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Abstract. In this paper, we study algorithm invention and verification as a

specific variant of systematic theory exploration and propose the ”lazy thinking

paradigm” for inventing and verifying algorithms automatically; i.e., for a given

predicate logic specification of the problem in terms of a set of operations (func-

tions and predicates), the method produces an algorithm that solves the problem

together with a correctness proof for the algorithm. In the ideal case, the only

information that has to be provided by the user consists of the formal problem

specification and a complete knowledge base for the operations that occur in the

problem specification. The ”lazy thinking paradigm” is characterized

• by using a library of algorithm schemes

• and by using the information contained in failing attempts to prove the

correctness theorem for an algorithm scheme in order to invent sufficient

requirements on the auxiliary functions in the algorithm scheme.
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1. Introduction Algorithm invention (program synthesis) has a long
tradition, see [Basin 2003] for a recent survey. In this paper, we consider
the systematic (computer-aided, automated) invention of algorithms as a
specific part of the general problem of systematic (computer-aided, auto-
mated) theory exploration. Systematic theory exploration was introduced
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in [Buchberger 1999] as an alternative to the isolated theorem proving
paradigm that prevailed in formal, computer-supported mathematics dur-
ing the past decades. In [Buchberger 2000] we proposed various approaches
to systematic, computer-supported mathematical theory exploration. In
particular, we introduced the ”lazy thinking” paradigm for proving math-
ematical theorems. The main idea of this paradigm consists in using the
information of failing proof attempts for conjecturing intermediate lem-
mata that will allow to continue with the proof. The proof of the lemmata
is then, again, attempted and may lead to the invention of sub-lemmata
until the ”cascade” of this invention terminates successfully.

In this paper, we modify the lazy thinking paradigm for inventing
correct algorithms instead of inventing theorems: For a given predicate
logic specification of the problem in terms of a set of operations (functions
and predicates), the method invents an algorithm that solves the problem
and also, simultaneously, provides a correctness proof for the algorithm.

Roughly, the method proceeds as follows:

• The method tries out, one after the other, various ”algorithm
schemes” (or ”algorithm types”) that are stored in a library of
algorithm schemes for the given mathematical domain (or ”data
type”). An algorithm scheme is a predicate logic formula that
describes an algorithm (recursively) in terms of unspecified
subalgorithms together with a proof method appropriate for
(induction) proofs of properties of algorithms having this scheme.

• For the chosen algorithm type, the proof method is called for
proving the correctness theorem. Typically, this proof will fail
because nothing is known about the unspecified subalgorithms.

• From the failing proof situation, by a conjecture generating
algorithm, lemmata are generated that would enable the prover to
complete the proof successfully. The lemmata will describe certain
requirements on the subalgorithms. These requirements are added
to the knowledge base and the proof of the correctness theorem is
attempted again. Now, the proof will get over the failing situation
and will either succeed or will fail again at some later proof
situation.

• This procedure is iterated in a recursive cascade until the proof of
the correctness theorem goes through (or one gives up). After
successful termination, the following will be true: Under the
assumption that all ingredient subalgorithms satisfy the
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requirements described in the lemmata generated, the main
algorithm satisfies the problem specification.

• In this stage, there are two possibilities: Either, in the initial
knowledge base, algorithms are available that satisfy the
requirements for the subalgorithms described in the lemmata and
we are done, i.e. a correct algorithm has been synthesized for the
initial problem and its correctness proof has been generated. Or
subalgorithms that satisfy the requirements can be synthesized by
another application of the same method in a next round of the
procedure.

The distinctive features of our algorithm synthesis method, as com-
pared to other methods, are:

• the use of algorithm schemes taken from a library of algorithm
schemes,

• the crucial role of failing proofs and conjecture generation from
failing proofs,

• the decomposition of theory exploration and, in particular,
algorithm invention and verification into theory layers,

• the naturalness of the approach, which makes it attractive both for
complete or partial automation in computer-supported systems for
formal mathematics and also for usage as a strategy for human
algorithm invention and teaching. (In fact, the idea for the lazy
thinking paradigm for theory exploration and, in particular,
algorithm invention and verification came to me while I was
preparing a course on mathematical proving for high-school
teachers in October 2001.)

In the sequel, we will illustrate the method by a case study, namely
the automated synthesis of the merge-sort algorithm. The case study will
be executed in the frame of the Theorema system. In particular, all oc-
curring predicate logic formulae will be given in the Theorema syntax, see
[Buchberger et al. 1997]. The case study will allow us also to explain some
of the subtle details of the method.

2. The Theorem Automatically Invented by the Method The power
of the method is best understood by considering the theorem that is au-
tomatically invented (and not only proved) by the method:
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2.1. Relative Correctness Theorem for Merge-Sort

Knowledge[is–sorted–version]

⇒
∀

special, merged, left-split, right-split,sorted(
Is–Merge–Sort–Algorithm[sorted, special, merged, left–split,

right–split]

⇒ ∀
is-tuple[X]

is–sorted–version[X,sorted[X]]

Here, ’Knowledge’ is the conjunction of all (some of the) formulae
known about the predicate ’is–sorted–version’ and all its ingredient oper-
ations (functions and predicates), like ’is–sorted’, ’is–permuted–version’,
etc. (see Appendix) and ’Is–Correct–Merge–Sort–Algorithm’ is defined as
follows:

∀
special, merged, left-
split,right-split,sorted

Is–Merge–Sort–Algorithm[special,merged,left–split,

right–split,sorted]
⇐⇒





∀
is-tuple[X]


sorted[X]=





special [X] ⇐ is–trivial–tuple[X]

merged[ ⇐ otherwise

sorted[ left–split[X]],

sorted[right–split[X]]]




∀
is-tuple[X]

is-trivial-tuple[X]

(special[X]=X)

∀
is-tuple[X]

¬is-trivial-tuple[X]





left–split[X] ≺ X

is–tuple[left–split[X]]

right–split[X] < X

is–tuple[right–split[X]]
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and




∀
is-tuple[Y,Z]

is–tuple[merged[Y,Z]]

∀
is-tuple[X,Y,Z]

