The THAOREMY Project: A Progress Report *

B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W. Windsteiger

Research Institute for Symbolic Computation
A-4232 Schlol Hagenberg, Austria

firstname.lastname@Qrisc.uni-linz.ac.at

Abstract

The THIOREMY project aims at supporting, within one
consistent logic and one coherent software system, the en-
tire mathematical exploration cycle including the phase of
proving. In this paper we report on some of the new features
of THIOREMY that have been designed and implemented
since the first expository version of THIOREMY in 1997.
These features are:

e the THIOREMY formal text language
o the THIOREMY computational sessions
(PCS)

e the Prove-Compute-Solve
THIOREMY

prover of

e the THIOREMY set theory prover

e special provers within THIOREMY

e the cascade-meta-strategy for TH3OREMY provers
e proof simplification in THIOREMYV.

In the conclusion, we formulate design goals for the next
version of THIOREMYV.

1 Introduction

In [8] we described the objectives and the design of the
THIOREMY system and the state of the implementation
in 1997. In the present paper, we report on the progress
made in the THIOREMY project since 1997.

The THIOREMY project aims at supporting, within one
consistent logic and one coherent software system, the entire
mathematical exploration cycle consisting of

e introducing new notions (functions, predicates, algo-
rithms) by definitions or axioms

e conjecturing and proving / disproving mathematical
facts about the new notions w.r.t. knowledge bases
consisting of definitions, axioms, lemmata, theorems
etc.

e extracting methods and algorithms from proved facts

*This research is partially supported by the Austrian Science Foun-
dation (FWF-SFB-project FO-1302) and the Upper Austrian Govern-
ment (project “PROVE”).

e applying algorithms to input data.

Hence, in a simplified view, THIOREMY tries to com-
bine the functionality of present mathematical software sys-
tems and theorem proving systems. Worldwide, there are
quite some projects under way that aim at combining the
power of these two classes of systems. Notably, the research
groups integrated in the EU Calculemus Consortium share
the view that this combination is essential for the future de-
velopment of computer-supported mathematics and its ap-
plications. The projects of the Calculemus groups are de-
scribed in [1], [3], [4], [9], [10], [19], [21]. Other projects
with similar objectivess are described in [2], [5], [12], [13],
[14], [18].

The objectives and features that distinguish the
THIOREMY project from the other, similar, projects are
the following:

e We emphasize “theory exploration” over “theorem
proving”, i.e. the goal of THIOREMY is to support
the user in formally developing and proving big por-
tions of coherent mathematical texts (like lecture notes
and textbooks) rather than in proving isolated theo-
rems, see [7].

o We consider both computer-support in the “routine”
reductions of proof problems to known black-box tech-
niques and also the computer-supported invention of
“ingenious” proofs by strong special techniques (e.g.
algebraic techniques) based on nontrivial mathematics.

e We emphasize automated proof generation over auto-
mated proof checking.

e We emphasize, in automated routine proofs, the im-
portance of generating human-readable proof presen-
tations in a “natural style”.

e We integrate proving, solving, and simplifying, as the
main three formal activities in exploring mathematics,
in one coherent system.

e We integrate many different general and special
provers, solvers, and simplifiers into one system, i.e.
THIOREMY is a multi-method system.

e We use a commercial mathematical software system
(Mathematica [22]) as our programming environment
so that THIOREMY is available on all platforms.

e We emphasize the importance of convenient, two-
dimensional, extensible syntax and graphical illustra-
tion.

The new features of THIOREMY on which we report in
the present paper are:

o the THIOREMY formal text language

o the distinction between THIOREMY standard sessions
and THIOREMY computational sessions

e 3 new predicate logic prover that integrates proving,
simplifying and solving steps in a systematic way

e a set theory prover that smoothly fits into the philoso-
phy of this predicate logic prover

e the integration of powerful special provers as, for ex-
ample, the Groebner bases prover and the Gosper-
Zeilberger prover [17]

e tools for extending existing provers by general strate-
gies

e tools for proof simplification.
2 The THIOREMY Formal Text Language
The core language (expression language) of THIOREMY (

[8]) is a version of higher order predicate logic. Expressions
like

<Xl * ni:l,.!.,\)ﬂ)

Y (abAbé = a)

a,b,c€EA

Vo3V |fl] - flell <e

€>06>0 |y—w|<é

are examples of terms and formulae in this language.

However, for composing and manipulating large formal
mathematical texts as for example reports, publications, lec-
ture notes, and monographs, we need to be able to com-
bine the expression language with auxiliary text (labels, key
words like “Definition”, “Proposition”, “Theorem”, etc.)
and to compose, in a hierarchical way, large mathematical
knowledge bases from individual expressions. For this, we
designed and implemented the “THIOREMY Formal Text
Language”.

Here are some typical examples of formal text written in
the THIOREMY formal text language:

Definition[“continuity”, any|[f, z],
continuous[f, z] :& V El v
€30 550 |y—o|<6

Definition[“fprod”, any[f, g, z],
(f * g)lz] = fla] * gle] “f*g’]

Proposition|“continuity of product”, any[f, z],
continuous[f, z] A continuous[g, x] =

13 E 3
continuous[f * g, z] cont™”]

Finally, in order to process knowledge, we provide the
“THIOREMY Command Language” in order to prove

|fTy] — fl=]| <€ “02:”]

propositions, compute values (i.e. simplify terms or formu-
lae), or solve problems, see also Section 2.3.

In the sequel, we will describe the most important fea-
tures of the “THIOREMY Formal Text Language”. The
Formal Text Language contains 3 categories of Formal Text
Elements:

Environments for organizing knowledge in definitions,
propositions, theorems, etc.,

Built-ins for assigning a “built-in interpretation” to certain
symbols, and

Properties for asserting properties of certain operators.

