A Symbolic Algorithm for Solving
Two-Point BVPs on the Operator Level x

Markus Rosenkranz ®*, Bruno Buchberger ?, Heinz W. Engl?
a Johannes Kepler University, Research Institute for Symbolic Computation,
A-4040 Linz, Austria

b Johannes Kepler University, Institute for Industrial Mathematics,
A-4040 Linz, Austria

Abstract

We present a new method for solving regular boundary value problems for lin-
ear ordinary differential equations. Unlike existing methods that reduce everything
to the functional level via the Green’s function, our approach works on the level of
operators throughout. We proceed by representing the operators needed as noncom-
mutative polynomials using as indeterminates basic operators like differentiation,
integration and boundary evaluation.

The crucial step for solving the boundary value problem is to understand the
desired Green’s operator as a suitable oblique Moore-Penrose inverse. The result-
ing equations are then solved for the Green’s operator using a carefully compiled
noncommutative Grobner basis that reflects the essential interactions between basic
operators.

We have implemented our method as a Mathematica™ package, embedded in the
THAOREMY system developed in the group of the second author. We show some
computations performed by this package.

Key words: Boundary value problems, differential equations, operator calculus,
noncommutative Grobner bases.

* This work was supported by the Austrian Science Foundation FWF under the
SEFB grants F1302 and F1308.

* Corresponding author. Tel: ++43 732 2468 9926. Fax: ++43 732 2468 9930.
Email addresses:

Markus.Rosenkranz@risc.uni-linz.ac.at (Markus Rosenkranz),
Bruno.Buchberger@risc.uni-linz.ac.at (Bruno Buchberger),
engl@indmath.uni-linz.ac.at (Heinz W. Engl).

Preprint submitted to Elsevier Science 22 November 2003

The present article essentially summarizes the main points of the first author’s
PhD thesis (Rosenkranz, 2003), whose primary and secondary advisors are
the second and third author, respectively. Some early ideas were published in
(Rosenkranz, Buchberger, Engl, 2003), albeit on a purely heuristic basis with-
out implementation: noncommutative Grobner bases were computed by the
MMA package NCAlgebra from UCSD (Helton, Miller, 2003; Helton, Stankus,
Wavrik, 1998) on a per-problem basis rather than using a fixed Grébner basis
as presented here. A sketchy overview of (Rosenkranz, 2003) was presented
by the first author in a poster at ISSAC’03 that is scheduled to appear as a
four-page survey in the SIGSAM bulletin; naturally, this publication does not
contain any algorithms, theorems or proofs.

1 Introduction
1.1 The Notion of Boundary Value Problem

In the engineering world, boundary value problems are ubiquitous: A physical
process is typically described by (ordinary or partial) differential equations,
where suitable side conditions serve to select the desired solution from the
manifold of all solutions. The side conditions usually specify data where it can
be measured or controlled easily—if time is involved, this may be the starting
configuration (initial value problem, IVP); in case of space-based problems, it
is usually some boundary data (boundary value problem, BVP).

Let us make this precise for the case of linear ordinary differential equations
(LODES) in one dimension. We are given a finite real interval [a, b] and a linear
differential operator T defined by

Tu=c,u'™ + ... +c1u +cou, (1)

for all u € C*|a, b]. For the moment, we will restrict ourselves to a completely
smooth setting, so the coefficient functions cy,...,c, are also assumed to be
in C*la, b]; see the remarks in 2.5 for extending this to the C™ or distribu-
tional case. Analytically, the operator 7" is naturally described as acting on
the Banach space (Cla, b], || - ||o) With dense domain of definition C™[a, b]; see
for example Engl, Nashed (1981). For our purposes, however, it will be suffi-
cient to stick to a purely algebraic setting, where the domain of T is C*|a, b],
viewed as a “naked” vector space. Besides that, it is convenient to understand
C™|a,b] and C*[a, b] in a complex setting: the functions have type [a, b — C,
and the scalars range over C.

Given a forcing function f € C*[a,b], we want to solve Tu = f for u €
C*la, b] subject to appropriate side conditions: In the case of initial con-

ditions, we stipulate u(a) = ug,v'(a) = ui,...,u"V(a) = u,_, for given
Ug, U1, - - -, Up_1 € C. Turning to boundary conditions, we introduce for each
1=1,...,n a boundary operator

B; u=pip u™ (@) + ...+ pin_1u'(a) + pinula)
+ Giou™d) + .. 4 G W (D) + iy u(b),

(2)
where the coefficient functions p;;,¢;; are again from C*[a,b]. The corre-
sponding boundary conditions are then By u = by,..., B,u = b, with given
bi,...,b, € C. Obviously, initial conditions are a special case of boundary
conditions: they occur when all ¢; ; vanish and all p; ; are set to unity.

Hence the traditional distinction between IVPs and BVPs may appear strange
to a person coming from the world of symbolic computation. There are, how-
ever, two good reasons for keeping them separate from each other:

e Their qualitative nature is vastly different: We know that IVPs are guaran-
teed to be solvable by Peano’s Theorem as soon as the differential equation
is just continuous. But BVPs may not always be solvable even for a lin-
ear differential equation; in fact, the issue of their solvability is intimately
connected with the Banach space theory of eigenvalues.

e Whereas [VPs are viewed as “one-shot” computations, one usually considers
BVPs as parametrized in the forcing function f.

Although these two issues are actually orthogonal to each other, in the liter-
ature, they are typically combined in way described.

In symbolic computation, we can often ignore the qualitative difference be-
tween IVPs and BVPs; we will also do so in this article. But the issue of
parametrization is crucial for us: It means that we understand a BVP like

Tu=f,
Blu:bl,...Bnu:bn. <3)

as having a symbolic parameter f. As soon as one instantiates f by some con-
crete function like sin, one ends up with an inhomogeneous differential equa-
tion (together with some side conditions for fixing the integration constants).
Of course computer algebra has nowadays plenty of powerful algorithms at-
tacking such problems—even if the underlying equation is substantially more
complicated. However, virtually all such methods rely on concrete terms for
denoting the inhomogeneity f, and they are often tuned to special classes of
such functions.

Hence it is more appropriate to understand (3) as an operator problem: Given
the differential operator 7', boundary operators By, ..., B, and complex num-
bers by,...,b,, we want to find the operator G mapping an arbitrary f €

C*la, b] to the solution w of (3); in the literature (Stakgold, 1979), this is
known as the Green’s operator of the BVP. Note that G may have a perfectly
simple algebraic representation even though w itself may have no representa-
tion at all. (This is already clear on grounds of cardinality: Symbolic solutions
are bound to be countable, whereas C*[a, b] is obviously not so.)

1.2 What Is an “Operator-Based” Method?

The solution method we want to present here works on the operator level as
announced in the title of this article. What do we mean by this? As explained in
the previous section, the natural interpretation of a BVP like (3) is in terms of
operators: Whereas solving differential equations means to search for objects
of type FF = R — C, a BVP amounts to fining an operator, i.e. as object
having the higher type F' — F. Therefore we would prefer a calculus that
yields the Green’s operator G for (3) by performing calculations on various
operators related to it.