¬is-trivial-tuple[X]








left–split[X] ≈ Y

right–split[X] ≈ Z

is–sorted[Y]

is–sorted[Z]

⇒
{

merged[Y,Z] ≈ X

is–sorted[merged[Y,Z]]




2.2. Explanation The theorem says that,
if

• the predicate ’is–sorted–version’ and its sub-operations satisfy the
properties described in knowledge (see the appendix),

• the function ’sorted’ is defined recursively in the
”divide-and-conquer” style from the auxiliary functions ’special’,
’merged’, ’left-split’, and ’right-split’,

• the functions ’merged’, ’left-split’, and ’right-split’ preserve the
data type ’is–tuple’,

• the functions ’left-split’ and ’right-split’, on non-trivial arguments,
reduce the length,

• the function ’special’, on trivial arguments, is the identity,
• the function ’merged’, on sorted arguments, yields sorted tuples,

and
• the function ’merged’, on arguments Y and Z that contain the

same elements as left–split[X] and right-split[X], respectively,
yields a tuple that contains the same elements as X,

then

• the function ’sorted’ solves the problem of sorting, i.e. the problem
specified by the binary predicate ’is-sorted-version’.

The most important and most interesting parts of this theorem are
the two requirements stating that the function ’merged’ preserves sorted-
ness and elements. These two requirements are exactly what people would
naturally consider as the characteristic properties of merging. The amaz-
ing phenomenon is that exactly these two requirements are invented com-
pletely automatically, without any prior intuition or semantic understand-
ing, by our ”lazy thinking” method. In fact, the exact formulation of the
requirements invented by our method, are slightly more general than the
requirements one would expect naturally. This is, of course, good because,
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the weaker the requirements, the more functions ’merged’, ’left–split’, and
’right–split’ satisfy the requirements!

3. The Knowledge on the Problem When attempting to solve a prob-
lem by an algorithm, we assume, of course, that the problem is ”completely
understood”. In fact, it is a heuristic rule that ”the better you understand
the problem the closer you are to finding a solution”. Generally speaking,
the problem of sorting is an instance of a ”problem scheme” (or ”problem
type”) which we call ”explicit problems”. An explicit problem is given by
a (binary) predicate P (called ”problem specification”) and the solution of
the problem consists in finding a function f (called the ”solution function”
or ”solution algorithm” in case f is an algorithmic function) such that

∀
is-object[X]

P [X, f [X]].

Here, ’is–object’ is a unary predicate that characterizes the objects
in the data domain considered. (Of course, explicit problems can also be
defined for more than one input argument.) In our case study, the problem
specification is given by the binary predicate ’is–sorted–version’ which is
defined as follows

∀
is-tuple[X]


is–sorted–version[X, Y ] ⇔





is–tuple[Y ]
X ≈ Y

is–sorted[Y ]




Note that the input X is restricted to tuples, i.e. in our case, the input
domain is the domain of tuples. Also note that the requirement that the
output Y is a tuple is part of the problem specification. This is appropriate
because, since the predicate is used for formulating the correctness theorem

∀
is-tuple[X]

is–sorted–version[X, sorted[X]]

the domain requirement on the input need not (and should not) be men-
tioned in the problem specification whereas the domain requirement on
the output is an essential part of the problem specification.

The predicate ’is–sorted–version’ is defined in terms of the two aux-
iliary predicates ’≈’ and ’is–sorted’. (For ’X≈Y’ read ’Y is a permuted
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version of X’ or ’X and Y contain the same elements equally often’):

is–sorted[〈〉]
∀
x

is–sorted[〈x〉]

∀
x,y,z

(
is–sorted[〈x, y, z〉] ⇔

{
x ≥ y

is–sorted[〈y, z〉]
)

and
〈〉 ≈ 〈〉
∀

y,y
〈〉 6≈ 〈y, y〉
∀

x,x,y
(〈x, x〉 ≈ 〈y〉 ⇔ (x ∈ 〈y〉 ∧ 〈x〉 ≈ dfo[x, 〈y〉])).

(For the ”sequence variables” notation ’x’ etc., see the papers on Theo-
rema, e.g. [Buchberger et al. 1997]. Sequence variables can be replaced by
arbitrarily many terms. We use angle brackets as constructors for tuples:
for example, 〈2,2,3,1,4〉 is the tuple consisting of the elements 2, 2, 3, 1,
4.)

The definitions of ’is–sorted’ and ’≈’, again, contain auxiliary opera-
tions like ’∈’ (read: ’is–element’) and ’dfo’ (read: ’delete first occurrence’)
that must be defined in terms of other auxiliary functions until we arrive
at the basic operations on tuples. The definitions of all these auxiliary
operations and also the formulae describing various properties of these
auxiliary operations are supposed to be contained in the knowledge base
’Knowledge[sorted–version–of]’, see appendix. (Later in the paper, we will
discuss the question of how to determine which properties of the opera-
tions between the problem specifying predicate ’is–sorted-version’ and the
basic operations on tuples should be included into the knowledge base.)

4. Algorithm Schemes An ”algorithm scheme” (or ”algorithm type”)
for a given data type, in our view,

• is a recursive definition of an unspecified ”main” operation in
terms of other unspecified ”auxiliary” operations and the basic
operations of the data type

• together with a proof method that corresponds to the recursive
definition in a natural way.

In our example of a problem on the data type of tuples, a possible
recursive definition of the solution function is the well-know ”divide-and-
conquer” scheme (in a version, which appropriate to the data type of tu-
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ples) is as follows:

∀
is-tuple[X]


sorted[X] =





special[X] ⇐ is–trivial–tuple[X]

merged[sorted[left–split[X]], ⇐ otherwise

sorted[right–split[X]]]




where you should think about the ”main functions” ’sorted’ and the ”aux-
iliary functions” ’special’, ’merged’, ’left-split’, and ’right-split’ as com-
pletely unspecified (except that ’sorted’ is related to the auxiliary func-
tions as described in the scheme). In fact, at this moment, nothing is
known about these functions that would justify to give them names like
’sorted’, ’special’, ’merged’ etc. Hence, for didactic considerations, it might
be better to just give them names like ’s’, ’sp’ ’m’, ’l’, and ’r’. However,
the ”semantic” function names above have the didactic advantage of sug-
gesting where we are ultimately driving at.

