Research

Institute for

Symbolic

Computation
LINZ

Johannes Kepler University, A-4040 Linz, Austria (Europe)

Publications / Reports

Editors: RISC-LINZ faculty

(B. Buchberger, A. Leitsch, F. Lichtenberger, P. Paule,
H. Rolletschek, F. Winkler, H. Zassenhaus)

Applications of Grobner Bases in
Non-Linear Computational Geometry

B. Buchberger
Proc. Workshop on Scientific Software (invited lecture), IMA, Minneapolis, USA

March 23-26, 1987, pp. 59-88, IMA Volumes in Mathematics and its Applications,
vol. 14, Springer

RISC-LINZ Series no. 87-15.0

Sponsored by:
Copyright Notice: This paper is published elsewhere. As a courtesy to the publisher distribution of this

paper is strictly limited.




APPLICATIONS OF GROBNER BASES
IN NON-LINEAR COMPUTATIONAL GEOMETRY

BRUNO BUCHBERGER!

Abstract

Grébner bases are certain finite sets of multivariate polynomials. Many
problems in polynomial ideal theory (algebraic geometry, non-linear compu-
tational geometry) can be solved by easy algorithms after transforming the
polynomial sets involved in the specification of the problems into Grobner ba-
sis form. In this paper we give some examples of applying the Grébner bases
method to problems in non-linear computational geometry (inverse kinematics
in robot programming, collision detection for superellipsoids, implicitization
of parametric representations of curves and surfaces, inversion problem for
parametric representations, automated geometrical theorem proving, primary
decomposition of implicitly defined geometrical objects). The paper starts with
a brief summary of the Grobner bases method.

1 Introduction

Traditionally, computational geometry deals with geometrical and combinatorial
problems on linear objects and simple non-linear objects, see for example (Preparata,
Shamos 1985). These methods are not appropriate for recent advanced problems
arising in geometrical modeling, computer-aided design, and robot programming,
which are more algebraic in nature and involve non-linear geometrical objects. Real
and complex algebraic geometry is the natural framework for most of these non-
linear problems. Unfortunately, in the past decades, algebraic geometry was very
little concerned with the algorithmic solution of problems. Rather, non-constructive
proofs of certain geometrical phenomena and mere existence proofs for certain ge-
ometrical objects was, and still is, the main emphasis.

The method of Grobner bases is an algorithmic method that can be used to
attack a wide range of problems in commutative algebra (polynomial ideal theory)
and (complex) algebraic geometry. It is based on the concept of Grobner bases
and on an algorithm for constructing Grobner bases introduced in (Buchberger
1965, 1970). In recent years the method has been refined and analyzed and more
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applications have been studied. (Buchberger 1985) is a tutorial and survey on the
Grobner bases method. '

The present paper starts with a brief summary of the basic concepts and results
of Grobner bases theory ( Section 2). If the reader accepts these basic concepts and
results as black boxes, the main part of the paper is self-contained. The internal
details of the black boxes together with extensive references to the literature are
given in the tutorial (Buchberger 1985).

The main part of the paper explains various applications of the Grébner bases
method for problems in non-linear computational geometry as motivated by ad-
vanced applications in computer-aided design, geometrical modeling and robot pro-
gramming. The sequence for the presentation of these applications is quite random.
Each of them relies on one or several of the basic properties of Grobner bases sum-
marized in Section 2.

2 Summary of the Grobner Bases' Method

The reader who is interested only in the applications may skip this section and
come back in case he needs a specific notation, concept or theorem.