2.1 TH3IOREMY Environments

THIOREMY environments allow to enter knowledge into
the system in a style similar to how definitions, proposi-
tions etc. are given in mathematical textbooks. Consider a
definition like

Definition 1 (Sum of Tuples) For any two tuples X and
Y with | X| = |Y| we define

XeY:=(Xi+Y; 1
® Ktve |) (1)

The ingredients of a structure like this are a keyword
(“Definition”, “Lemma”, “Theory”, etc. .), a label for later
reference (“Sum of Tuples”), one or more mathematical
statement(s) (a formula/term or a defintion of a new func-
tion/predicate), an enumeration of the (free) variables oc-
curring in the statement (X and Y), and, if necessary,
conditions on the variables or relations among them. The
THIOREMY Formal Text Language supports input of the
above definition in the following format:

Definition[“Sum of Tuples”, any[X, Y], with[|X| = |Y]
XY =(X;+Y; “ ?
® (Xt i:l,..'.,|X\) 040]

More abstract, an environment has the form

Keyword][env_label,{any[vars] {,with[cond]}, }

clauser {label1} | keywordl[env_labell]]
{more clauses} {more references}

where all fields enclosed in {} are optional and the | denotes
an alternative. The user is free to choose any string for
env_label and the clause labels label;. Omitting the clause
labels assigns “1”7, “2”) etc. automatically. Labels do not
carry any semantics, they are only used for referring to en-
vironments and formulae in proofs and computations. The
field “any[vars]” declares vars as (the free) variables. Each
variable v in wars can carry a type restriction of the form
“type[v]” (see also the example in Section 3). The field
“with[cond]” tells that the variables must satisfy the condi-
tion cond.

The effect of entering an environment into the sys-
tem is that the environment is transformed into an inter-
nal representation that can be referred to later by Key-
word[env_label]. Knowledge can be grouped using nested en-
vironments, whose structure is identical except that instead
of clauses (formulae with optional labels) there are refer-
ences to previously defined environments. Typical keywords
used for nested environments are “Theory” and “Knowl-
edgeBase” .

2.2 Built-ins and Properties

THIOREMY gives the user full control over the interpre-
tation of any symbol, hence, the automatic interpretation
of symbols by the underlying Mathematica system must be
avoided. For this, the user has the possibility to give im-
plicit knowledge about the interpretation of symbols using
the Formal Text Element “Built-in”. Entering

Built-in[“My ops”,
+ — Times
* — Plus]

defines Built-in[“My ops”] to translate “+” into the the
Mathematica built-in function Times and “*” into Plus.
In addition, we provide various translations of symbols to
their “usual” meaning. Using the Formal Text Element
“Property” in a similar fashion, it is possible to assert
properties of operators (e.g. commutativity of “+”). Each
THIOREMY command then provides the possibility to obey
implicit knowledge of that kind.

2.3 The THIOREMY Command Language

In a THIOREMY standard session, the user has maximum
control over processing knowledge, i.e. the user can for in-
stance specify an explicit knowledge base, implicit knowl-
edge about operators, or the appropriate prove (simplify,
solve) method. Typical THIOREMY commands are:

Prove[Proposition[“continuity of product”],
using— {Definition[“continuity”], Definition[“fprod”]},
by—PCS |,

Compute| (1,2,3) ® (7,1, -3),
using— {Definition[“Sum of Tuples”],
built-in— {Built-in[“Operators”], Built-in[“Tuples”]}], or

Compute][(1,2,3) & (7,1, —3),
using— {Definition[“Sum of Tuples”],
built-in— {Built-in[“My ops”], Built-in[“Tuples”]}],

where the options have the following meaning:

using defines the explicit knowledge base to be used.
built-in defines implicit knowledge about symbols used.

by specifies the method to be applied.

Note the difference in the last two computations: The
first one uses “normal” interpretation of symbols provided in
Built-in[“Operators”] and, thus, results in (8, 3,0), whereas
the latter employs the user-defined interpretation Built-
in[“My ops”] from the previous section, thus resulting in
(7,2,-9).

Moreover, the command language contains administra-
tive commands in order to adjust global settings guarding
the system’s behavior and to maintain global values. Global
settings can be given through the command SetGlobals, its
most frequent use is

SetGlobals[Evaluator—e_method, Prover—p_method] for

defining e_method as the preferred evaluation method and
p-method as the preferred prove method.

The commands Prove and Compute are aware of globally
given explicit and implicit knowledge bases, which are ad-
joined to the knowledge passed through the options using

and built-in. Global knowledge can be given or removed
by the commands Use and DoNotUse, respectively. After

Use[{Definition[“continuity”], Definition[“fprod”]}] the
Prove-call above can be reduced to

Prove[Proposition[“continuity of product”]].

3 The THIOREMY Computational Session

As we saw in the example above, in a THIOREMY stan-
dard session, the user interacts with THIOREMY by, first,
specifying various definitions, axioms, propositions, and
knowledge bases built up from such entities and, then,
calls a THIOREMY prover, simplifier, or solver using the
THIOREMY Command Language.

The explicit indication of the knowledge base used and
the prove (simplifiy, solve) method applied gives maximum
control over the formal development of a mathematical text.
This is an important feature of THIOREMY. Typically,
current mathematical software systems lack this feature,
which is the reason why logically important side-conditions
(like conditions on parameters in integrals etc.) cannot
be modelled correctly in these systems, see however re-
cent extensions to mathematical software systems like the
Assumptions option to some commands in Mathematica 4
or the assume facility in MAPLE.

However, often, the knowledge base used and the method
applied is fixed for a long part of a formal text (for exam-
ple, for an entire section of a book). For such situations,
THIOREMY now provides two facilities: One can either
define the knowledge base and/or the prove method applied
as a global parameter or one can switch to a “computational
session”. In such a session, it is tacitly assummed that every
new definition, axiom, proposition etc. is added to the global
knowledge base and that a standard simplifier is applied to
the expression entered into an input cell. In other words, in
a computational session, THIOREMY behaves very much
the same as Mathematica or any of the other mathematical
software systems. Moreover, the computational session does
not need environments as described in Section 2, since there
is neither need to refer to individual formulae nor to group
them into nested structures.

