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Abstract

In this paper we present our personal view of what should be the next step in
the development of symbolic computation systems. The main point is that future
systems should integrate the power of algebra and logic. We identify four gaps
between the future ideal and the systems available at present: the logic, the syn-
tax, the mathematics, and the prover gap, respectively. We discuss higher order
logic without extensionality and with set theory as a subtheory as a logic frame
for future systems and we propose to start from existing computer algebra sys-
tems and proceed by adding new facilities for closing the syntax, mathematics,
and the prover gaps. Mathematica seems to be a particularly suitable candi-
date for such an approach. As the main technique for structuring mathematical
knowledge, mathematical methods (including algorithms), and also mathemati-
cal proofs, we underline the practical importance of functors and show how they
can be naturally embedded into Mathematica.

1 The Next Goal for Symbolic Computation

By the work of researchers in various areas, we now have powerful tools available that
support various aspects of problem solving by computer:

e numerical libraries

e special purpose systems for simulation, CAD, robotics, neural network design,

e “symbolic computation” systems for computer algebra, computer analysis, ...

e rewrite labs, logic programming systems, constraint solvers, ...
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e special and general theorem provers, theorem generators, theorem checkers, . ..
e program verification, transformation, and synthesis systems, ...
e advanced software technology tools in all theses systems,

e graphics, animation, sound, typesetting, notebook, and hyperlink tools in these
systems,

o links between these systems, access through the web, electronic user communities,

The availability of these systems has drastically enhanced our problem solving po-
tential. However, we want more. Who is “we”? In this paper, I address people who

e explore,

e invent,

e apply,

o teach,
e study, and
e publish

mathematics or, in other words, people who are “doing” mathematics. In this paper,
I do not address people who are casual users of mathematics as a “black box”. T think
that the next natural goal “we” should go for is to do all of mathematics in one system.
Here, by a “system”, I mean both

e a logical system, which should be a sound and uniform frame for all of our math-
ematical activities and

e a software system, which supports these activities.

Although there are systems on the market that advertise explicitly that they are
systems for “doing” mathematics, see (Wolfram 1988), I think that there are still
significant gaps between what we have and what we want. Basically, I see four gaps:

o the logic gap,
o the syntax gap,
e the mathematics gap, and

e the prover gap.

I will analyze these gaps in Section 2. Then I will argue, in Section 3, why Mathe-
matica seems to be a good starting point for developing a rapid prototype system that
may overcome these gaps. (I will not argue, however, that Mathematica is “the” ideal
future symbolic computation system. In my view, this would only be possible if the
designers of Mathematica made some basic changes in the design of their system.) In
Sections 4 to 7, I will then sketch my proposal how one may overcome the logic, the
syntax, the mathematics, and the prover gap, respectively.



2 The Present Gaps

2.1 The Logic Gap

At present, officially, there is one uniform logic system in use as one uniform frame of
mathematics (although, inofficially, this frame is not at all applied uniformly in the
every-day practice of mathematicians): The system of “Bourbakism”, which is first
order predicate logic plus set theory formulated as a first order theory (which is called
“Zermelo Fraenkel set theory”). The problem with the Bourbakistic system as a frame
for all of mathematics, including “algorithmic” mathematics, is that in this system
functions are sets. Hence, by the extensionality axiom for sets, functions defined by
different algorithms but having identical input/output behavior are identical. This is
not appropriate for the needs of algorithmic mathematics where we do not only want
to discuss the input/output behavior of functions but also properties of the definitions
of functions (the “algorithms”) and properties of their computational behavior, for
example their complexity. Of course, we could circumvent this problem by defining a
specific programming language in the frame of ZF (Zermelo-Fraenkel set theory). For
this, what we had to do is basically to define a binary function I, the “interpreter” of
the programming language, within ZF. (The object I(p, d) is the “result of applying the
program p of the given programming language to the input data d”.) Then, of course,
it is well possible that we have distinct programs p; # p; with identical input/output
behavior, i.e. such that Yd(I(pi,d) = I(pa,d)).

However, this solution is not very natural because, for example in a textbook on
algorithmic polynomial ideal theory, we would not like to spend an additional chapter
on introducing an extra programming language. Rather, we would like to use certain
predicate logic formulae, for example equalities, directly for defining certain algorithmic
functions and predicates.

As an alternative we could use higher order predicate logic. However, the problem
remains as soon as we introduce an extensionality axiom in such a logic as this is
done in most of the usual textbooks on higher order predicate logic, see for example
(Andrews 1986). Therefore, in recent years, some authors proposed to use higher order
predicate logic without extensionality as a frame for mathematics, see for example
CIC (Huet 1995) and NuPRL (Constable 1995). This is a very promising approach.
The problem with the present implementations of this idea is that it seems to be
quite hard to carry over the results from Bourbakistic mathematics into these systems.
This is, however, important because these results are not only of aesthetical value but
are indispensable for specifying problems, and describing a hierarchy of increasingly
powerful solutions to problems, even in algorithmic mathematics. For example, when
describing the membership decision problem for polynomial ideals, it is necessary first
to define the non-algorithmic notion of “ideal” and “residue class domain”. Also, when
developing an algorithmic solution for this problem, for example by “Groebner bases”
(Buchberger 1985), it is absolutely necessary to carry out proofs for the correctness
of the solution that involve non-algorithmic concepts of set theory. Also, there is still
a practical problem with the present implementations of higher order predicate logic
without extensionality: Their practical potential for algebraic computation is not very

high.