.1 General Notation

N

set of natural numbers including zero
set of rational numbers

set of real numbers

set of complex numbers

typed variable for arbitrary fields
algebraic closure of K

1,7,k,l,m,n typed variables for natural numbers

NxQHLO 2

Kzy,...,z,) ring of n-variate polynomials
over the coefficient field K
K(z1,...,zn) field of n-variate rational rational expressions
over the coefficient field K
a,b,c,d typed variables for elements in coefficient fields
f,9,h,pyq typed variables for polynomials
s,t,u typed variables for power products,
o i. e. polynomials of the form zi! ...zl
C(f,u) . the coefficient at power product u in polynomial f
F , G typed variables for finite sets of polynomials
H typed variable for finite sequences of polynomials
Ideal(F) the ideal generated by F,
i. e. the set {3 hi.fi | hi € K[z1,...,2,), f; € F}
Radical(F) the radical of the ideal generated by F,
i. e. {f | f vanishes on all common zeros of F'}
or, equivalently, {f | f* € Ideal(F) for some k}
f=rg f is congruent to g modulo Ideal(F)

Klzi,...,z,)/I1deal(F)
[flr

the residue class ring modulo Ideal(F)
the residue class of f modulo Ideal(F)




In the definition of Ideal(F’), it is sometimes necessary to explicitly indicate the
polynomial ring from which the h; are taken. If the polynomial ring is not clear
from the context, we will use an index:

Idealgy,, ...z, (F)

In the definition of Radical(F'), by a common zero of the polynomials in F we
mean a common zero in the algebraic closure of the coefficient field.

2.2 Polynomial Reduction

The basic notion of Grobner bases theory is polynomial reduction. The notion of
polynomial reduction depends on a linear ordering on the set of power products
that can be extended to a partial ordering on the set of polynomials. The set of
“admissible orderings” that can be used for this purpose can be characterized by
two easy axioms. The lezical ordering and the total degree ordering are the two
admissible orderings used most often in examples. These two orderings are com-
pletely specified by fixing a linear ordering on the set of indeterminates z,,...,z,
in the polynomial ring. Roughly, f reduces to ¢ modulo F' iff g results from f by
subtracting a suitable multiple a.u.h of a polynomial h € F such that g is lower in
the admissible ordering than f. Reduction may be conceived as a generalization of
the subtraction step that appears in univariate polynomial division. For all details,
see (Buchberger 1985). We use the following notation:

>~ typed variable for admissible orderings

LP(f) leading power product of f (w.r. t. >)

LC(f) leading coefficient of f (w. r.t. >)

MLP(F) the set of “multiples of leading powerproducts in F”,
i.e. {u | (3f € F)(u is a multiple of LP(f)}

f—Fg f reduces to g modulo F

—F reflexive-transitive closure of —

5 reflexive-symmetric-transitive closure of — ¢

fr f is in normal form modulo F, i. e.

there does not exist any g such that f —-p g

A binary relation — on a set M is called “noetherian” iff there does not exist
any infinite sequence £; — 3 — z3 — ... of elements z; in M.

Lemma 2.2.1 (Basic Properties of Reduction)
(Noetherianity)
For all F: —F is noetherian.
(Reduction Closure = Congruence)
For all F: =p=©}.
(Normal Form Algorithm)
There ezists an algorithm NF (“Normal Form”) such that for all F,g:
(NF1) g—F NF(F,g),
(NF2) NF(F,g),.
(Cofactor Algorithm)



There ezists an algorithm COF (“cofactors”) such that for all F,g:
COF(F,g) is a sequence H of polynomials indezed by F satisfying

g = NF(F’.‘]) +ZfeFH.f'f'

Note that, for fixed F, f, there may exist many different g such that f —% g
and g i.e.,in general, “normal forms for polynomials f are not unique modulo
F”. A normal form algorithm NF, by successive reduction steps, singles out one of
these g for each F' and f.

COF proceeds by “collecting” the multiples a.u.h of polynomials » € F that
are subtracted in the reduction steps when applying the normal form algorithm NF
to g. Actually, COF can be required to satisfy additional properties, for examples,
certain restrictions on the leading power products of the polynomials Hy.f.

