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We show that the Fermat polynomials F,:= X"+ ¥"— Z" satisfy the identity
Frooy= —(SoF,+81F,, +8,F, ), for all n, where the S, are the elementary
symmetric polynomials in three variables. A similar relation holds for the
“generalized” Fermat polynomials F, ,:=X7+ --. + X7 _ — X5, The proof of
these identities is elementary as soon as the identities are conjectured. The main
emphasis of the paper is on explaining a new method, based on the first author’s
Grobner bases technique, by which such identities can be generated  © 1992
Academic Press, Inc. .

1. INTRODUCTION

Let F,=X"+Y"—Z"for all n= 1. In [C] a relation of the form
Fys=Ry-F,+ Ry -Fo + Ry F, (1)

(for all n>1, with rational functions Ry, R,, R,) was established by a
complicated calculation involving certain determinants. '
In this paper we show that, in fact, the much simpler relation,

Fn+3=_(SO'Fn'I'Sl'Fn+l+S2'Fn+2)s (2)
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holds, where

So= —XYZ,
S, =XY+XZ+YZ,
S=—-(X+Y+2Z),

are just the elementary symmetric polynomials.
With the convention S5 =1, this relation can be rewritten in the form

So-F,+8,-Fop1+8:Fi0+5:-F,y3=0. (3)

This result has some interesting consequences:

» It shows that the “Fermat ideal,” i.., the ideal generated by all F,
(n>3) can be aiready generated by F;, F,, Fs. This follows from the above
relation by inductively concluding that Fge (F;, Fy, Fs), F,e(F,, Fs, Fy),
and hence F,e (F;, F,, F5), and so on.

It is furthermore interesting that the multipliers S; needed in the
representation of F,. ; in terms of F,, F,,,, F,,, are polynomials with
integer coefficients. Also, one can see that these multipliers do not depend
on A.

« The fact that the multipliers S, are so simple, namely the
elementary symmetric polynomials over X, Y, Z, may allow us to draw
conclusions for the solution of Fermat’s problem, see [C].

Once the relation (2) is conjectured, the proof is very easy. Just expand
the right-hand side of the equation (for indeterminate n) and verify that the
result is equal to F,, 5

The main emphasis, therefore, of this paper is not the actual relation but
a general method, based on the Grobner bases method introduced in
[B-1], by which such polynomial identities can be detected. The present
paper is an extension of [E-1, B-3].

We proceed in two steps reflecting the two approaches taken in [E-1,
B-3] yielding increasing detail. The first approach (Section 2) uses the
Grobner bases technique as a “black box™ as implemented in most of the
current computer algebra software systems, for example, the Macaulay
system. This approach yields the result that a relation of the form (1) with
polynomials R; must exist. It does not actually produce the polynomials R,.

The second approach (Section 3) needs a “white box” Grobner bases
implementation, as provided, for example, by [B-3], that allows us to trace
the actual steps of Grébner bases calculations.

For an easy-to-read introduction into the Groébner bases method, see
[B-21
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This paper should also be seen as a case study that may motivate readers
to apply the same technique for the invention of other polynomial
identities.

2. UsING GROBNER BAses FOR HILBERT FUNCTION COMPUTATION;
EXISTENCE OF A POLYNOMIAL RELATION BETWEEN THE F,

The key tool used in this section is the computation of Hilbert functions
of several graded algebras associated to the ideal of Fermat, by first com-
puting Grébner bases of these graded algebras and then using the formulae
for Hilbert functions of Grobner bases [B-1]. This method is implemented
in the software system Macaylay, implemented by D.A. Bayer and
M. Stillman [B-S].

This section is divided in two parts. In the first we compute the multi-
plicity of ring Q[X, ¥, Z]/#. Since the multiplicity is invariant by field
extensions we can do that with classical methods over C.

The second part is devoted to compute the Hilbert function of
QLX, Y, Z]/#. For this we compute the Hilbert function of QLX, Y, Z]/
(F3, F,, F5), and then we prove that both Hilbert functions are equal.
From this it is easy to see that (F;, F,, F,)=#.

From now on we put S=Q[X, ¥, Z]. Let A =k[X, Y, Z]/Ibe a graded
ring, with k a field. We will denote by 4, (resp. 1,) the nth graded picce
of A (resp. /). We define the Hilbert function of 4 by H (n)=dim,(4,),
where A4, is the nth graded piece of A. Recall that if we have a field
extension k<K then H, = H, where B=4®, K.