2.2 The Syntax Gap

Notation used in “mathematical” software systems is still far from the usual mathe-
matical notation. For example, in Mathematica, the function definition

fL{ 3] =41}

f[L{ x1_, x2___}] := Prepend[ f[ { x2}], { x1, x1}]

and the function call
Integrate[ Sin[ Sqrt[ y + a~2]]1, y]

look quite different from the corresponding formulae

Q) =0
f((wlvw?v"'» = <171,171>\/f(<172>)

and

/ sin(v/y + a?) dy

as they may appear in an ordinary mathematical text. Syntax, however, is quite
important for practical problem solving.

In fact, the next version of Mathematica will provide “ordinary” syntax for mathe-
matical input and output of amazing sophistication, see (Soiffer 1995). However, some
unpleasant gaps will still remain. For example, still, brackets will be used for function
application, braces will denote tuples instead of sets, and underscores will be used in
order to declare variables and “sequence variables”.

2.3 The Mathematics Gap

For algorithmic mathematics, the traditional algebraic notions are too coarse. For ex-
ample, the following three algebraic structures are “equal” from the point of view of
algebra:

Residue Domain Modulo 3:
Carrier:

{0432 |z €I}, {1 +3z |z €1},{24+3z |z € I}}.

Operation:

{y+3z|zel}ds{z+3z|zecl}={y+2+3z]|zecl}

Simplified Residue Domain Modulo 3:



Carrier:
{0,1,2}.
Operation:
y+sz:= remainder (y + 2, 3)

“Smallest” Simplified Residue Domain Modulo 3:
Carrier:
{~1,0,1}.
Operation:
Y +3 z := smallest remainder (y + z, 3).

From the algorithmic point of view the three structures are significantly different.
The first structure is non-algorithmic. It results from the integers with addition by
application of the non-algorithmic “functor” “residue class formation modulo a con-
gruence relation”. The resulting carrier contains elements that are infinite sets and
the operation operates on infinite sets and produces infinite sets. The second and the
third structures are both algorithmic, i.e. the objects of the carrier are finitary and can
be stored in a computer and the operations are computer-realizable. Both structures
result from the integers with addition by applying the functor “simplification modulo
a canonical simplifier”. However, the two structures are not identical and, in fact, the
complexity of the two operations is (slightly) different.

When we “do” mathematics, we want to live in both worlds:

e the world of (non-algorithmic) theorems and proofs,

o the world of algorithms and computation.

The World of Theorems and Proofs: For example, when doing Groebner bases
theory, we will start with the definition

(i is a Groebner basis :<=Vf € Ideal(G) (f —¢ 0)

and will want to prove the following theorem:

(i is a Groebner basis <= Vf, g € G (S—polynomial(f, g) —¢ 0).

The proof will involve various non-algorithmic proof techniques of predicate logic, in
particular those for handling quantifiers, and non-algorithmic concepts from set theory.
The World of Algorithms and Computation: In the example of Groebner bases
theory, the above theorem can be used unchanged as an algorithm

(¢ is a Groebner basis :<=Vf € Ideal(G) (f —¢ 0)

The following proposition can now be “evaluated” by using the above theorem /algorithm
and a subset of the predicate logic proof techniques, namely equational logic, as “eval-
uation machine”: When we enter

{z*y — 3z, xy* — 2xy + 4} is a Groebner basis.

The result of the evaluation will be “no”.
In the future, we would like to live in both worlds within one uniform logic and
software system!



2.4 The Prover Gap

The available universal theorem provers (e.g. those based on resolution) are general
and, therefore, often too inefficient for supporting practical theorem proving in a wide
range of mathematical areas. Also, most times, they are available only as stand-alone
systems that are not well connected with computer algebra/analysis systems.

The same is true also for special provers (proof checkers, proof generators) that
may be quite efficient for particular mathematical theories. However, again, they are
rarely integrated with current algebra/analysis software systems.

What we need is the integration of both universal and special computer-supported
theorem proving with the current computer algebra/analysis systems so that, when
“doing” mathematics, one can switch between computer-supported theorem/algorithm
development and algorithm application.

3 Mathematica is a Good Starting Point

For filling the gaps analyzed in the preceding section, i.e. for supporting all aspects of
“doing” mathematics or, in other words, for reaching a new level of sophistication in
“symbolic computation” by combining computer algebra and logic, one can adopt one
of the following strategies:

1. One can start from successful proving systems like CIC, NuPRL, etc. and add
the potential of current computer algebra systems like Maple, Mathematica, Mac-
syma etc.