Note also, that in contrast to the operations ’sorted’ etc., the predicate
’is–trivial–tuple’ is not unspecified but, rather, is defined by a formula in
the knowledge base, see the appendix. Also, we include the following ”type
requirement” on the auxiliary functions as a part of the algorithm scheme:

∀
is-tuple[X,Y,Z]

¬is-trivial-tuple[X]

{
is–tuple[left–split[X]]
is–tuple[right–split][X]]

∀
is-tuple[Y,Z]

is–tuple[merged[Y,Z]]

The type requirements will be important for being able to prove that the
function ’sorted’, for tuple arguments, yields tuples as results. Finally, we
also consider the following requirement:

∀
is-tuple[X]

¬is-trivial-tuple[X]

∧ {
left–split[X] ≺ X

right–split[X] ≺ X

as a part of the recursive definition, which guarantees termination of the
algorithm. (For ’≺’ read ’has shorter length’, see the definition in the
appendix.)

Second, we include the following special induction method into the
algorithm scheme:

In order to prove, for an arbitrary property A,
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∀
is-tuple[X]

A[X]

it suffices to prove, for an arbitrary but fixed x0,

A
[〈x0〉]

under the assumptions

is–tuple
[〈x0〉]

and

∀
is-tuple[Y]

Y<〈x0〉

A[Y ].

This particular induction method (w.r.t. to the particular predicate ≺,
’shorter in length’, defined in the knowledge base) is based on the property
that ≺ is a Noetherian relation. We do not include this property into the
knowledge base. Rather, this property is implicitly used by allowing this
induction method.

One might argue that, with the inclusion of an appropriate inductive
proof method into the algorithm scheme, already very much of the ”in-
vention” is taken away from the automated invention system. However, in
future mathematical knowledge management systems (and, in particular,
verified algorithm invention systems), it would be silly to throw away the
accumulated knowledge of mathematicians on problem solving ”schemes”.
Rather, in future systems, the accumulated algorithm invention knowledge
of mathematicians should be kept available in ”algorithm scheme libraries”
that can then be used, in the way which we demonstrate in this paper,
for inventing concrete algorithms for concrete problems. (In an analogous
way, future mathematical knowledge management systems, should provide
”problem scheme libraries”, ”data scheme libraries”, ”knowledge scheme
libraries”, and ”definition scheme libraries”. We cannot go into more de-
tails about this more general view in this paper but will expand on this
aspect in forthcoming papers.)

We believe that, actually, for a given data type there exist only a few
interesting algorithm types (algorithm schemes). These algorithm schemes
should be put into libraries and can serve as an important input to al-
gorithm invention systems. Another example of an algorithm scheme for
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algorithms on tuples is:

s[〈〉] = c

∀
x,x

(s[〈x, x〉] = m[x, s[〈x〉]])

with the type requirement:

∀
x,is-tuple[Y]

is–tuple[m[x, Y ]]

and the following special induction method:
In order to prove, for an arbitrary property A,

∀
is-tuple[X]

A[X]

it suffices to prove

A[〈〉]
and to prove, for arbitrary but fixed x0, x0,

A[〈x0, x0〉]
under the assumption

A[〈x0〉].

5. Inventing the Algorithm by Lazy Thinking: First Round We now
start from the following situation:

• We have a knowledge base consisting of all the definitions and
essential properties of the operations and auxiliary operations
(functions and predicates) occurring in the problem specification
(in our case: the specification of the binary predicate
’is–sorted–version’, see appendix).

• We have chosen an algorithm scheme from a finite library of
algorithm schemes for the domain of tuples (in our case: the
”divide-and-conquer” algorithm scheme; note that we could start
from any other scheme!). Remember that the scheme consists of a
scheme for a induction function definition (including also type
requirements for the auxiliary functions) and a corresponding
inductive proof method.
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We now do the following:

• We include the algorithm scheme for ’sorted’, the type
requirements for the auxiliary functions, and the requirements on
the decreasing length of ’left–split’ and ’right–split’ into the
knowledge base.

• Then we start attempting to prove the correctness theorem

∀
is-tuple[X]

is–sorted–version[X, sorted[X]].

• Of course, this proof cannot succeed because basically nothing
interesting is known about the auxiliary functions ’merged’,
’left-split’ etc. We proceed with the proof until the proof gets stuck.

• When it got stuck, we analyze the current, failing, proof situation
and try to conjecture requirements (properties) of the auxiliary
functions that would make it possible to get over the failing proof
situation.

• We add the conjectured requirements to the knowledge base and
repeat the whole process, i.e. we go to the next round in the
algorithm invention process.

Example:

In the example, the failing proof attempt (which can be generated
completely automatically by the Theorema induction prover) is as follows:

Proof Attempt Begin
For proving the correctness theorem, we use well-founded induction

w.r.t. Â on X:
We assume

is–tuple[〈xo〉]
and the induction hypothesis

∀
is-tuple[Y]

〈xo〉

is–sorted–version[Y, sorted[Y ]]

and we show
is–sorted–version[〈xo〉, sorted[〈xo〉]].

We use the algorithm scheme for ’sorted’ and distinguish two cases:
CASE

is–trivial–tuple[〈xo〉] :
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In this case, we have to show:

is–sorted–version[〈xo〉, special[〈xo〉]]

i.e., by the definition of ’is–sorted–version’, we have to show

(G1) is–tuple[special[〈xo〉]],
(G2) special[〈xo〉] ≈ 〈xo〉,
(G3) is–sorted[special[〈xo〉]].

(G1) is true because of the type requirement for ’special’.
For (G2), by the fact that

∀
is-trivial-tuple[X],is-tuple[Y]

(X ≈ Y ⇔ (X = Y )),

it suffices to prove that

special[〈xo〉] = 〈xo〉.

Here we are stuck.
Proof Attempt End
(The proof attempt generated automatically by the Theorema induction
prover for tuples is basically exactly like the proof attempt above includ-
ing the explanatory English text, see the papers on Theorema. However,
the Theorema proof refers to formulae in the knowledge base by labels,
more specifically by hyperlinks, and we prefer not to use labels in the
presentation of proofs in this paper for increasing readability.)
Now we analyze the failing proof situation and find:

• We have the case assumption as the only temporary assumption:

is–trivial–tuple[〈xo〉].

