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Introduction to Grobner Bases!

Bruno Buchberger

Research Institute for Symbolic Computation
Austria-4232, Schloss Hagenberg
Bruno.Buchberger@RISC.uni-linz.ac.at

Outline

A comprehensive treatment of Grobner bases theory is far beyond what can
be done in one article in a book. Recent text books on Grobner bases like
(Becker, Weispfenning 1993) and (Cox, Little, O’Shea 1992) present the mate-
rial on several hundred pages. However, there are only a few key ideas behind
Grobner bases theory. It is the objective of this introduction to explain these
ideas as simply as possible and to give an overview of the immediate applica-
tions. More advanced applications are described in the other tutorial articles
in this book.

The concept of Grébner bases together with the characterization theorem
{(by ”S-polynomials”) on which an algorithm for constructing Grobner bases
hinges has been introduced in the author’s PhD thesis (Buchberger 1965),
see also the journal publication (Buchberger 1970). In these early papers we
also gave some first applications (computation in residue class rings mod-
ulo polynomial ideal congruence, algebraic equations, and Hilbert function
' computation), a computer implementation (in the assembler language of the
ZUSE 723V computer), and some first remarks on complexity. Later work by
the author and by many other authors has mainly added generalizations of
the method and quite a few new applications for the algorithmic solution of
various fundamental problems in algebraic geometry (polynomial ideal theory,
commutative algebra). Also, complexity issues have been treated extensively.
The field is still under active development both into the direction of improving
the method by new theoretical insights and by finding new applications.

This article is structured as follows:

In the first section we give a variety of examples demonstrating the versa-
tility of the method of Grobner bases for problems that involve finite sets of
multivariate polynomials.

In the second section, the main idea contained in the notion of Grébner
bases and the main theorem about them, which also leads to an algorithmic

1An earlier version of this paper appeared in the Proceedings of the Marktoberdorf
Summer School 1995, published by Springer Heidelberg, 1997.
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construction of Grobner bases, is explained. The proof of the main theorem
is spelled out in detail.

The third section systematically summarizes the most important immedi-
ate applications of Grébner bases.

1 Grobner Bases at Work

1.1 Example: Fermat Ideals

'The following polynomials are called Fermat polynomials:

o Gl o e

F, ::x”~|—y”—~z”(n21).

Question: Can, from some on, Fy, be expressed as a linear combination

Fn: Z hn,z"JFi

1<i<k é.

with hn; € Qfz,y,2]? In other words: Is F, in Ideal(Fy, ..., I7), the ideal
generated by Fy,..., F;? (This question was rajsed in connection with possible
approaches to solving the Fermat problem. An affirmative but incounstructive
answer, l.e. an answer that did not explicitly construct the hn,i, was given in
(Elias 88). This answer used quite heavy machinery from algebraic geometry.)

Solution by the Grébner bases method: We compute a Grébner basis
' for Ideal(Fy, Fy, F5) and check, by "reduction of F; modulo G”, whether
or not Fy € Ideal(Fy, F, F3). Tt turns out the answer is "ves” . which can be
seent from the fact that the reduction of Fy modulo G yields 0. During the
reduction we ”collect the cofactors”, which yields the representation

Fy =8 - Fy — S1- Fa+ S, - Fs,

where the S; are the elementary symmetric polynomials in Y 2 (Soi=xyz,
Sii=zy+z24yz S, =z4y+z)

By the same method, we can now check whether /5 € Ideal (£}, Fy, F3, Fy).
It turns out that, even, Fy € Ideal(Fy, Iy, Fy) and, surprisingly, again

F5:SQ'F2—31'F3+52'R1.
This leads immediately to the conjecture that, for arbitrary n > 1,
Fn+3 =5 - F, — St - Foir + 5, - Foia. (identitys)

This conjecture can be verified easily by elementary formula manipulation.
(One may want to use a symbolic computation software system for this veri
fication!)




Introduction to Grobner Bases 5

This identity yields the by-product that the ”Fermat idcal” gencrated by
the infinitely many F, (n > 1) is already generated by the first three Fermat
polynomials. Of course, one can now go immediately one step further and
may conjecture that, for the ”generalized Fermat polynomials”

Froni=z1" +...4 Tpot” — 20" (myn 2> 1)

the following identity holds

Pt = 0 (=)™ Sk Ptk (identity,,, )
0<k<m
where the S, ; are the elementary symmetric polynomials in 1, ..., Zm. This

formula can be proved by straight-forward induction on m or by generating
functions. The details can be found in (Buchberger, Elias 1992). Note that
the same identity holds for the symmetric ”exponential sums”. However, the
F,,, are not symmetric and this could be the reason why (identity,,) seems
to have gone unnoticed in the literature.

1.2 Example: Geometry Theorem Proving

(This example is taken from (Buchberger, Kutzler 1986).)

Question: Is the following proposition true?

"In an arrangement of the form shown in the Figure 1, K, L, M are
collinear.”

(In the drawing, A< 0,y > etc. denotes the point A with coordinates 0 and
Y1, etc.)

(The above statement is Pappus’ Theorem and it is well known that it is true.
The point is that one can ask this question about any geometric proposition
whose premises and conclusion, after being described in Cartesian coordi-
nates, can be expressed by multivariate polynomials, and the method given
below will answer the question automatically.)

Solution by the Grobner basis algorithm: An algebraic formulation of
the problem is as follows:

Vyl,...,ylz
(pr(y1s .- s 412) =0 A . A pe(yny---ry12) =0 = (1, - > Y12) = 0)

where py, ..., pe, and ¢ are non-linear polynomials in the variables y1,. .., Y12
that express the premises and the conclusion of the theorem. For example, p:
expresscs the condition that K is on the line AE and has the following form

pl(yl’ oy Y12) = (y7 - yl)ys + Ys Y1-
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Figure 1: Pappus’ Theorem

In our example, the other polynomials are

p2(y1,- -, y12) (y7 — y2)ya + ys v2,
pa(yr, . y12) = (Yo~ ¥1)¥ + Y101,
payty - 012) = (Yo — ¥2)¥a + Y10 Y3,
Ps(y1, -, t2) = (Y — Y2)¥s + Y12 Y2,
Pe(y1, .-y y12) = (y11 — ¥3)ys + Y12 ¥3,
C(yla sy 912) = (ys - y?)(ym - ys) + (Y10 — ys)(yu - y7).

