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INTRODUCTION

This is a survey on the L-machine research project at the University of Linz, The
L-machine is a parallel machine whose design objective is the execution of all types
of parallel algorithms, in particular non-numerical (symbolic) algorithms. On the L-
machine it should be possible to exploit the parallelism inherent in many algorithmic
ideas in a natural way. As the main implication this requires that the interconnec-
tion topolegy of the processor modules of the machine should be easily adaptable to
the parallel algorithm at hand. The L-machine is a highly modular structure whose
building blocks are universal processor/memory modules, called L-modules, that can he
interconnpected in arbitrary ways. Since the partial processes realized in the L-
modules can be asynchronous a flexible synchronization mechanism is necessary, which
is realized by programmable sensor bits,

The L-machine project has been started in 1978, see [Buchberger 78}. Various
extensions of the original concept are documented in the references. In this paper it
is not possible to compare the L-machine concept with- the various other paraliel
machine concepts for symbolic computation, in particular with other parallel infer-
ence machines. A comprehensive bibliography on parallel processing is [Bernutat-
Buchmann, Rudolph, SchloBer 83], a bibliography on parallel machines fer symbolic
computation is [Bibel, Aspetsberger 85|. A comparison of the L-machine concept with
other parallel machine concepts is given, for example, in [Fessler, Paepcke, Schriter
81|, Systematic descriptions of parallel machine concepts are, for example [Paker
83] and [Hwang, Briggs 8 ]. A comparison between the ALICE machine and the L-machine
is given in [Aspetsberger 85a], where it fs shown how the ALICE concept couid be
realized by the L-components,

We will first sketch some easy parallel algorithms with the intention to demon-
strate that very different interconnection topologies are necessary in order to
exploit the parallelism in the various examples. Then we summarize explicitly the
basic design objectives for an ideal parallel machine for symbolic computation that
follow from the consideration of the examples. Next we describe the L-machine concept
that attempts to meet these design objectives. Finally we give a programming example
for the L-machine that should show how, in the L-language, both the description of
processes and the (recursive) description of interconnection topologies is possible.

SOME EXAMPLES OF PARALLEL ALGORITHMS

In this section we demonstrate by some examples that very different interconnec-
tion topologies between processor modules can arise naturally in parallel (symbolic)
algorithms. As a byproduct we see that good parallelizations, when compared with the
corresponding sequential algorithms, are able to preserve the (time x (number of pro-
cessor modules)) product. It seems to be hard to design parallelizations that work
cheaper than that. We do not know whether a corresponding general theorem could be
proven.

Merge Sort Algorithm

We start with the merge-sort algorithm formulated for a uni-precessor.



sort(x) := if length of x = 1
then x
else merge ( sort (left-hand part of x),
sort (right-hand part of x) )

Here, x is a sequence of items. The complexity of this algorithm is 0{n.log n), where
n is the length of x.

While in the sequential algorithm the recursive calls for sorting the left-
(right-)hand part of x are executed, in a straightforward parallel algorithm two sons
could be started simultaneously. By repeating this process an 0(n) parallel algorithm
using O(n) processor modules arranged in a binary tree would arise, The space needed
in this algorithm is O(n.log n). For details see [Aspetsberger 80]. In [Buchberger
78] it 1is shown how this algorithm can be improved such that only 0{(n} space is
needed,

In [Todd 78] a parallel merge-sort algorithm using processor modules arranged in
a pipeline is presented. We present the basic idea of this aigorithm by giving an
example. The input sequence, for example (4 31 95324 ), is split arbitrarily
into two subsequences, say, (4 152 ) and { 3 9 34) and stored into the first pro-
cessor mudule Pl, Pl merges the sequences ( 4 ) and ( 3 ) etc, yielding the sequence
{ 34 ) etc. and stores these sequences into processor moduie P2.

P1:

4 1 5 2 p2: 3 4 3
3 9 3 4 1 9 2

5
4

The processor module P2 merges all the sequences of length 2 to sequences of length 4
and stores them to processor module P3,

4 3 5 P3: i
9 2 4 2

p2: 3 3 9
1 3 5

5
4

Finally, processor module P3 merges the two sequences of length 4 to a sequence of
Tength 8, which is the sorted version of the input sequence.