In order to switch to a computational session, use the
command

ComputationalSession[using—
Definition[“Sum of Tuples”]]

The option using gives the opportunity to import knowledge
available in the standard session into the global knowledge
base for the computational session. Alternatively, one can
import this definition using the command

Use[Definition[“Sum of Tuples”]]

from inside a computational session. Symbols defined in the
standard session are invisible in the computational session
unless they are imported. Instead of entering knowledge
through environments, definitions can be given directly to
the system:

any[is-set[A, B]]:

AeB:={z | z¢ B}
r€A

In general, a definition has the form
{any[vars]{,with[cond]}}:

lhs :=rhs
{ more definitions }
where “any[...]” and “with[...]” have the same semantics
like inside an environment in the standard session (note the
type specification in the example!). Unlike in a standard
session, one can now simply type

{2,3,1,3} © {3,5}

into an input cell of Mathematica and evaluate to {1,2}
without having to (without being able to!) specify any
knowledge base or evaluation method. The knowledge base
is the accumulated knowledge built up during the current
session, the evaluation method is Mathematica’s default ex-
pression evaluator. There is no possibility to give implicit
knowledge about operator symbols.

4 The THIOREMY Prove-Simplify-Solve Prover
for Predicate Logic

Many interesting mathematical notions are defined by for-
mulae whose syntactical structure is characterized by a se-
quence of “alternating quantifiers”, i.e. the definitions have
the structure

p[xa y] <V ? v q[$7 Y. a, ba Cy]

The exploration of theories about notions introduced by
such definitions aims at proving, first of all, an arsenal of
“rewrite rules” for these notions which later will be help-
ful in the subsequent proofs of more complicated theorems
or for the purpose of “computing examples” involving these
notions.

For example, most of the notions introduced in elemen-
tary analysis text books (like the notion of limit, the notion
of continuity, the notion of the growth order of a funtion
etc.) fall into this class. The automated proof of propo-
sitions about such notions is, therefore, a practically im-
portant challenge for future mathematical systems, as was
pointed out in [6]. Meanwhile, this class of propositions is
used by various people as a test set for their systems, see for
example [15].

In THIOREMY , we now implemented a new prover for
predicate logic, which we call the “PCS” (“Prove, Compute,
Solve”) prover that is particularly suited for proving theo-
rems about notions of the above kind, which, in this pa-
per, we call “alternating quantifiers theorems”. The basic
strategy of this prover, which simulates what we believe is
a frequent and natural strategy used by human provers for
routine proofs about alternating quantifiers theorems, is as
follows:

o “Preparation Phase”: In the knowledge base of a proof
situation (for basic concepts like “proof situation”, see
[8]), we distinguish between “rewrite-formulae” and
“non-rewrite-formulae”. The rewrite-formulae are ba-
sically all equalities, equivalences and implications (of
the form A < B) whose left-hand side does not contain
quantifiers nor propositional connectives.

Also, in the knowledge base, all formulae

Y 3 Flz,y]

z oy
Plz] Q[y]

are transformed into

V' QIS[zl] A Flz, Slz]]

Plz]

by introducing a Skolem function S. (Similarly, for
formulae with more alternations of quantifiers).

e “Prove Phase”. We first apply all the usual inference
rules (in our particular version of natural deduction, see
[8]) of propositional and predicate logic to the goal and
the non-rewrite formulae in the knowledge base until
no more such rule can be applied.

o “Compute Phase”: Now we use all the rewrite-formulae
for simplifying the goal and the formulae of the knowl-
edge base (“computing”). Note that rewrite rules that
stem from an implication “expand the knowledge” but
“reduce the goal”. Note also that, in this phase, we
allow “semantical pattern matching” (see next para-
graph), which is much stronger than ordinary syntac-
tical pattern matching. The compute phase may intro-
duce new formulae in the knowledge base or new goals
that can be manipulated as described in the prepa-
ration phase and, also, allow again the application of
rules of the prove phase. Hence, we may need to circle
through the preparation, prove and compute phases a
couple of times (which, in the exceptional case, may
already yield a proof) before we enter the next phase.

o “Solve Phase”: Now we are left with a proof situation
in which the goal has the form

3 Glz,y,...).
2,y

This situation essentially specifies a “find problem”:
We have to find z*,y*, such that G[z*,y",...] is true
under the assumptions collected in the knowledge base.
In this phase, a couple of general rules for transform-
ing the solve problem are applied and then, depending
on the type of the variables z,y, ..., special solvers are
called. For example, if z, y, ... are variables ranging over
real numbers we call (a full or specialized) version of
Collins’ cad-method (see [11]) (which is implemented
in Mathematica version 4.0, see [20]).

“Semantical pattern matching”: We explain this idea in
an example. Assume that, in the knowledge base, we have
the formula

V (lyxt—zxz| <dx(e+|z|+1)+|z|*xe<=

z,y,2,t,0,€
(Jy—z|<dA|t—2| <e€))
and the proof goal contains

| foly] * go[y] — folzo] * go[zo]| < e€o.

Then, by syntactical rewriting, the goal cannot be reduced
because, o cannot be obtained from § * (e + |z| + 1) + |z| * €
by a substitution. However, in this situation, the goal can
be reduced to

o (6 % (€ + |go[zo]| + 1) + | fo[zo]| * € = €oA
| foly] — folwo]l < & Algoly] — go[zo]| < €).

It turns out that the PCS method is quite powerful for gen-
erating, with almost no superfluous search, natural (easy to

understand) proofs for many elementary “alternating quan-
tifiers theorems”. (Note, however, that these “elementary”
theorems give lots of headache to beginning students of
mathematics. Also, they are outside the scope of both
purely algebraic provers like Collins’ cad-method and the
usual general predicate logic provers. Thus, being able to
generate natural proofs for these theorems, in our view, is a
definite step forward.)

‘We demonstrate the method by showing the proof gener-
ated by the PCS prover of THIOREMY for the proposition
introduced in Section 2.