We now inpul the following system of polynomials to the Grébner basis al-
gorithm:

{Pl,---,P(S)C'y_l},

where y is a new variable. It can be shown that a theorem of the above
form is true iff the Grobner basis produced for the above input contains the
polynomial 1. This is the case in our example and, hence, we know that the
theorem is true.

1.3 Example: Invariant Theory

(This example is taken from (Sturmfels 1993).)

Question: Compute all algebraic relations between the fundamental in-
variants for the invariant ring of the cyclic group Z; of order 4, i.e. a set of
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generators for the ring

{f € Clzr, za] | flz1,22) = f(—22,21)}

and represent the invariant xf:cg — mlxg by the fundamental invariants.

Solution by the Grébner basis method: The following polynomials
I = :.Df + x‘g, I, := xfa:%, I = .'1’5:133}'2 + :clxg

form a system of fundamental invariants for Z;y. Now we compute the Grobner
basis of

{-h+ 2tz L+ 222, — L+ 232, + 2,23}

(in the polynomial ring with added slack variables I;, I3, 3) with respect to
the lexical ordering determined by [) < I < Is < 1 < z,. In our case this
yields the set

{13, — 42 — 412 I, — [22 + 23,
... (6 other polynomials in which z; and z; occur)...}

Now, those polynomials in this Grobner basis that depend only on I, Iy,
and I3 generate the ideal of all algebraic relations between [y, I, and f3. In
our case this ideal is, hence, generated by

LT, — 413 — 413,

Furthermore, by reducing any given polynomial ¢ in z,,; modulo {/{]; —
412 — 412, ...} one can check whether or not g is invariant (iff the reduction
yields a polynomial that does not contain z;,z2 anymore) and, if it is invari-
ant, this reduction yields a representation of ¢ in terms of the fundamental
invariants. In our example, the reduction of 27z, — ;2] yields [?I3 — I 15.

1.4 Example: Systems of Polynomial Equations

(This example is taken from (Buchberger, Kutzler 1986)).

Systems of multivariate polynomial equations are pervasive in all areas of
engineering. For example, consider the simple robot from Figure 2.

After appropriate coordinatization (using the Denavit-Hartenberg approach),
the relation between the angles d; and d; at the links of the robot and the
position of the gripper (described by the coordinates p,, py, p.) and its orienta-
tion (described, for example, by the Euler angles ¢, 8, 1) can be characterized
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Figure 2: Simple Robot.

by the following system of polynomial equations:

C1Cy — CfCiCp — 848y =

° o

-

81Cy — SfCi1Sp ~ CfSp =

82+ 8i¢p, =

-

o o

—C182 — CfCi8p + S1Cp
—8182 T+ 55C1Spy — CpCp =

Co — 845p =

L el

81 — €58 =

Ct -f-SfSt =

o o

C; =

<

lyeyey —pe =
323162“1% =
lasz +1 —p, =
A4si-1 =
ca+si—-1 =
2 2__1 —
Cf+3j =
cf—{—sf-1 =

2 2
cp+sp 1

- -

-~

-

<

_OQ(D\FDOQO

Here, c;, 81, ¢2, 52, ¢f, 8, Ct, 84, Cp, S, are the cosines and sines of the angles dj,
day, @, 8, ¢, respectively. These values are algebraically related by the last
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five additional equations. The arm lengths {; and [, are parameters. The
kinematics problem asks for finding the value of some of these variables if the
value of the rest of the variables is given. Because of the limited degree of
freedom, in this example, we can only give the value of two of these variables.
The others will then be determined. For example, we may fix p, and p, and
ask for suitable values for the other variables.

Solution by the Grobner basis algorithm: If we input this system of
polynomials to the Grobner basis algorithm (setting the "ordering parameter”
to the "lexical ordering” determined by ¢; < ¢ < 51 < 859 < py, < ¢f <
¢ < ¢, < 8§ < 8 < s, and taking pg, ps, 1, and [y as parameters), we obtain
the following output:

&+ Q1

¢z + Q21
s+ Qs

52+ (4

py + 5181
C? + Qs

¢ =

e+ Qrsicy =
sf + Qscisicy
st + Qgsicy
sp + Quocis1cyr =

~

It

-~ ~

~

~ ~

Il

~

R e e Y e == B = B = R = =

~

-

where the Q; are rational functions in p,p, and the parameters /1, ly. The
Grébner basis produced has the remarkable and useful property that it is
"triangularized”, i.c. its first equation is univariate in the lowest variable ¢,
i.e. all the possible valucs for ¢; can be determined from this equation. The
second equation contains ¢; and ¢; and, in fact, ¢; is "explicit”. Thus, for each
value of ¢; a corresponding value for ¢, can be determined and so on. Also,
the Grobner basis still contains p,, p, and the parameters {;,{; in "symbolic
form”.

Of course, in this simple example, the "symbolic solution” could also be
derived by a reasonably skillful analysis of the drawing. However, the Grébner
basis algorithm works in all situations and always results in a ”triangularized”
system.
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2 The Main Theorem on Grobner Bases

2.1 Polynomials

Let N be the set of natural numbers including zero. The variables i ,j, &,
I, m, n will range over N. Let (K, +, 0, —, -, 1, /) be a field, let n € N,
and let z,...,z, be indeterminates. By (K[z1,...,z,], +, 0, —, -, 1) we
denote (any of the infinitely many isomorphic representations of) the ring of
polynomials over K with indeterminates z1,...,z,. Furthermore, [z, ..., z,]
will denote the set of power products (i.e. monomials with coefficient 1) over
the indeterminates z;,...,x,. Throughout this paper, (K, +, 0, —, -, 1, /),
n, and z1,...,z, will be fixed and we will also use the abbreviations

T := [331,...,33n],
P = Klzi,..., 2]

Note that, in this paper, we use the symbols ”+”, ”0” etc. both for the
operations in the original field and for the operations in the polynomial ring.
In addition, we will use ”-” also for scalar multiplication between field elements
and polynomials. (In fact, with this additional operation, the polynomial ring
becomes a vector space and even an associative algebra over the field.) This
overloading of operation symbols will not cause any confusion since we will
stick to the following additional type convention: The variables a, b, ¢ will
range over K; p, ¢, r, but also f, g, A will range over P; and ¢, u, v will range
over T. The variables ' and G will be used for subsets of P.