As an alternative to such an operator-based method, one can translate the
whole problem to a purely functional setting—and this is precisely what we
find in the literature (Kamke, 1983, pages 188-190). The crucial idea for this
is the following: In the case considered here, G' can always be written as
an integral operator having the so-called Green’s function g as its kernel;
see (Coddington, Levinson, 1955). So

G () = [ol €) 7(6) de ()

for all f € C*][a,b] and x € [a, b]. Hence the problem of searching the operator
G is reduced to finding the function g. (As we will see in the next section,
our method also extracts the Green’s function ¢ in a kind of postprocessing
step. However, this step is optional and may be seen as a concession to the
traditionally function-based language of BVPs.)

While the classical translation approach does have its merits, we can see some
unique advantages in our new approach:

e The operator-based approach has a greater potential of generalization. For
example, the whole theory of Green’s functions presupposes linear differen-
tial operators, and it is much less conspicuous for partial differential equa-
tions. (Of course, our method as stated here cannot be applied to these
problems either. However, we see some chances of adaptation; see Section 4
for a brief discussion.)

e From a conceptual viewpoint, it is more satisfying to solve a problem at
the level where it is actually stated. Of course, in mathematics we often

proceed by translating some problem into another, but uniform solution
methods have the additional benefit of structural simplicity and clarity.

e Besides this, our method may be better in terms of complexity. We have
not yet embarked on a rigorous analysis of this issue, but there are some
indications pointing in this direction: The formula given in (Kamke, 1983,
pages 189) involves Gaussian elimination with functional entries. At least for
the important special case of differential operators with constant coefficients
(see Subsection 2.4), our approach seems to be significantly faster.

1.8 Previous Work

Exact solution methods for linear BVPs are of course not new as we have
pointed out (Kamke, 1983; Coddington, Levinson, 1955; Stakgold, 1979). But
as far as we know, all these methods typically work on a functional level as
explained in Subsection 1.2.

Operator-based methods are routinely used in symbolic summation and inte-
gration of holonomic functions; see (Zeilberger, 1990; Chyzak, Salvy, 1997).
Noncommutative Grobner bases are applied there for elimination in Ore alge-
bras of operators. Unlike for solving BVPs, though, the issue there is searching
for sequences/functions, which are described by suitable annihilation opera-
tors.

Originally we got the inspiration for our method from the paper (Helton,
Stankus, Wavrik, 1998), which describes the use of noncommutative Grébner
bases for simplifying huge terms of operator control theory. Using a lexico-
graphic term ordering, however, one can also employ noncommutative Grébner
bases for solving systems of operator equations, and this is essentially what
we did on a per-problem basis in our early paper (Rosenkranz, Buchberger,
Engl, 2003).

1.4 Structure of the Article

In Section 2, we describe our new solution method for BVPs in detail. Sub-
section 2.1 explains the

2 The Solution Method

2.1 General Setup

The solution method to be described applies to BVPs of the form (3), subject
to the following restrictions:

e We assume that the BVP is regular in the sense that there must be unique
solution. This implies that the boundary conditions be consistent and lin-
early independent.

e We will only cover the semi-inhomogeneous case, meaning that by,...,0b,
are zero. This involves no loss of generality because any fully inhomoge-
neous problem can be decomposed into such a semi-homogeneous one and
a rather trivial BVP with homogeneous differential equation and inhomo-
geneous boundary conditions; see (Stakgold, 1979, page 43).

First of all, let us set up an operator-theoretic formulation of (3). Using the

Green’s operator G, we have to fulil T Gf = fand BiGf =--- =B, Gf =0
for all f € C[a,b]. By definition, this is equivalent to the corresponding
operator equations TG =1and BiG=---= B, G =0.

Before we proceed, we establish the following implicit lambda convention.
Whenever we use a term 7' (usually but not necessarily involving the vari-
able x) in place of a function, we mean the mapping x — T or, in computer-
science notation, the lambda term Az.T'. The differentiation operator D acting
on functions then corresponds to the operation usually denoted by 9/0,.

In order to apply computer algebra methods, we interpret the involved opera-
tors as noncommutative polynomials.! For example, consider the differential
operator in informal notation T' = x® D? 4+ € D + sinx. The coefficient func-
tions cp = 23,¢1 = €%,¢y = sinz can be seen as multiplication operators in
the following sense: Any f € C*la,b] induces an operator M, defined by
Myu = fu for all v € C*[a,b]. Using this notation, the above operator can
be written as T = [2%] D? + [e*| D + [sinz]|, where juxtaposition denotes
operator composition (note that this is consistent with the power notation
for differentiation) and [f] is a shorthand for M;. In this way, any linear
differential operator can be written as a noncommutative polynomial in the
indeterminates D and M with f ranging over a certain functional domain yet

1 In the sequel, we will not make any explicit distinction between a noncommutative
polynomial and its “interpretation” as a linear operator on C'*[a, b] or between an
indeterminate and the corresponding “basic operator”. The context will always
make it clear what we mean. If the reader desires a more rigorous treatment, he
may consult the PhD thesis of the first author (Rosenkranz, 2003).

to be fixed.

Turning to boundary operators, we have to introduce two more indetermi-
nates. For the above operator 7', a typical boundary operator could be Biu =
2u'(a) — 3u(a) + 7u'(b). Let us write L and R for evaluation at the left and
right boundary, respectively, so Lu = u(a) and Ru = u(b) for all u € C*[a, b|
(note that by the implicit lambda convention, these boundary operators ac-
tually map functions to functions, namely the constant functions having the
corresponding boundary value). With this notation, the boundary operator
under consideration would be represented by the noncommutative polynomial
as By =2LD —-3L+7RD

It is now clear how to formulate the differential and boundary operators of (3)
as noncommutative polynomials in the indeterminates D, My, L, R. But this
will clearly not be sufficient for representating the operator G' that is supposed
to solve (3), since the latter must involve integration. Hence we introduce the
following operator A for computing the antiderivative

Af = [" 1 a

of any function f € C*[a,b]. Since we know that the n-th derivative of the
Green’s function in G jumps along the diagonal, we have to include the dual
of A, namely the operator

Bi =[5

such that the integral (4) can be patched accordingly by adding A and B
portions (see Section 3 for examples).

We can now introduce the necessary polynomial ring formally. The domain
3§ used for parametrizing the multiplication operators will be introduced in
Subsection 2.5. For the moment, it is sufficient to think of it as the C-algebra
Erp with basis Exp® = {2"e**|n € NAX € C}; we call this the polyexponential
algebra €rp. (Every algebra 2 considered here is assumed to include the notion
of a distinguished basis referred to as A#. An algebra that is at the same time
a field will be called a field algebra.)

Definition 1 Let § be an analytic algebra. Then the noncommutative poly-
nomial Ting
C({D,A,B,L, R} U{My|f € §"})

will be called the ring of analytic polynomials over §, denoted by An(gF).

Strictly speaking, we should from now on distinguish between the formal op-
erators in An(F) and the actual operators in {U|U : C*[a,b] — C*|a,bl}.
Most of the time, however, it is either clear which of the two concepts we mean

or a certain statement is true for both of them. In order not to overload no-
tation, we will therefore abstain from making this difference explicit—except
for Theorem 5, where it is really crucial.

