.

The calculus G≈ has many nice proof-theoretic properties, but is not suited
for implementation because of too high non-determinism. It is a well-known
problem for many sequent-based calculi (like, for instance, for the classical LK≈

calculus). Degtyarev and Voronkov [15] survey the methods to overcome it. In
our case, a variant of basic superposition with ordering and equality constraint
inheritance proposed in [28] seems to be a reasonable alternative of G≈, taking
into account the fact that unification with sequence variables and sequence func-
tions is infinitary but decidable [24]. This approach for theories with sequence
variables, but without sequence functions has already been considered in [23].
To do the same for theories with sequence variables and sequence functions one
needs to introduce a reduction ordering on terms involving sequence variables
and functions, and an efficient algorithm for solving ordering constraints. This
is a subject of further research and lies beyond the scope of this paper.

Note also that predicate logic with sequence variables and sequence function
symbols can be encoded as a special order-sorted first-order theory. It requires
introducing into the language an additional binary function symbol for construct-
ing sequences, a constant for the empty sequence, and adding to the theory the
corresponding axioms. Details of the translation can be found in [25].

6 Induction with Sequence Variables

In this section we develop a machinery to capture the natural intuitive meaning
of sequence terms: representation of finite sequences of individual terms. On the
semantic level it amounts to considering the intended structures, and on the
inference rules level it leads to introducing induction.

We start with the definitions of inductive domain and intended structure.

Definition 17. let S = 〈D, I〉 be a structure for the language L≈ such that
DSeq = ∅. Then S is called an intended structure for L≈ and D is called an
inductive domain.

Note that Herbrand structures are not intended structures for L≈. We will
write A[v] to indicate that the formula A contains a free occurrence of v.



Below we will use a special flexible arity function symbol f that satisfies the
following axioms:

∀x∀x∀y ¬(f(x, x, y) ≈ f()),
∀x∀y∀x∀y f(x, x) ≈ f(y, y) ⇔ x ≈ y ∧ f(x) ≈ f(y),
∀x∀y∀x∀y f(x, x) ≈ f(y, y) ⇔ f(x) ≈ f(y) ∧ x ≈ y,

∀x∀y (f(x) ≈ f(y) ∧A{z 7→ x}) ⇒ A{z 7→ y},

where A is an arbitrary formula.

Definition 18. The well-founded3 induction principle for sequence variables is
formulated as follows:

∀x (∀y (f(x) Â f(y) ⇒ A{x 7→ y}) ⇒ A[x]) ⇒ ∀x A[x] (WFI)

where Â is a well-founded ordering defined for terms with the head f .

It is not hard to show that the well-founded induction principle is valid. Since
well-foundedness is an undecidable property, we will develop syntactic instances
of the WFI principle that avoid direct reference to arbitrary well-founded rela-
tions. We give below some practically useful examples of such instantiation that
have been used in the case studies [9, 10].

We start from auxiliary notions.

Definition 19. The case distinction rule from the left is the formula

(A{x 7→ pq} ∧ ∀y∀y A{x 7→ py, yq}) ⇒ ∀x A[x] (LCD)

The LCD rule is not valid, as the following example shows:

Example 3. Let A[x] in LCD be the atom p(x). Take a structure S = 〈D, I〉
such that DInd = {a}, DSeq = {b} and pI contains all the finite tuples over D
whose first element is not b. Then LCD is false in S.

However, the following theorem holds:

Theorem 2. LCD is true in every intended model.

Definition 20. The suffix ordering ÂSuf is defined on terms with the head f :

∀x∀y (f(x) ÂSuf f(y) ⇔
∃z∃z f(x) ≈ f(z, z) ∧ (f(z) ≈ f(y) ∨ f(z) ÂSuf f(y))) (SO)

Suffix ordering is well-founded and has the property that any term of the form
f(t1, . . . , tn), n > 0, which is not minimal with respect to ÂSuf , has individual
terms as its first k arguments for some 1 ≤ k ≤ n.

3 Also called Nœtherian.



Definition 21. The structural induction from the left is the formula

(A{x 7→ pq} ∧ ∀y∀y (A{x 7→ y} ⇒ A{x 7→ py, yq})) ⇒ ∀x A[x]. (LSI)

LSI can be obtained syntactically from SO and the instances of WFI and
LCD: If we take

B[x] := ∀y (f(x) ÂSuf f(y) ⇒ A{x 7→ y}) ⇒ A[x],
WFI’ := ∀x B[x] ⇒ ∀x A[x],
LCD’ := (B{x 7→ pq} ∧ ∀z∀z B{x 7→ pz, zq}) ⇒ ∀x B[x],

then the following theorem holds:

Theorem 3. The sequent SO, LCD’, WFI’ → LSI is provable in G≈.