With some care, all these variables will also be used for ranging over finite
sequences of elements from the respective sets. For any set Y, Y™* will denote
the set of finite sequences over Y. If y € Y™, y; is the i-th element and |y| is
the length of y, respectively. Of course, if y € Y* then y; € Y.

On T, we consider the following three additional operations:

tlu <= uis a multiple of ¢,
t/fu =t divided by u (in case u|t),
LCM(t,u) := the least common multiple of ¢ and .

On P we introduce the following structural operations:

C(p, t) := the coefficient at ¢ in p,
M(p, ¢) Clp,t) - 1,
8(p) = {t| Clpy) # 0}

(For M{(p, t) and S(p) read "the monomial at ¢ in p” and "the support of p”,
respectively.)

i
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The theory of Grobner bases will be formulated independently of any par-
ticular representation of the domain of polynomials. However, in our examples
we will always use the "ordinary” representation of polynomials as arithmeti-
cal terms in "fully expanded form” as, for example, ”—3xy*z + 3/2z%y +
5/3y=?".

Formal text (definitions, theorems, proofs) that is followed by informal text
will be terminated by the symbol 0.

2.2 Polynomial Ideals

Definition (Congruence and Ideals):

g=rh = FpeP IfeF(pl=IflrAg=h+ > p-f)

1<i<lpl
Ideal(F) := {¢ | g=r0}.

(For f =p g read ”fis congruent ¢ modulo ¥”. For Ideal(F') read "the ideal
generated by F”.)

2.3 Admissible Orderings on Power Products

Congruence modulo an F is a nonalgorithmic notion: For deciding whether
or not ¢ =g h, one could try to compare coefficients in the presentation
g=h+3 p;- f; and then use linear algebra. However, a priori, it is not clear
how big the degrees of appropriate p; might become. In (Hermann 1926)
bounds for the degrees were derived and, thus, in principle, ¢ =g h could be
decided algorithmically.

However, we are heading for a different approach which will allow us to
solve a broader class of problems in polynomial ideal theory and yields algo-
rithmic decidability of congruence modulo arbitrary F' as a by-product. The
first step towards this goal is to replace congruence by "reduction”, which
can be viewed as a kind of "directed congruence”. For this purpose, we or-
~ der the power products (and thereby also the polynomials) so that we will
later be able to replace power products by "lower” polynomials modulo F.
Certain special orderings (”total degree” orderings) on power products were
used in algebra already at the beginning of this century, for example by F. S.
Macaulay. Grobner basis theory works, however, with respect to any "admis-
sible” ordering, as has been noticed first in (Trinks 1978).

Definition (Admissible Ordering): Let < be a total ordering on T.
Then,

< is admissible (<= Vt#1 (1 < 1),
Vi, u,v (t <u=>1-v < u-v). (monotonicity)
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Examples of Admissible Orderings: The "lexical” ordering defined by
¢ < y orders the power products in [z, y] in the following way: 1 < 2 < z?
<z <<y <ay~<aly <. <y <zy? <z < ...

The ”"total degree” ordering defined by z < y orders the power products
in {z, y] in the following way: 1 < 2z <y < 2% < ay < 3? < #° < 2%y <
my2—<y3<$4%....

Admissible orderings on T have two important properties:

Proposition (Properties of Admissible Orderings): Let < be an ad-
missible ordering on T. Then,
Vi,u (tju ==t < u), (|-compatibility)
=~ 1s Noetherian.

(A rclation is Noetherian iff there are no infinite descending chains w.r.t. the
relation.)

Proof: The proof of |-compatibility is immediate using the definition of
admissibility. The proof of Noetherianity can be given by using a combinato-
rial lemma known as Dickson’s lemma introduced in (Dickson 1913), see for
example (Becker, Weispfenning 1993), p. 163.

2.4 Order Dependent Decomposition of Polynomials

Given an admissible ordering < on T, we can now introduce a couple of
operations on P that decompose polynomials into various constituents:

LPP.(p) := max.S{(p),

(
LC«(p) = C(pLPPL(p)),
R-<(P) = p— LML(p),

H(p,t) = Z Clpyu) - u,
uES(p)/\u)—!

L<(p,t) = Z C(p,u) - u,
uéS(p)/\t)—u

B.<(p, t],tg) = Z (:(pa u) “U,

uES(}))/\iﬁ-’u)'fz

(If < is clear from the context, we will omit the subscript < at these opera-
tions. For LPP(p) etc. read "the Leading Power Product of p”, "the Leading
Coefficient of p”, "the Leading Monomial of p”, "the Remaining part of p”,

3
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"the part of p Higher than t”, "the part of p Lower than t”, "the part of p
Between ¢, and t,”, respectively.)

Of course, for any p and ; > ts,

p=H(p,t1) 4+ Clp,t1) -t + Bp, ta, b2) + C(p,ty) -tz + Lp, t2).

2.5 Admissible Orderings on Polynomials

Any admissible ordering < on power products can be extended to a partial
ordering on polynomials in the following way.

Definition (Extension of Admissible Ordering): Let < be an admis-
sible ordering on T.

p < q = 3t (H(p,t) = Holg,t) A L€ S(p) At €S(q)). O

In general, the extension of < 1s not any more & total ordering. However, 1t
is Noetherian, which is important for our algorithmie perspeclive:

Proposition {Properties of Admissible Orderings): let < be the ex-
tension of an admissible ordering to P. Then,

< is a partial ordering,

< 1s Noetherian,
Vp#0(p>=0).