It is well known that there exists a rational polynomial P,e Q[ T], the
Hilbert polynomial of 4, such that P,(n)=H 4(n) for all #>0. We will
denote the regularity index of 4 by i(A)=Min{n|for all r>n, H A=
P (1)} [Sch, E-2].

Since the Hilbert function remains constant by field extensions, in order
to compute the multiplicity of Q[ X, ¥, Z7/# we only need to compute the
multiplicity of C[X, ¥, Z]/#.

PROPOSITION 2.1. Let & be the projective C-scheme Proj(C[X, Y, Z]/
F ). Then the underlying set of Z is {(1,0,1), (0, 1, 1)} and each of these
closed points has length 3, so & has multiplicity 6.

Proof. Consider the C-scheme Y = Proj(C[ X, ¥, Z]/(F3, Fy)). It is easy
to prove that the underlying set has four different points: P=(1,0, 1),
Q=(0,1,1), and two complex points. On the other hand, a
straightforward computation gives us that the length of Y in P is 3. Thus
if we denote by m the maximal ideal of Oy » we have that m”" =0 for all
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nz3. Hence we get Uz p=0y p and then the length of % in P is 3.
A similar result holds for Q. Since the underlying set of # is {P, Q) we
obtain the result.

CorOLLARY 2.1.1.  The ring QUX, Y. Z1/F has multiplicity 6.
The first step is to compute the Hilbert function of 4 = S/(F5. F,, Fy).

PROPOSITION 2.2, {H ,(n)},,0= {1,3,6,9,11,9,7,6, 6, .} Hence the
multiplicity of A is 6 and the regularity index is 7.

Proof. This can be obtained by a basic feature of the Macaulay
program [B-§, 3.7.1].

Remark 1. From Corollary 1.2 and Proposition 2.1 we deduce that
Fo=(F3, F;, Fs), for all n>0. Recall that we want to prove
# =(F,, Fy, Fs), so we need a deeper link between the Hilbert function of
A and Q[X, Y, Z1/#. For this we will consider degree one superficial
elements of A.

DEFINITION.  Let D be a graded quotient of S. We say that an element
L of D is superficial if and only if there exists an integer ny such that for
all nzny, D,—p D, ., is an isomorphism. Note that L is a degree
superficial element in this sense if and only if L is a superficial element of
the local ring D, vy [Z-S, Vol. 11, Chap. 8, Sect. 8]. For a degree one
superficial element L of D we will consider the integer gp(L)=
Min{n=0]for all 1= n, D, —z* D, is an isomorphism }.

Remark 2. Let L be a degree one superficial element of 4. Since the
Hilbert function of 4 takes values greater than its multiplicity, from [M,
Proposition 12.107, we get that A4 is not Cohen-Macaulay. Hence in order

to know ¢ (L) we can not apply [E-2, Proposition 1]. To avoid this we
will use Macaulay.

PROPOSITION 2.3. The coset of X—Y in A is a degree one superficial
element and the Hilbert function of B=Aj(x—y)is {Hgm)}={1, 2, 3, 3,
2,1,0,0,..} In particular B is an Artinian algebra of multiplicity 12 and
galx—=y)=1.

Proof.  Using Macaulay we find the Hilbert function of B (see the proof
of Proposition 2.2), in particular we get that B, =0, for all » =6.
Consider the following exact sequence

A’ dx ) Ar+1 - (A/(x_,v))ra—! = Br+1 —=0.
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Since B, =0 for all n>6 we get that
A4,——4,,, (4)

roax—y)
is epijective for all r>5. Recall that the regularity index of 4 is 7
(Proposition 2.2). Thus we obtain that (4) is an isomorphism for all n>7.
From this we obtain the result.

ProposITION 24. The coset of X—Y in Q[X, 7Y, Z1/F is a degree
one superficial element and Jarx, v, zys(x—y)=7. Moreover H, =

HCD[X, Y,Z)/F

Proof. Let J be the ideal of S generated by (F,; n=3,4, .., 7). If we
compute the Hilbert function of S/J, we get that it is equal to the Hilbert
function of 4. Since (F;, F,, F5)cJ we have 4 = S/J, so by Proposition 2.2
we obtain that H,,(7)=6.

Let D be the ring S/J+ (x - y). Then we have Hp(n)< Hg(n) for all
n (0. From Proposition 2.2 we get that H,(r)=0 for all n> 6. Hence if £
18 the ring E=S/# +(x—y) then we have H(6)=H,(6)=0. so
Hg(n)=0 for all n> 6. Consider the exact sequence

(S/F ) —=5> (S/F )y 1 = Ep i >0,

since E, =0 for all n> 6 we get that

S W—F S (5)

is epijective for all #>5. Recall that Hgw(T)=Hg,(7)=6, so by
Corollary 2.1.1, (5) is an isomorphism for all #n> 7. From this it is easy to
deduce the claim.