Using the ring An(F), the operator-theoretic formulation of (3) can now be
written as a system of polynomial equations, but this implies that all the ba-
sic operators occurring as indeterminates are void of any analytic meaning.
Therefore we have to add appropriate interaction equalities for algebraically
capturing their essential properties. For example, the interaction between dif-
ferentiation and multiplication operators is stated in the well-known Leibniz
“equality”. For other operator interactions, the corresponding equalities are
less obvious, and completeness questions (confluence, termination, adequacy)
become urgent.

For the moment, however, we postpone these issues to Subsection 2.5, which
shows the full polynomial system along with the corresponding completeness
theorems. So we assume we have got an appropriate reduction system, which
we will now employ for solving the given polynomial system TG = 1 and
B, G =---= B, G =0. In principle, we could merge these equations with the
interaction equalities, impose a lexicographic term order, and feed the whole
thing into a noncommutative Grébner basis solver; this is essentially what
we have done in (Rosenkranz, Buchberger, Engl, 2003). However, we can do
better than that, using a generic preprocessing strategy that avoids computing
a Grobner basis for each new BVP of type (3); see Subsection 2.5.

2.2 The Moore-Penrose Inverse

The key to simplifying the given polynomial system is some basic Moore-
Penrose theory (Nashed, 1976; Engl, Hanke, Neubauer, 1996). Well-known
from the finite-dimensional case (“generalized matrix inverse”), this method
provides a substitute for inverting a non-bijective linear operator in any vector
space—including the space C*®[a, b] used by us.

Why would we want to do this? For a linear differential operator 7', we have
to solve T'G = 1 for (G, subject to the additional conditions BiG = --- =
B, G = 0, which are supposed to determine the solution uniquely. So we are
searching a special right inverse G' of T'. The usual way of seeing this is that
G is the full inverse (not just right inverse) of the operator 7' by restricting
the domain of the latter to those functions in C*[a,b] that fulfill the given
boundary conditions.

Though theoretically elegant, this interpretation is not adequate for our pur-
poses as it encodes the boundary conditions in the domain definition, where it
is not easily available for computations. Therefore we change our perspective

by seeing the given operator 7" as non-bijective, having all of C*[a,] as its
domain just like the other basic operators. In this case, we can employ the
Moore-Penrose theory for finding generalized inverses of T', and we have to
find some means of selecting the appropriate one among all possible choices
by incorporating the boundary conditions.

This can be achieved by using obliqgue Moore-Penrose inverses (Nashed, 1976,
pages 57-61). The idea is the following: An arbitrary linear operator 7' be-
tween two vector spaces X and Y may fail to be injective, so its nullspace N is
typically nontrivial. In order to cure this, one takes a complement M by choos-
ing a projector P onto N and setting M = (1— P)X; the operator 7T restricted
to M is then invertible as a map from X to its range R. Furthermore, 7" may
fail to be surjective, so R will typically not exhaust all of Y. For repairing
this, one chooses a projector) onto R, calls the corresponding complement
S = (1-Q)Y, and extends (T|,)~" with nullspace S; the resulting operator is
called the oblique Moore-Penrose inverse T;L,Q of T" with respect to the chosen
nullspace projector P and range projector (). The freedom in choosing these
projectors will be crucial for incorporating the boundary conditions.

What makes the Moore-Penrose inverse particularly attractive for symbolic
computation is that it can be uniquely characterized by the four so-called
Moore-Penrose equations. Let us briefly recall them here for reference pur-
poses.

Theorem 1 Let X and Y be vector spaces, T a linear operator from X to
Y. Choose projectors P and Q to the nullspace and range of T, respectively,
and let M and S be the corresponding complements. Then the oblique Moore-
Penrose inverse is uniquely characterized as a linear operator Tt from Y to
X fulfilling the equations

TT'T=T, (5)
T'TTT =TT, (6)
T"T=1-P (7)
TT' = Q. (8)

Furthermore, Tt has nullspace S and range M.

It is already clear that) must be the identity operator 1, because any linear
differential operator is surjective on C*[a, b]. But then (5) and (6) obviously
follow from (8). So we are left with the two equations (7) and (8). It turns out,
however, that we can even restrict ourselves to (7) because (8) follows from it
as we will show now.

Lemma 1 The operator equation TG =1 follows from GT =1 — P, where
P is some nullspace projector for the linear differential operator T.

Proof. Let T* be any right inverse of T (there is always a right inverse or—in
other words—a fundamental solution for 7, and we will construct a particular
one in Subsection 2.4). Then premultiplying GT = 1— P by T and postmulti-
plying by T yields TG TT* = TT* — T PT*. Now by the choice of T*, we have
TT* =1, and since P projects onto the nullspace, we have TP = 0. Hence
TG =1 as claimed. O

As a consequence, we need only consider the equation GT = 1 — P, but
we must take care to choose P in such a way that the boundary conditions
BiG =..-- = B,G = 0 are also respected. Then we can be sure that G is
actually the Green’s operator: Since it is uniquely determined, it must coincide
with the single Moore-Penrose inverse of T' corresponding to that choice of P
that incorporates the boundary conditions.

2.8 Computation of the Nullspace Projector

For that purpose, we use the fact mentioned at the end of Theorem 1, namely
that the range of GG is given by

(1-P)C*®a,b] ={v— Puvlv e C®[a,bl}.

So if we want to ensure that the solution u = G f respects the boundary
conditions Byu = --- = B, u = 0 for any f € C*|[a, b], it suffices to construct
P in such a way that all the v — P v respect them, so we must require

31PU:B1U

(9)
B,Pv=B,v

for all v € C'*°[a, b]. This amounts to an easy task of linear interpolation, which
is solved by the next lemma.

For that purpose, let us introduce some matriz notation (we will use overhat
symbols for denoting vectors and matrices). We write D,, for the operator-
valued vector (1, D, D? ..., D" '). With this notation, the vector boundary
operator B = (By, ..., B,) can be written as (L1 + R#) D, for suitable [, 7 €
R™ ™. In fact, using the notation of (2), these matrices are given by

Pio P11 - Pin—-1 q1,0 91,1 *°° qin-1

l: : : : f:

Pno Pni1 """ Pnn—1 qn,0 9n,1 **° Gnn—1

10

Now we are ready to state a neat formula for computing the nullspace pro-
jector in terms of [,7 and the fundamental matrix associated with the given
differential operator 7.

Lemma 2 Let w be the fundamental matriz of T and let Z, 7 be the boundary
matrices corresponding to B, ..., B, as introduced above. Compute

Proj, (I, 7) =[] (Io* +)" (L1 + R#) D,

where Wy denotes the first row of w and w* and W™ arise from w by evaluation
at a and b, respectively. Then Proj,(l,7) is a projector onto the nullspace of

T fulfilling (9).

Proof. Let T be an operator of the form (1) and let By, ..., B, be boundary
operators of the form (2) with corresponding boundary matrices [, 7. Further-

more, let ¢1,..., ¢, be a fundamental system for 7'; hence the fundamental
matrix © has rows (<p§’), D) fori=0,...,n— 1.

We will now set up a generic linear operator P that projects onto the nullspace
of T and fit it against the conditions of (9). Take an arbitrary v € C*]a, b].
Since the nullspace of T is spanned by ¢i,...,¢,, we must have Pv =
c1(v) 1 + ... + cn(v) @, for some coefficients cy,...,¢, € C depending on
v. Writing this in vector form, we have P v = 104 é(v), which yields the matrix
equation B é(v) = Bv upon substitution in (9). Now

By = (Li+R#) Dy, = (LI + R#) i = 0" + fi~,
so é(v) = (lw* + #~)~' B, which yields P = Proj,({,7) as claimed in the
lemma. 0

Note that that the matriz inversion occurring in the Lemma 2 applies only to
a matrix with numerical constants rather than functional terms.