Proof: Easy from the definitions. For proving Noetherianity of < on P, one
uses Noetherian induction w.r.t. < on T.

2.6 Reduction Modulo Polynomials

~ From now on, let an admissible ordering < on T (and, hence, on P) be fixed.
We will now define a binary relation "reduction modulo a set F of polynomi-
als” and a corresponding reduction algorithm that reduces a given "reducible”
polynomial, modulo F to a polynomial which is smaller w.r.t. <. It will turn
out that the reflexive, symmetric, transitive closure of this reduction rela-
tion is identical to ideal congruence modulo F'. However, reduction brings in
an algorithmic flavor. Reduction modulo F can also be viewed as a sort of
generalized polynomial division with respect to divisors in F.
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Definition (Reduction Modulo Polynomials):

g—ieh == t€S(g) ALPP(f)|t A h =g~ (M(g,t)/LM()) - f).
g—rsh = JteS(g) (g —=s:h).
g—=rh = 3If€F (¢g-;h).
9, = ~dh (g —=rh).
(For g =4+ h, g =>4 h, g —F h and g, read "g reduces to A modulo f using

t”,7g reduces to h modulo f”, "¢ reduces to & modulo F” and "¢ is reduced
modulo 7, respectively.)

Example: Let < be the total degree ordering defined by =z < y and let
g = 2%y + 3zy* — 5z, fi := 2y — 2y, fy := 2y* — 22. Then, for example
G fa2 b= g — (3zy?/ay) - fr = 2% + 6y% — 5z
but also
g 2 pazye b =g — ($2y3/$y) -fh = 2:1393 + 3xy2 - Sx
and also
G a2y ha =g — (2%y%/29%) - fo = 1/22%y + 3zy® — Ba.

We will now show that reduction is Noetherian, which is important for obtain-
ing an algorithm that computes reduced polynomials modulo a polynomial
set F'.

Proposition (Noetherianity of Reduction Modulo Polynomials):

g—rh=g>h.

—p 18 Noetherian.

Proof: If ¢ —;, h, then & = H(g,t) + 0-t + r, where r := L(g,t) —
(M(g,t)/LM(f)) - R(f). By |-compatibility and monotonicity of <, LPP(r)
=< t. Hence, H(g,t) = H(h,t). Furthermore, ¢ € S(g) but ¢ ¢ S(h) and, thus,
g > h. Now, since < is Noetherian, also —z must be Noetherian.

Let —% be the reflexive and transitive closure of — . By the Noetherianity
of -—F and by the fact that the existence and selection of suilable ¢ and f in
the definition of — g can of course be handled algorithmically, "by iteration
of this selection process”, we can easily design an algorithm "RF” with the
property stated in the following proposition. We omit the straight-forward
details of this algorithm.
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Proposition (Property of Reduction Algorithm):
g =% RF(F,9),
RF(F, g)p-

(For RF(F, g) read "a Reduced Form of ¢ modulo £7.) O

In fact, we can get out more information from these iterated selection steps.
Namely, we can collect the appropriate multiples of the polynomials in F
that were selected in the individual reduction steps so that, at termination of
RF, we will also have accumulated polynomial ”cofactors” available such that
RF(F,g) can be represented as g plus a linear combination of the cofactors
with the polynomials in . More formally, we have an algorithm ”Cofactors”
that satisfies the following property:

Proposition (Property of Cofactor Algorithm):

RF(F,g) = g+ Y Cofactors(F,g); - f.
fEF

(For Cofactors(F, g) read ”the cofactors of the reduced form of g modulo
F”-) D

Reduction modulo polynomials has a couple of useful elementary propérties
that will play a crucial role in Grébner bases construction.

Proposition (Compatibility of Reduction):

a£ 0N fi=a fo = ==, (monicity)
g—osh = a-t-g—5a-t-h, (product compatibility)
g—sh = dq(g+p—=7a+}h+p) (sum semi-compatibility)

Proof: Monicity and product compatibility are straight-forward from the
definitions. Because of monicity, in the sequel we will be able to restrict
our considerations to monic polynomials f, i.e. polynomials whose leading
coefficient is 1. This will make the presentation slightly simpler.

Now assume that g —;; h, and consider an arbitrary p. Define u :=
t/LPP(f). Of course, h = g— C(g,%) - u- f. Now

f= LPP(f) + R(f),

= H(g,t)+ C(gt)-t +Lig1),

= H(g,t) + 0-¢ + L(gat) - C(g,t) cuc R(f))
= Hp,t)+ Clpt) -t + Lipt).
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We now have three cases:
Case C(p,t) = 0: In this case, g+ p =1 g+p—Clg,t) - u- f=h+p.
Case 0 # C(p,t) = —C(g,t): In this case, g+p = h+pa§:C(p,t)-u-f s h+p.
Case 0 # C(p,t) # —C(g,t): In this case,
g+p—r9+p—(Clg, ) +C(p, 1)) u-f=h+p—Clpt) u-f < h+p0O
Note that sum compatibility, 1.e.

g—rrh=g+p—;h+p,

does not hold in general. This fact is the reason for additional technical dif-
ficulties encountered in the proof of the main theorem for Grobner bases (in
comparison with analogous situations in general rewriting),

Congruence and reduction are intimately related. For expressing the relation,
let now ¢—7% denote the reflexive, symmetric, and transitive closure of —p.

Proposition (Relation Between Reduction and Congruence):

g = h < g+—7%h

Proof: ”<«=": This direction is easy. Just notice that, if ¢ —; h, then %
results from g by subtracting a multiple of f.

»—7: For this direction wc observe, first, that ¢ =p h implies that, for
certain a € K*, t € T*, f € F* with |a| = |t| = |F],

g=h+ > a-ti fi

1<i<al

Now one can proceed by induction on |a| using sum semi-compatibility. O

(If you have the feeling that the direction *==" in the above proposition,
and sum semi-compatibility, is trivial then you should better go back to the
definition of —f and study it carefully. The point is that g —; h entails that
h=g+a-u- f for some a and u with the additional property that a power
product ¢ € S(g) is "cancelled” and g > A . In contrast, if h =g+ a-u- f for
some general a and u, we cannot conclude at all that any cancellation takes
place nor that g > h. Therefore the above lemma is non-trivial.)