In fact, the text actually produced by the THIOREMY
PCS prover (in a Mathematica notebook) is structured much
more nicely than what we can show here in the narrow
columns of this paper. Also, the actual notebook generated
displays ”nested cell brackets” that can be used to browse
the proof in a ”structured way”, as was explained in [8].

Note that the entire proof including all intermediate
natural language text (i.e. everything between the two hor-
izontal lines below) is generated completely automatically
by the PCS prover:

Prove:

(cont™) f‘z’w (continuous[f,] A continuous[g, =] =
con 95
continuous[f * g, z])

under the assumptions:

T

N (continuous[f,r] &
(c2:)
v 3 Vv
€ 5 Yy
>0 6>0 ly—2|<$

() ¥ ((/ +9)la] = flo] # gla),

V (yst—z*z| <d*(e+|z|+1)+
(dlSt*) ©,y,2,t,0,€
Zz|*e<= (ly—z| <IN |t — 2| <€),

V (min[M1,M2] > m &
(min>) m,M1,M2
M1>mAM2>m),
V (m<MlAm<M2&
(<min) m,M1,M2

m < min[M1, M2]).

We assume

(17 ly] = flz]l < 6)),

(1) continuous[fo, zo] A continuous|go, o],
and show
(2) continuous|fo * go, o).
Formula (1.1), by (c2:), implies

3 - .
@ T3V (Ifoly] = folxo]l <)

E;O >0 \y—my0|<6
By (3) we can introduce a Skolem function such that

v (50[6] > 0) A

(4) 5;0
v (v (| foly] — folzo]| < 6))-
>0 \ly—aol<ole]

Formula (1.2), by (c2:), implies

v .3V (lgoly]l = golwo]| <e).

€ Y
e>0 6>0 |[y—zo|<S

(5)

By (5) we can introduce a Skolem function such that

v ((51[6] > 0) A

(6) 5;0

\Z(\yf (Igo[y]—go[wo]I<e)>-
€>0 My—wmol<dy[e]

Formula (2), using (c2:), is implied by

@v 3V ((foxgo)lyl — (fo* go)lzo]l <e).
€>0 6>0 |y—zg|<s

We assume

(10) €0 > 0,

and show

a3 v ([(fo* go)ly] = (fo * go)lzo]| < eo)-

§>0 |y—zo|<S
We have to find d2* such that

80 >0AN
(12) v

y *
|ly—=zo| <2

(I(fo * go)[y] — (fo * go)[xo]| < €o).

Formula (12), using (f*g), is implied by

0" >0A
a3 v

y *
|ly—=zo| <2

(| foly] * goly] — folzo] * go[zo]| < €o)-

Formula (13), using (dist*), is implied by
3 (62* >0A
d,€

S*(e+|golzoll+1)+| folzoll*e=€q
4y Y (Ifoly] = folzo]l <& A

Iy—w(ﬁ<52*
lgoly] — golzo]l < e))
We have to find d2*, d3*, e1* such that
(03" * (e1™ + |go[zo]| + 1) + | fo[zo]| * e1™ = €0) A

6" >0A
(15) vV (Ifoly] = folxo]| < d5™ A

Iy—mgl\<52* .
|go[y] — golzo]| < €1™).

Formula (15), using (4.2) and (6.2), is implied by

(d3" * (e1” + |go[zo]| + 1) + | fo[zo]| * €17 = €0) A
& >0A
Vo (85" >0 Aly—o| < So[ds°]) A

ly—zo <b2*
(e1* > 0A |y — mo| < d1[er”])),

which, using (<min), is implied by
(85" * (€17 + |go[mo]| + 1) + | fo[zo]| * &1 = €0) A

0" >0A
(16) YV o (85" >0 Ae” >0A
|y*m(ﬁ<52*

|y — xo| < min[§o[d3"], d1[er”]]).
Formula (16) is implied by

(05" * (1™ + |golwo]| + 1) + | fo[zo]| * 17 = €0) A
17 0 >0ANI*>0Ner">0A
(77 v (Iy — ol < minfdofos], &1 [er*T)-
Iy—mg!l<52*
Partially solving it, formula (17) is implied by

(63" * (e1™ + |go[zo]| + 1) + | fo[zo]| * 1™ = €0) A
(18) min[do[ds*],d1[e1*]] >0 A 83" >0 A er* >0 A
(62" = min[do[d5"], d1[e1"]]).

Formula (18), using (min>), is implied by

(63" * (e1™ + |go[zo]| + 1) + | fo[zo]| * €1™ = €0) A
(00[03*] > 0N d1[er*] > 0)Ads* >0 A er* >0A
(02" = min[§o[d37], 61[e1”]]),

which, using (4.1) and (6.1), is implied by

(03" = (1™ + |go[zo]| + 1) + | fo[zo]| * €1™ = €0) A
03 >0Aer”>0A ((52’k = min[éo[és*],él [61*]])

Summarizing, we reduced the proof to a solving problem.
We have to find 2", 03, 1™ such that (19) holds under
the current knowledge. The problem can be solved by
calling the Mathematica implementation of the Cylindrical
Algebraic Decomposition Algorithm. Hence, we are done.
The solution is of the form

0< 03" <

(19)

€0
1+|golzo]l’

€1 = o=(+lgo[zoll)*ds”
d3*+|folzoll ?

(52* = min[éo[é‘g*], 51[61*]].

In fact, the above proof generated by the THIOREMY
PCS prover produces much more detailed information on
the ”solving terms” than is normally done in proofs by hu-
man mathematicians. This information is quite interesting
and would make it possible to formulate a much stronger
version of the proposition, namely a version in which the
dependence of the objects to be found (like €7, 47, d3) on the
objects given (like €g) is explicit. Also, the above proof fol-
lows the style of proving, in which, during the generation
of the proof, full motivation is given why certain construc-
tions are done in the way displayed. This style of presenting
proofs is often considered to be “more pedagogical” than the
style where the constructions are presented “by the teacher”
without any motivation and the student afterwards is left
(with the easy) task of just verifying that the constructions
are appropriate.