2.4 Right Inversion

We have now reduced the BVP (3) to the single equation GT =1 — P, where
P is the nullspace projector Projw(f, 7) as defined in Lemma 2 with @ the
fundamental matrix for 7 and Z,f the boundary matrices corresponding to
Bq,...,B,. In order to solve this equation for G, it suffices to find a right
inverse T* of T’; then G can be written as (1 — P)T*. We will construct one
particular such right inverse of T, which we will denote by T*.

It turns out that one can always find right inverses of T" that can be written in
a form analogous to (4) with a binary function ¢g*; in the literature (Kamke,

11

1983, page 74), this function is known as the fundamental solution of the in-
homogeneous differential equation 7'u = f. The fundamental solution plays a
role somewhat similar to the Green’s function: When applying the correspond-
ing integral operator to the forcing function f, it yields a solution u of the
inhomogeneous equation, but it does not incorporate boundary conditions.

In (Rosenkranz, 2003), we have only treated the simple but important case
of linear differential operators with constant coefficients. It turns out that for
such operators, there is also a particularly simple formula for right inversion—
whereas there seems to be no significant advantage when applying the proce-
dure from (Kamke, 1983) to linear differential operators with constant coeffi-
cients.

Lemma 3 IfT is of the form (1) with constant coefficient functions cy, . . ., ¢y,
the operator

T = f[l[em Afe™]

1s a right inverse, where Ai,..., A\, € C are the roots of the characteristic
polynomial of T (repeated according to their multiplicities).

Proof. For arbitrary A € C, the differential operator D — X has [e**] A [e=*7]
as a right inverse as one can see by straightforward computation, using the
product rule of differentiation and the fundamental theorem of calculus (see
Subsection 2.5 for a precise listing of admissible reduction rules). The formula
then follows since

T=(D=M)(D=X)
and operator composition is associative. U

The general case of linear differential operators with wvariable coefficients is
slightly more complicated. But it turns out that right inversion is essentially an
iteration of a procedure typically called “reduction of order” in the literature
(Coddington, Levinson, 1955, page 84).

Lemma 4 Let T be a linear differential operator of the form (1) having fun-
damental system {p1,...,¢n}. Now define the following triangular system
of functions {pi|j = 1,...,n ANk = j,...,n) by recursion. Set p1, = @y
forall k = 1,...,n, and @j1p = (@je/pj;) forall j =1,...,n—1 and
k=j7+1,...,n. Then

T = ®[p~'] with &= H([(pkk] A) and ¢p=c, H Okk
k=1 k=1

1s a right inverse for T.

Proof. The differential operator T'[¢;] annihilates 1 and hence has vanishing
constant coefficient. Then T'[¢;]|A is a differential operator of order n — 1

12

with fundamental system {(@2/01), ..., (on/¢1)'}. Iterating this procedure,
one obtains the zero-order differential operator T'® with ® defined as specified.
Hence T® = [¢] for some function ¢ yet to be determined. Now on the one
hand, we have

T® = ([eal D" + -+ + [er]D + [eo]) [on1] Al a2] A+ - - [onn] 4,

which can be expanded and simplified (see the reduction rules listed in Sub-
section 2.5 to make this precise) to an analytic polynomial with monomials
containing—apart from multiplication operators— only D¥ for k = 0,...,n
or A. But on the other hand, this polynomial coincides with [¢], so the only
monomial left over is the one with D°. And the only contribution of this kind
comes from [c,|D"® by applying the product rule n times, always keeping
the second monomial of the result (see the middle equality for isolating dif-
ferential operators). Thus one indeed ends up with ¢ as stated in the lemma.
O

Note that we must perform division for the case of variable coefficents, so the
analytic algebra over which we work must now be a field algebra (see the end
of Subsection 2.5). A typical example is the algebra of all “rational functions
in exponentials”, namely Q(z, (e’*)\cc+); basis expansion in this algebra is
essentially partial fraction decomposition.

2.5 The Reduction System

Using the above results, we can compute the desired Green’s operator G as
(1 — P)T*, where P is again Proj,(l,#) as in Lemma 2 and T* is the right
inverse specified in Lemma 3 or Lemma 4. However, we might obtain G in a
somewhat unconventional form: For example, in the BVP for the heat equation
(see Subsection 3.1), we have T = D? and B, = L, B, = R. In this case,
Lemma 2 yields P = [1 — x| L + [z]| R, while Lemma 3 gives us of course
T* = A% Hence we have G = (1 — [1 — 2] L + [2] R) A2

This Green’s operator is not of the classical kernel representation (4), and we
cannot read off the Green’s function g associated with it. Using the obvious
simplification L A = 0, we can also rewrite G into A2 —[x] A%. The representa-
tion via the Green’s function in Subsection 3.1 is a third possibility. In general,
there are many different polynomials in An(€rp) with the same interpretation
as an operator on C'*[a,b]. Our goal is to organize rewriting in such a way
that there will always be a unique final result, which will moreover correspond
to the classical kernel representation.

But before doing so, we would like to point out that the issue of representations
is actually peripheral to the original problem of solving a BVP of the form (3):

13

Whatever representation of G we take, when we apply it to a given forcing
function f, we will end up with the unique solution v = G f of the BVP—as
long as the reduction system is sound in the sense to be discussed now.

In order to realize our goal, we have to set up an appropriate reduction system
on the ring of analytic polynomials. As usual the reductions are specified for a
set, of monomials and are to be extended in the obvious way—see for example
(Bergman, 1979). The reduction system should have the following five key

Equalities for
Algebraic Simplification:

Equalities for Contracting
Integration Operators:

[f11g9] = [fg]

[fTA=[[TfTA= A f]

Equalities for Isolating
Differential Operators:

A
ATf1B—=[["f1B+A[[f]
B

DA—=1
DB — -1

[fTA—= [[fTA+ B[S
B[fI1B—=[[.f1B—BJ[[.f]

AA = [[*1]A—A[f1]

DIf1 = [f1D+ /]

AB = [[*1] B+ A[[1]

DL —0
DR —0

BA = [[11A+B[[1]
BB [[1] B— B[]

Equalities for Isolating
Boundary Operators:

Equalities for Absorbing
Integration Operators:

A0 A[fID = —f“L+[f1- ATl
RA— A+B BIfID= " R-[fI-BIf]
LB— A+ B AD— —-L+1
RB —0 BD—+R-1
L= ANL= 1L
RIf1= /R BISIL =LA
) A[f1R— [I'f1R
LR—R BIfIR—[[.fIR
RL—1L AL =1L
RR— R BL—[f1]1L
Table 1: AR—[[1]R
THE GREEN'S SYSTEM | g, [[1] R

14

properties:

e It must be sound in the sense that each polynomial equation becomes a
valid identity of operators when interpreted in the obvious way.

e It must be adequate in the sense that it provides “enough” reductions for
algebraizing all the analytic knowledge relevant here.

e In order to solve the problem of unique representation addressed above, we
require it to be confluent: there is no more than one normal form.

e Besides this, every simplification should terminate, i.e. the reduction system
must be noetherian: there is at least one normal form.

e The normal forms of the reduction system should correspond exactly to the
Green’s functions of the classical kernel representation (4). Hence we will
also refer to these normal forms as Green’s polynomials.