P3: P4: 123344509

1 34 9
2 3 4 5

A1l these processes can be overlapped. Roughly, the (i+l)-th processor module can
start merging the first two sequences when the i-th processor module has composed
them. The time complexity of this parallel merge-sort algorithm on pipelines is 0(n).
The number of processor modules is 0(log n). Thus the product (time x number of pro-
cessor modules) is O(n.log n), which is the same as in the uni-processor version, )

Parallelizations of Dijkstra's Single Source Shortest Path Algorithm

Below we present Dijkstra's 0(n?) sequential algorithm for the single source
shortest path problem, where n is the number of nodes in the graph, see [Aho,
Hopcroft, Ullman 74 |. At the right-hand side a condensed version of this algorithm is
shown that reflects the relevant structure.

for v ¢V do Initialization
D{v] := 1(vp,v)
while S #V do while S #V do
w such that w € V-S and minimum of n elements *)
D[w] is minimal;
S =5 u W} § =85 v w}
for v €V-S do for v e V-5 do
T O[v] := wmin(D]v], D{w]+I(w,v)). T minimum of two elements.  **)



A transformation of this algorithm into a parallel version could start in line
**)  where the calculation of the minima could be done in parallel using n processor
modules. However, in line *) we have to compare 0(n) numbers and, thus, all the modu-
les have to be connected with one top module, This leads to a tree of depth 1.

time complexity n

constant time complexity
n processor modules .

On this tree Tine *) can be handled in time O(n). Since we have n iteration steps we
again obtain time complexity 0(n“) and a product (time complexity x number of pro-
cissor modules) of O(n®). The high parallelism in line **) is lost by realizing line
*

However, the minimum of n numbers can also be computed in parallel using a binary
tree of processor modules,

log n levels

n leaves

Every processor module of the tree compares the values of its two sons and sends the
smaller value to its father. The time complexity of this process is 0(log n). For n
jteration steps this yields time complexit¥ O(n.1og n). The number of processor modu-
tes is 0(n). Hence the product is now O(n“.1og n}, This parallelization was proposed
in [Lichtenberger 79]. Although the time complexity is much better than in the
sequential algorithm the (time x number of processors) product is worse. In
[Aspetsberger 81 ] a significant improvement is described that drastically reduces the
number of processor modules without affecting the time complexity. The essential
point of this method is that the processor modules at the Jleaves are each used for
finding the minimum in 1ine **) for Jog n vertices in 0(log n) time. Thus, one needs
only n/log n processor modules for computing all the minima in line **), This reduc-
tion of the number of processor modules does not affect the overall time complexity
because, for line *) 0(log n) many steps were needed anyway. Tﬁ; {time x number of
processor modules) product is now O(n.leg n) x 0(n/log n) = 0{n®), This is the same
as it was in the case of the sequential algorithm,

Parallelization of Kruskal's algorithm for Minimum Cost Spanning Trees

Kruskali's algorithm finds a minimum cost spanning tree (MCST) for an undirected,
connected graph G=(V,E) with an injective cost function, see for example [Aho,
Hopcroft, Ullman 74]. In [Aspetsberger 83} a parallelization of this algorithm is
given, The parallel algorithm starts in the same way as the sequential algorithm by
constructing a spanning forest for G consisting of trees with only one vertex. In
the subsequent steps, to each tree the edge of minimal cost leaving the tree is
added. These processes can be done in parallel. (For a better synchronization, one
only adds those edges that are of minimal cost for both trees connected by the
respective edge, Eventually, such a situation will always be reached for all edges of
the MCST). The algorithm stops, when all vertices in V are connected. In the
following example we mark the edges of minimal cost leaving a tree by small arrows.

- 61 is the initial graph, The spanning forest consists of trees with only one vertex.

G2 and G3 are the graphs after the first and second iteration step respectively.



In order to facilitate the determinatidn of the edges of minimal cost leaving a
tree all superfluous edges in the trees are deleted. G4 is identical to G3 except for
the deletion of superfluous edges. G5 and G6 are the graphs after the third and forth

In a suitable implementation each vertex should be represented by a processor
module. The calculation for one iteration step is done by the vertex from which the
edge e of minimal cost is leaving the repective tree. Afterwards it sends all
necessary information to all vertices of the respective tree. Since the size and
structure of the trees is changing after each step we would need a dynamicall
reconfigurable interconnection topology. Instead one may interconnect all processor
modules with each other. The particular structure of the graph and the forest of
spanning trees can then be represented by sets of edges and vertices. An analysis
shogs that this parallel algorithm has 3 {time x number of processor) product of
0(n?), which is much worse than the 0(n°) time complexity of Kruskal's sequential
algorithm. [Bentley 80{ pas “given a parallel version whose (time x number of
processors) product is O{n~) ,