However, as soon as this detailed and explicit version of
the proof is generated it would be possible (by a “proof sim-
plification” algorithm) to translate the proof into a version
which suppresses the details of the construction and/or re-
arranges the proof into a style where the constructions are
just given and then verified.

5 The THIOREMY Set Theory Prover

The PCS approach to proving is not limited to general pred-
icate logic provers. It can easily be extended to the design
of special provers, for example a prover for set theory. For
this, we insert special rules for the functions and predicates
of set theory into the prove phase of the PCS cycle:

e z € {T,| P,} can be reduced to 3P, A z =T,
v v

e ACBcanbereducedtoVe € A=x € B

e A=B can bereducedto ACB AN BCA
On the other hand,
(ixeAAA(_:B):xeB

can be used as a rule in the compute phase, i.e. it can
be used to rewrite x € X A X C Y in the knowledge
base into z € Y or to “reduce” the goal z € X to the goal
3 r € A N AC X. Practically, the rule reduces the goal

x € X toxz € Ain case we have A C X in the knowledge
base and to A C X in case we have z € A in the knowledge
base.

We will present an example of a simple proof generated
by the THIOREMY set theory prover, which, for obvious
reasons, is not an isolated prover but combines with the
predicate logic prover: We start out with an arbitrary but
fixed binary relation ~.

Axiom][“Transitivity”, any]r, s,t],
r~sAs~t=r~t “trans’]

Definition[“Equivalence class”, any|a],
la] := {bl b~a} “class”].

We now show, for example, the following lemma:

Lemmal[“Classes inclusion”, anyJa, b],
a~b=la] C|b] “incl’]

Prove[Lemma][“Classes inclusion”], using—
(Axiom[“Transitivity”], Definition[“Equivalence class”]),
by—SetTheoryPCProver |

Note that the entire proof including all intermediate natural
language text (i.e. everything between the two horizontal
lines below) is generated completely automatically by
“Set TheoryPCProver”:

Prove:
(incl) Vb (a~b=la] C|b)),

under the assumptions:

(trans) V (r~sAs~t=r~t),

7,8,t
(class) |a] := {bl b~ a}.
‘We assume
(1) apg ~ bo
and show

(2) lao] € [bo]-

For proving (2) we assume

(3) a3o € |ao],

and show

(4) a30 € |bo].

Formula (3), by (class), implies
(5) a3¢ € {bJ) b~ao}.

From (5) we obtain

(6) a30 ~ ao.
Formula (4), using (class), is implied by
(7) a3 € {bJZ b~bo}.

In order to prove (7) we have to show
(8) a3 ~ bo.

Because the conclusion of (trans) matches the goal (8), we
specialize (trans) to

(9) V (a30 ~ s A s ~ by = a3o ~ bo).

By (9), for proving (8) it suffices to prove
(10) 3 (a30 ~ s A s ~ bo).

For proving (10), it suffices to prove

(11) a30 ~ ag A ag ~ bo.

Proof of (11.1): This formula is identical to (6).
Proof of (11.2): This formula is identical to (1).

6 Special Provers Within THIOREMY : Groebner
Bases Prover and Gosper-Zeilberger Prover

Special provers (solvers, and simplifiers) can be be inte-
grated into THIOREMY. A special prover P for a theory
(i.e. a collection of formulae) T is a prover satisfying the
“Correctness Meta-Theorem for P w.r.t. T7:

For all knowledge bases K and goals G, if P pro-
duces a proof of G under the assumption K, then
G 1is a logical consequence of K|JT.

In fact, some of the algebraic provers we are currently
interested in, like the Groebner bases prover and Collins’
prover, are also complete.

Similarly, the correctness of special solvers and simpli-
fiers for a given theory T is defined.

Typically, the reduction of a proof problem to a strong
special prover (or solver) is a process that deserves expla-
nation in a proof text whereas the actual call of the special
prover (e.g. the computation of a Groebner basis) is not
something the user is interested to see in detail. Rather,
one normally prefers to use these provers in a “black box”
style. We give two examples: The automated proof of uni-
versally quantified boolean combinations of equalities over
the complex numbers using the Groebner bases method and
the automated proof of combinatorial identities using the
Gosper-Zeilberger prover with the extension of this method
by Paule and Schorn, see [17]. Both methods are now ac-
cessible by calls from within THIOREMY, i.e. the proof
problems can be formulated in the THIOREMY formal lan-
guage, the reduction of the proof problems to the black box
methods is explained by natural language text in the proofs
generated and the actual black box computation are then
just presented by their result.

We first show the formal text that produces a proof by
the Groebner bases method:

Formula[“Boolean”,

v ((mz*y—?x*xaé())V(x*y+x+y760)v

@,y
(m2*y+3*m=0)V((—2)*m2+(—7)*m*y+
?xy+adry 4 (—2) %y’ + (=2) xz x>+ “17],
2x2xy” =0)) A (2 + (—z) * y+
xz*y+(—2)*y2+(—2)*m*y2=0))

Prove[Formula[“Boolean”], by— GroebnerBasisProver].

Note that, again, the entire proof including all intermediate
natural language text (i.e. everything between the two
horizontal line below) is generated completely automatically
by the prover.

Prove:

V (e?+y—3xz#£0)V(zxy+z+y#0)V
z,y
(xQ*y+3*x=O)V
(=) 2?4+ (=T xxxy+ 2>+ y+
(1) 23wy + (=2) xy? + (=2) xx + g+
2x 3 xy” =0))A
(w2+(—w)*y+w2*y+(—2)*y2—|—
(—2)>l=gr:>x<y2 :0)
with no assumptions.
The Theorem is proved by the Groebner Bases method.