2.3 Grobner Bases and the Main Theorem

Definition 2.3.1 (Buchberger 1965, 1970)
F is a Grobner basis (w. r. t. =) iff
“normal forms modulo F are unique”, i.e.

fOT all fagl?gz:
if f =% 91, f =F 92,915+ 925, then g1 = ga.

Note that — depends on the underlying admissible ordering > on the power
products. Therefore, also the definition of Grobner basis depends on the under-
lying >=. Whenever > is clear from the context, we will not explicitly mention
~. QGrobner bases whose polynomials are monic (i. e. have leading coefficient 1)
and are in normalform modulo the remaining polynomials in the basis are called
“reduced Gréobner bases”. As we will see, Grobner bases have a number of use-
ful properties that establish easy algorithms for important problems in polynomial
ideal theory. Therefore the main question is how Grdbner bases can be algorith-
mically constructed. The algorithm needs the concept of “S-polynomials”. The S-
polynomial of two polynomials f and g is the difference of certain multiples u.f and
v.g. For details see (Buchberger 1985). We use the notation

SP(f,9) the S-polynomial of f and g.

Theorem 2.3.1 (Main Theorem, Buchberger 1965, 1970)
(Algorithmic Characterization of Grébner Bases)
F is a Grobner basis iff
for all f,g € F : NF(F,SP(f,g))=0.
(Algorithmic Construction of Grobner Bases)
There ezists an algorithm GB such that for all F
(GB1) Ideal(F) = Ideal(GB(F))
(GB2) GB(F) is a (reduced) Grobner basis.

The proof of the (Algorithmic Characterization) is completely combinatorial and
quite involved. The whole power of the Grobner bases method is contained in this
proof. The algorithm GB is based on the (Algorithmic Characterization), i. e. it




involves successive computation of normal forms of S-polynomials. This algorithm
is structurally simple. However, it is complex in terms of time and space consumed.
In some sense, this is necessarily so because the problems that can be solved by
the Grobner bases method are intrinsically complex as has been shown by various
authors. Still, the algorithm allows to tackle interesting and non-trivial practical
problems for which no feasible solutions were known by other methods. Also,
various theoretical and practical improvements of the algorithm have enhanced the

scope of applicability.

2.4 The Grobner Bases Algorithm in Software Systems

The Grobner bases algorithm GB is available in almost all major computer algebra
systems, notably in the SAC-2, SCRATCHPAD II, REDUCE, MAPLE, MAC-
SYMA and muMATH systems. The introduction of (Buchberger, Collins, Loos
1982) contains the addresses of institutions from which these systems can be. ob-
tained. In these systems at least the algorithms SP, NF, (COF,) and GB are
accessible to the user. In most systems, also a number of other auxiliary routines
and variants of these basic algorithms are available and the user can experiment
with different coefficient domains, admissible orderings and strategies for tuning
the algorithms.

The implementations vary drastically in their efficiency mostly because of the
varying amount of theory that has been taken into account. Also, computation time
and space depends drastically on the admissible orderings used, on permutations
of variables, on treating indeterminates as ring or field variables, on strategies for
selecting pairs in the consideration of S-polynomials and on many other factors.
Thus if one seriously considers solving problems of the type described in this paper
one should try different systems and various orderings, strategies etc.

The rest of the paper is written with the goal in mind that the reader should
be able to apply the methods as soon as he has access to an implementation of the

basic algorithms NF, COF, SP, and GB viewed as “black boxes”.