Prolog Execution (Automated Theorem Proving)

Consider the problem of computing the factorial of a natural number n. Let
P(i,j,k) stand for "k is the product of all 1, i<i<j". z = n!, then, can be computed
by determining a value of z such that P(1,n,z). P{i,j,k) can be computed by the
following PROLOG-1ike program,

P(h,n,h) +
P(i,5,ke1) « P(i,(i+i)#2,k), P((i+]j)+2+1,§,1)

In the following we present a trace of a parallel computation of the factorial of
4 in order to show that the natural interconnection topology in this example is again
a binary tree. In more general examples of resolution theorem proving one inter-
mediate goal will be reduced to several subgoals (and-parallelism). Also there could
be more than one literal complementary to the goal literal. The problem is solved if
one can find a refutation for at least one of them {or-parallelism). For implementing
a parallel procedure that meets all these aspects of parallelism in automated thecrem
proving one needs a dynamically reconfigurable interconnection topology.




In the example we depict pairs of unifiable literals on opposite sides of the
implication symbol by arcs. The unifying substitutions are written in the form
[1+1,344 z+«k.1} etc, and are attached to the respective arcs. Each processor module,
roughly, contains the whole set of clauses including the arcs connecting literals and
the substitutions generated. In the presentation below, for some modules, we show
only the (relevant) generated substitutions from which the final result can be com-
posed, For more details see [Bibel, Buchberger 84 ] and [Aspetsberger 85b],

1st state: ‘ P(h,h,h) -
P(i,i,k.1) P(i,{i+])#2,k),
P((i+j)2+1,3,1) .
+ P(1.4,7)

2nd state: Iz « %1 |
P(h,h,h} * P(h,h,h) +
P(i,d,k1.1) < P(i,(i+j)+2,k1), P(i,J,k.11) + P(i,(i+j)s2,k},
P((i+j)22+41,3,1) P((i+j)e2+1,3,1
[1+l,5+2,k+k).1] [1€3,i4,1k.11]
+« P(1,2,%) + P(3.4,1)
3rd state: z + k.l
[z <k z «kJdp |
P(h,h,h}) « P(h,h,h) « [ JP(h,h,n) P(h,h,h) «

P(i,i.ke1) « .. P(i,j,ke1}) « . P(i,j,k.1) « .. P(i,j,k.1) « .

[hel,ky«l] £h+2,l+2] ' [h+3,k+3] [hed 1144 ]
+ P(1,1,k1) « P(2,2,1) « P{3,3,k) «P(4,4 ]1)

All the processor-modules at the leaves of the tree deduce the empty clause. So they
send back the interesting substitutions, We do not show the states occurring during
sending back these substitutions and composing the final result in the top processor’
module, A complexity analysis of general theorem proving processes is difficult,

DESIGN OBJECTIVES FOR A PARALLEL MACHINE FOR SYMBOLIC COMPUTATION

We discuss the design objectives by listing pairs of alternative objectives and
by explaining, for each of the pairs, which one of the two alternatives is the one we
have chosen for the parallel L-machine,

Distributed (cellular) versus central control

In the above examples, typically, the partial processes are totally decoupled, A
central control would be an artificial bottle neck. Hence, a suitable parallel
machine concept must support a highly cellular contrel mechanism for big numbers of
node processors.

Asynchronous versus synchronous cooperation of processes

In some of the examples, the processes in the different processor modules may take
extremely different amounts of time, Thus, a suitable machine concept must allow an
asynchronous cooperation of processors.




Flexible versus fixed interconnection topology

In the more demanding examples, the pattern of interconnections necessary for the
communication between the partial processes depends on the given input. It may even
vary during the execution of the parallel algorithm. Hence, the possibility of
establishing a flexible interconnection topology in the parallel machine is
desirable. This is in sharp contrast to the parallelization of numerical algorithms,
where fixed array or vector topologies are appropriate.

Tight versus loose coupling

Typically, frequent communications between the processor modules are necessary. In
addition, sometimes large quantities of highly structured data have to be exchanged
in these communications. Hence, tightly coupled networks of .processors are necessary,
j.e. a processor should have the possibility to access the memories of its neighbors
as easily as its own memory. .