The above relation does not yet help us deciding whether or not g = h.
We were much better off if we could prove, for example,

g=rh < Jp(g—rp&rh)
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because this equivalence would allow a ”directed” search for an appropriate
p in order to decide whether or not g =r A.

However, this equivalence is not true in general.

Now, those sets F' for which the above property is true are called Grébner
bases. Those are the sets for which ¢ «+—3 h (and, hence, ¢ = h) can be
decided by a directed search. Fortunately, we will be able to prove that any
F' that does not satisfy the above property can be transformed (algorithmi-
cally) into an ”equivalent” Grobner basis (7, i.e. into a Grébner basis G for
which =g = =p. This will provide a uniform methodology for tackling quite a
few fundamental problems in polynomial ideal theory by structurally simple
algorithms.

Before we go into the details of this program, we will summarize a few
fundamental properties of general reduction relations that do not depend on
the special context of polynomials.

2.7 Some General Properties of Noetherian Reduction
Relations

In this subsection, the variables z,y, z, w range over an arbitrary set X. Let
— be a binary relation on X. Let ¢—, —* and +—" denote the symmetric,
the reflexive-transitive, and the reflexive-symmetric-transitive closure of —,
respectively. Furthermore, g :<= —3y(z — y). Furthermore, let NF be a
function on X such that Vz (z —* NF(z)) and V& (NF(z)). For "NF(z)”

read "the Normal Form of z produced by —”. Finally, z |* y :<= Jz (z =~
z «*y). (For z |* y read "z and y have a common — successor”.)

Proposition (Church-Rosser Property, Confluence, and Local Con-
fluence): Let — be Noetherian. Then the following properties are equiva-
lent:

Ve,y (e — "y =z 1" y), (Church-Rosser property)
Vz,y(z «+—" y = NF(z) = NF(y)), (Church-Rosser normal form property)
Vz,y,2 (z <" 2 -y =z |" y), (confluence)
Ve,y,2 (2 ¢z =y =z " y). (local confluence)

Proof: The equivalence of the first three properties is easy and, of course,
confluence implies local confluence. The converse is the so-called Newman-
- Lemma introduced in (Newman 1942) whose proof, by Noetherian induction,
can be found for example in (Becker, Weispfenning 1993). O

" The test for checking the Church-Rosser property can be simplified further.
For this, let < be a partial ordering on X.
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Definition (Connectibility):

<w
Ty = Jzec X

($221<’W/\
V1Si<|2|(2{(-‘“*>22‘+1<w)/\
2 =y < w).

<w
(For z +—* y read "z can be connected with y by — staying < w".)

Proposition (Generalized Newman Lemma): Let < be Noetherian
and — C >. Then the following two properties are equivalent:

Ve, y,2(2 2z 2y =z |* y), (local confluence)
<z
VZ,y,2(x 2z =y ==z " y). (local connectibility)

Proof: This version of Newman’s lemma and its proof, by Noetherian in-
duction, is implicit in (Buchberger 1979). 1 formulated and proved the lemma,
explicitly in (Winkler, Buchberger 1983). O

When we apply the above proposition to the case of reductions modulo poly-
nomial sets F', we see that ”g «—} h” and, hence, g = h” could be decided
algorithmically by checking whether or not RF(F,¢) = RF(F, h) if —F had
the Church-Rosser property. This motivates the following definition of the
concept of Gréobner basis.

2.8 Grobner Bases

Definition (Grébner Basis):

£ is a Grobner basis :<=> -y has the Church-Rosser property
(le.Vg,h(g+—3rh=g |} h).0O

It is relatively easy to give an inconstructive proof that
VF 3G (G is a Grobner basis and ¢—h=¢—7).

However, what we want is an algorithm that constructs G from F. For this
we first try to develop an algorithmic test for deciding whether or not a given
£ is a Grébner basis. By Newman’s lemma, for this it is sufficient to test, for
all g,k, and ¢q with ¢ < ¢ ~>F h, whether or not there exists a p such that
g —F p <5 h. However, still, this requires infinitely many tests.

The crucial idea in Grébner basis theory is the observation that these in-
finitely many tests can be replaced by the consideration of finitely many ”crit-
ical situations” that can be characterized by the so-called ”S-polynomials” of
F.
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2.9 S-Polynomials

Definition (S-Polynomials): Let f}, f; be monic polynormials. Then,

SP(f1, fa) ==y - 1 — ug - fo,

 where uy = w/LPP(f), up := w/LPP(f), w := LCM(LPP(f,), LPP(f3)).

(For SP(f1, f2) read "the S-polynomials of f; and f;”.) O

The intuition behind considering S-polynomials is that LCM{ LPP{(f;),
LPP(f;)} is the first power product (in the divisibility ordering) that can be
reduced both modulo f; and modulo f3, i.e. where reduction may ”diverge”
and, hence, an injury of the Church-Rosser property may occur. In the proof
of the main theorem we will then see the surprising fact that, fortunately, if
for a given (finite) set F' no divergence is detected at any ol the finitely many
LCM(LPP(f1), LPP(f2)) (f1, /2 € F) then no divergence can occur at any
point in the infinite "reduction graph” of —»p, i.e. —»F has the Church-Rosser
~ property or, in other words F' is a Grébner basis. Thus, by considering S-
polynomials we obtain a finite algorithmic check for testing whether or not a
given F' is a Grobner basis.

2.10- The Main Theorem: Algorithmic Characterization
of Grobner Bases by S-Polynomials

In the sequel, by the property (monicity), we may assume without loss of
generality that all polynomials in F' are monic.

Theorem (Main Theorem of Gréobner Basis Theory):

F'is a Grobuer basis < V[, f, € F (RF(F,SP(f1, f2)) = 0).