• We have the temporary goal:

special[〈xo〉] = 〈xo〉.

It is near at hand to conjecture (and our current Theorema conjec-
ture generating algorithm can do this automatically) that the following
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requirement on the function ’special’:

∀
is-trivial-tuple[X]

(special[X] = X)

will make it possible to get over the failing proof situation. We add this re-
quirement to the knowledge base and proceed to the next invention round.

6. Inventing the Algorithm by Lazy Thinking: Second Round We now
do exactly the same proof attempt once more. (Alternatively, we could
jump back into the proof to the situation in which the first attempt failed.
Both strategies, going back to the beginning and jumping right to the
failing situation, have its advantages and disadvantages: Going back to
the beginning may, in some examples, ultimately yield shorter proofs and
jumping right to the failing situation, of course, saves proving effort.)

Since we have added a requirement on the auxiliary function ’special’
we will be able to get now over the failing proof situation and we will be
stuck at some later situation in the proof in which, again, we will try to
invent a requirement on the auxiliary functions that will make it possible
to proceed further.
Example:

In the example, the next proof attempt (which can be generated completely
automatically by the Theorema induction prover) is as follows:
Proof Attempt Begin
For proving the correctness theorem, we use well-founded induction w.r.t.
Â on X:
We assume

is–tuple[〈xo〉]

.... exactly as in the first proof attempt ...
We use the algorithm scheme for ’sorted’ and distinguish two cases:
CASE

is–trivial–tuple[〈xo〉] :

In this case, by we have to show

is–sorted–version[〈xo〉, special[〈xo〉]]
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i.e., because of the definition of ’is–sorted–version’, we have to show

(G1) is–tuple[special[〈xo〉]],
(G2) special[〈xo〉] ≈ 〈xo〉,
(G3) is–sorted[special[〈xo〉]].

(G1) is true because of the type requirement for ’special’. (G2) is true
because of:

∀
is-trivial-tuple[X],is-tuple[Y]

(X ≈ Y ⇔ (X = Y )),

and the new requirement

∀
is-trivial-tuple[X]

(special[X] = X).

(G3) is true because of the same requirement and the following property
of ’sorted’

∀
is-trivial-tuple[X]

is–sorted[X].

CASE
¬is–trivial–tuple[〈xo〉] :

In this case, we have to show:
is-sorted-version

[〈xo〉,merged[sorted[left–split[〈xo〉], sorted[right–split[〈xo〉]]]]].

For this, by the definition of ’is–sorted–version’, it suffices to show

(H1) is–tuple[merged[sorted[left–split[〈xo〉], sorted[right–split[〈xo〉]]]]],
(H2) 〈xo〉 ≈ merged[sorted[left–split[〈xo〉], sorted[right–split[〈xo〉]]]],
(H3) is–sorted[merged[sorted[left–split[〈xo〉], sorted[right–split[〈xo〉]]]]].

From the case assumption, by the type requirements on ’left–split’ and
’right–split’, the property that ’left–split’ and ’right–split’ produce shorter
tuples, and the induction hypothesis we obtain

is–sorted–version[left–split[〈xo〉], sorted[left–split[〈xo〉]]],
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is–sorted–version[right–split[〈xo〉], sorted[right–split[〈xo〉]]].

From this, by the definition of ’is–sorted–version’, we obtain:

(AL1) is–tuple[sorted[left–split[〈xo〉]]],
(AL2) left–split[〈xo〉] ≈ sorted[left–split[〈xo〉]],
(AL3) is–sorted[sorted[left–split[〈xo〉]]],
(AR1) is–tuple[sorted[right–split[〈xo〉]]],
(AR2) right–split[〈xo〉] ≈ sorted[right–split[〈xo〉]],
(AR3) is–sorted[sorted[right–split[〈xo〉]]].

(H1) follows from (AL1) and (AR1) by the type requirement on ’merged’.
Now we are stuck.
Proof Attempt End

Now we analyze the failing proof situation and find:

• We have the case assumption and the formulae (AL1), ..., (AR3)
as temporary assumptions.

• We have the temporary goals (H2) and (H3).

It is not so near at hand but, after some thinking, relatively easy
to conjecture (and our current Theorema conjecture generating algorithm
can do this automatically) that the following requirement on the functions
’left-split’, ’right-split’ and ’merged’

∀
is-tuple[X,Y,Z]

¬is-trivial-tuple[X]








left–split[X] ≈ Y

right–split[X] ≈ Z

is–sorted[Y ]
is–sorted[Z]

⇒
{

merged[Y,Z] ≈ X

is–sorted[merged[Y, Z]]




will make it possible to get over the failing proof situation. We add this re-
quirement to the knowledge base and proceed to the next invention round.

7. Inventing the Algorithm by Lazy Thinking: Last Round We now
do exactly the same proof attempt once more (or we just jump to the proof
situation where the previous proof attempt got stuck.)

This time, the inductive proof will succeed using the added require-
ment on ’left-split’, ’right-split’ und ’merged’ for proving (H2) and (H3).
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If we now collect the requirements on the functions’special’,’left-
split’,’right-split’,and’merged’,we see that we invented and proved the
”Relative Correctness Theorem for Merge-Sort” formulated at the begin-
ning of this paper.

8. Automation of the Lazy Thinking Procedure The ”lazy thinking”
procedure for inventing algorithms together with their correctness proofs,
first of all, is meant to be a heuristic guide for human invention and veri-
fication.

However, the procedure can be made completely automatic (algorith-
mic) if we manage

• to automate proving in the specific area and
• to automate generating conjectures (requirements on auxiliary

functions) from the temporary assumptions and the left-over goals
in failing proof attempts.