Homogeneous versus heterogeneous structure

In a given parallel algorithm, ail the processor modules (or at least groups of pro-
cessor modules) will perform the same task. Hence, all the processor modules must be
of the same type, i.e. the whole structure will be homogenegus.

Flexible versus fixed synchronization

According to the necessity at the particular parallel algorithm, various types of
synchronization between processors should be possible (data driven, result driven and
other stimulations of processors). This means that the desired synchronization mecha-
nism must be programmable (flexible) and not fixed by the hardware or the underiying
operating system,

Many cheap versus few expensive processors

In the parallel algorithms considered, -it is desirable that several hundred pro-
cessors cooperate. Fach of the processors will have to perform a relatively easy task
with relatively little (a few K of) memory necessary for storing the relevant data.
Hence, given a certain amount of money, a parallel machine concept is appropriate
that uses the money for the integration of a huge number of cheap processor/memory
modules in one system, with an emphasis on powerful communication facilities, rather
than for the combination of a few powerful and expensive computers in a multipro-
cessor system, (A careful assessment of the trade-off of the two philosophies is one
of the most important practical questions in the parallelization of symbolic com-
putation, which has not yet been explored satisfactorily). Roughly, I think we must
shift our interest from computation power to interconnection power,

Universal versus special purpose processor modules

The algorithmic subprocesses (for example, the unification of subformulas) that have
to be realized in one processor module are complicated enough to use universal
microprocessors as the core of the processor modules,

Universal versus special purpose paraliel machine concept
I we want to have one parallel machine for a whole variety of parallel {symbolic)
algorithms the machine as a whole must be universally programmable.

THE CONCEPT OF THE L-MACHINE

The concept of the L-machine is a parallel machine concept that attempts to meet
the design objectives outlined above, The L-machine consists of universally program-
mable processor modules that can be interconnected flexibly in order to form cellu-
lar tightly coupled homogeneous nets of arbitary topology and size. The node
processors cooperate asynchronously and all types of synchronization can be
programmed fiexibly, The concept has been introduced in [Buchberger 78] and has been
modified to the now existing version -in [Buchberger 83, 8 ]. At present, a prototype
of the L-machine mainly in TTL technology consisting of 8 microprocessors is in
operation at the University of Linz, By the extreme modularity of the concept, VLSI
implementations seem to be easy and are planned for the near future. Mainly two ver-



sions of the machine are conceivable. One realizes the full graph interconnection

topology. Its size will always be restricted by the quadratic increase in intercon-

nection complexity. The other version realizes a particular (reqular) interconnection

topology of (nearly) arbitrary size. The present prototype realizes the full graph
topology.

L-modules
The logical building elements of the L-machine are the so-called L-modules (see

the figure below), which can be interconnected to form L-nets.

An L-module:

N i Dn
switch bus . . . .[ S]I .. .| 5n|
| memory bus
uP : Mem,
A _I B
processor bus
€1 Cm
D D
Ml [Tnl

An L-module contains a microprocessor A with a (private) memory to store its
program and intermediate data. Since the L-module contains a general-purpose pro-
cessor, the usual universal instruction set is available. The second main component
of an L-moduie is the shared memory B that can be accessed by other L-moduies of an
L-network via a bus. These [-modules can be connected via the switches Dj,...,Dp .
The microprocessor itself can access the shared memory of other L-modules via the
switches C1,...,Cp that can be opened and closed using the special instructions “open
J" and "close j". For synchronization and the solution of access conflicts, each L-
module has the possibility to use the "sensor bits" Si,...,S5h. These are special
memory bits in the switches Dj,...,Dnp. The sensor bit Sj in the switch Dj can be
accessed simtitaneously by its own microprocessor and the microprocessor of the L-
module connected to Dj. The special instructions "set local sensor j", “reset local
sensor j* and “"load local sensor j" are available for accessing the sensor bit Sj of
the own L-module and the special instructions “set non-local sensor k", “reset non-
Tocal sensor k" and " load non-Tocal sensor k* enable an access to the sensor bit of
that L-module with which the L-module is linked via the swith Cx. In the figure
above, T1,...,Tn denote sensor bits in neighbouring L-modules. As a short-hand, we
will use the following picture for an "L-module with m switches of type C and n
switches of type D".