2. One can start from one of the practically powerful computer algebra systems and
add the potential of current provers.

3. One could design a completely new system.

I do not suggest the third possibility, at least not at this moment, because tremen-
dous work would go into repeating the effort for implementing the wonderful man-
machine interfaces current algebra and proof systems already have. The construction
of completely new systems or, at least, completely new systems kernels may become
reasonable and necessary in the future, after we will have experimented with vari-
ous early prototypes of combined algebra/logic systems. Rather, I suggest that, at the
moment, these experiments should be based on either the first or the second possibility.

In this paper, I argue for basing such an experiment for constructing an early
prototype for a combined algebra/logic system on Mathematica. The main reasons
can be structured according to the analysis of gaps described in Section 2:

1. Although apparently this was not the intention of the Mathematica designers, a
close inspection of the Mathematica language reveals that, in fact, the innermost
part of Mathematica can be viewed as nothing else than directed higher order
equational logic without extensionality and, thus, Mathematica can be viewed as
a programming language inside logic. This feature is unique among all existing
computer algebra systems.



2. Mathematica has an amazing man/machine interface. Its next version will also
have wonderful typesetting facilities and, what is more, there will be facilities that
allow the user to define his own syntax so that higher order logic with quantifiers
and the programming part of this language can be presented as executable code
to the system.

3. Using Currying and the module construct, “functors” can be programmed within
Mathematica. This fact is little known but is essential for structuring non-
algorithmic and algorithmic mathematics within a uniform system frame.

4. The directed equational logic facilities of Mathematica are available “twice” in
the system: First, at the basic level, they constitute the programming language.
Second, at the metalevel, these facilities can also be applied to programs (sets of
equalities) at the first level. This allows one, within Mathematica, to program
“provers” for proving properties of the programs defined on the first level. To-
gether with the functor principle, well structured provers that combine special
provers tailored to the various functors can be built up.

Of course, it may turn out that basing a uniform logic frame for all of mathematics
on top of Mathematica may result in intolerable loss of speed because some of the more
advanced language features must be simulated by the available features in Mathemat-
ica. If this is the case, in a later stage, a new and specially designed kernel should
replace the present Mathematica kernel. Thus, we repeat, the present proposal is only
meant as a proposal for implementing a rapid prototype of an algebra/logic system as
quickly as possible in order to be able to study the logical, mathematical, algorithmic,
and practical implications and gain the necessary experience in using such a combined
system for inventing and presenting mathematics.

In the next sections we describe in more detail how we want to overcome the logic,
syntax, mathematics, and prover gap by adding features to higher order logic and
implementing them in the frame of Mathematica.

4 Overcoming the Logic Gap

We start from higher order logic without extensionality. The fundamental concept of
this logic is “application” of an object (a “function”) f to some other object z, denoted

by

f(z).

Since we do not have extensionality, this (logic instead of set-theoretic) notion of a
function remains “fine grain” (i.e. functions with the same input/output behavior are
not necessarily identical), which is indispensable for the algorithmic aspects of mathe-
matics.

In this paper, we do not discuss the subtle question of using “types” in such a logic.
Of course this question is very important for obtaining sound proof rules in such a
logic. This question is deemed to be important also for the practical work within such
a system when building up the “tower of mathematical domains”. However, in Section
6, we show how functors can be built up in such a way that we do not need types for



the practical mathematical work within the system. Rather, we work with one uniform
equality all over the system and, in compensation, we give explicit descriptions of the
objects in the various domains.

We observe that (the innermost kernel of) Mathematica can be viewed as an (ef-
ficient) implementation of the (directed) equational part of higher order logic without
extensionality. For example, the induction definition (in the syntax of Version 2.2 of
Mathematica)

apply[ f_, { x1_}] := =x1
applyl f_, { x1_, x2___}] := £[ x1, applyl £, { x2}]]

can be viewed as two higher-order logic equalities and, at the same time, as an algorithm
whose computations for variable-free input terms are nothing else than proofs using
substitution and replacement as inference rules and using the equalities in the direction
from left to right. (Do not bother about the strange syntax of the above Mathematica
equalities. In the next version (3.0) of Mathematica, the user will be able to define
his own syntax and may choose to use the usual mathematical syntax. Variables
with three underscores are “sequence variables”, i.e. variables for which arbitrary finite
sequences of terms may be substituted. In principle, sequence variables are dispensable.
However, we think that they are practically attractive and useful. Thus, we propose to
have them in our system. Appropriate changes must then be made to the usual proof
rules of higher order logic.)

Thus, higher order logic without extensionality contains a practical programming
language (efficiently implemented as Mathematica) as a sub-language. The question
is: How can we retain Bourbakistic mathematics within this system?

I think that, in addition to the fundamental “€” predicate, it suffices to add one
more predicate “is set” so that we can restrict all set-theoretic axioms to those objects
that satisfy “is set”. For example, extensionality can be stipulated for objects that are
sets:

Aisaset A Bisaset = (A= B<=Ve(z € A<=z € B).