In fact, for the case of inductive domains, there are powerful auto-
mated provers around and we have implemented various such provers in
the Theorema system. Also, we already implemented a first version of
a conjecture generation algorithm which, together with our automated
inductive provers, is powerful enough to completely automate the ”lazy
thinking” algorithm invention and verification process in the case of nu-
merous problems on tuples. Inductive provers that qualify for the use in
the frame of the lazy thinking algorithm invention procedure must have a
couple of properties: First, they must prove theorems in a ”natural style”
that proceeds from proof situations with temporary assumptions and goals
to other such proof situations. Second, they must generate a proof object
also in case of failing proofs. This is so because the essence of the lazy
thinking method is ”learning from failures”.

Our current conjecture (requirements) generation algorithm imple-
ments two strategies that can handle the two situations in the above exam-
ple but also in many other examples. Both strategies take the conjunction
A of all temporary assumptions and the (conjunction of the) temporary
goals G and conjecture a variant of (A ⇒ G):

• The first strategy can handle simple failing proof situations in
proofs (proof branches) without induction: It replaces all
”arbitrary but fixed” constants in (A ⇒ G) by variables v,... and
produces the conjecture ∀

V,...
(A ⇒ G). By this strategy, one can
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produce, for example, the conjecture (requirement)

∀
is-trivial-tuple[X]

(special[X] = X)

in the first round above.
• The second strategy can handle failing proof situations in the

induction step parts of proofs. It first, again, replaces all ”arbitrary
but fixed” constants in (A ⇒ G) by variables v,.... Then it looks
for terms whose head is the function constant for the algorithm to
be synthesized. (In our case, this is the function constant ’sorted’.)
All these terms are then replaced by new variables w,... and then
the variant ∀

V,...,W,...
(A ⇒ G) is taken as the new conjecture. By this

strategy, one can produce, for example, the conjecture
(requirement)

∀
is-tuple[X,Y,Z]

¬is-trivial-tuple[X]








left–split[X] ≈ Y

right–split[X] ≈ Z

is–sorted[Y ]
is–sorted[Z]

⇒
{

merged[Y,Z] ≈ X

is–sorted[merged[Y, Z]]




in the second round above.
Our future research will focus on adding more and more strategies

to the conjecture generation algorithm. Of course, never, one conjecture
generation algorithm will be able to handle ”all” failing proof situations.
However, we think that the lazy thinking cascade will be a useful tool for
organizing the theory exploration process and, in particular, the algorithm
invention process. The cascade becomes more and more powerful the more
powerful theorem provers and conjecture generation algorithms will be
used as subalgorithms and the better we understand and organize libraries
of algorithm schemes.

With the current Theorema induction prover and the current Theo-
rema conjecture generator, the above synthesis process can be executed
completely automatically. This means that the user has only to compile
the knowledge on the predicate ’is–sorted–version’ and its auxiliary notions
shown in the appendix and then to call Theorema by

Prove[Theorem[”correctness of sorting”],

using → Theory[”sorting”],

by → Cascade[SqnsEqCasePC, GenerateConjectures]]
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Here, Theory[”sorting”] is the name of the theory consisting of the formulae
in the appendix. In Theorema, this name can be assigned to the formulae
by executing

Theory
[
”sorting”,

∀
is-tuple[X]


is–sorted–version[X,Y ] ⇔





is–tuple[Y ]
X ≈ Y

is–sorted[Y ]




is–sorted[〈〉]
∀
x
is–sorted[〈x〉]

... (all formulae in the appendix)...

]

Similarly, Theorem[”correctness of sorting”] is the name of the correctness
theorem for sorting. This name can be assigned by executing

Theorem
[
”correctness of sorting”,

∀
is-tuple[X]

is–sorted–version[X, sorted[X]]
]

’SqnsEquCasePC’ is the name of the particular induction prover that cor-
responds to the ”divide-and-conquer” algorithm scheme. This prover adds
the formulae that constitute the algorithm scheme, i.e. the formulae

∀
is-tuple[X]


sorted[X]=





special[X] ⇐ is–trivial–tuple[X]

merged[sorted[left–split[X]], ⇐ otherwise
sorted[right–split[X]]]




∀
is-tuple[X]

¬is-trivial-tuple[X]

is–tuple[left–split[X]]

.... etc....,

to the knowledge and organizes the main loop of the proof by the particular
induction scheme.

We are now working on a generale induction prover that gets the
information on the algorithm scheme (including the type requirements
for the auxiliary functions and the appropriate induction scheme) directly
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from the library of algorithm schemes so that, without user interaction,
the prover can attempt various algorithm syntheses successively without
user interaction in between.

As result of the above Theorema call ’Prove[Theorem[”correctness of
sorting”],...]’, after approximately 5 minutes computation time (on a Com-
paq Evo N610c, with Intel Pentium 4 with 1.8 GHz), the user will get

• an augmented knowledge base that contains the requirements on
the auxiliary functions

∀
is-trivial-tuple[X]

(special[X] = X)

∀
is-tuple[X,Y,Z]

¬is-trivial-tuple[X]








left–split[X] ≈ Y

right–split[X] ≈ Z

is–sorted[Y ]
is–sorted[Z]

⇒
{

merged[Y,Z] ≈ X

is–sorted[merged[Y, Z]]




• and a complete correctness proof for the divide-and-conquer
algorithm that essentially looks like the proof developed in the
preceding sections.

Now the user knows that the divide-and-conquer algorithm is a correct
sorting program if one uses auxiliary functions ’special’, ’left–split’, ’right–
split’, and ’merged’ that satisfy the type requirements and the above, syn-
thesized, requirements. In other words, the user does not only get one par-
ticular sorting algorithm synthesized (together with a correctness proof)
but gets a whole spectrum of possible correct sorting algorithms!

We can now proceed in two ways:

• Either we already have functions ’left-split’, ’right-split’, and
’merged’ (possibly with other names) in our knowledge base that
satisfy the requirements. (The proof that the functions in the
knowledge base satisfy the requirement should be something
current automated provers can do. See, however, next section.)
Then we can use them as auxiliary functions and we are done, i.e.
we have a correct sorting algorithm, which now can be executed. In
fact, in Theorema, the execution of algorithms, i.e. the application
of algorithms to concrete inputs, can be done within the Theorema
system itself, i.e. proving and computing can be done in the same
language and logic! (In other words, part of the inference
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mechanism of the logic is used as the interpreter of a universal
programming language.) We will show this by an example below.