2.5 Properties of Grobner Bases

In the following theorem we summarize the most important properties of Grobner
bases on which the algorithmic solution of many fundamental problems in polyno-
mial ideal theory (algebraic geometry, non-linear computational geometry) can be
based. Actually, not all of these properties are used in the later sections of the paper.
However, since the results on Grobner bases are quite scattered in the literature, the
summary may help the reader who perhaps wants to try the Grébner bases method
on new problems. Many of the properties listed in the theorem were already proven
in (Buchberger 1965, 1970). Actually the problems that can be solved with the
(Residue Class Ring) properties were the starting point for Grébner bases theory
in (Buchberger 1965). The property (Elimination Ideals) is due to (Trinks 1978).
The property (Inverse Mappings) is a recent contribution by (Van den Essen 1986)
that solves a decision problem that has been open since 1939. (Algebraic Relations)
and (Syzygies) seem to have been known already to (Spear 1977). However, it is
hard to trace were the proofs appeared for the first time. More references are given
in (Buchberger 1985). Most of the proofs of the properties below are immediate



consequences of the definition of Grobner bases, the property (Reduction Closure
= Congruence), and some well known algebraic lemmas in polynomial ideal theory.
The proofs of the properties (Syzygies) and (Inverse Mappings) are more involved.
The existence of the algorithm GB based on the above Main Theorem is the crux

for the algorithmic character of the properties.
In the following, let K[zy,...,z,] be arbitrary but fixed. F and G are used

as typed variables for finite subsets of K|[z;,...,z,]|. If not otherwise stated, > is
arbitrary. When we say “y is a new indeterminate” we mean that y is different from
T1,...,Z,. By “F is solvable” we mean that there exists an n-tuple (a,,...,a,) of
elements a; in the algebraic closure K such that f(a;,...,a,) = 0 for all f € F.
Similarly, the expression “F has finitely many solutions” and similar expressions
always refer to solutions over the algebraic closure of K.
Theorem 2.5.1 (General Properties of Grobner Bases)
(Ideal Equality, Uniqueness of Reduced Grébner Bases)

For all F, G: Ideal(F) = Ideal(G) iff GB(F) = GB(G).
(Idempotency of GB)

For all reduced Grobner bases G: GB(G) = G.
(Ideal Membership)

For all F, f: f € Ideal(F) iff NF(GB(F), f) = 0.
(Canonical Simplification)

For all F, f, g: f =r g iff NF(GB(F), f) = NF(GB(F),g).
(Radical Membership)

For all F, f:
f € Radical(F) iff 1 € GB(F U{y.f —1}), (where y is a new indeterminate).

(Computation in Residue Class Rings)

For all F:

The residue class ring K|z,,...,z,]|/Ideal(F') is isomorphic to the al-
gebraic structure whose carrier set is {f | f .} and whose addition and
multiplication operations, & and ®, are defined as follows:

f @ g:=NF(GB(F), f +9),
f ® g := NF(GB(F), f.g).




(Note that the carrier set is a decidable set and @ and ® are computable!).
(Residue Class Ring, Vector Space Basis)

For all F:

The set {[u]r | v € MLP(GB(F'))} is a linearly independent basis for
Klz,,...,z,)/Ideal(F) considered as a vector space over K.

(Residue Class Ring, Structure Constants)

For all F, u, v:
if u,v € MLP(GB(F)),
then [u]r.[v]F = EngLP(GB(F)) ay-[w]F,
where, for all w,a, := C(NF(GB(F),u.v),w).

(The a,, € K, appearing in these representations of products of the basis
elements as linear combinations of the basis elements are the “structure
constants” of K[z,,...,z,])/Ideal(F) considered as an associative alge-
bra.)
(Leading Power Products)
For all F: MLP(Ideal(F)) = MLP(GB(F)).
(Principal Ideal)
For all F:

Ideal(F) is principal (i. e. has a one-element ideal basis)
iff GB(F') has ezactly one element.

( Trivial Ideal)
For all F: 1deal(F) = K|[z,,...,z,] iff GB(F) = {1}.
(Solvability of Polynomial Equations)
For all F: F is solvable iff 1 ¢ GB(F).
(Finite Solvability of Polynomial Equations)
For all F:
F has only finitely many solutions iff

for all1 < i < n there ezists an f € GB(F) such that
LP(f) is a power of z;.