1 2 n
L-module

M-

1 2
IR




L-nets

Arbitrarily many L-modules can be combined to form “L-nets" of arbitrary (but
fixed) regular (or irregular) structure, for exampie,

binary trees or pipelines
[
1 2
L-moduléd
123 1 | | |
| 1 2 1 2 1 2
L.-modul ¢ L-moduld L-moduld
' 1.2 1 2 1 2
1 2 1 2 ' ' ]
L-moduld L-moduld
123 123

SIS

The numbers m and n must be chosen appropriately for the L-modules used for realizing
a particular topology. (For example, m = 3, n = 2 for the binary tree and m = n = 2
for the pipeline.) In general, the neighbourhood parameters n and m will be small and
s0 we can construct L-nets of every size and structure.

Data exchange (The use of the special “"open/close" instructions)

Let us now have a closer look to a typical interconnection between L-modules in
an L-net, Given the interconnections drawn in this figure, L; can store and load data
to and from memory B of L, and memory B of Lj and to its own memory B. L, and L4

have only access to their own memories B.

]
1 12
L-module
123
S |
T |
L, 1 2 Ly 1
L-module L-module
123 123
111 111

For realizing a data exchange with L, L, has to execute the following
instructions: open 1; p := b; close 1: open 3; a := p ; close 3. By this sequence,
L, stores the content of cell b in its own memory B to cell a in memory B of Lj,
where p is some variable in the private memory of L,. We assume that ail switches C
initially are closed. The sequence above will be abbreviated by the notation

23 o p()

Store instructions can be executed in parallel: for example L, could store the
content of cell b of its own memory B simultaneously to cell a of memory B in L, and
L3. This can be realized by the following sequence of instructions: open 1; p := b:
close 1; open 2: open 3; a := p; close 2; close 3,



Synchronization (The use of the sensor instructions)

Let us consider the situation where L; and L, execute the following instructions
in paraliel (f is some elementary operation):

(I Ly:
a(z) := b(l). a(l) = f(a(l)).

0f course, in this situation an access conflict would arise for memory B of L,.
We can synchronize the L-modules L, and L, by fercing L, to wait until L; has
finished transmission. For this purpose the sensor bits in .the switches D are used.
By appropriate use of the sensor instructions, all types of handshakes can be
programmed, In the example at hand, the following sequences of sensor instructions
could realize the desired synchronization:

Ll: Lz:
a: load non-local sensor 2 i set local sensor 2
if accu = 0 then goto «
(2) (1) g: load local sensor 2
a i=b if accu = 1 then goto B8

s 1= a(t))

reset non-local sensor 2

For such sequences of instructions we will use a more convenient notation:

L,: L,:
while not Tp wait S2 := 1
a(z) .= pll) while S; wait

T := 0 _ al) = p(a(l))

It is crucial for the concept that the hardware realization of the sensor bits
guarantees that the two processors connected to a given sensor bit have truely
simultaneous access. The accesses must be triggered by the instruction cycles of the
respective processors and must not be sequentialized or delayed by an arbiter in D.
Sensor bits of this type are realized in the L-machine prototype.

The full graph L-machine

With the components above, L-nets of arbitrary but fixed topology can be
realized, If one wants to go one step further, in principle, one could use a full
graph L-net 1in order to be able to realize every other interconnection topologx
solely by software means, However, this would need n“ switches of type D and D and n
interconnection buses. In [Buchberger 83] we have shown how, by a geometrical trans-
formation, one can realize the full graph L-net using only 2n interconnection buses
without affecting the logical and computational power of the L-net, No new components
are needed for the realization of this machine, which we call the (full graph) L-
machine. Due to space limitations, we cannot give any details of this geometrical
transformation in the present paper,

The L-language

An "L-program" written in the “"L-language" consists of the description of the
programs residing in the L-modules of an L-net and the description of the topology of
the L-net. Crucial extensions to ordinary programming languages are necessary. The
description of an L-net by an L-program can either be conceived as a description of
the interconnections necessary for the realization of that particular L-net. Or it
can be conceived as the description of a computationally and logically equivalent L-



net to be realized on the full graph L-machine by software means. In the latter case
the description of the L-net by the L-program can be automatically compiled to a par-
ticular embedding of the L-net in the full graph. A compiler of this type is
currently realized, see [Hintenaus, Buchberger 85].