We proved this theorem with the help of one of the provers of the Theo-
rema system. First, we proved LSI from SO, LCD’, and WFI’ automatically
by the Theorema prover for predicate logic using metavariables, called PLM
[21], and then translated the output into the G≈ proof. (The calculus imple-
mented in PLM is different from G≈: it uses metavariables and has a restricted
(incomplete) sequence unification algorithm for sequence metavariables.)

LSI has the following important property:

Theorem 4. LSI is true in every intended model.

The next theorem, in fact, shows that LCD can be proved from LSI:

Theorem 5. The sequent → LSI ⇒ LCD is provable in G≈.

Now we turn LSI into the inference rule:

Γ → ∆,A{x 7→ pq} ∧ ∀y∀y (A{x 7→ y} ⇒ A{x 7→ py, yq}), Λ
Γ → ∆, ∀x A[x], Λ

(SIleft)

Soundness of G≈ and Theorem 4 imply the following result:

Theorem 6. If a sequent is provable using (SIleft) and the inference rules of
G≈, then it is true in every intended structure.

In the similar way we can get another instance of WFI:

Definition 22. The case distinction rule from the right is the formula

(A{x 7→ pq} ∧ ∀y∀y A{x 7→ py, yq}) ⇒ ∀x A[x] (RCD)

The prefix ordering ÂPre is defined on terms with the head f as follows:

∀x∀y (f(x) ÂPre f(y) ⇔
∃z∃z f(x) ≈ f(z, z) ∧ (f(z) ≈ f(y) ∨ f(z) ÂPre f(y))) (PO)

The structural induction from the right is the formula

(A{x 7→ pq} ∧ ∀y∀y (A{x 7→ y} ⇒ A{x 7→ py, yq})) ⇒ ∀x A[x]. (RSI)



Like LSI, we can turn RSI into an inference rule:

Γ → ∆,A{x 7→ pq} ∧ ∀y∀y (A{x 7→ y} ⇒ A{x 7→ py, yq}), Λ
Γ → ∆, ∀x A[x], Λ

(SIright)

The counterpart of Theorem 6 holds for (SIright).
Another useful well-founded ordering on terms with sequence variables is the

length ordering defined as follows:

∀x∀y (f(x) ÂLen f(y) ⇔ ∃z∃z f(x) ≈ f(z, z)
∧(f(y) ≈ f() ∨ ∃u∃u (f(y) ≈ f(u, u) ∧ f(z) ÂLen f(u))) (LO)

If we instantiate the ordering Â in WFI with ÂLen, we get an instance of
WFI called well-founded induction principle with the length ordering:

∀x (∀y (f(x) ÂLen f(y) ⇒ A{x 7→ y}) ⇒ A[x]) ⇒ ∀x A[x] (WFILO)

The next example shows that WFILO is not valid.

Example 4. Let A[x] be an atom p(x) with the flexible arity predicate symbol
p. Let S = 〈D, I〉 be a structure whose domain D is the set of all ground terms
built from an individual constant c, sequence constant c and a flexible arity
function symbol f . The assignment I is defined so that it maps each ground
term to itself and the predicate ÂLen to the same predicate on D. As for pI ,
let it be a flexible arity predicate on D that contains all the tuples over D
except 〈c, c〉. Then ValSσ (f(c, c) ÂLen f() ⇒ p()) ⇒ p(c, c)) = F which implies
that ValSσ (∀x (∀y f(x) ÂLen f(y) ⇒ p(y)) ⇒ p(x)) = T. On the other side,
ValSσ (∀x p(x)) = F. Therefore, WFILO is false in S with respect to σS.

Nevertheless, WFILO is satisfied by any intended structure:

Theorem 7. WFILO is true in any intended structure.

Instantiating f in WFILO with the tuple constructor we get the tuple in-
duction principle formulated in [10].