Similarly, the other axioms of set theory guaranteeing the existence of various sets
constructed from given sets can be formulated. In the same way, we can also introduce
the set braces as special quantifier. From there on, we can develop (carry over) all of
Bourbakistic mathematics including the set-theoretic (as opposed to the above logic)
notion of “function” and “function application”. Of course, for set-theoretic function
application, we have to introduce a new notation. For example, we can introduce the
binary function constant “” and may write “f‘a” for “the set-theoretic function f
applied to x”. One may then prove for example, within the system, that if f is a
set-theoretic function and x is in the domain of f then the pair (z, f'z) is in f. Note
again that extensionality will remain to be restricted for the set-theoretic notion of
function application whereas, by intention, it is not available for the original, logical,
notion of function application. For example, if

flz) = x+1
glz) == z+2-1



then, of course,

Ve f(z) = g(z)

and also, for example,

{(z,f(2)) [z € N} = {(2,9(2)) [ x € N}

can be proved. However,

=g

cannot be proved in the system.

5 Overcoming the Syntax Gap

The syntax used in the present version of Mathematica (Version 2.2) is quite different
from the usual mathematical notation. The next version of Mathematica (Version 3.0)
will have an amazingly powerful syntax that comes quite close to ordinary mathemat-
ical notation. It will have TEX quality, it is wysiwyg and at the same time is formal,
i.e. the formulae allowed in Mathematica have (formal although not formally defined)
semantics as executable code and new formulae can be created whose semantics can
be defined. For example, if one does not like that Mathematica uses braces for denot-
ing tuples rather than sets, the following instruction will introduce angle brackets for
denoting tuples:

MakeExpression[ RowBox[ { "<", x , ">"}], StandardForm] :=

MakeExpression[ RowBox[ { "{" x, "}"}], StandardForm]

A similar instruction will also let Mathematica print angle brackets instead of braces.
Similarly, we can teach the system to take the set braces for denoting set construction
instead tuple construction, to use parentheses instead of brackets for denoting function
application, and to replace the use of underscores for identifying variables and sequence
variables by some other convention, see the examples in Section 6.

6 Overcoming the Mathematics Gap

6.1 Building Up Mathematics by Functors

Both from a structural and a problem solving point of view, I think it is important
to build up computer-supported mathematics by “functors” that construct new do-
mains from given ones. Structuring mathematics by functors has also an immediate
implication for structuring provers as will be made explicit in Section 7.

The functor view of mathematics can equally well be applied to both non-algorithmic
and algorithmic mathematics and, in fact, it is the unifying view for both worlds.
As explained above non-algorithmic mathematics and algorithmic mathematics are
strongly intermingled when “doing” mathematics and, often, the transition from the
non-algorithmic to the algorithmic context is the actual challenge of mathematics and
of course is the main challenge of what is called “symbolic computation”.



6.2 Representing Domains

We view a domain D to be a function that defines functions for certain “operators”.
For example, the following object Z is a simple domain:

Z(0o) := Plus,
Z(e) = 0,
where “Plus” and “0” are the “built-in” addition and the built-in integer zero of our
system, which as we said above contains the innermost kernel of Mathematica. For
syntactic simplicity, we introduce the convention that “op” etc. stands for “D(0)” etc.
Thus, we could write, for example,

2 0z 2
which, with the above definitions, evaluates to

4.

Note that such a notation will be perfectly possible in a user-modified syntax of Mathe-
matica 3.0 and the above evaluation can, hence, be done automatically in Mathematica.

Also we will add the following unary operator “€” to any domain with the convention
that, for any domain D, D(e) is a decision function which yields “True” for exactly the
objects we consider to be in the “carrier” of D. For example, we could define

Z(€) := IntegerQ

where “IntegerQ)” is the built-in decision algorithm for integers. Note that the symbol
“€” 1s different from the symbol “€” that denotes the element predicate of set theory.

6.3 Representing Functors

Now, in our terminology (which is basically the terminology used, for example, also in
ML), a functor is just a function that maps domains into domains. Thus, a functor is
an object F' that takes D as an argument and produces F(D) with the view that F/(D)
can now be applied to any operation symbol o yielding an operation in the domain
F(D). In particular, F/(D)(¢) is a decision function for the objects which we want to
be in the carrier of F(D). Also, normally, one will think of any operation F(D)(0)
to be reasonably applied only to objects in the carrier of F(D), i.e. objects for which
F(D)(e) yields “True”.

For clarifying notation, let us first give a trivial example: We define a functor F
that, for any given domain D with any operations o defines the Cartesian product.
Staying within higher order predicate logic, this functor could be defined as follows:

F(D) := the N such that
\V/dl, d2 <d1, d2>6]\7 R — d16D A dgﬁD,
Yo,dy,dy, e, e <d17d2>0N<61762> = <d10D€1,d20D€2>-

10



Instead, we introduce a new quantifier “Functor” that binds N and also the other
quantified variables that appear in the above definition so that the following definition
can be seen as nothing else than an abbreviation of the above definition:

F(D):=
Functor ((N,dy,ds, e1, €3, 0),

<d1_, d2_>€N < dlﬁD A dgéD;
(di.,da)on(€er, €)= (dioper,dropes);

N
).

Note that, at certain places, we use a dot after a symbol as a notation for declaring
the symbol to be a variable and not a constant. The respective convention is an adap-
tation to the syntax of Mathematica and has no deeper relevance. Note, in particular,
that “o” is a variable in this definition. Thus, the definition applies to any operator
o in the “signature” of D. We could define the signature of a domain explicitly. We
omit this in order not to overload the presentation in this expository paper.