The reduction system in Table 1-—we have called it the Green’s system—
fulfills all these requirements. For a complete proof of this statement, see
(Rosenkranz, 2003); here we will only point out a few basic features of the
proof.

First of all, let us clarify the role of the analytic algebra § already mentioned in
Definition 1; the variables f and g in Table 1 range over its basis §*. Analytic
algebras are simply algebras with a few additional operations fufilling certain
axioms that make them behave similar to their analytic models—just like
differential algebras, which can be seen as halfway between plain algebras and
analytic algebras.

Definition 2 An algebra § is called an analytic algebra iff it has five linear
operations: differentation’ : § — §, integral [* : § — §, cointegral [, : § — F,
left boundary value < : § — C, right boundary value 7 : § — C such that the
seven arioms

(f9) = flg+ fd',

[fr=rfr-r

Lf=f"-1
") =1,
(L) =1,
(fo)==f"g",
(fo)7=f"9"-

are fulfilled.

We observe that the above azrioms are very natural: The first is the product
rule for differentiation, thus making analytic algebras a special case of differ-
ential algebras (where this axiom is usually called the Leibniz rule). The next
four axioms state that the integral and the negative cointegral are oblique
Moore-Penrose inverses of differentiation, having as nullspace projectors the

15

left and right boundary value, respectively (with trivial range projectors in
both cases); cf. the Moore-Penrose equations in Theorem 1. So the operations
< and 7 serve to choose among the oblique Moore-Penrose inverses by fixing
the integration constant. The last two axioms stipulate that f +— (z — %)
and f — (z — f7) be homomorphisms in the algebra §.

As mentioned before, a typical choice for § is the polyexponentials €rp. It
can easily be verified that they form indeed an analytic algebra. Of course
its operations will in general transform basis elements to non-basis elements;
for example, ze® € Exp” becomes e® + ze® € (’Epp\(’ixp# under differentia-
tion. So strictly speaking, the right-hand sides of Table 1 will not constitute
polynomials from 2n(F) anymore, because the latter may only involve multi-
plication operators induced by basis elements. Therefore the reduction rules
are to be understood as containing an implicit basis reduction after apply-
ing them: Any occurrence of a monomial ---[f]--- with f € F\F" is to
be replaced by > ¢; ---[fi] ---, where Y ¢;f; is the basis expansion of f with
non-zero coefficients ¢; € C and basis functions f; € *.

The axioms for analytic algebras play a crucial role in establishing the conflu-
ence of the Green’s system. What we have actually proved is that for every
analytic algebra §, the system of Table 1 establishes a confluent reduction
on the ring of analytic polynomials 2n(F). It is enough to consider the case
§% = §, as one can easily see. By Lemma 1.2 of (Bergman, 1979), it suffices
to prove that all overlap ambiguities of the reduction system are resolvable
(in general, one also has to consider inclusion ambiguities, but by inspecting
Table 1 we see that there are no inclusions in our case). We do this in the
usual manner by showing that the S-polynomial wsp; — pow; reduces to 0 for
any pair of rules ww; — p; and wew — po.

It turns out that there are 233 S-polynomials to be considered, so the task
of doing all these reductions is rather daunting. It is therefore preferrable to
automate this proof. As we have implemented the whole algorithm for comput-
ing Green’s operators in the THIOREMY system (see Subsection 2.6 for some
details), it seems natural to do this also in THIOREMVY—a neat example of
how this system offers support on various levels: Here, on the object level of
computation (using the reduction system for computing as explained below)
as well as on the meta level of proof (verifying properties of the system, like
confluence in our case).

For doing so, we have hand-proved some auxiliary equalities valid in any an-
alytic algebra §. These equalities are mainly integral theorems like

[an =501

see (Rosenkranz, 2003) for details. Tables 2 and 3 show a small fragment of the

16

Therules DA and AMA yield the S-polynomial:

C.)
4

[f1A-D[[" f]A+DA[[f] =

(DA)

[f1A-D[[" f]A+[DA][[] =

i f'|+[ﬂA—mA([£)

[fl+re1a=[(f 1y |a-[f floA =

(DA)

TherulesRA and AMA yield the S-polynomial:

()
ATf1A+B[f1A=R[[f]A+RA[[] =

(RA)

ATf1A+BIT1A=R[[" f]A+[RA][[] =
(RM)

A[[f]+B[[" f]+Arf1A+Brf1A_mA i

(ra)

RA+A[f1A+B[f]A =

Al[4B =[] 1)

(RA)

A[[f1+B[[f]-($H[RA]+A[f1A+B[f1A =

(
—($H A= (1) B+A[[f]+B[[f]+[ATF1A]+BIf1A

(BMA)

~($DHA-$HB+B[[f]+[[f]A+[BITIA] =
~($HA-($HB+B[[f]+B}+U* ﬂA+[‘

0 O

Table 2:
FRAGMENT OF THE CONFLUENCE PROOF

17

Therules BR and RR yield the S-polynomial:

)
v

-BR+[L1]R2 =

(

<z

-BR+M1]R2

(RR)

~BR+($D[RE]-[[1]R =

(RR)

($DR-BR-[[1][R] =

(BR)

(fuR-[BR]-[[1]R =
$DR-[[1]|R-[[IR

0]

(b)

|| «T

® Computed 233 S-polynomials in 129 seconds.
¥ Reduced them in 3144 seconds.
o All of them reduced to zero!

O

Table 3:
FRAGMENT OF THE CONFLUENCE PROOF (CONT’D)

actual confluence proof (everything in these tables is verbatim THIOREMY
output), which covers approximately 2000 lines altogether. In every inter-
mediate expression, the redex is framed by the system in order to improve
readability. The uppercase letters above the equality symbol refer to the cor-
responding rules of Table 1 (the names are derived from the monomial on the
left-hand side, with multiplication operators generically denoted by the let-
ter M); the lowercase letters refer to the auxiliary equalities. The expression
$f, with f € §, is an abbreviation for the “definite integral” [*f + [, f.

For establishing the termination of the Green’s system, we have given two
different proofs in (Rosenkranz, 2003). The more intuitive proof uses the idea
of various termination terms associated with the rules. For example, several
rules decrease the “differential weight” (the number of occurrences of the in-
determinate D), whereas none of the rules increases it. The other proof goes
on a more algebraic line: We set up a suitable graded lexicographic ordering
on the word monoid Q* over Q = {D, A, B, L, R, M}, which is then extended
to a well-ordering on the system of finite subsets of 2*. This well-ordering

18

induces a noetherian strict partial order on 2An(F) by identifying all [f] with
M and taking the support of the resulting polynomial. Hence it suffices to
prove that the reductions are compatible with the induced order, and this is
easily achieved.

Summarizing the previous two results, we have proved convergence (i.e. con-
fluence and termination) for the Green’s system.

Theorem 2 For any analytic algebra §, the system specified in Table 1 con-
stitutes a convergent rewrite system on the ring of analytic polynomials An(F).