The formula in the scope of the universal quantifier is
transformed into an equivalent formula that is a conjunc-
tion of disjunctions of equalities and negated equalities. The
universal quantifier can then be distributed over the indi-
vidual parts of the conjunction. By this, we obtain:

Independent proof problems:
x‘v’y (4 (—zxy)+ 2’ xy+—2xy°+
(L.1) —2*x*y2=0)v (—3*x+x2*y¢0)v
(z+y+ary#0)),
V (Bxz+z’+xy=0)V
z,y
(1.2) (=2#2® + —Txzry+a”xy+a®+y+
—2*y2+—2*x*y2+2*x2*y2=0)V
(-3*xzx+2°+xy#0)V(z+y+azxy#0).
‘We now prove the above individual problems separately:
Proof of (1.1):

Here, in the output, the proof of (1.1) is generated. In
this paper, for reasons of space, we do not show this proof.
Rather, we only show the proof of (1.2), which is more in-
teresting because it introduces two slack variables.

Proof of (1.2):
This proof problem has the following structure:
(1.2.structure)
V ((Polyl[1] #0)V
?igolyl[Z] # 0) V (Polyl[3] = 0) V (Poly1[4] = 0)),

where

Polyl[l] = —-3*x+xz°*y

Polyl[2] = z+y+z*y

Polyl[3] = 3%z +z’*y

Polyl[d] = —2#2? 4+ —Txzxsy+a’+y+2®sy+

—2xy? + 25 xy? + 2% 2% xy>.
(1.2.structure) is equivalent to
(1.2.implication)
V ((Polyl[l] = 0) A (Polyl[2] = 0) =
a(jl’golyl[3] =0) V (Polyl[4] = 0)).

(1.2.implication) is equivalent to
(1.2.not-exists)

=3 (((Polyl[1] = 0) A (Poly1[2] = 0))A

@,y

((Poly1[3] # 0) A (Poly1[4] # 0))).
By introducing the slack variable(s) {£4, £5} (1.2.not-exists)
is transformed into the equivalent formula
(1.2.not-exists-slack)

—|§4E|§5 (((Polyl[1] = 0) A (Poly1[2] = 0))A

{—1+ ¢4 Polyl[3] = 0,1+ €5 Polyl[4] = 0}).
Hence, we see that the proof problem is transformed into the
question on whether or not a system of polynomial equations

has a solution or not. This question can be answered by
checking whether or not the (reduced) Groebner basis of

{Polyl1[1], Poly1[2], —1 + £4 Poly1[3], —1 + £5 Poly1[4]}
is exactly {1}.
The Groebner basis is :
{1}.
Hence, (1.2) is proved.

Since all of the individual subtheorems are proved, the
original formula is proved.

We now show the formal text that produces a proof by
the Gosper-Zeilberger method. Note that, actually, this
method is more than a prover, it is a theorem generator
(or, in other words, a simplifier): For a given summation
term, it produces the ”closed form”, i.e. a simplified term
or recurrence. The example we give, shows the power of the
method: It produces a closed form for a sum whose evalu-
ation was proposed as a SIAM REVIEW problem, see [16].

Formula[“SIAM series”,
En (=1)*+1 (k1) (2k)!]
k=1 2k (2k—1)(k+1)12%k!

Prove| Formula[” STAM series”],
by—GosperZeilbergerProver].

Note that, again, the entire proof including all intermediate
natural language text (i.e. everything between the two
horizontal line below) is generated completely automatically
by the prover.

Theorem: If —1 + n is a natural number, then:
X": —(=1)F2 2 (2k)1(1 + 4k) _ - —(=1)"272"(2n)!
N1+ k)W(—1+ 2k) N n!(1+ n)!

Proof:
Let Ax denote the forward difference operator in k. Then

k=1

the Theorem follows from summing the equation

—(—1)F272% (2k)!1(1 + 4k)

(—1)F21+ =2k (2k)1(1 + k)
BRI+ k) (—1+2k) ¢l

B(L+ k)(—1 + 2k)]

over therange k =1,... ,n.

The equation is routinely verifiable by dividing the right-
hand side by the left-hand side and simplifying the resulting
rational function:

(=1)IHEI+ =204+ (a1 4p)1(24+k) (=DF2 2R (ok)1(1+k)
(R C+R)I(—1+2(1+k)) KI(I+k)1(—1+2k)
—(=1)k2—2k (2k)!(1+4k)

EN(1+k)! (—14+2k)

to 1.

7 Extending Existing Provers by Meta-Strategies

Given a prover P, one can apply various strategies for en-
hancing the proving power of P. One of these strategies
is what we call the “cascade”: Intuitively, the idea is that,
given a goal G and a knowledge base K, we let P try to find
a proof. If P succeeds, we stop and present the proof. If
not, we let a “failure analyzer” analyze the proof attempt
and conjecture a lemma L, which could be strong enough to
allow P to prove G from K |J L. Now we let P try to prove
L from K.

If it succeeds we let P try, again, to prove G but this
time under the assumption K J L.

If it fails we let the failure analyzer work on the failing
proof.

More formally, given a prover P and a “conjecture from
failure generator” C, the following recursive “cascade”
may result in a much stronger prover that, in fact, does
not only prove more theorems than P but, on the way of
proving a goal from a knowledge base, gradually extends
the knowledge base by “useful” lemmas:

Cascade[G,K,C,P]:=

proof-attempt=Prove[G,K,P];
if proof-attempt is successful,

then Return[{“proved” K}];
else L=C|proof-attempt];
{proof-value,new-K}=Cascade[L,K,C,PJ;
if proof-value=“proved”,
then Cascade[G,K | L,C,P];
else
if new-K=K,
then Return[{“failed” ,K}];
else Cascade[G,new-K,C,P].

We show the effect of the cascade in the case of a simple
induction prover for natural numbers and a simple conjec-
ture generator that conjectures a generalized equality over
the natural numbers from a special instance of the equality,
which occurs in a failing proof.

Starting from the definition

Definition[“Addition”,
v m+0=0

vV m+nt=m+n)t]

m,n

we might want to prove
Proposition[“Commutativity +”,
V m+n=n+m]
m,n :

This can be tried by calling
Prove[Proposition[“Commutativity +”],
using— Definition[“Addition”],
by—NNEqIndProver]].
With this simple prover, the proof will fail: It generates a

proof attempt that is stuck at the situation where it should
prove (for a constant my)

(F) (0+m1)* =mf

A human reader would immediately conjecture that, maybe,
0 is also a left unit, i.e.