Now, as a matter of fact, the construct “Module” of Mathematica, if restricted to
algorithmic operations, has exactly the semantics of the “Functor” construct as defined
above. Thus, when restricted to algorithmic functors, application of this construct
yields executable code in Mathematica.

6.4 An Example of a Non-Algorithmic Functor

We define a functor that “constructs” the residue class domain of a domain D that is
equipped with a binary operator “~” (which normally will be a congruence relation):

Residue-Domain(D)) :=
Functor((R,r, s,d, e, 0,C),

r. eg <= 3d ep (r = C(d));
r.opr s, := C(Choose(r) op Choose(s));

C(d):={e|leep N e~pd};

R
).

This functor is non-algorithmic in many respects. First, for defining whether or not
an object r is in the residue domain R, we need the existential quantifier: r is in the
carrier of R iff there exists a d in the given domain D such that r is the residue class
of d. Second, for the definition of the residue class C(d) of a given d we need the set
quantifier. And, finally, for defining the result of applying the operation o in R to the
two residue classes r and s we need the “Choose” function that chooses one element
from the argument set.

11



In many areas of mathematics, non-algorithmic functors are the best one can do
for solving very general problems. For the above functor, one can at least prove that
if D(~) is a congruence the residue domain of D has “similar” properties as D and, in
addition, may have some new desirable properties, namely that certain objects exist
that solve some problem at hand.

In a concrete situation it may be a trivial, an easy, a non-trivial, a very difficult, or
an impossible task to come up with an algorithmic functor that constructs a domain
which is isomorphic to the domain constructed by the above non-algorithmic functor.

6.5 An Example of an Algorithmic Functor

In contrast to the previous functor, the following functor is algorithmic and, under
certain conditions, constructs a domain which is isomorphic to a residue domain. For
this functor we suppose that D is equipped with a unary operator o (which normally
will be a “canonical simplifier” for the congruence D(~)):

Simplified-Domain(D) :=
Functor((S, 0, s,1),

8. €5 <= sep A op(s) =s;
s.0gt :=op(sopt);

S
).

This functor is algorithmic in the sense that, if all the operations of D are algo-
rithmic, then also all the operations in S are algorithmic, i.e. the functor “preserves”
computability. First, in order to determine whether a given s is in the carrier of 5,
we only have to check whether s is in D and whether D(o), the function associated
with the operator o in D, applied to s is identical to s. Hence, under the assumption
that D(¢) and D(o) are algorithmic functions, this is an algorithmic process. Similarly,
under the assumption that op and op are algorithmic, also og is algorithmic.

The main theorem which one can prove about the functor “Simplified-Domain” is
the fact that, if op is a “canonical simplifier” w.r.t. ~p then the Simplified-Domain(D)
is isomorphic to Residue-Domain(D). In fact, the function C defined locally in the
functor Residue-Domain is an isomorphism.

Of course, these two functors are pervasive in mathematics and the construction of
algorithmic canonical simplifiers is one of the main methods for turning an inconstruc-
tive part of mathematics into a constructive one. Finding canonical simplifiers can be
trivial, easy, non-trivial, difficult, or shown to be non-existent. For example, for the
residue domain modulo 3, it is trivial to find a canonical simplifier. Just take

oz z = Mod(z,3).
If we now call
73 = Simplified — Domain (7)

then, for example, entering

12



2 073 2
evaluates to

1.

For the residue domain of a multivariate polynomial ring modulo a polynomial ideal,
as another example, the construction of a canonical simplifier is non-trivial (and it had
been conjectured to be algorithmically unsolvable for quite some years) and needs the
theory of Groebner bases. If P is some polynomial domain (over field coefficients or
other suitable coefficient domains) and F is a (finite) set of polynomials in P,

op p. := Normal — Form (p, Groebner — Basis (F))

is a canonical simplifier for the residue domain of P modulo the ideal generated by F
and

() = Simplified — Domain (P)

constructs an algorithmic isomorphic realization of this residue domain.

Note that the above sequences of statements are not only a mathematical descrip-
tion of the construction but are executable code in our system based on Mathematica.
This is so mainly because of the fact that (the innermost kernel of) Mathematica is
nothing else than an implementation of the equational part of higher order logic without
extensionality and because of the following two features of Mathematica:

o Mathematica allows Currying. Thus, it is perfectly possible to handle terms like
“D(o)(s,t)".

e The “Module” construct of Mathematica has exactly the semantics of the above
“Functor” construct and, in fact, one can teach Mathematica the Functor con-
struct by just defining “Functor = Module”.