Proof: The direction ”==" is easy. Namely, if fi, fo € F, then SP{f1, f2)
€ Ideal(F), i.e. SP(f1, f2) =r 0. By the relation between reduction and con-
gruence this implies that SP(fi, f2) +—7% 0. Hence, RF( F, SP(f1, f2) ) =
RF(F;0) = 0 because F' is a Grobner basis (and because of the equivalence
between the Church-Rosser property and the normal form Church-Rosser
property).

For the direction "<=", by the generalized Newman lemma and the fact
- that =+ zC >, it suffices to prove local connectibility, i.e. it suffices to prove
that under the assumption

g1 & F h —F g2

we have

<h*
g1 < F Ga2.
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By the assumption, there exist fi, f, € F and t;,¢, € S(h) with LPP(f1) |t
and LPP(f;) |ts, such that A —, ,, g and h —, 4. ¢

Now we have three cases.

Case t1 > ty: In this case,

g1 = H(h tl) ‘*}‘ 0 . fl-i-B(h, ﬂl,fz) + C(}L fg) . tg + L(II,, fg) -
"‘C(h’ !‘,1) C Uy R(fl)

and

g2 = H(h,t)) + C(hyt1) - t1 + Blh, t1, £3) + 0 - Ly +L{k, t5) —
—C(h, tg) s Ug - R(fg),

where uy := 1, /LPP(f1), us 1= t2/LPP(f,).

Furthermore,

[*5) —)h 12 = H(h,tl) -+ 0. tl'{- B(h,tj,tz) + 0- t2+ L(h, J‘;) -
—C(h,t1) vy - R(f1) —
—C(h, ?Lz) Uy R(fg)

Now, g1 = h — C(h,t1) - uy - f1 and g2 = g3 — C(h,t1) - uy - fi and, by
assumption, h —r gs. Hence, by sum semi-compatibility, ¢, |} ¢i2 and,

<h
hence, gy «<—"F go. (Note that, in general, g — 4 G1,2 need not be the case.
Why not?) 3

Case t1 < t: Analogous.

Case t := t; = t: In this case,

g1 = H(h’t) +0- t+[’(h’t) -
_C(h,t) C Uyt R(f1)

and
g2 =H(h,t) + 0 t+L(A,¢t) —
—C(h,t) - uz - R(f2).
Hence,
g~ = —C(h,t) (u;- R(fi) —us R(f2)) =

= —Ch,t)- (- fi —uz- fi) = =C(h,t) - v SP(f1, fo),

where v :=t/ LCM( LPP(f,),LPP(f2) ).
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We have assumed that RF(#,SP(f1, f2)) = 0, i.e. SP(f1. f2) =% 0. Hence,
by product compatibility, g1 — g, = —C(h,t)-v-SP(f1, f2) =F 0. This means
that there exists a sequence p € P* such that

P1 =401 — G2
V1 <i<|pl (pi =5 pit1); (*)
and
Plol = 0-
Furthermore note that, because of - pC >,
V1<i<|pl (pi X 91— g2 < h)
Thus, by sum semi-compatibility applied to (*),

g1 = p1 + Ga2,
Vi <i<|p| (pi + 92 {F pit1 + g2),
g2 = Pip| + Ga.

Also, we have
Vi<i<|pl (pi+g2 < h)

because

V1 <: < |p| (H(pi + g2,t) = H(k,t) A C(pi + g2, ) = 0).

<h
Thus, summarizing, ¢; <—*F go also in this case.

2.11 An Algorithm for Constructing Grobner Bases

The main theorem can immediately be read as an algorithm for testing
whether or not a given finite I is a Grobmer basis. However, it can also
be used to show that the following, structurally simple, algorithm ” Grobner-
Basis” (formulated here in a functional style) meets the specification given in
the proposition below.

- Algorithm (Construction of a Grobner Basis):
Grobner-Basis(F) := GB(F, {{f1, fo} | fr,f2 € F}).
GB(F,D) := F,

GB(F, {fi, fs} — B) =

GB(F, B), if h =0,
GB(F U {h}, BU {{h, f} | f € F}), otherwise,
where h := RF(F,SP(f1. f2)).C

:'Here, — is a constructor for finite sets such that z —« X =Y iff {z}UX =Y
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Proposition (Correctness of the Grobner-Basis Algorithm): For fi-
nite sets F";

Grobner-Basis(F) is a Grébner basis,

Ideal( ') = Ideal{ Grobner-Basis(F)).

Proof (Sketch): (The algorithm always terminates by Dickson’s lemma
because the leading power product of a polynomial / that gets adjoined to
an intermediate set I is not a multiple of the leading power product of any
f € F.) The [inal set F' clearly satisfies the condition in the main theorem
and, hence, is a Grobner basis. Furthermore, any A that gets adjoined to an
intermediate /' is in Ideal(#') and hence in the ideal generated by the input
set. [1

Grobner bases can be made unique by "interreducing” them:

Definition "(Reduced Grobner Bases):

F is a reduced Grébner basis <= F is a (monic) Grébner basis,
Vi€ F(fp_y) B

The above algorithm can be easily converted into an algorithm ”Reduced-
Grobner-Basis” that yields a reduced Grébner basis and it is easy to show
that these bases are unique in the following sense:

Proposition (Canonicality):

Ideal(F') = Ideal(G) =
Reduced-Grobner-Basis(F') = Reduced-Grobner-Basis(G). O

The above crude form of the algorithm can be made much more efficient by
introducing ”criteria” by which one can predict that certain S-polynomials
reduce to zero without actually carrying out the reduction. This idea was
introduced in (Buchberger 1979) and is an easy consequence of the main
theorem in the form given above using our generalized Newman lemma. The
strategy of using "criteria” later was carried over and proved useful also in
the Knuth-Bendix completion algorithm in the area of rewriting.

In fact, the above algorithms Grobner-Basis and Reduced-Grobner-Basis
should be indexed by one more parameter, namely the admissible ordering
< used. When, in the applications below, indication of the ordering used is
important we will therefore write ”Grobner-Basis<” etc.
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2.12 Other Characterizations of Grobner Bases

Grébner bases can also be characterized by quite a few other properties, see
the text books on the subject. The equivalence proofs are quite simple except

~ the one that relates Grobner bases F' to "syzygies”, i.e. to the solutions of
- linear diophantine equations with coefficients from F.