As mentioned before, we can also characterize the normal forms (which always
exist and are unique by the preceding theorem), which will turn out to be
precise analogs of the Green’s functions.

Definition 3 A polynomial of An(F) is said to be a Green’s polynomial iff
all its monomials are produced by the rule M of the grammar in Table 4.

Production Rule Name

M ::= ATA| AD | ABD | Monomial Operator

Z:=A|B Integral Operator

Aux=1[f] Algebraic Operator

B:=L|R Boundary Operator

D:=1|DD Differential Operator
Table 4:

GRAMMAR OF GREEN’S POLYNOMIALS

We denote the set of Green’s polynomials by &t (F).

Theorem 3 The normal forms of An(F) with respect to the reduction system
specified in Table 1 are precisely the Green’s polynomials &r | (F).

The proof of the preceding theorem is rather straight-forward, albeit slightly
technical. It is easy to see that any Green’s polynomial is indeed irreducible.
For proving the converse, one takes an arbitrary monomial p € 2n(F)\ &t (F)
and shows that it is reducible, using a case distinction on the first letters of p.
Despite its rather technical proof, the statement of the theorem is actually
very intuitive: Any linear integro-differential-boundary operator must be a
superposition of purely integral or differential or boundary operators (algebraic
operators can be seen as zero-order differential operators). This is clear because
on the “atomic” (viz. monomial) level, integration and differentiation cancel
each other, whereas boundary evaluation collapses the functional range to a

19

single point.

It is now easy to see why a Green’s polynomial allows to read off the cor-
responding Green’s function. Since we know that the “differential weight” is
invariant under the Green’s system, the normal form of a Green’s operator
cannot be of type AD or ABD; hence it must be of type AZA. So each mono-
mial has the form [f]A[g] or [f]B[g] (where f or g may also be 1), thus
contributing the term f(x) g(§) to the “upper” or “lower” part of the Green’s
function, which is defined by the case distinction

upper(z,§) if a <& < <,
9(@,§) =
lower(z,&) ifa<x <£<b,

reflecting the characteristic jump on the diagonal of [a, b] X [a, b].

By a completely analogous process one can also extract a binary function h
from the right inverse T* of the given differential operator T just as one ex-
tracts the Green’s function g from the corresponding Green’s operator G. In
the literature, the function h is known as the fundamental solution of the dif-
ferential equation Tu = f. Its role is similar to g, only that it ignores boundary
conditions: For any forcing function f, the convolution defined by (4), with A
instead of g, yields some solution u of the differential equation Tu = f. Com-
paring this with the relation G = (1 — P)T*, we gain a new interpretation
of the fundamental solution: It is the “Green’s function” associated with the
trivial nullspace projector P = 0 (which can of course never arise from given
boundary conditions).

Before clarifying the relations between the actual operators acting on C*[a, b]
and their formal counterparts in the algebraic structure 2An(g), let us inves-
tigate the latter a bit more. For this purpose, we will now view the results
about the reduction system in Table 1 from a ring-theoretic perspective.

Definition 4 Let § be an analytic algebra. Then &to(F) denotes the Green’s
system, i.e. the set of all polynomials | — r where | — r is a rule of the
reduction system in Table 1 (with the variables f,g ranging over all of F*).
Furthermore, &t(§) denotes the two-sided ideal generated by Bty(F) in An(F);
we call it the Green’s ideal over §.

Theorem 4 For any analytic algebra §F, the Green’s system &vo(F) constitutes
a noncommutative Grébner basis for the ideal &r(F) in An(F).

The notion of Grobner bases was originally introduced in the “classical” con-
text of commutative polynomials by the second author in his PhD thesis Buch-
berger (1965); see also the journal version Buchberger (1970) and a consice
treatment in Buchberger (1998). As discovered by Mora (1986, 1988), the com-

20

putation of Grobner bases can be transferred to noncommutative rings in a
straight-forward way (though it may not terminate in all cases). Actually, there
are several variations on the notion of noncommuative Grobner bases; our us-
age is in harmony with Theorem 8 of Ufnarovski (1998). In our context, the
essential idea of Grobner bases is the confluence of the induced reduction—as
we have already seen before, without using ring-theoretic terminology.

This leads us back to our remarks at the close of Subsection 2.1: It is now
clear why we can avoid the costly computation of per-problem Grébner bases
as in (Rosenkranz, Buchberger, Engl, 2003): We already have &to(F) as a
Grobner basis, and it need not be changed for the different instances of BVPs
considered. Of course, Bty(F) is not a finite Grobner basis since the variables
f and g in Table 1 range over all functions in F#; however, it is finitary in the
sense that it can be described by finitely many parametrized polynomials.

Finally we can now address the questions of soundness and adquacy—how the
formal operators are related to the actual ones. For this, let us first clarify the
correspondence between analytic polynomials and actual operators acting on

C*[a, b].

Definition 5 Let § be an analytic algebra, A an algebra containing §, and
£ a subalgebra of the algebra of all linear operators on A. A homomorphism
I :An(F) — £ will be called an interpretation of An(F) in £ if I([f])(a) = fa
forall f € § and a € A. It is called sound if all the equalities of Table 1 (where
— 1s now regarded as =) are preserved.

If £ is the algebra of all linear operators on the algebra of smooth functions
C*[a, b], we define the smooth interpretation sm of An(F) in £ by setting

sm(D)(u) = o,

sm(A)(u) = 2 = [7u(€) dé,

sm(B)(u) = x = [u(€) dé,

sm(L)(u) = x +— u(a),

sm(R)(u) = & — u(b),
sm([f1)(u) = fu,

where u ranges over C*[a, b], x over [a, b], and f over §. It is easy to see that sm
is indeed sound (actually the equalities of Table 1 are extracted from relations
in £). In a similar fashion, one may also define a distributional interpretation
by using the algebra of boundary-valued distributions Cy *[a,b] instead of
C*la, b]. In fact, all the statements formulated for the smooth interpretation
carry over to the distributional case (including “strong” and “weak” solutions);
see (Rosenkranz, 2003, page 45) for details.

21

Finally we arrive now at the summit of this treatise: the correctness state-
ment for our method of computing the Green’s operator, at the same time
asserting the adequacy of the Green’s system in Table 1. The interpretation of
an analytic polynomial p will be denoted by p (note that all differential and
boundary operators in the problems considered here can be written in this
form).

Theorem 5 Assume we have

e a BVP (3) on the real interval [a,b], given by a differential operator T and
boundary operators By, ..., B,

e subject to the restrictions specified at the beginning of Subsection 2.1,

e and an analytic field algebra § that contains the coefficient functions and the
fundamental system of T (in the case of constant coefficients the analytic
non-field algebra €rp is sufficient).

Now compute

e the nullspace projector P according to Lemma 2,

o the right inverse T* of T as in Lemma 4,

o the normal form G € &t (F) of (1—P) T* with respect to the Green’s system
in Table 1,

Then G 1s the Green’s operator of the given BVP, and G represents the cor-
responding Green’s function g of (4).

Proof. By Lemma 2, P is indeed a projector onto the nullspace of T'. Since T
is always surjective, 1 is the only possible projector onto the range of 7. Now
there is a unique oblique Moore-Penrose inverse of 7" having these projectors;
we will write it as G for some G € 2An(F) yet to be determined.