Of course, the functor construct is available also in a few other programming lan-
guages, notably in ML.. However, in the above realization, Functor is much more flexible
because it allows one to define (decision predicates for) arbitrary carrier sets. Also,
the above realization of the functor concept is smoothly embedded into a full-fledged
computer algebra system with its practical computational power. Unfortunately, nei-
ther the fact that Mathematica is essentially higher order equational logic nor the fact
that Currying is allowed and Module can be used as Functor, is explicitly mentioned
or observed anywhere in the manual (Wolfram 89) nor in the rich literature on Mathe-
matica. One may also add that, surprisingly, the above implementation of the functor
principle in Mathematica is quite efficient: Generating code for the operations in a
domain by functors of the above kind is hardly slower than hand-coding the operations
for a particular domain. The only practical disadvantage of the above realization of
functors is that the tracing and debugging facilities of Mathematica, of course, are not
tailored for this particular way of structuring code for towers of domains. Anyway,
with some experience, it is satisfactorily possible to use the existing debugging tools of
Mathematica for debugging mathematical software written in the functor style.

13



7 Overcoming the Proof Gap

At present, nearly no proving capabilities are available in general computer algebra
systems. The “directed” equational proving capabilities of Mathematica are normally
used only for computation. Sophisticated special provers, as for example Collins’ prover
for the theory of real closed fields, see (Collins 1975) and the collection of articles on
his algorithm in Vol.5/1-2 of the Journal of Symbolic Computation, are stand-alone
systems.

As a first step for combining algebra and logic on the system level, one should
of course make these special provers available from within general computer algebra
systems like Mathematica. This is not really a problem any more because we can
use the MathLink facility for accessing independent systems. Thus, if we encounter a
formula like

VzeR3JyeR (y* =z)

we should be able to call Collins” algorithm from within Mathematica and obtain the
answer

False.
Similarly, if we encounter
teR A JyeR (y* =2)
a call to Collins’ algorithm would yield the equivalent quantifier-free formula
zeRAx>D0.

Note that Collins’ algorithm goes far beyond the present “simplification capabilities”
in ordinary computer algebra systems and, hence, the available of this and other so-
phisticated special provers will greatly expand the potential of these systems.

Similarly, at present, universal theorem provers are not smoothly linked to computer
algebra systems. Of course, it is very much desirable to have access to universal
theorem provers, notably of the natural deduction type, from within computer algebra
systems. For example if, in the development of some piece of mathematics, say in a
“computerized” text book, we want to prove that

~ is an equivalence on S = S/ ~ is a partition on 5

then, given the present state of proving technology, it should be possible to produce
the proof of this proposition automatically and to print the proof out in a way that
closely resembles a proof generated by a human. In fact, the proof of such theorems
hardly needs any special trick nor intuition and can basically be done by “expand-
ing” the definition using the natural deduction rules for quantifiers and propositional
connectives plus some “simplification”, i.e. manipulation of quantifier-free terms and
atomic formulae. Thus, given a proposition of the above type, we would wish to be
able to call a natural deduction prover from within a computer algebra system and
would expect that it produces just the answer

True

or, with the option “verbose”, the answer
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Let ” be an equivalence on S.

By the definition of S\~ we have to show that

It seems that one major obstacle that still makes this desire unrealistic is the fact
that

e mathematical knowledge must be well organized so that, in a given proof situa-
tion, only relevant knowledge and all relevant knowledge is available and

e in a given area of mathematics, in addition to the universal natural deduction
proof techniques, relevant special proof techniques should be available.

One of the main points I would like to make in this paper is that I think that
the functor principle is not only crucial for structuring mathematical knowledge and
mathematical methods (including algorithms) but it is also the key for structuring
proof techniques. Namely, the first part of any functor in the above realization is a
definition of the elementsin the carrier by describing its characteristic function (which is
algorithmic in the case of algorithmic functors). The structure of the description of this
characteristic function naturally suggests a special prover for properties of the objects
in the domain generated by the functor. For example, if the characteristic function is
described inductively, a corresponding inductive proof technique is naturally connected
with the functor. If the characteristic function is defined using set braces then the usual
set-theoretic proof techniques will naturally apply, etc.

We give an example which is trivial (sorry for that!) but, nevertheless, is surpris-
ingly powerful: We take the parameterless functor that defines one particular realiza-
tion of the natural numbers and define addition in the resulting domain:

Natural-Numbers() :=
Functor((N,n,m),

0 en <= True;
s(n.) en <= n en;
n.cy <= False;

n. +n0:=mn;
n.+n s(m) :=s(n+xm);

N
).

Here, “0” and “s” are “arbitrary but fixed constants”. The third clause in the inductive
definition of the “en” predicate is a clause that handles, the default case of any objects
not having the format “s(s(...s(0)))”. This is possible since Mathematica treats the
clauses in equational inductive definitions successively.

Now we describe, in Mathematica, a simple inductive prover that can handle for-
mulae of the form
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Vo Vay. . Yo, g, x,) = 1(T1,. .0, 20)

where “[” and “r” are terms containing the free variables “z,”, ..., “z,”. The structure

of the prover naturally reflects the induction scheme by which the above characteristic
function for the natural numbers in the 0/s-representation is defined. In fact, at a
higher level of the system, provers of this kind could be automatically generated from
the inductive definition of the respective characteristic function. The prover proceeds
by, first, trying to prove the formula by equational simplification. If this fails, “z,”
is taken as the induction variable. The base case for this induction is generated and,
again, a proof by simplification is attempted. If it fails, recursively, an induction over
“xy” (with “z,” replaced by 0) is started. If it succeeds, the induction hypothesis
and the formula to be proved in the induction step for (arbitrary but fixed) “z,” are
generated and a proof by simplification is attempted. If it fails, recursively, an induction
over “xy” (with “z;” arbitrary but fixed) is started. If it succeeds we are done.