(Number of Solutions of Polynomial Equations)




For all F with finitely many solutions:
the number of solutions of F (with multiplicities and solutions at infinity) =

= cardinality of {u | v ¢ MLP(GB(F))}.
(Minimal Polynomial)

For all F and all finite sets U of power products:
There ezists an f € ldeal(F) in which only power products from U occur
iff {NF(GB(F,u)) | v € U} is linearly dependent over K.

(By applying this property successively to the powers 1,z;,22,z3,... one
can algorithmically find, for ezample, the univariate polynomial in z;
of minimal degree in Ideal(F) if it exists. On this algorithm a gen-
eral method for solving arbitrary system of polynomial equations can be
based, see (Buchberger 1970), which works for arbitrary >~ whereas the
elimination method mentioned below works only for lezical orderings.)

(Syzygies)
Let F be a (reduced) Gréebner basis and define for all f,g € F':

ptr9) .= COF(F,SP(f,9)),

u and v such that SP(f,g) = u.f —v.g,

S§(/9) is a sequence of polynomials indezed by F,
S.(ffyg) = — P}fvg)’

S§(f9) .= —y — PS9)

g

g
S,(.,_f,g) = _Péf’g),for all h € F — {fag}

Then,

{SU9) | f,g € F} is a set of generators for the K[z1,...,z,]-module of
all sequences H of polynomials (indezed by F) that are solutions (“syzy-
gies”) of the linear diophantine equation

ZhEF Hh.h - O.

(This solution method for linear diophantine equations over Klzy,...,z,)
whose coefficients form a Grobner basis F can be easily extended to the
case of arbitrary F and to systems of linear diophantine equations, see

(Buchberger 1985), (Winkler 1986)).

Theorem 2.5.2 (Properties of Grobner Bases for Particular Orderings)

(Hilbert Function)




Let = be a total degree ordering.
Then, for all F:

The value H(d, F) of the Hilbert function for d and F, i. e. the number
of modulo Ideal(F) linearly independent polynomials in K(z,,...,z,]of
degree < d, is equal to

(d?in) - cardinality of {u of degree < d |u ¢ MLP(GB(F))}.
(Elimination Ideals, Solution of Polynomial Equations)

Let = be the lezical ordering defined by ©; < T, < ... < ;.
Then, for all F, 1 <1 < mn:

The set GB(F) N K[zy,...,z;]) is a (reduced) Grobner basis for the
“i-th elimination ideal” generated by F, i. e. for ldealk[s,, . )(F) N
K[ml,...,:n,'].

(This property leads immediately to a general solution method, by “suc-
cessive substitution”, for arbitrary systems of polynomial equations with
finitely many solutions, which is formally described in (Buchberger 1985).
We will demonstrate this method in the ezamples in the application sec-

tion of this paper.)

(Continuation of Partial Solutions)

Let = be a lexical ordering.
For all F:

If F:={f1,...,fx} is a Gréobner basis with respect to >, f; < --+ < f,
and fi1,...,fi(1 <1 < k) are ezactly those polynomials in F that de-
pend only on the indeterminates z,,...,z;, then every common solu-
tion (ay,...,a;) of {fi,..., fi} can be continued to a common solution
(a1y-..,a,) of F. (For a correct statement of this property some termi-
nology about solutions at infinity would be necessary.)

(Independent Variables Modulo an Ideal)

Forall Fand1l <1; < ... <1y, <n:

The indeterminates z;,,...,;, are independent modulo Ideal(F) (i. e.
there is no polynomial in Ideal(F) that depends only on z;,...,z;,)
iff GB(F) NK|z;,,...,z;,] = {0}, where the = used must be a lezical
ordering satisfying z; < --- < z;, < all other indeterminates. (This
property yields immediately an algorithm for determining the dimension
of a polynomial ideal (algebraic variety).)




(Ideal Intersection)

Let > be the lezical ordering defined by ©1 < 3 < ... <zTp <Y,
y a new variable.