The nucleus of the L-language is an ordinary high-level language, Programs writ-

‘ten in the nucTeus language are meant to reside in the private memory of an L-module

and are executed under the control of the processor in the module. A variable v deno-
tes a storage region in all those shared memories that are "attached"” to A via the
“open” switches of type C. The first extension to the nucleus is the possibility of
declaring private variables. A variable declared private denotes a storage region in
the private memory of a component A. The next extension is‘the addition of the spe-
cial instructions of the eight types

"open j", “"close j"
“set, (reset, load) local sensor j"
"set (reset, read) non-iocal sensor j".

Also, one must have symbolic names for the paths available in a particular L-program,
L-programs residing in one L-module, thus, have the following typical structure:

net L1: elementary

[private p, q;

so&e program text using, for example,
close 1; p:= a; open 2; if S2 = 1 then ....:

processor paths 1, 2;
memory patas 1, 2.

The crucial additional feature of the L-language is the possibility to describe
net structures., It should be immediate, what is meant by the following graphical
notation of an L-program NW:

gl b c d
NW

1] 2 1y 2
L1 L2

11 2 1| 2

1§ 21 1) 2
L3 L4

1§ 2 11 2

r| s ty u

In syntactically more conventional-"linear" notation the L-program NW reads:

net L1: .... 3 net L2: .... ;net L3: .... :net 14: ...,

net NW: compound
(L1; LZ; L3; 18]
processor paths
r:=1 of L3; s:
memory paths
a:= 1 of L1; b:
connections

"
|
o
S,
=
.

[ -4

I

n

2 of L3; t: 2 of 14

2 of L1; c:= 1 of L2; d:= 2 of L4

Tof [Lwith 1 of L3; 2 of L1 with 1 of 4;
1 of L2 with 2 of L3: 2 of L2 with 2 of L2.
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Typically, L-nets of highly regular structures are used for the parallelizations
of algorithms and, in addition, the "size" of these reqular structures depends on the
value of the inputs for the algorithm. In order to define such variable size L-
programs the names of L-programs must allow “parameters". As an example, consider the
definition of an L-net with tree structure. In semigraphical notation the definition
is:

net T(n): compound

case n=1: case n»l:
f f
T(n) T(n)
P P ‘
LI_VT' ’ r
f f
T(n-1) T(n-1)

Note that recursive definitions of L-nets are possible in the L-l1anguage. This is a
feature that was not available in any other programming language. In the example, P
is assumed to be some (elementary) L-network with paths 1, r, f. In linear notation
the same definition is:

net T(n): compound

case n=1: [P]
aths f:= f of p;

case nyl: P; 2 copies of T(n-1) |
paths f := f of P;
connections
I of Pwith f of copy 1 of T(n-1):
r of P with f of copy 2 of T(n-1).

PORGAMMMING EXAMPLE

As an easy programming example we present a parallel procedure by K. Aspets-
berger, see [Aspetsberger, Bayerl 85], realizing the connection method (see [Bibel
83]) for testing the validity of a formula in propositional logic. We assume that the
formula to be proved has been transformed by a preprocessing procedure into a matrix
containing only literals as elements. For instance, if we want to establish the vali-
dity of the formula -

((AvB)&(A+C)&(B+D)) +(CvD)
it should first be transformed to the following matrix
- A A B
- B -C - D .
A formula is valid, if every possible path through the corresponding matrix con-
tains at least one pair of complementary literals. In our exampie we can find the
following eight sequences of literals indicating the possible paths through the

matrix. Each sequence contains a pair of complementary literals and so the formula is
valid.

-~AABCD -AA-DCD =~A-CBCD ~-A-C-DCD
-BABCD ~BA-DCD ~-B-CBCD ~B~C~-DCD

In the parallel procedure one tries to find all the paths through the matrix



without pairs of complementary literals. If no such path can be found, the formula is
proved to be valid, Otherwise the procedure will produce all counterexamples. More
specifically, one successively generates sequences without pairs of complementary
literals of length 1, 2,... until one eventually obtains sequences of length n, where
n is the number of clauses in the formula. The generation of these sequences can be
done in parallel. First, the clauses of the matrix are stored in different L-modules.
Each of the L-modules then generates successively sequences of length 1, 2, ...
starting with the literals of the respective clause, After each step the L-module
transfers the set of paths to the left neighbor, which makes use of this information
when generating the set of paths of the next higher length. Finally, the set of paths
of length n is obtained in the first (left-most) L-module.