In Mathematica (with Version 2.2 syntax), this recursive induction prover can be
described in a few lines:

ProofByInduction[
(* of the *) equality_,

(* w.r.t. the induction variables *) { vi_, v2___},
(* using the *) equalities_] :=

ProofByInductionO[ equality, { vi, v2}, { }, equalities]

ProofByInductionO[ equality_, { vi_, v2___},
(* arbitrary but fixed *) { wi___},

equalities_] :=
Modulel[

{ ... (% local variables *)J},
equalitySimplified = equality //. equalities;
If[ LeftHandSide[ equalitySimplified] ===

RightHandSide[ equalitySimplified],

Return[ True]

1;
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equality0 = equality /. v1 -> 0;

equalityOSimplified = equalityO //. equalities;
inductionHypothesis

Generalized[ LeftHandSide[ equality], { v1, wi}]

RightHandSide[ equalityl];
equalitiesForInductionStep =

Append[ equalities, inductionHypothesis];
equalitySvl = equality /. v1 -> s[ vi];
equalitySviSimplified =

equalitySvl //. equalitiesForInductionStep;

inductionBasisProved = False;
inductionStepProved = False;

If[ LeftHandSide[ equalityOSimplified] ===

RightHandSide[ equality0Simplified],
inductionBasisProved = True
1;
If[ LeftHandSidel equalitySviSimplified] ===

RightHandSide[ equalitySviSimplified],
inductionStepProved = True

1;

If[ ! inductionBasisProved,
inductionBasisProved =
ProofByInductionO[

equalityOSimplified,
{ v2}, { v1, wi}, equalities

]
1;

If[ ! inductionStepProved,
inductionStepProved =
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ProofByInductionO[
equalitySviSimplified,
{ v2}, { vi, wi},

equalitiesForInductionStep,

]
1;

inductionBasisProved && inductionStepProved

]

ProofByInductionO[
equality_, {}, { wi___}, equalities_, options___
] := False

In this description of the recursive induction prover we left out all the lines for printing
the proof. The prover is so simple that it hardly needs an explanation. “Generalized”
is a procedure that replaces a universally quantified variable by an “arbitrary but
fixed constant”. “/.” is the Mathematica operator for applying, once, rewrite rules
(i.e. directed equalities) to terms. “//.” is repeated application of “/.” until the
term does not change any more. Correspondingly, as a technical detail, the equalities
that constitute the inductive definitions of operations like, for example, “+” must be
presented in the form of “rules”. For example, if we want to apply the prover to the
domain generated by the above functor, we must extract the defining equalities from
the functor so that they are available, say, as the value of some constant “NN”, which
(in Version 2.2 syntax) could be done by an instruction of the kind

NN =
{ sum[ x_, 011 :> 0,

sum[ x_, s[ y_11 :> s[ sum[ x, yll}
Now, if we enter

ProofByInduction[
sum[ x, sum[ y, z]] == sum[ sum[ x, y], z],
{x, vy, z},
NN
]

we obtain the following inductive proof of the associativity of addition over the natural
numbers:
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Simplification proof of:
for all( x, y, z, ( (x+ (y+2)) =((x+7y)+2)).

.Simplification of left-hand side:
.(x0 + (yO + 20))

.Simplification of right-hand side:
. .C (x0 + y0) + z0)
Not proved by simplification.

Induction proof of:

for all( x, y, z, ( (x+ (y+2)=(C(x+y)+2z2))).
Induction variable: x.
sk sk ok ok ok ok ok ok ok ok ok sk ok ok sk ok sk sk ok ok ok ok ok ok ok ok ok ook

.Prove induction basis (i. e. formula with x -> 0):

for all(y, z, ( O+ (y+2)=CC0+y)+2))).
.Simplification proof of:
for all(y, z, ( O+ (y+2)=CC0+y)+2))).

.Simplification of left-hand side:
.COo0+ (y0o+ 20))

.Simplification of right-hand side:
.C C 0+ y0) + z20)
.Not proved by simplification.

.Induction proof of:

for all(y, z, ( (O + (y+2))=(C(C0+y)+2))).
.Induction variable: y.
. sokokokokokskskok skl sk sk ook s ok sk skskok ok ok ok ok

.Prove induction basis (i. e. formula with y -> 0):
For all(z, ( CO+ (0+2z)=(C0+0)+2z))).
.Simplification proof of:
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forall(z, ( (O0O+ (0+2)=(C0+0)+2))).

.Simplification of left-hand side:
C0+ (0 + 20))

.Simplification of right-hand side:
.0+ 0) + =20)
.= (0 + z0)

.Not proved by simplification.

.Induction proof of:

for all(z, ( O+ (0+2))=(CC0+0)+2))).
.Induction variable: z.
. sk sk ok ok sk ok ok ok ok sk ok ok ok sk sk ok sk ok ok ok sk ok ok ok sk ok ok k ok ok

.Prove induction basis (i. e. formula with z -> 0):
for all( ( (0 + (0 +0))=CC0+0)+0))).