(L) VO+m=m

and that, maybe, if this conjecture is true, the proof of com-
mutativity could go on and could be completed. Producing
the conjecture (L) from the failure line is a relatively easy
process: ”Strip off all identical outer symbols from the left-
hand and right-side terms of (F) and turn the constants
into variables”. With this simple procedure, which we pro-
grammed and called ConjectureGenerator, the call of the
above cascade
Prove[Proposition[“Commutativity +”],
using—Definition[“Addition”],
by—Cascade[NNEqIndProver,ConjectureGenerator] |
produces, successively and without any further wuser-
interaction, five notebooks that contain the following proofs
and proof attempts:

1) A failing proof attempt for proving the goal
Vm+n=n+m

from the knowledge base
Vm+0=m,

V m+nt =(m+n)t.

m,n

2) A successful proof for the goal
VO+m=m
(which is automatically generated from analyzing the
failing proof 1)) from the knowledge base
Vm+0=m,

V m+nt =(m+n)t.

m,n

3) A failing proof attempt for proving the goal
YV m4+n=n+m

from the knowledge base
VO+m=m,
Vm+0=m,

V m+nt =(m+n)t.

m,n

4) A successful proof for the goal
Vat+m=m+m)t

(which is automatically generated from analyzing the
failing proof 3)) from the knowledge base

Y0+ m=m,
Vm+0=m,

V m+nt=(m+n)t.

m,n

5) A successful proof for the goal

Vm4+n=n+m

from the knowledge base
Vat+m=@m+m)t,
7\973 +m =m,
g m+ 0 =m,

V m+nt=(m+n)t.

m,n

Note that, in addition to being able to prove the original
goal, the combination of NNEqIndProver with Conjecture-
Generator in the cascade also automatically produces two
additional, and in fact quite natural and interesting, lem-
mata.

8 Proof Simplification

As a natural strategy, when human provers are confronted
with a proof problem, one tries to find a first version of
a proof, which might be unnecessarily complicated. Then,
one works on the proof found and tries to simplify it in
various ways, for example by extracting similar proof parts
from various parallel branches of the proof or by eliminating
subgoals that did not actually contribute to the ultimate
proof goal. We are implementing such proof simplification
strategies that work, as post-processors, on the proof objects
generated by our provers, in particular the predicate logic
prover.

For lack of space we do not present in this paper examples
of proofs and of their simplified versions (many examples are
available at www.theorema.org), however we explain below
the techniques we are using.

Removing superfluous branches. Certain deduction
steps generate alternative branches of proofs. For instance,
when the goal is the right-hand side of an assumed impli-
cation, one proof alternative is to prove the left-hand side
(which is natural, but may not succeed), and another al-
ternative is to assume the negation of the left-hand side
(which is less natural). By simplification of a proof, only
the branches which are effectively useful for the success are
shown.

Removing superfluous steps. During the search for
the proof some formulae may be generated which finally are
not necessary for proving the goal. By simplification the
deduction steps producing these formulae are removed as
described below. During the generation of the proof object,
auxiliary information is stored showing, for each deduction
step, which existing formulae are used for producing which
new formulae. The proof-simplification routine starts from
the final proof steps and collects backwards those formulae

which have been actually used, while marking the corre-
sponding proof steps. After that, the unmarked proof steps
are removed.

The following simplification techniques are currently un-
der implementation.

Removing duplicate steps. Certain deduction steps
split the proof in several necessary branches (e. g. proving
a conjunction is done by proving each conjunct separately).
It may happen that on several branches the same deduc-
tion steps are repeated. This proof-simplification technique
moves these common deduction steps above the splitting
point in the proof object.

Combining often—used proof steps. For instance, if
the goal is an universally quantified implication, then one
proof step transforms the goal by eliminating the univer-
sal quantifier (the corresponding variables are replaced by
new constants), and the next proof step adds the left-hand
side of the implication to the assumptions and replaces the
goal by the right-hand side. The proof looks more natural if
the two steps are combined into one — and this is currently
done by having one special rule for such goals. However,
since there are many combinations of rules which should be
treated in this way, introducing new rules for each combi-
nation may increase too much the number of rules of the
prover, with negative impact on complexity of the code and
on the performance. Therefore it is preferable to perform
the combination of successive steps in the post-processing
phase, when the proof is already found and only the suc-
cessful branches need to be examined.

Didactical re-arrangement of proofs: It is well
known that, from a pedagogical point of view, one can dis-
tinguish two proof styles:

e The follow-the-invention style: The proof problem is
gradually transformed in such a way that the non-
trivial constructions necessary during the proof are log-
ically well motivated. After the constructions are then
given (by invoking a “solver”) verification of the con-
struction is not any more necessary.

e The present-and-verify style: At certain stages in the
proof, “suitable constructions” must be offered and, af-
terwards, verified by sub-proofs.

One can give pedagocially relevant arguments in favor of
both proof styles. The PCS provers, which we proposed in
this paper, produce proofs in the “follow-the-invention” style
(see the example in Section 4). We will construct a translat-
ing algorithm that translate such proofs into the “present-
and-verify” style so that the user has the option of chosing
in which style he wants to see and study the proofs.

9 Conclusion

We reported on some of the new features of THIOREMY.
The next steps in the THIOREMY project will mainly con-
cetrate on improving the PCS prover(s) and implement-
ing and integrating various special provers described in the
literature that have proven to be particularly successful.
THIOREMY, in its present version (Version 1), offers a
fixed arsenal of provers (solvers, and simplifiers). We are
also working on a major re-design of THIOREMY (Version
2) that will make it possible for the user to formulate his
own provers (solvers, and simplifiers) in a language that will

10

be particularly suited for this task, i.e. will make it par-
ticularly easy to program provers (sovers, and simplifiers)
that, in addition to the abstract proof objects, also produce
natural language intermediate explanatory proof texts.