• Or we take the type requirements and the synthesized
requirements on ’special’, ’left–split’, ’right–split’, and ’merged’ as
new specifications for synthesizing appropriate functions again by
the lazy thinking procedure. The requirement for ’special’ is easy
to fulfil: In fact, the requirement itself is a suitable function
definition for ’special’. The requirements for ’left–split’,
’right–split’, and ’merged’ are intertwined. They do not constitute
an ”explicit” problem specification. In principle, it is possible to
apply the lazy thinking procedure also for synthesizing algorithms
whose specification is not in explicit form. However, if possible, it
is much better to try to decouple intertwined specifications before
one starts to synthesize algorithms that meet the specification.

In our case, it is in fact possible to replace the intertwined specification
for ’left–split’, ’right–split’, and ’merged’ by a decoupled one. Namely, it
can be (automatically) shown that the following decoupled specification
entails the above intertwined specification:

∀
is-tuple[X]

¬is-trivial-tuple[X]

(left–split[X] ³ right–split[X]) ≈ X

∀
is-tuple[Y,Z]

({
is–sorted[Y ]
is–sorted[Z]

⇒
{

merged[Y, Z] ≈ (Y ³ Z)
is–sorted[merged[Y,Z]]

)

(Here, ’³’ denotes concatenation.) Using the lazy thinking procedure on
this specification working with the algorithm scheme

merged[〈〉, 〈〉] = mee
∀

y,y
merged[〈〉, 〈y, y〉] = meg[y, y]

∀
x,x

merged[〈x, x〉, 〈〉] = mge[x, x]

∀
x,x,

y,y

merged[〈x, x〉, 〈y, y〉] =
{

mgg1[x, merged[〈x〉, 〈y, y〉]] ⇐ p[x, y]
mgg2[y, merged[〈x, x〉, 〈y〉]] ⇐ ¬p[x, y]

}

where ’mee’, ’meg’, ’mge’, ’mgg1’, ’mgg2’ and ’p’ are the unknown auxiliary
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operations, yields the usual merge algorithm

merged[〈〉, 〈〉] = 〈〉
∀

y,y
merged[〈〉, 〈y, y〉] = 〈y, y〉

∀
x,x

merged[〈x, x〉, 〈〉] = 〈x, x〉

∀
x,x,y,y

merged[〈x, x〉, 〈y, y〉] =
{ x ^ merged[〈x〉, 〈y, y〉] ⇐ x > y

y ^ merged[〈x, x〉, 〈y〉] ⇐ ¬x > y

}

Similarly, concrete algorithms that satisfy the specification of ’left–split’
and ’right-split’ can be synthesized, for example

left–split[〈〉] = 〈〉
∀
x
(left–split[〈x〉] = 〈x〉)
∀

x,y,z
(left–split[〈x, y, z〉] = x ^ left–split[〈z〉])

right–split[〈〉] = 〈〉
∀
x
(right–split[〈x〉] = 〈〉)
∀

x,y,z
(right–split[〈x, y, z〉] = y ^ right–split[〈z〉])

Note that these algorithms ’merged’, ’left–split’, and ’right–split’ are now
”concrete” in the sense that they only need auxiliary operations that are
basic operations on tuples (and the ordering predicate ’>’ on the objects
in tuples), i.e. no more synthesis step is necessary.

Putting all these definitions into one theory by

Theory
[
”sorting”,

∀
is-tuple[X]


sorted[X]=





special[X] ⇐ is–trivial–tuple[X]

merged[ ⇐ otherwise
sorted[left–split[X]],

sorted[right–split[X]]]




merged[〈〉, 〈〉] = 〈〉
... ...

∀
x,y,z

(right–split[〈x, y, z〉] = y ^ right–split[〈z〉])

One can now compute within Theorema. For example, entering

Compute[sorted[〈1, 233, 3, 44, 5, 66, 7, 8〉]]



62 B. Buchberger

yields

〈233, 66, 44, 8, 7, 5, 3, 1〉.

(Also the definitions of the basic operations on tuples must be made part
of Theory[’sorting’] or, alternatively, one can declare these operations as
”built-in” in Theorema, see the papers on Theorema.)

9. Mathematical Knowledge Retrieval After generating the require-
ments for the sub-functions ’merged’, ’left–split’, and ’right–split’, the
question arises whether functions satisfying these requirements already
exist in our knowledge base. Seemlingly, this is an easy question and, in
traditional knowledge retrieval, the question is answered by looking to
functions that have these names or, at least, similar names. Thus, for ex-
ample, if one wants to know what is known about ”Bessel functions” in
some function library then, of course, one would just look for terms in the
library whose outermost function symbol is ”Bessel”. However, this ad-
hoc solution to the knowledge retrieval problem is not appropriate for the
needs arising in the frame of the above approach to algorithm synthesis
(and in other areas of ”mathematical knowledge management”).

Rather, we are faced with the following problem:

• Given a knowledge base K, operation names f , ..., and a
requirement on f , ..., i.e. a formula R[f, ...]

• find operation names F , ... occurring in K such that R[F, ...] is a
logical consequences of K.

Hence, knowledge retrieval in our context is essentially a proving problem!
For example, given the knowledge base K in the appendix augmented

by the following definitions

M [〈〉, 〈〉] = 〈〉
∀

y,y
(M [〈〉, 〈y, y〉] = 〈y, y〉)

∀
x,x

(M [〈x, x〉, 〈〉] = 〈x, x 〉)

∀
x,x,y,y

(
M [〈x, x〉, 〈y, y〉] =

{
x ^ M [〈x〉, 〈y, y〉] ⇐ x > y

y ^ M [〈x, x 〉, 〈y〉] ⇐ ¬x > y

)
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L[〈〉] = 〈〉
∀
x
(L[〈x〉] = 〈x〉)
∀

x,y,z
(L[〈x, y, z〉] = x ^ L[〈z〉])

R[〈〉] = 〈〉
∀
x
(R[〈x〉] = 〈〉)
∀

x,y,z
(R[〈x, y, z〉] = y ^ R[〈z〉])

and the following requirement R[ left–split, right–split, merged]