.Simplification of left-hand side:
L0+ (0+0))

(0+0)

0

.Simplification of right-hand side:
LCC0+0)+0)
.= (0 +0)
. =0
.Proved induction basis with z -> 0.

.Let z0 be arbitrary but fixed.
.Induction hypothesis (i. e. formula with z -> z0):
for allC C CO+ (0 +2z0))=(C(C0+0) + z0))).

.Prove induction step formula (i. e. formula with z ->
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z07) :
for all( ( (0O + (0 +20’)) =(C (C0+0)+ 207))).

.Simplification of left-hand side:
0+ (0 +20"))

= (0+ (0+20))
= (0+ (0+20))
= ((0+0)+z0)
= (0 + z0)’

.Simplification of right-hand side:
CC0+0) +20")
.= (C(C0+0) + z0)
.= (0 + z0)’
.Proved induction step formula with z -> z0’.
.Proved by induction over z.
.Proved induction basis with y -> 0.

.Let yO be arbitrary but fixed.
.Induction hypothesis (i. e. formula with y -> y0):
for all( z, ( (O + (y0o+2z)) =(C(C0+y0)+2z))).

.Prove induction step formula (i. e. formula with y -> yO0’

.for all( z, ( ( 0+ ( y0O’ + 2))
.Simplification proof of:
for all(z, ( CO+ (y0o2 +2z)) = (C (0+y0’) +2))).

( C0+y0’) +2))).

.Simplification of left-hand side:
.C0o+ (y0» + 20))

.Simplification of right-hand side:
.C (0o + y0) + z0)
.= (C (0 +y0) + z0)

.Not proved by simplification.

.Induction proof of:
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for all(z, ( (O + (y0» +2)) =((C0+y0’) +2))).
.Induction variable: z.
sk ok ok ofook sk ok sk ok ok ok ok ok ok ook sk ok sk ko ok ok ok ok ok ok sk

.Prove induction basis (i. e. formula with z -> 0):
for all( ( (0 + (y0? +0)) = C (0 +y0’) +0))).

.Simplification of left-hand side:

In many more lines, the proof works its way completely automatically through the
recursion over the variables. Finally, it will return through all levels so that the last
few lines look like this:

.Simplification of left-hand side:
.(x0” + (y0’» + 207))
= (%0’ + (y0O’ + z0)?)
( x0” + ( y0O* + z0))’
( (%07 + y0?) + z0)°
( (%07 + y0)’ + z0)°
Slmpllflcatlon of right-hand side:
.C (%0 +y0?) + 20?)
= ( (%0’ + y0’) + z0)’
= ( (%0’ + y0)’ + z0)’
.Proved induction step formula with z -> z0’.
.Proved by induction over z.
.Proved induction step formula with y -> y0’.

.Proved by induction over y.
.Proved induction step formula with x -> x0’.
Proved by induction over x.

Of course, the crucial simplifications steps in the proof are exactly the ones that
would be produced by the well-known test case method, see for example (Kapur et
al. 1991). However, it is interesting that this prover evolves from a completely nat-
ural approach that does nothing more than reflecting the inductive definition of the
particular representation of the natural numbers, it also allows to produce a natural
language easy verbose presentation of the proof and it gets along without any human
interaction. Most importantly, this prover is fully integrated and in fact programmed
in the language of a full-fledged computer algebra system and can hence be used in
intimate interaction with computation. It also should be mentioned that, of course, the
sequence of the universally quantified variables may drastically influence the length of
the proof. This is a phenomenon that has often been reported in the literature. In fact,

“ 77 «, “ ”

in the above example, considering the variables in the order y”, produces a
very short proof that succeeds in the simplest possible way. ThlS is of course supported
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by the heuristics that the variable which is the induction variable in the inductive def-
inition of the functions involved should also be treated first in an inductive proof. In
more complicated examples, the proof may be stuck at certain points producing an
equality which is “not yet known”. Such equalities are often the appropriate guess for
a lemma that should be proved (by the above prover) before the main proof can be
attempted once more. In fact, this side step can be called automatically so that quite
impressive proofs can be handled completely automatically. More details can be found
in the preliminary report (Buchberger 1995).

8 Conclusion

In this paper we argued that the combination of the potential of computer algebra
and logic systems is the next natural step for enhancing the problem solving power
of “symbolic computation” systems. For closing the gap between the “ideal” future
system and the systems available at present we suggested to start from a computer
algebra system and to add logic and, in particular, proving power. For quite a few
reasons which we discussed in some detail, Mathematica seems to be particularly ap-
pealing as a starting point for such an approach. We tried to illustrate that the functor
view seems to be crucial for structuring mathematical knowledge, mathematical meth-
ods (including algorithms) and mathematical proofs in future symbolic computation
systems. Thus, the implementation of a well designed system of basic and advanced
functors (encompassing both the computation and the prover details for each functor)
is the essence of building up a future system. Currently, at the RISC institute, we
work on a project that elaborates the details of the approach described in this paper.
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