References

[1] ArmanDO, A., CoGLIO, A., AND GIUNCHIGLIA,
F. The Control Component of Open Mech-
anized Reasoning Systems. In Proceedings of
CALCULEMUS: Systems for Integrated Computa-
tion and Deduction (Trento, Italy, 1999), A. Ar-
mando and T. Jebelean, Eds., Electronics Notes in
Theoretical Computer Science, Elsevier. See also
http://www.mrg.dist.unige.it/omrs/.

[2] BAUER, A., CLARKE, E. M., AND ZHAO, X. Analytica:

- An Experiment in Combining Theorem Proving and

Symbolic Computation. In International Conference on

Artificial Intelligence and Symbolic Mathematical Com-

putation, AISMC-3, Steyr, Austria (1996), pp. 21-37.

BENZMUELLER, C., CHEIKHROUHOU, L., FEHRER,
D., FIEDLER, A., HuanG, X., KERBER, M.,
KoOHLHASE, M., KONRAD, K., MELLIS, E., MEIER, A.,
SCHAARSCHMIDT, W., SIEKMAN, J., AND SORGE, V.
OMEGA: Towards a Mathematical Assistant. In Pro-
ceedings of the 14th Conference on Automated Deduc-
tion (Townsville, Australia, 1997), W. McCune, Ed.,
no. 1249 in LNAI, Springer-Verlag, pp. 252-255. See
also http://www.ags.uni-sb.de/projects/deduktion/.

[4] BErroLl, P. G., CALMET, J., GIUNCHIGLIA, F., AND
HomMmAaNN, K. Specification and Integration of Theorem
Provers and Computer Algebra Systems. Fundamenta
Informaticae (1999). Accepted for publication.

BovEr, R., AND MOORE, J. A Computa-
tional Logic. Academic Press, 1979. See also
http://www.cli.com/software/nqthm/.

BUCHBERGER, B. The Objectives of the Theorema
Project. Talk at the 1996 CALCULEMUS Meeting,
University of Rome, Italy, 1996.

BUCHBERGER, B. Theory Exploration versus Theorem
Proving. In Proceedings of CALCULEMUS: Systems
for Integrated Computation and Deduction (Trento,
Italy, 1999), A. Armando and T. Jebelean, Eds., Elec-
tronics Notes in Theoretical Computer Science, Else-
vier.

BUCHBERGER, B., JEBELEAN, T., KRIFTNER, F.,
MARIN, M., TOMUTA, E., AND VASARU, D. A Survey
of the Theorema Project. In Proceedings of ISSAC’97
(International Symposium on Symbolic and Algebraic
Computation) (Maui, Hawaii, 1997), W. Kuechlin, Ed.,
ACM Press, pp. 384-391.

[8]

BunDpY, A., vAN HARMELEN, F., HorN, C., AND
SMmAILL, A. The Oyster-Clam system. In Proceed-
ings of the 10th International Conference on Automated
Deduction (1990), M. E. Stickel, Ed., Springer-Verlag,
pp. 647-648.

[10]

[11]

[12]

[13]

[14]

18]

[19]

[20]

[21]

(22]

CaApProTTI, O., AND COHEN, A. M. Integrating Com-
putational and Deduction Systems Using OpenMath. In
Proceedings of CALCULEMUS: Systems for Integrated
Computation and Deduction (Trento, Italy, 1999),
A. Armando and T. Jebelean, Eds., Electronics Notes
in Theoretical Computer Science, Elsevier. See also
http://www.nag.co.uk/projects/openmath/omsoc/.

CoLLiNs, G. E. Quantifier Elimination for Real Closed
Fields by Cylindrical Algebraic Decomposition. In Sec-
ond GI Conference on Authomata Theory and Formal
Languages (1975), vol. 33 of LNCS, Springer-Verlag,
Berlin, pp. 134-183.

CONSTABLE, R. L., ET AL. Implementing
Mathematics with the Nuprl Proof Develop-
ment System. Prentice-Hall, 1986. See also
http://www.cs.cornell.edu/Info/Projects/NuPrl.

GORDON, M., AND T.F.MELHAM. Introduction to
HOL: A Theorem Proving Environment for Higher Or-
der Logic. Cambridge University Press, 1993. See also
http://www.cl.cam.ac.uk /Research/HVG/HOL.

Huer, G., KauN, G., AND PAuLIN-MoHRING, C.
The Coq Proof Assistant. A Tutorial. Version 5.10.
INRIA-Rocquencourt, CNRS-ENS Lyon, 1994. See also
http://coq.inria.fr/.

MELLIS, E. The ”Limit” Domain. In Proceedings of
AIPS-98 (1998), R. Simmons, M. Veloso, and S. Smith,
Eds.

PAULE, P. Problem 94-2. SIAM REVIEW (1995),
105-106.

PAULE, P., AND SCHORN, M. A Mathematica Version
of Zeilberger’s Algorithm for Proving Binomial Coeffi-
cient Identities. J. Symbolic Computation 20 (1995),
673-698.

PAuLsoN, L. C. Introduction to Isabelle. Computer
Laboratory, University of Cambridge, 1996. See also
http://www.cl.cam.ac.uk/Research/HVG /Isabelle/.

RicHARDSON, J. D. C., SmAILL, A., AND GREEN,
I. M. System Description: Proof Planning in Higher-
order Logic with A-Clam. In Proceedings of CADE-15
(1998), C. Kirchner and H. Kirchner, Eds., vol. 1421 of
LNCS, Springer Verlag, pp. 647—-648.

STRZEBONSKI, A. Solving Equations and Inequalities
with Mathematica. In Proceedings of the Mathematica
Developer Conference (1999).

TRYBULEC, A., AND BrAIR, H. Computer As-
sisted Reasoning with MIZAR. In Proceedings of the
9th International Joint Conference on Artificial In-
telligence (Los Angeles, CA, Aug. 1985), A. Joshi,
Ed., Morgan Kaufmann, pp. 26-28. See also
http://mizar.uw.bialystok.pl/.

WOLFRAM, S. The Mathematica Book. Wolfram Media
and Cambridge University Press, 1999.

11