WFILO can be turned into an inference rule:

Γ, LO → ∆, ∀x (∀y (f(x) ÂLen f(y) ⇒ A{x 7→ y}) ⇒ A[x]), Λ

Γ, LO → ∆, ∀xA[x], Λ
(WFIlen)

The counterpart of Theorem 6 holds for (WFIlen).
The calculus G≈ does not contain the cut rule, but we need it in induction

proofs.
Γ → ∆, A, Λ Γ, A → ∆, B, Λ

Γ → ∆, B, Λ
(Cut)

Cut rule forms a basis for Theorema conjecture generation algorithm and
the cascade method introduced by the second author in [8]. Informally, the cas-
cade method works as follows: Given a goal G and knowledge base K, if an



attempt of proving G using K fails, cascade method tries to analyze the fail-
ing proof situation, and using the conjecture generation algorithm generates a
conjecture C such that G might be provable using K ∪ {C}. After that, it tries
to prove C from K, in the similar manner. Thus, this procedure corresponds
to the application of the cut rule, and the conjecture generation algorithm can
be considered as an intelligent heuristics of selecting “useful conjectures” among
infinitely many possible ones.

At the end of this section we provide an example of proving by induction
with sequence variables: reverse of a reverse of a list coincides with the original
list. We give a “human-readable” version of the formal proof.

Example 5. We want to prove

∀x rev(rev(〈x〉)) = 〈x〉 (1)

under the assumptions

rev(〈〉) = 〈〉, (2)
∀x rev(〈x〉) = 〈x〉, (3)
∀x∀y rev(〈x, y〉) = rev(〈y〉) ³ rev(〈x〉), (4)
∀x∀y 〈x〉 ³ 〈y〉 = 〈x, y〉, (5)
∀x∃y rev(〈x〉) = 〈y〉. (6)

The formulae (2), (3) and (4) define the reverse function, (5) is a definition
of concatenation, and (6) states that reversing a list gives again a list. Then the
proof of (1) proceeds as follows:

Induction base:
rev(rev(〈〉)) = by (2)

rev(〈〉) = by (2)
〈〉.

Induction hypothesis: We assume

rev(rev(〈c〉)) = 〈c〉. (7)

Induction step: We have to show that rev(rev(〈c, c〉)) = 〈c, c〉:
rev(rev(〈c, c〉)) = by (4)

rev(rev(〈c〉) ³ rev(〈c〉)) = by (3)
rev(rev(〈c〉) ³ 〈c〉) = by (6)

rev(〈f(c)〉 ³ 〈c〉) = by (5)
rev(〈f(c), c〉) = by (4)

rev(〈c〉) ³ rev(〈f(c)〉) = by (6)
rev(〈c〉) ³ rev(rev(〈c〉)) = by (7)

rev(〈c〉) ³ 〈c〉 = by (3)
〈c〉 ³ 〈c〉 = by (5)

〈c, c〉
which finishes the proof. Note that (6) is used once to rewrite from left to right,
and in the other case from right to left.



7 Conclusion

We described a syntax, semantics and inference system for a logic with sequence
variables and sequence functions. The calculus G≈ for such a logic extends the
LK≈ calculus and has many nice proof-theoretic properties. Furthermore, we
considered special structures, called intended structures, to reflect the intuition
behind sequence variables: abbreviation of finite sequences of individual terms.
We formalized this intuition using induction, and defined several versions of
induction rules. The interesting feature of logic with sequence variables and
sequence functions is that there is no need in introducing constructors to define
inductive data types. This information is “built-in” into the logic itself.

References

1. An Interactive Mathematical Proof System. http://imps.mcmaster.ca/.
2. The Coq Proof Assistant. http://coq.inria.fr/.
3. The Mizar Project. http://www.mizar.org/.
4. The Omega System. http://www.ags.uni-sb.de/˜omega/.
5. W. W. Bledsoe and Guohui Feng. Set-Var. J. Automated Reasoning, 11(3):293–

314, 1993.
6. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712

of LNAI. Springer Verlag, 1999.
7. B. Buchberger. Mathematica as a rewrite language. In T. Ida, A. Ohori, and

M. Takeichi, editors, Proc. of the 2nd Fuji Int. Workshop on Functional and Logic
Programming, pages 1–13, Shonan Village Center, Japan, 1–4 November 1996.
World Scientific.

8. B. Buchberger. Theory exploration with Theorema. Analele Universitatii Din
Timisoara, ser. Matematica-Informatica, XXXVIII(2):9–32, 2000.

9. B. Buchberger. Algorithm invention and verification by lazy thinking. In D. Petcu,
D. Zaharie, V. Negru, and T. Jebelean, editors, Proc. of the 5rd Int. Workshop on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’03), pages
2–26, Timisoara, Romania, 1–4 October 2003. Mirton.