∀
is-tuple[X]

¬is-trivial-tuple[X]





left–split[X] ≺ X

is–tuple[left–split[X]]
right–split[X] < X

is–tuple[right–split[X]]





∀
is-tuple[Y,Z]

is–tuple[merged[Y, Z]]

∀
is-tuple[X,Y,Z]

¬is-trivial-tuple[X]








left–split[X] ≈ Y

right–split[X] ≈ Z

is–sorted[Y ]
is–sorted[Z]

⇒
{

merged[Y,Z] ≈ X

is–sorted[merged[Y, Z]]




then ”finding” operations in K that satisfy the requirement consists in
trying out all possible triples of functions l, r, m that occur in K and
finding out whether the requirement R[ l, r, m] can be proved from the
formulae in the knowledge base. In our case, in particular, one could try
L, R, M and try to prove that R[ L, R, M] holds. One sees that this task is
nothing else than proving that the algorithms L, R, M are correct w.r.t. to
the specification R[ L, R, M]. Of course, such proofs, may be arbitrarily
complicated.

”Complete” knowledge bases are knowledge bases in which, for all the
occurring operations, all the possible ”interactions” between the opera-
tions have already been studied resulting in ”rewrite properties” of these
operations. For example, for the operations L, R, M defined above the
following interactions with the operations ’≈’, ³’, and ’is–sorted’

∀
is-tuple[X]

¬is-trivial-tuple[X]





L[X] ≺ X

is–tuple[L[X]]
R[X] < X

is–tuple[R[X]]
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∀
is-tuple[Y,Z]

is–tuple[M [Y, Z]]

∀
is-tuple[X]

¬is-trivial-tuple[X]

(L[X] ³ R[X]) ≈ X
}

∀
is-tuple[Y,Z]

({
is–sorted[Y ]
is–sorted[Z]

⇒
{

M [Y, Z] ≈ (Y ³ Z)
is–sorted[M [Y,Z]]

)

and many other such interactions should already be available in the knowl-
edge base (i.e. it should have been proved in a ”complete exploration”
phase of the knowledge base). Then the proof that also R[ L, R, M] holds
is ”relatively easy”, namely it can be done essentially by rewriting and
other simple proof techniques (”symbolic computation proof techniques”,
”high-school proving”, i.e. proving without quantifiers).

In other words, one could define that a knowledge base is ”complete”
iff proving properties that are not yet in the knowledge base is possible by
”basic proving” (i.e. proving essentially without quantifiers). Mathemati-
cal knowledge bases should be complete in this sense so that ”retrieving
knowledge” can be done by basic proving. Of course, all this is vague ter-
minology. However, we think that this points into the right direction and
we will elaborate on this philosophy in some other paper.

10. A Functorial View of Program Synthesis We have seen that, by
the above ”lazy thinking” approach, algorithms A involving auxiliary oper-
ations B, C, ... can be synthesized that meet their specification P under the
assumption that the ingredient auxiliary operations B, C, ... meet a certain
other specification Q. In other words, the synthesis procedure invents and
proves a theorem of the following structure

knowledge[P ]

⇒

∀
B,C,...

({
∀
X
(A[X] = F [X, B, C, ...])

Q[B, C, ..]
⇒ ∀

X
P [X, A[X]]

)

where F is the scheme (the ”functional”) which we use in order to define
A in terms of the auxiliary operations B, C, ...

For all this,we assumed that the specification P of the algorithm to be
synthesized is ”completely” given, whatever this means.
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We now can go one step further: After the synthesis is completed
(resulting both in the specification Q and in the proof of ∀P [X, A[X]],
we can analyze which properties of P and its auxiliary operations actually
entered into the correctness proof. Doing this, often results in a much more
general theorem: If K[P,p,q,...] is the knowledge on P and its ingredient
operations p, q, ... that is really needed in the correctness proof, then we
may state that

∀
P,p,q,...

(K[P, p, q, ...]

⇒

∀
B,C,...

({
∀
X
(A[X] = F [X, B, C])

Q[B, C, ..]
⇒ ∀

X
P [X, A[X]]

)

Carrying out this analysis in the above example, yields the following the-
orem:

Is–Sorting–Problem[is–sorted–version,≈, is–sorted]

⇒
∀

special, merged, left-split, right-split,sorted(
Is–Merge–Sort–Algorithm[special, merged, left–split,

right–split, sorted]

⇒ ∀
is-tuple[X]

is–sorted–version[X, sorted[X]]

)

where ’Is–Merge–Sort–Algorithm’ is defined as in the section on the cor-
rectness of merge-sort and ’Is–Sorting–Problem’ is defined as follows:

∀
is-sorted-version,≈,is-sorted

Is–Sorting–Problem[is–sorted–version,≈, is–sorted]

⇔
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



∀
is-tuple[X]


is–sorted–version[X,Y] ⇔





is–tuple[Y]

X ≈ Y

is–sorted[Y ]




∀
is-trivial-tuple[X]

is–sorted[X]

∀
is-trivial-tuple[X],is-tuple[Y]

(X ≈ Y ⇔ (X = Y ))

is–noetherian[Â]

Note that the main omission in this knowledge base is the concrete defini-
tion of ’is–sorted’ and ’≈’ in terms of more elementary operations. Hence,
we can read the theorem which we invented by the lazy thininking proce-
dure also in the following

way:
Consider the ”functor”

∀
is-tuple[X]


is–sorted–version[X, Y ] ⇔





is–tuple[Y ]
X ≈ Y

is–sorted[Y ]




∀
is-tuple[X]


sorted[X] =





special[X] ⇐ is–trivial–tuple[X]

merged[sorted[left–split[X]], ⇐ otherwise
sorted[right–split[X]]]




that expands a domain containing the operations ’Â’, ’≈’, ’is–sorted’,
’special’, ’merged’, ’left–split’, and ’right–split’ by the new operations ’is–
sorted’ and ’sorted’. Then we can be sure that the function ’sorted’ is a
correct algorithm for the explicit problem ’is–sorted–version’ as long as
the operations ’ ’Â’ etc. satisfy the properties given in the definitions of
’Is–Sorting–Problem’ and ’Is–Merge–Sort–Algorithm’.