PROPOSITION 2.5. The set {F;, F,, Fs} is a minimal basis of &, in
particular for all n>3 there exist af, af, aseQ[X, Y, Z] such that
Fnzz:is:} Fia?'

Proof. From H,=H,,; (Proposition24), we get F =(F,, F,, F;).
Since # is not Cohen-Macaulay (see Remark 2) we get that & is not a
complete intersection. Hence a minimal basis of & has at least three
elements, so we get the result.

3. UsiNG GROBNER BASES FOR ACTUALLY GENERATING
THE POLYNOMIAL, RELATION

The result of the previous section can be made much more explicit by
going into the details of Grobner bases computations. Let G, be a Grobner
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basis for the ideal generated by F,, F,,,, F,.,. We will show that F, _,
reduces to zero w.r.t. G,. (This implies that F,  , is in the ideal generated
by F,, F,.1, F,,,, see [B-2].) Subsequently, for obtaining S,, S, Sa,
one only has to “collect the multiples of F,, F,, {, F,, " that occur in the
construction of the Grobner basis and in the reduction of F, , ;. Below, we
present this “calculation” with indeterminate # for # 2 4. In fact it turns out
that for n>=4 it is sufficient to construct the first two polynomials of G,,.

(For obtaining the idea for this approach to the soiution of the problem,
we computed the Grobner bases for n=3, 4, 5, 10 with the second author’s
Mathematica implementation of the Grobner bases method, [B-4]. This
implementation allows easy access to all intermediate steps for research
purposes. One immediately sees a common pattern in the calculations and
subsequently can come up with the derivation shown below for indeter-
minate n, which is valid for the case n>4. From the general case with
indeterminate » one can immediately conjecture identity (1) for arbitrary
nz=1 and prove it. In this stage, of course, one can forget about the
derivation by the Grobner basis method.)

We document the steps of this derivation by the Grobner bases method.
Reduction of the S-Polynomial of F, and F,, ; yields the polynomial

Kn,4=X'anFn+]'
Reduction of the S-Polynomial of F, and F, , , yields the polynomial

Kn,SzXz'Fn_Fn+2
*X'Kn,t%
- Y'Kn‘_“

Reduction of F, s using F,, F,,\, F, 2, K, 4, K, 5 yields
F,.;—XF,
+X*.K, .,
+ XY K, 4
+X-K, s
+Y*K,,
+Y-K,;
+7Z-K, s
=0.
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From the above reductions one obtains the relations
Koa=X-F,—F,,,+0-F,,,,
Kns=~XY-F,+(X+Y)-F,.,—F,,,,
Foiy=—(So Fy+ 8 -F, i1+ 85;-F,.5),

where

So= —XYZ,
S,=XY+XZ+7YZ
S,= —(X+Y+2Z)

From (1) one may conjecture that a similar relation holds also in the
case of more than three variables. In fact, for m variables we will prove the
identity

Fm.n+m= _(Sm,O'Fm,n+Sn1,1 'Fm,n+l + - +Sm,m~l 'Fm,n+m—1)s

where
Fpo=Xi+ - +Xn_,— X0,
and S,, , are the elementary symmetric polynomials in m variables, ie.,
Sm,O: (=1)" (X, X, X,

Sm,1=(—1)m_l (XIXZ"'Xm71+X1X2"'Xm—2Xm
+ -+ XX X,),

Sm,m72=X1X2+XlX3+ +Xm7}Xm9
Sm‘m—1= —(X1+X2+ +Xm)

This can be shown by elementary induction on m, see [B-3] or by the
following easy derivation, which is due to the second author’s student
Istvan Nemes, see [N].

With the additional convention S,, ,, =1 the general formula can be
written in the compact form '

Y Sk Frnnex=0 (forallm>1,nx21). (6)
k=0 ‘

We consider these relations as homogeneous linear recurrences with
coefficients S, ., 0<k <m. Since these relations are homogeneous, it is
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clear that the sum of two solutions and the product of a solution with a
polynomial are again solutions, ie, the solutions form a module over
Q{X,, .., X,,]. First, it 1s easy to see that, for 1 < j<m,

Y SaiXE=0.
k=0
This can be obtained by substituting X; for x in the elementary identity
(x_-Xl) "'(X_Xm)= Z Sm,k'xk'
k=0

Now, (6) can be composed from these basic solutions by addition and
multiplication with appropriate power products.
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