Then, for all F, G:

GB({y-f1fe F}U{(y—1)g|gc G} NKlz,... 2]
is a (reduced) Grobner basis for Ideal(F') N1deal(G).

( This property yields also an algorithm for quotients of finitely generated
ideals because the determination of such quotients can be reduced to the
determination of intersections.)

(Algebraic Relations)

For all F:

Let F = {fi,...,fm}, let y1,...,ym be new indeterminates and let >
be the lexical ordering defined by y1 < ... < Yym < T1 < ... < Tp.
Then, GB({y1 = fis- -1 Ym—Fm}) VK [Y1,- - ,Ym] is a (reduced) Grébner

basis for the “ideal of algebraic relations” over F, i. e. for the set {g €

Ky, -y Ym] | 9(frsee s fm) = 0}.
(Inverse Mapping)

For all F:

Let F = {fi,...,fa}, let y1,-..,Yn be new indeterminates and let = be
the lezical ordering defined by y; < ... < yp < €1 < ... < z,. Then,
the mapping from K into K= defined by F is bijective iff GB({y: —
fiyeeosYn — fn}) has the form {z1 — g1,...,1 — gn} for certain g; €
Klyi,- - yYn)-

The properties stated in the above theorem can be read as the algorithmic solu-
tion of certain problems specified by polynomial sets F'. Each of these "algorithms”
requires that, for solving the problem for an arbitrary F, one first transforms F
into the corresponding (reduced) Grobner basis GB(F) and then performs some
algorithmic actions on GB(F). For example, for the decision problem “f = g7,
(Canonical Simplification) requires that one first transforms F into GB(F') and
then checks, by applying algorithm NF, whether or not the normal forms of f and
g are identical modulo GB(F'). Actually, most of the above properties (algorithms)
are correct also if, instead of transforming F into a corresponding reduced Grobner
basis, one transforms F into an arbitrary equivalent Grébner basis G. (We say “F
is equivalent to G” iff Ideal(F) = Ideal(G).) In practice, however, this makes very
little difference because the computation of Grobner bases is not significantly easier
if one relaxes the requirement that the Grobner basis must be reduced.

Alternatively, by (Idempotency of GB), the properties stated in the above the-
orem can also be read as properties of (reduced) Groébner bases — and algorithms
for solving problems for (reduced) Grobner bases. For example, introducing the ad-
ditional assumption that F is a (reduced) Grobner basis, (Canonical Simplification)
reads as follows:
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For all (reduced) Grobner bases F, and polynomials f,g:
f =r g iff NF(F, f) = NF(F,g).

Some of the properties stated in the above theorem are characteristic for Grobner
bases, i. e. if the property holds for a set F then F is a Grobner basis. For example,
(Leading Power Products) is a characteristic property, i. e. if MLP(Ideal(F)) =
MLP(F) then F is a Grobner basis.

Let us carry through one more exercise for reading the above properties as
algorithms. For deciding whether

(Question)
for all ay,...,a, € K,
for which fi(ai,...,8,) =+ = fm(a1,...,a,) =0,

also g(ay,...,a,) =0,

i. e. for deciding whether g € Radical({f1,..., fm}), because of (Radical Member-
ship), it suffices to perform the following steps:

1. Compute the (reduced) Grébner basis G for {f1,..., fm,¥.9 — 1}),

where y is a new indeterminate.
2. The (Question) has a positive answer iff 1 € G.

3 Application: Inverse Robot Kinematics

The problem of inverse robot kinematics is the problem of determining, for a given
robot, the distances at the prismatic joints and the angles at the revolute joints that
will result in a given position and orientation of the end-effector. The mathematical
description of this problem leads to a system of multivariate polynomial equations
(after representing angles o by their sine and cosine and adding sina + cos’a =1
to the set of equations), see (Paul 1981).

Let us consider, for example, the following robot having two revolute joints (two

“degrees of freedom”).