3 Applications of Grobner Bases

3.1 Overview

. Over the years, literally dozens of applications have been found for the Grobner
* bases algorithm, see the recent text books, for example (Becker, Weispfenning

1993), (Cox et al. 1992) and the papers on applications in this book. In this
section, we only briefly summarize the most fundamental problems to which
the Grobner bases algorithm can be applied.

We present most of these problems and their algorithmic solutions by for-
mulating a mathematical theorem whose left-hand side defines a problem and
whose right-hand describes the algorithmic solution. The proofs of most of
these theorems are easy consequences of the main theorem and the various
equivalent forms of it. Some of the applications need additional knowledge
for which we refer to the text books.

3.2 Ideal Membership, Canonical Simplification, Ideal
Identity

f € Ideal(F') <= RF(Grobner-Basis(F), f) = 0.

(This problem is sometimes called the "main problem of polynomial ideal
theory”.)

f =r g < RF(Grébner-Basis(F), f) = RF(Grobner-Basis(£'), g),

f =r RF(Grobner-Basis(F), f).

(The last two properties show that "RF” modulo a Grébner-Basis(F) is a

‘canonical simplifier for =p. For the notion of ”canonical simplifier” see (Buch-

berger, Loos 1982).)
Ideal( '} C Ideal(G) <= Vf € F (RF(Grdbner-Basis(G), f) = 0).

Ideal( F') = Ideal(G) <=
Reduced-Grébner-Basis(F) = Reduced-Grobner-Basis(G).
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Ideal( F') = Idcal(Reduced-Grobner-Basis(F')).

(The last two properties show that "Reduced-Grébner-Basis” is a canonical
simplifier for the equivalence ~ defined by F' ~ G :<=> Ideal(F) = Ideal(G)
on the set of subsets of P.)

3.3 Radical Membershhip

fe Radicai(F) <= 1 € Grobner-Basis(F'U {y - f — 1}) (where y is a new
indeterminate). O

(On this test, a systematic method for deciding a large class of geometrical
propositions can be based, see the example in the first section. It is much
harder to compute, by Grobner bases, a basis for the radical of an ideal
because one must have a means of factorization in extension fields. Even
harder is the determination of a complete "primary decomposition” of an
ideal that, roughly, corresponds to a decomposition of algebraic varieties into
irreducible varieties, see (Becker, Weispfenning 1993).)

3.4 Computation in Residue Class Rings Modulo Ide-
als

Let (Pr,+r,0r, —F, r, 17) be the residue class ring of (P, +,0, —,-,1) mod-
ulo Ideal(F).

P .= {f € Pliﬁ}’
ftg:=RF(E, f+g),
0=0,
—f=RF(E,-f),
f:g:=RF(E, f-g),
1=1,

Then (Pr,+#,0F, —F, -7, Lr) is isomorphic to (P, 4,0, —, -, 1) by the follow-
ing isomorphism z: --

i(f) := the residue class of f modulo Ideal(F') ( for allf € P).

B:={teT|-3f € £ (LPP(f)|t) } is a linearly independent basis for
the vector space (K,P,+,0,—,:).

The following elements in K

SCituw := C(RF(E, 1 - u),v),
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are the "structure constants” of the associative algebra (K, P, 4,0, —,:), i.e,
for all t,u,v € B,

i;u = Z SCg,u’v Y.

vEB

In other words, having computed a Grobner basis I for a given F', one can
master arithmetics in the residue class ring modulo Ideal(F') completely al-
gorithmically. On this method, one can also base algorithms for computing
in algebraic extension fields which can be considered as residue class rings
modulo polynomial ideals.

3.5 Leading Power Products
{LPP(f)| f € Idcal(F)} = {u- LPP(f) |[u€ T Af € Grobner-Basis( F)}.

Ideal( F') 1s a principal ideal <= Reduced-Crobner-Basis(F') has exactly one
element.

3.6 Polynomial Equations

deal( F) = P <= 1 € Grobner-Basis(#)
<= Reduced-Grobner-Basis(F) = { 1}.

Let K be algebraically closed:
F is solvable (i.e. has a solution in K) <= 1 ¢ Grobner-Basis(F').

F has only finitely many solutions <=
V1< i<n3f € Grobner-Basis(F) 3j ( LPP(f) =z ).

For all ' with finitely many solutions:
the number of solutions of F (counting multiplicities) =
| {t € T | =3f ¢ Grobner-Basis(F) ( LPP(f)[¢) } |-

Let U C T be finite:
3fe ldeal(F) (S(f) CU)
{ RF( Grébner-Basis(F), v ) | v € U} is linearly dependent over K. O

By applying this property successively to the powers 1,2, z?, 23,..., one can
algorithmically find, for example, the univariate polynomial in z of mini-
mal degree in Ideal(F) if it exists. Such a polynomial exists iff F has only
finitely many solutions, which can be checked algorithmically by the above
method. On this algorithm a general method for solving arbitrary systems
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of polynomial equations can be based, see (Buchberger 1970), which works
for arbitrary term orderings < whereas the elimination method mentioned
below works only for elimination orderings. Also, this algorithm can be used
for transforming a Grobner basis w.r.t. a given admissible ordering <; into
a Grobner basis w.r.t. <,. This is sometimes helpful because the complexity
of Grobner bases computation depends strongly on the term ordering cho-
sen. Basically this idea is used in the recent, most advanced, version of the
Grobner bases algorithm for improving efficiency, see (Collart et al.).

3.7 Linear Syzygies
Let F' C P be finite and A : F' — P (i.e. a sequence of polynomials indexed
by F').

h is a (linear) syzygy for (F,g) <= Y erhs-f =g
(For ”h is a linear syzygy for (F,g)” we also say "k is a solution of the
inhomogeneous diophantine equation given by F' and g.”).

h is a (linear) syzygy for I' :<=> h is a syzygy for (F, 0} (i.e. Zycp by
f=0).

(For "k is a linear syzygy for F” we also say "k is a solution of the
homogeneous diophantine equation given by /.”).