10. B. Buchberger and A. Craciun. Algorithm synthesis by lazy thinking: Examples
and implementation in Theorema. In Proc. of the Mathematical Knowledge Man-
agement Symposium, volume 93 of ENTCS, pages 24–59, Edunburgh, UK, 25–29
November 2003. Elsevier Science.

11. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Proc. of Calculemus’2000 Conference, pages 98–113, St. An-
drews, UK, 6–7 August 2000.

12. E. Clarke, M. Kohlhase, J. Ouaknine, and K. Sutner. System description: Ana-
lytica 2. In T. Hardin and R. Rioboo, editors, Proc. of the 11th Symposium on the
Integration of Symbolic Computation and Mechanized Reasoning (Calculemus’03),
Rome, Italy, 10–12 September. Aracne Editrice S.R.L.

13. R. Constable. Implementing Mathematics Using the Nuprl Proof Development
System. Prentice-Hall, 1986.

14. N. G. de Bruijn. The mathematical language automath, its usage, and some of its
extensions. In M. Laudet, D. Lacombe, L. Nolin, and M. Schützenberger, editors,
Proc. of Symposium on Automatic Demonstration, Versailles, France, volume 125
of LN in Mathematics, pages 29–61. Springer Verlag, Berlin, 1970.



15. A. Degtyarev and A. Voronkov. Equality reasoning in sequent-based calculi. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, vol-
ume I, chapter 10, pages 611–706. Elsevier Science, 2001.

16. M. R. Genesereth, Ch. Petrie, T. Hinrichs, A. Hondroulis, M. Kassoff, N. Love,
and W. Mohsin. Knowledge Interchange Format, draft proposed Ameri-
can National Standard (dpANS). Technical Report NCITS.T2/98-004, 1998.
http://logic.stanford.edu/kif/dpans.html.

17. G. Gentzen. Untersuchungen über das logische schließen. Mathematical Zeitschrift,
39:176–210, 1934.

18. M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic. Cambridge University Press, 1993.

19. Common Logic Working Group. Common logic: Abstract syntax and semantics.
http://cl.tamu.edu/docs/cl/1.0/cl-1.0.pdf, 2003.

20. P. Hayes and C. Menzel. Semantics of knowledge interchange format.
http://reliant.teknowledge.com/IJCAI01/HayesMenzel-SKIF-IJCAI2001.pdf, 2001.

21. B. Konev and T. Jebelean. Using meta-variables for natural deduction in Theo-
rema. In M. Kerber and M. Kohlhase, editors, Proc. of Calculemus’2000 Confer-
ence, St. Andrews, UK, 6–7 August 2000.

22. T. Kutsia. Solving and proving in equational theories with sequence variables and
flexible arity symbols. Technical Report 02-31, RISC, Johannes Kepler University,
Linz, Austria, 2002.

23. T. Kutsia. Theorem proving with sequence variables and flexible arity symbols. In
M. Baaz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning. Proc. of the 9th Int. Conference, LPAR’02, volume 2514 of LNAI,
pages 278–291, Tbilisi, Georgia, 14–18 October 2002. Springer Verlag.

24. T. Kutsia. Solving equations involving sequence variables and sequence functions.
Technical Report 04-01, RISC, Johannes Kepler University, Linz, Austria, 2004.

25. T. Kutsia and B. Buchberger. Predicate logic with sequence variables and sequence
function symbols. Technical report, SFB, Linz, Austria, 2004.

26. Zh. Luo and R. Pollack. Lego proof development system: User’s manual. Technical
Report ECS-LFCS-92-211, University of Edinburgh, 1992.

27. L. Magnusson and B. Nordström. The ALF proof editor and its proof engine. In
H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs, volume 806
of LNCS, pages 213–237. Springer Verlag, 1994.

28. R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality con-
strained clauses. J. Symbolic Computation, 19:321–351, 1995.

29. L. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

30. F. Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, editor,
Proc. of the 12th International Conference on Automated Deduction, CADE’94,
volume 814 of LNAI, pages 811–815, Nancy, France, 1995. Springer Verlag.

31. W. Windsteiger. Exploring an algorithm for polynomial interpolation in the The-
orema system. In T. Hardin and R. Rioboo, editors, Proc. of the 11th Sympo-
sium on the Integration of Symbolic Computation and Mechanized Reasoning (Cal-
culemus’03), pages 130–136, Rome, Italy, 10–12 September 2003. Aracne Editrice
S.R.L.

32. S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram
Research, Inc., fourth edition, 1999.