The power of this theorem can best be appreciated if you replace the
semantic names ’is–sorted’ etc. by some arbitrary constants like ’p’, etc.

Similar ideas, maybe less explicit, have been expressed in [Farmer 2003]
and [Schwarzweller 2003].

One also may view algorithm synthesis as higher-order solving. For
example, in the problem of sorting we want to find a function ’sorted’ that
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satisfies the specification

∀
is-tuple[X]

is–sorted–version[X, sorted[X]]

in the theory of ’is–sorted–version’, i.e. in the theory compiled in the ap-
pendix or a sub-theory thereof. Now, in our setting, we do not specify
’sorted’ by a higher-order term but, rather, by the algorithm synthesis pro-
cedure we gradually expand the theory by suitable definitions of ’sorted’
and its auxiliary operations. Of course, formally, the result could be re-
written by a higher-order term. However, we think that our setting is more
natural and the result is more readable.

11. Conclusion We presented a procedure for automated algorithm
invention and verification. The proposed procedure

• is natural
• can also be used as a heuristic and didactic guide for the

development of correct algorithms and their correctness proofs
• uses algorithm schemes as condensed algorithmic knowledge
• exploits the information gained from failing proof attempts of the

correctness theorem
• is able to generate conjectures (requirements on the

sub-algorithms) from failing proofs
• invents verified algorithms that can be used with an infinite

spectrum of possible subalgorithms (all those that satisfy the
requirements)

• emphasizes a layered approach in repeated, small extensions of
theories

• can also be used for extracting minimal requirements for the
concepts in the problem specification and

• can also be seen under the general perspective as viewing
algorithm schemes and problem specifications as functors that
transport requirements on the ingredient auxiliary operations into
correctness theorems (stating that the algorithm defined by the
scheme satisfies the problem specification)

• and can, thereby, also seen as a contribution to the problem of
generating re-usable algorithms.

Algorithms and theorems are only two sides of the same coin. Hence,
algorithm and theorem invention and verification can be handled by the



68 B. Buchberger

same approaches, e.g. the lazy thinking approach. In the case of theorem
invention, knowledge schemes take over the role of algorithm schemes. Also,
it should be clear that the invention of interesting notions and interesting
problems for these notions is another important part of ”mathematical
knowledge management”. The general role of algorithm schemes, knowl-
edge schemes, problem schemes, definition schemes, and data schemes for
mathematical knowledge management will be studied in another paper.

The general subject of ”mathematical knowledge management” has
first been taken up in the ”1st International Workshop on Mathematical
Knowledge Management”, September 14-16, 2001, organized by this au-
thor at RISC, see also the special issue [Buchberger et al. 2003], which
contains some of the papers of this conference. Meanwhile mathematical
knowledge management has seen increasing interest by the international re-
search community. In our view, computer-supported mathematical theory
exploration will be the key technology for future mathematical knowledge
management.
Acknowledgment: Sponsored by FWF (sterreichischer Fonds zur Frderung
der Wissenschaftlichen Forschung; Austrian Science Foundation), Project
SFB 1302, in the frame of the SFB ”Scientific Computing” at the Jo-
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Appendix: Knowledge Base for the Sorting Problem

Definitions

∀
is-tuple[X]


is-sorted-version[X,Y] ⇔





is-tuple[Y]
X ≈ Y
is-sorted[Y]




is-sorted[〈〉]
∀
x
is-sorted[〈x〉]

∀
x,y,z

(
is-sorted-version[x,y,z] ⇔

{
x ≥ y
is-sorted[〈y,z〉]

)

〈〉 ≈ 〈〉
∀
y,y
〈〉 6≈ 〈y,y〉
∀

x,x,y
(〈x,x〉 ≈ 〈y〉 ⇔ (x∈ 〈y〉 ∧ 〈x〉 ≈dfo[x,〈y〉]))

∀
x
x 6∈ 〈〉
∀

x,y,y
(x∈ 〈y,y〉) ⇔ ((x = y) ∧ x ∈ 〈y〉)

∀
a

dfo[a,〈〉]=〈〉

∀
a,x,x

dfo[a, 〈x,x〉] =
{ 〈x〉 ⇐ x=a

x ^ dfo[a,〈x〉] ⇐ otherwise
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∀
y
¬〈〉 Â 〈y〉

In[1]:= ∀
x,x >

〈x,x〉 Â 〈〉
∀

x,x,y,y
〈x,x〉 Â 〈y,y〉 ⇔ 〈x〉 Â 〈y〉

Syntax::sntxi : Incomplete expression; more input is needed.

∀
y
¬〈〉 Â 〈y〉

∀
x,x
〈x,x〉 Â 〈〉

∀
x,x,y,y

〈x,x〉 Â 〈y,y〉 ⇔ 〈x〉 Â 〈y〉

∀
x,y

(x^ 〈y〉 = 〈x,y〉)
∀

x,y
(〈y〉 _x=〈y,x〉)

∀
X

(
is-tuple[X] ⇔ ∃

x
(X = 〈x〉)

)

∀
X

(is-empty-tuple[X] ⇔ (X = 〈〉))

∀
X

(
is-singleton-tuple[X] ⇔ ∃

x
(X = 〈x〉)

)

∀
X

(is-trivial-tuple[X] ⇔ (is-empty-tuple[X] ∧ is-singleton-tuple[X]))

Axioms

∀
x,x,y,y

〉x,x〈= 〈y,y〉 ⇔ ((x = y)∧〈x〉 = 〈y〉))
∀

x,x
〈x,x〉 6= 〈〉

Properties

∀
is-trivial-tuple[X]

is-sorted[X]

∀
is-trivial-tuple[X],is-tuple[Y]

(X≈Y⇔(X=Y))

∀
is-tuple[X]

X≈X

∀
is-tuple[X,Y]

(X≈Y⇒Y≈X)

∀
is-tuple[X,Y,Z]

(X≈Y∧Y≈Z)⇒X≈Z)

∀
is-tuple[X,Y]

(XÂY⇒(Y6ÂX))

∀
is-tuple[X,Y,Z]

((XÂY∧YÂZ)⇒XÂZ)
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