By Theorem 1, G is also determined uniquely by the four Moore-Penrose equa-
tions (5)—(8). As explained after Theorem 1, we can restrict ourselves to (7)
and (8); finally, Lemma 1 reduces everything to (7), which reads GT =1 — P.
Since TT* = 1 by Lemma 4, postmultiplying by T* yields G = (1 — P)T*.
Hence we may choose the normal form of (1 — P)T* for G, and its interpre-
tation G will be the desired Moore-Penrose inverse.

For any f € C*[a, b], the image u = G f fulfills the given differential equation
T u = f because of the fourth Moore-Penrose equation (8). The range of G is
1 — P C*[a, b] by Theorem 1, and every function contained in this range fulfills
the given boundary conditions by Lemma 2. Hence G f fulfills the given BVP
for any f € C*[a,b], and G must coincide with the desired Green’s operator
due to the regularity assumption. Moreover, G represents the Green’s function
g since (G is a Green’s polynomial; see the discussion after Theorem 3. O

22

2.6 An Implementation

As mentioned before, we have implemented our method in THHOREMVY—a
mathematical software system devloped at RISC under the supervision of the
second author. Based on the computer algebra software Mathematica™, this
system offers support for proving, computing and solving in various mathe-
matical domains. Our implementation for Green’s functions is a good example
of the interplay between these three fundamental activities in mathematics:
For solving a BVP, we compute the Green’s operator by a reduction system
that is proved confluent (see Subsection refssec:redsys for more details).

The core machinery for computing the Green’s operator by our method is con-
cerned with handling noncommutative polynomials—this is mainly addition,
subtraction, multiplication, reduction to normal form. We have implemented
these operations as a separate “basic evaluator” named ReduceNoncommu-
ativePolynomial. Based on THAOREMY, it benefits from the neat notation
facilities available there: One may write the noncommutative polynomials ex-
actly as one would on paper (e.g. denoting multiplication by juxtaposition
rather than xx as in plain Mathematica™).

The basic evaluator for noncommutative polynomials is used for computing
the nullspace projector as in Lemma 2, the right inverse as in 3, and fi-
nally the Green’s function as in Theorem 5. (Currently, we do not support
differential operators with variable coefficients, though it is straightforward
to use Lemma 4 instead of Lemma 3 for computing the right inverse.) All
these applied operations are implemented in another basic evaluater named
GreenEvaluator. In the next section, we will show some computations car-
ried out by this evaluator (note that all the input and output is printed ver-
batim).

3 Sample Computations

3.1 Heat Conduction

The following problem seems to be one of the classical examples that are most
often used for introducing the concepts of ordinary linear BVPs (Stakgold,
1979, page 42). It can be interpreted as describing one-dimentional steady
heat conduction in a homogeneous rod. In its functional formulation (after

23

scaling everything to unity), it means solving

u'=f,
0) = (1) =

for u € C*[0, 1] with a given heat source f € C*°[0,1].

In this example, we have the differential operator T = D?, so the nullspace
is {ax + B|a, B € C}, and finding the nullspace projector P reduces to the
following linear interpolation problem: Given a function v € C'*|[0, 1], find a
linear function P v that agrees with v at the grid points 0,1. In our case we
can do this automatically:

In[1]:= Compute[Projy, by — GreenEvaluator,
using — KnowledgeBase[” ClassicalHeatConduction”]]
Out[1l= L —[z]L+ [z]|R

The other crucial step is to find the right inverse (D?)*. Trivially, this is A2 in
our case, but this is not in normal form. Computing it by our system returns
the normal form:

In[2]:= Compute[(D?)*, by — GreenEvaluator,
Out[2]= —Afz]|+ [z]A

Now it is easy to find the Green’s operator G by computing (1 — P)T* in its
normal form:

In[3]:= Compute[(1 — L+ [z]L — [z]|R)(—A[z] + [z]A),
by — GreenEvaluator,
Out[3]= —Afz] — [z]|B+ [z]A[x] + [z]| B[z]

Of course, we could also compute the Green’s operator immediately (by spec-
ifying the given differential operator together with the list of boundary oper-
ators):

In[4]:= Compute[Green[D?, (L, R), by — GreenEvaluator,
Out[4]= —Afz] — [z]|B+ [z]A[z] + [z]|B[z]

Using the translation procedure described after Theorem 3, this corresponds

24

to the Green’s function

3.2 Damped Oscillations

For a slightly more complicated problem, we take Example 2 in Kralle’s
book (Krall, 1986, page 109); the differential operator of this BVP has damped
oscillations as its eigenfunctions; see (Krall, 1986, page 107). Stated in our ter-
minology, the problem reads as follows: Given f € C*[0, x|, find u € C*[0, 7]
such that

v +2u +u=f,
u(0) =u(r) =0

This time, we will immediately compute the Green’s operator:

In[5]:= Compute[Green[D? +2D + 1, (L, R),

by — GreenEvaluator]

Out[5]1= (1 —7H[e2x]Ale*] — [e7*|Ale®z| + 7 e *x| Ale*x|
— a7 e *z|B[e®*] + 7 [e *x| B[e®x|

Written in the language of Green’s functions, this means that

1
g(z,8) = 7;

3.8 Transverse Beam Deflection

As a final example, let us do a fourth-order problem (Stakgold, 1979, page 49)
describing the transverse deflection u € C*[0, 1] of a homogeneous beam with
given distributed transversal load f € (C[0,1], simply supported at both
ends. Using a linear elasticity model, one ends up with

ul/l/ — f’
u(0) = u(l) =u"(0) =u"(1) = 0.

Again computing the Green’s operator directly, we end up with:

25

In[6]:= Compute[Green[D*, (L, R, LD? RD?),
by — GreenEvaluator]

outl6]l= 3 [z]A[z] — : A[2®] — 5 [2?]Afz] + § [2]A[2?]
+5 [e*14fe] + 5[] B[] - 3 [2]B[a’]
— ¢ [2¥]B + ¢ [2]B[2*] + ¢ [2*] B[]

This corresponds to the Green’s function

sl — 38— 3%+ a8+ ¥ i 0<E<x<],

g9(z,8) =

sré—gal -+’ if 0<z<E<m

4 Conclusion

Judging from the applied point of view, what we have presented in this paper
is of course not—yet—very exciting. We have only considered a rather nar-
row and simple class of BV Ps, namely regular ones for scalar linear ordinary
differential equations. However, we believe that there are some prospects for
generalizing our approach. Naturally, the work necessary for this will become
increasingly more difficult as one climbs up the ladder of generalizations; but
we hope this work will be rewarded by a proportional increase of deep math-
ematical substance.