We introduce the following variables:

l,1, lengths of the two robot arms
PT,pY, P2 z-, y—, and z-coordinate of the position of the end-effector
¢,0,v¢ Euler angles of the orientation of the end effector

(Euler angles are one way of describing orientation)
61,6, angles describing rotation at the revolute joints

We introduce the sines and cosines of the angles occuring in the above descrip-
tion as separate variables:

81,C, sine and cosine of §;
89, Co sine and cosine of 6,
sf,cf sine and cosine of ¢
st,ct sine and cosine of 8
sp,cp sine and cosine of

The interrelation of the physical entities described by the above variables is
expressed in the following system of equations:

ci-ca—cf-ct-cp+sf-sp=0,
sy+c3—8f-ct-cp—cf-sp=0,
sy +st-cp=20,
—c;-83—cf-ct-sp+sf-cp=0,
—81-83+8f-ct-sp—cf-cp=0,
cy—st-sp=0,

s, —cf-st=0,

—cy — 8f -st =0,

ct =20,

ly-¢y-cg—pz =0,
l-8,-¢co—py=0,
ly-s5+ 1, —pz =0,
cZ+s1-1=0,

c2+s2-1=0,

Cf2+3f2— :O’
ct?+st2-1=0,
cp2+sp2—1=0.

Let us call those variables that describe the geometrical realization of the robot
“geometrical variables” (for example, the variables [;,l;). Let us also call those
variables that describe position and orientation of the end-effector shortly “posi-
tion variables” (pz,...,sf,cf,...). The other variables (s1,c¢1,...) are the “joint
variables”.

In the case of more complicated robots (with six degrees of freedom), one can
specify values for the geometrical variables and the position variables and, with
certain restrictions, will always be able to determine appropriate values of the joint
variables that yield the given position and orientation of the end-effector. In the
above example robot, with only two degrees of freedom however one can only inde-
pendently choose the value of two position variables, for example pz and pz. The
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value of all the other variables, notably of the other position variables py,sf,cf,...,
and the joint variables will then be determined by the above system of algebraic

equations.
The problem can be considered in three different versions of increasing general-

ity.
(Real Time Version)
e The value of the geometrical variables are numerically given.

e The value of those position variables that can be independently chosen (e. g.
pz,pz) are numerically given.

e The solution of the problem consists in determining appropriate numerical
values for the (remaining position variables and) the joint variables.

(Off-Line Version, Concrete Robot)
e The value of the geometrical variables are numerically given.

e The value of those position variables that can be independently chosen are
left open as parameters.

e By a "solution of the problem”, in this version, one means symbolic expres-
sions involving the position parameters that describe, in “closed form”, the
dependence of the (remaining position variables and) the joint variables from
the position parameters. Of course, a “symbolic closed form solution” of this
kind will not always be possible. It is possible for certain classes of robots,
see (Paul 1981), and it is possible in a modified sense also in the general case
by using Grobner bases.

(Off-Line Version, Robot Class)
e The value of the geometrical variables are left open as parameters.

e The value of those position variables that can be independently chosen are
left open as parameters.

e By a "solution of the problem”, in this version, one means symbolic expres-
sions involving the geometrical and the position parameters that describe,
in “closed form”, the dependence of the (remaining position variables and)
the joint variables on the geometrical and position parameters.. A “symbolic
closed form solution” in this general sense is even more difficult. Again, it is
possible for certain classes of robots and, as we shall see, it is possible in a
modified sense also in the general case by using Grobner bases.

A symbolic solution of the inverse kinematics problem in the (Off-Line Version),

can be contrasted to a numerical approach:

(Symbolic Approach)




o Derivation of the symbolic expressions for the solution of the problem in the

(Off-Line Version).
e Numerical specification of the parameters.

e Numerical evaluation of the symbolic expressions using the numerical values
of the parameters.

(Numerical Approach)

e Numerical specification of the parameters.

e Solution of the problem in the (Real-Time Version) by numerical iteration
methods.