Before giving more details we trace the procedure when testing the validity of

“the formula in the above example. For initialization we load the set of literals of

each clause to the respective module, These are the paths of length 1.

L-module 1 L-module 2 t-module 3 L-module 4 L-module 5
{ -4, A {8, {C} {D}
—13] *-|C} '1D}

In the fist step sequences of length 2 are generated by combining the paths in each
L-module with the paths of the respective right neighbor. In every step we are
checking whether the new path contains complementary literals. In this case we delete
the respective path,

[ ~A=c, { A8, {BcC, [co}
~B A, A D, ~DC }
~B~C | ~C B,
~C D}

In the second step sequences of length 3 are generated by combining the paths in each
L-module with the paths of the right neighbor. Now one has to check additionaly
whether the paths are "combinable", i.e., whether the last literal of the first path
is equal to the first literal of the second path. Note that, for testing that a com-
bined path is free of complementary literals, we only have to check whether the first
literal of the first sequence is complementary to the last literal of the second
sequence.

{ ~A-CB, {ABC, {(BCD ]
-A-CAD, A-DC ]

~BA D,

~B-C D}

In the third step the sequences of length 4 are generated. Now two paths are com-
binable, if the last two literals of the first sequence are equal to the first two
literals of the second sequence.

{-BA-DC} {ABCD}

Finally in the fourth step the first L-module recognizes that the two sequences are
not combinable. Thus the new set of paths is empty, i.e. the formula is valid.

For implementing this parailel procedure on the L-machine we form a pipeline of
L-modules:

e

1 | 1
own own' own 1
L-module i-1 t -module i L-module i+l
own r own r own r
i | | I |




We now give a recursive description of the L-program PL ("pipeline") with n L-
modules using the L-language. We present the definition “"top-down" starting with the
net description.

" net PL(n): compound

case n>2:
5 PL{n)
. B r 1 [WPL{n-2) r [T
net MPL(k): compound
case k=I: case kdl:
MPL{K) MPL (k)
1J?P r. 1 1 [ MPL{k-1) r 1 P r r

B, P and E are elementary L-programs. For simplicity we did not draw the connection

. from "own" to "own" of the same L-module. It should be clear how the the same defini-

v tion could be given in linear notation. Now we describe the elementary L-programs P.
© Comments are given in brackets () behind the instructions.

net P: elementary

private n (number of all clauses in the formuia)
j (number of the L-module in the pipeline)
PR (set of paths produced by the right neighber in the previous step)
PH (intermediate set of paths for the new step)

for j:=1to n-1i do
(in the j-th iteration step the i-th L-module creates all the sequences
of literals of length j+1 starting from clause Cj and containing no
complementary literals)

$1 :=1 (we signalize to the left neighbor that it may access our
shared memory)

while Tp = 0 wait (we wait unti) our right neighbor has finished the
previous iteration step and we may access its shared
(F) memory for fetching its set of paths from the
PR := P previous step)

Tp 1= 0 (we signalize to the right neighbor the end of path transfer)

while §1 = 1 wait (we wait until the left neighbor has terminated
transmission)

PH :=
t (own) (we create the new set of paths_of 1ength j+l
for all p €P do combining the paths of length j starting from
- clause i with the paths of length j starting
or all q € PR do from clause i+l)

if combinable(p,q,j) and p; is not complementary to qj

then PH := PH u [combine(p,q,i)}
plown) - py



w4
T

51 := 1 (we signalize to the left neighbor that we have terminated the
iteration step)

processor paths own, r;
memory paths own, 1,

The meaning of the predicate “combinable(p,q,j)}" and the function "combine(p,q,j)"
should be clear from the consideration of the above example,

The program B in the first L-module of the pipeline is slightly different from P,
Since the first L-module has no left neighbor all instructions concerning $7 are

-deleted. Additionally, upon termination of the program, the first L-module sends one

of the two messages "The formula is valid" or “The formula is not valid. Counter
examples: ...." depending on whether P in its shared memory is empty.

net B: elementary

private n {number of all clauses in the formula)
PR (set of paths produced by the right neighbor in the previous step)
PH (intermediate set of paths for the new step)

(same program as in P except that the sensor instructions concerning the left
neighbor are omitted)

processor paths own, r;
memory paths own,

The program E in the last L-module of the pipeline is a special case of P, Since
in this case i is n, the for-loop can be skipped. Thus, we get a very easy program:

net E: elementary
$1 :=1
memory paths 1.
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