Let us first look at some straight-forward generalizations; we have discussed
most of these also in (Rosenkranz, Buchberger, Engl, 2003).

e We can investigate systems of differential equations (together with their
boundary conditions) instead of a single one. In the linear case, the resulting
theory is very similar to scalar BVPs, using a Green’s matrix instead of a
Green’s function; see e.g. page 249 in Kamke (1983). Our method should
be extensible to this case in a fairly simple manner. In the worst case, we
have to recede to our original approach in (Rosenkranz, Buchberger, Engl,
2003) via Grobner bases and adapt them to work for vectors of polynomials
rather than single ones. Essentially this amounts to computing Grobner
bases in modules, which is a routine task for commutative polynomials—
see e.g. (Becker, Weispfenning, 1993, pages 485ff)— and should smoothly
carry over to noncommutative ones.

e [t is certainly a much greater challenge to move from ordinary to partial
differential equations. In principle, the algebraization employed in our ap-
proach extends in a straight-forward way, e.g. introducing D, and D, instead

26

of the single differentiation D and analogous operators for integration. Here
one might be able to benefit a lot from the algebraic approach employed in
Riquier-Janet theory and from the symmetry methods of Lie analysis. The
treatment of boundary values must of course be adapted. Besides this, the
analog of right inversion will be far more complex for most partial differen-
tial operators; it might be analogous to the elimination techniques used in
the holonomic approach (Zeilberger, 1990).

e One of the most difficult generalizations is probably the step towards non-
linear BVPs. The reason is that our algebraic model does not lend itself eas-
ily to describe nonlinear differential operators, and a systematic approach
might lead to general rewriting (still with respect to the polynomial con-
gruence), where one needs substitution in addition to replacement. Maybe
this could be handled by a suitable combination of Grobner bases and the
Knuth-Bendix algorithm; see (Bachmair, Ganzinger, 1994) and (Marche,
1996).

e In this thesis we have only considered regular BVPs in the sense that there
is a unique solution, and in this case the Moore-Penrose inverse coincides
with the actual inverse. If the BVP is underdetermined, however, one can
still search for a so-called modified Green’s function; see (Stakgold, 1979,
page 215). Since the modified Green’s function just corresponds to a Moore-
Penrose inverse, our method should be adaptable to this case in a natural
way.

e As a kind of curiosity, we should also be able to handle certain integro-
differential equations. In fact, the Green’s algebra provides a uniform way
of expressing integral as well as differential equations—and their mixtures.

Beyond these rather direct continuations of the research topic treated in this
thesis, we believe that our approach has some intrinsic interest not directly
tied to BVPs of any kind. The essence of our method can be described as
solving problems at the operator level via polynomial methods. This could be
a new research paradigm applicable to various problems of a field that might
be called symbolic functional analysis. Up to now, symbolic methods have
conquered the following two “main floors”: numbers (computer algebra) and
functions (computer analysis); naturally, the third floor would be: operators
(symbolic functional analysis). We have described these ideas in more detail
in (Buchberger, Engl, 2003); so let us just mention here two examples of
problems residing on this third floor:

e Certain problems in potential theory have a flavor that is very similar to
that of BVPs for PDEs, at least when seen from the symbolic viewpoint.
It is therefore natural to ask in how far one could transfer some ideas from
BVPs to the potential setting. In particular, one would like to formulate
an algebraic setup that allows to express the operator induced by the po-
tential function (analogous to the Green’s operator induced by the Green’s
function).

27

e The field of inverse problems (Engl, Hanke, Neubauer, 1996) opens a whole
arena of possible applications for methods of symbolic functional analysis.
Even though one cannot usually expect algebraic solutions for such prob-
lems, the polynomial approach will certainly uncover a great deal about the
solution manifold. In particular, it might be possible to transform the given
problem into a different one possessing more profitable properties.

Pondering these examples, we do hope that it will be possible to develop some
fruitful ideas along these lines in the near future.

References

L. Bachmair, H. Ganzinger, Buchberger’s algorithm: A constraint-based com-
pletion procedure. In J.-P. Jouannaud (ed.), First International Conference
on Constraints in Computational Logis, volume 845 of Lecture Notes in
Computer Science, Springer, New York, 1994, pages 285-301.

Thomas Becker, Volker Weispfenning, Grobner Bases: A Computational Ap-
proach to Commutative Algebra, Graduate Texts in Mathematics, Springer,
New York, 1993.

George M. Bergman, The Diamond Lemma for Ring Theory, Adv. Math., 29,
1978, pages 179-218.

Bruno Buchberger, An Algorithm for Finding a Basis for the Residual Class
Ring of Zero-Dimensional Polynomial Ideal (in German), PhD Thesis, Uni-
versity of Innsbruck, Institute for Mathematics, 1965.

Bruno Buchberger, An Algorithmic Criterion for the Solvability of Algebraic
Systems of Equations (in German), Aquationes Mathematicae, 4, 1970,
pages 374-383.

Bruno Buchberger, ‘Introduction to Grobner Bases, in Buchberger, Winkler
(1998), pages 3-31.

Bruno Buchberger, Franz Winkler (eds.), Gréobner Bases and Applications,
number 251 in London Mathematical Society Lecture Notes, Cambridge
University Press, Cambridge (UK), 1998.

Bruno Buchberger, Heinz W. Engl, emphComputer Algebra for Pure and
Applied Functional Analysis. An FWF Proposal for a New SFB Project
(F13227), 2003.

F. Chyzak, B. Salvy, Non-commutative Elimination in Ore Algebras, Journ.
Symb. Comp. 11, 1997, pages 187-227.

E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill Book Company, New York, 1955.

H. W. Engl, M. Z. Nashed, New Extremal Characterizations of Generalized
Inverses of Linear Operators, Journal of Mathematical Analysis and Appli-
cations, 82 (1981), pages 566-586.

28

H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems,
Kluwer, Dordrecht, 1996.

J.W. Helton, Robert L. Miller, The System NCAlgebra, homepage at
http://math.ucsd.edu/"ncalg.

J.W. Helton, M. Stankus, J. Wavrik, Computer Simplification of Engineering
Systems Formulas, IEEE Trans. Autom. Control, 43(3), 1998, pages 302—
314.

E. Kamke, Differentialgleichungen und Lésungsmethoden (Volume 1), Teub-
ner, Stuttgart, tenth edition, 1983.

A M. Krall, Applied Analysis, D. Reidel Publishing Company, Dordrecht, 1986.

C. Marché, Normalized Rewriting: An Alternative to Rewriting Modulo a Set
of Equations, Journ. Symb. Comp., 11, 1996, pages 1-36.

Theo Mora, Grobner Bases for Non-commutative Polynomial Rings. In
Jacques Calmet (ed.), AAECC-3, Lecture Notes of Computer Science 229,
Springer, Berlin, 1986, pages 353-362.

Theo Mora, Seven Variations on Standard Bases. Preprint 45, March 1988.

M. Z. Nashed (ed.), Generalized Inverses and Applications, Proceedings of an
Advanced Seminar Sponsored by the Mathematics Research Center, Aca-
demic Press, New York, 1976.

Markus Rosenkranz, Bruno Buchberger, Heinz W. Engl, Solving Linear
Boundary Value Problems Via Non-commutative Grobner Bases. Applicable
Analysis, 82(7), July 2003, pages 655—675.

Markus Rosenkranz, The Green’s Algebra: A Polynomial Approach to Bound-
ary Value Problems. PhD Thesis, June 2003. Johannes Kepler University,
Research Institute of Symbolic Computation, A-4040 Linz, Austria.

I. Stakgold, Green’s Functions and Boundary Value Problems, John Wiley &
Sons, New York, 1979.

V. Ufnarovski, Introduction to Noncommutative Grobner Bases Theory,
in Buchberger, Winkler (1998), pages 259-280.

D. Zeilberger. A holonomic systems approach to special functions identities,
Journal of Computational and Applied Mathematics, 32, 1990, pages 331—
368.

29