It is clear that a symbolic solution of the problem in the (Off-Line Version)
can have practical advantages over the purely numerical approach (as long as the
resulting symbolic expressions describing the solutions are not too complicated)
because the numerical evaluation of the symbolic solution expressions in real-time
situations may be faster than a direct iterative numerical solution of the (Real Time
Version) of the problem. Also, of course, the symbolic solution may give “insight”
into the problem that can not be gained by a numerical solution.

For the above example, we show the solution of the problem in the (Off-Line
Version, Roboter Class) by using Grébner bases. In this version, the geometrical
variables l;,l, and the position variables pz,pz are considered as symbolic param-
eters.

The solution method uses property (Elimination Ideals) of Grébner bases. This
property, read as an algorithm, tells us that we first have to compute the Grobner
bases of the set F of input polynomials. Since l,l;,px,pz are to be treated as
symbolic parameters, we work over the field Q(l1,ls,pz,pz) as coefficient field.
This is perfectly possible, because the Grobner bases method works over arbitrary
fields (whose arithmetic is algorithmic). Furthermore, we must specify an ordering
on the remaining variables, for example ¢; < ¢; < 81 < 8, < py < cf < ¢t <
cp < sf < st < sp. These variables are treated as ring variables, i.e. the Grobner
basis will be computed considering the input polynomials as polynomials in the ring
Q(l1, 1y, pz,pz)[ci, . .., sp]. The resulting Grobner basis has the following form:
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The above Grobner basis has a remarkable structure:

e The geometrical parameters [; and [, and the position parameters pz and pz
are still available as symmbolic parameters in the polynomials of the Grobner
basis. Thus, the system is still “general”. The Groébner basis is in “closed

form”.

e In accordance with property (Elimination Ideals), the system is “triangular-
ized”. In this example, this means that the first polynomial of the basis
depends only on ¢;, the second on c¢;,c2, the third on ¢1,¢z,581, .... After
substitution of numerical values for the parameters [, 5, pz, pz, we can there-
fore numerically determine the possible values for ¢; from the first equation
then, for each of the values of ¢,, determine the value of ¢, from the second
equation then, for each of the values of ¢y, ¢y, determine the value of s; from
the third equation etc. '

e Actually, the degrees of the polynomials in this basis are quite low. This
is in general not true for the first polynomial in Grébner bases. The first
polynomial, which, in case the solution set is finite, is always univariate, tends
to have quite a high degree in general. The degrees of the other polynomials,
however, tend to be very low (most times even linear) also in the general
case because the polynomial sets describing realistic physical or geometrical
situations often define prime ideals, for which linearity in the second, third
... variable can be proven theoretically. This phenomenon needs closer study,
however. For numerical practice, low degrees in the second, third ... variable
implies that numerical errors from the determination of the value of the first
value will not drastically accumulate. In the case where the second, third
... equation is linear, the Grobner basis has the form {p:(z),z; — p2(z1),
«++yZn—pPa(z1)}. In this case, the errors introduced by the numerical solution
of p; will not accumulate at all.

e The above method of numerical backward substitution based on the Grobner
basis, by property (Elimination Ideals), is guaranteed to yield all (real and
complex) solutions of the system.

e Again by (Elimination Ideals), no “eztraneous” solutions of the system are
produced. (Other algebraic methods, for example the resultant method, may
produce extraneous solutions.)

The above Grébner basis was produced in 62 sec on an IBM 4341 using an
implementation of the Grobner basis method by R. Gebauer and H. Kredel in the
SAC-2 computer algebra system. The computation time is increasing drastically
when more complicated robot types are investigated. We are far from being able to
treat the most general robot of six degrees of freedom. However, so far, only very
little research effort has been dedicated to this possible application of Grébner bases.
Using the special structure of the problem it may well be that more theoretical
results can be derived that allow to drastically speed up the general algorithm in
this particular application. '
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