Let F' be a Grobner basis:

The diophantine equation given by (F,g) is solvable (i.e. 3h ( A is a
syzygy for (F,g)) < RF(F,g) = 0.

The diophantine equation given by (F, g) is solvable = Cofactors( F, g)
is a syzygy for (F,g).

The following set of sequences is a finite basis for the infinite module of all
solutions of the homogeneous diophantine equation given by F:

{599 | f,ge F},
where, for arbitrary f,g € F,
Sie . F — P,
Sj:’g = u — P9,
Si9 1= —y — Pls
89 .= —P/* ifhe F—{f g},
u := LOM(LPP(f), LPP(g))/LPP(/),
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v:= LCM(LPP(f), LPP(g))/LPP(g),
P18 = Cofactors(F, SP(f, g)).0

1 Thus, essentially, the reduction of all the S-polynomials of F' establishes a
¢ finite basis for the module of homogeneous syzygies. By adding one solution of

the inhomogeneous equations one obtains all the solutions of the inhomogeous
. diophantine equation.

“For obtaining a basis for the syzygies for a diophantine equation with
b arbitrary F, one first computes ' = Grobner-Basis(F'). Then one solves the
problem for F as above. The solutions found can transformed back to solutions
for F' by multiplication with matrices with polynomial entries that can be
obtained from expressing F in terms of F and F' in terms of F using the
‘Cofactor algorithm.

. Systems of linear diophantine equations can be handled by reducing the
problem recursively to the case of just one equation.

3.8 Hilbert_ Functions

Let the term ordering < be a total degree ordering. The "Hilbert function”
H is defined as follows:

H(d,F) := the number of modulo Ideal(F') linearly
independent polynomials f with Degree(f) < d.

(The Hilbert function is important because it allows to read off various struc-
tural information on the variety of F'.)

Now,
H(d, F) = (")~

—{u € T | Degree(u) <d A -3f € Grébner—Ba,si.s.(F) (LPP(f) |u)}l.

3.9 Elimination Ideals

_Let < be the lexical term ordering defined by z; < 23 < ... < z,. Then,

Grobner-Basis (F) N K[zy, ..., z;] is a Grobner basis for
( Ideal(F) N K|zy,...,z4]).

Reduced-Grébner-Basis< (£} N K[zq, ..., z;] =
= Reduced-Grobner-Basis(Ideal(#) N K[zy, ..., z;]).0
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This property leads immediately to a general solution method, by "succes-
sive substitution”, for arbitrary systems of polynomial equations with finitely
many solutions, see the example in the first lecture.

Let < be a term ordering in which power products containing no other inde-

terminates except 2;,,...,z;, are < then all the other power products.
Ideal(F)N K|z, .., 2| =0 <=
Grobner-Basisc(F)NK|z;,,...,z;,] = 0.0
(In case ldeal(F') NK[z;,,...,2,] = @ one says that the indeterminates z;,,

<+y T, are algebraically independent modulo Ideal(F). The above crite-
rion for independence yields an algorithm for determining the dimension of
Ideal(F’), i.e. the maximal number of independent indeterminates modulo

Ideal(F').)

3.10 Ideal Operations

Let < be an admissible term ordering in which power products containing
T1,...,%n are < than any power product containing the new variable y:

Grobner-Basis<({y- f | f€ FIU{(1—-y)-g | g€ G}) NK[z4,...,z,]
is a Grobner basis for Ideal(F) N Ideal(G).
Reduced-Grobner-Basis (Ideal(#) N Ideal(G)) =
= Reduced-Grobner-Basisc( {y-f | f€e F}U{(1—y)-9 | g€ G})
N K[I],...,xn ]
(This property yields also an algorithm for quotients of finitely generated
ideals because the determination of such quotients can be reduced to the

determination of intersections. Alternatively, quotients of ideals can be com-
puted by using the algorithm for linear syzygies.)

3.11 Algebraic Relations and Implicitization

Let F' = {fi,...,fm} C Klzy,...,2,], let y1,...,ym be new indeterminates
and let < be an admissible ordering in which power products containing only
the y; are < any other power product. Then,

Grobner-Basis<({y1 — fi.. - ym — f}) N Klv1,. .., ¥m] is a Grobner
basis for {g € K[y1,.--,Ym] | 9(f1,---, fm) = 0}
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(The set {g € K[y1,---,¥m] | 9(f1,..., fmx) = 0} is, in fact, an ideal. It 1s
called the ”ideal of algebraic relations (or non-linear syzygies) over F™.)

Let R := Grobner-Basis<({y1 — fi,-- -, Ym — fm}) N Kly1, ..., ym] and let K
be algebraically closed. Then the variety of R is the smallest variety in K
that contains the set

{{(filz1, -y 2n)y ey fml@ry ooy @a)) | 21, ., 20 € K}

(This means that R is an "implicit” representation of the set given in ”para-
metric” representation by fi,..., fm.)

3.12 Inverse Mappings

Let FF = {fi,..., fa} C Klz1,...,2s), let y1,...,yn be new indeterminates
and let < be an admissible ordering with the property of the previous section.
Then,

the mapping M : K® — K" is bijective
(alu cee 7a’n) = (fl(al;' . 7a'n.)7 LR 1fn(alj ‘e 7an))

—

Reduced-Grobner-Basis<(y1 — fi,...,4n — fn) has the form
{21 = g1y, 20 — g} With {g1,..., 0.} CKly1,.. ., yal-

{Moreover, the g; define the mapping which is inverse to M.)

3.13 Miscellaneous

In fact, by combining the above methods, a big number of particular problems

. in various areas of mathematics have been attacked in the literature. Some
of these applications of Grobner bascs are quite unexpected. For example,
geometrical theorem proving, integer programming, integration of rational
functions, greatest common divisor and factorization of multivariate polyno-
-mials, bases for Bezier splines, bases for Runge-Kutta numerical integration
rmulae, interpretation of resolution theorem proving in boolcan rings etc.
ive been studied successfully using Grobner bases, see the other tutorial
ers in this book.
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