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Introduction

The Japanese Fifth Generation Project has drawn
the attention of the international community in
information technology to PROLOG as a flexible tool
for many kinds of applications. As a language,
PROLOG inherits its flexibility from first-order logic
of which it is a restricted sublanguage. As a tool it
consists mainly of a restricted automated theorem
prover for first-order logic which by these restric-
tions turns out to be reasonably efficient in many
applications.

From a logical point of view, however, PROLOG still
suffers from serious drawbacks. One consists in its

restriction to Horn clauses; rather one would like to
fully exploit the expressiveness of first (or even
higher) order logic, since this restriction is already
felt in simple examples.

Another problem arises from the fact that the
efficiency in PROLOG heavily depends upon the
sequence in which the clauses are presented by the
programmer. This clearly contradicts the logic (or
predicative) programming philosophy [1], under
which the programmer is supposed to concentrate on
presenting his problem correctly rather than to
worry about the details of machine execution.
Qualitatively, these (and other) problems cannot be
overcome simply by making machines faster. Rather
a substantial improvement requires progress in the
following two directions. First, the theorem proving
techniques currently used in PROLOG systems do by
far not take full advantage of the information
provided by the syntactic structure of a given
formula or program. For instance, in many cases a
PROLOG compiler could easily rearrange the se-
quence of clauses towards a more efficient one rather
than expecting this task to be taken care of by the
programmer. The connection method in theorem
proving [2, 3]is expected to further support progress
into this direction.

The second possibility of qualitative improvement
lies in parallel computation. Rather than exploring
different paths in the search tree for a proof
sequentially with a single processor, one would
consider in this approach each possible path with a
separate processor in a completely parallel way. This
is the line we pursue in the present paper.

The global view of theorem proving provided by the
connection method also facilitates the task of a
parallel treatment of separable pieces of the whole
proof search. Therefore we are more ambitious than
Just exploiting AND-/OR-parallelism in a top-down
proof search. Qur goal is rather, in addition and in
parallel, to take advantage of a bottom-up develop-
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ment and of global control considerations. This in
turn requires a powerful and flexible organization of
the underlying multiprocessor system.

In the sections 2 and 3 we argue that the L-networks
[5,6] provide this power and flexibility. Namely, an
L-network is a universal programmable paraliel
machine consisting of a potentially huge number of
universal (cheap) node processors that can be inter-
connected flexibly in order to form cellular, tightly
coupled networks of arbitrary topology. All these
and other properties make it ideally suited for such
an involved task like theorem proving.

In the sections 4 and 5 we give a first, rough outline of
a parallel proof procedure based on the connection
method, to be realized on an L-network. This outline
is at the same time meant as the starting point of a
larger project to be carried out in the coming years in
the framework of ESPRIT. Its ultimate goal is a VLSI
implementation of a logical multi-processor connec-
tion machine realizing such a parallel proof procedu-
re. As an aside we mention that on the way towards
this goal the language FP2 developed by Jorrand [10]
will independently be used.

The paper begins with an illustration of the connec-
tion method applied to a simple example.

1. The Connection Method

Resolution clearly is the most widely used proof
method in the field of Automated Theorem Proving
(ATP). In the form of PROLOG systems it became
even popular in computer (and other) sciences as an
attractive tool for programming. Upon closer inspec-
tion of the more advanced work in ATP it may be
seen, however, that the interest has actually shifted
towards higher level proof methods. This is due to
the need for a more global control of the proof
search.

The connection method is of such a high-level nature
as pointed out in [3]. Although we cannot give an
introduction here, of course, it is the purpose of the
present section to provide the reader with a feel for
its flavor, while introducing material for the later
sections. Ref. [2] is a comprehensive source for any
details.
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Consider the following PROLOG program for com-
puting the factorial of n:

FAC (hhh) «
FAC (ij,m) < FAC (;, (+;div 2, k),
FAC ((i +))div 2+1,j,0), k*l=m
« FAC (1,n,x)

A proof or computation for n=2 in terms of the
connection method is illustrated in Fig. 1. It depicts 3
arcs connecting pairs of literals on opposite sides of
the implication symbols as well as an open-ended arc.
Two of the connected nodes are labeled with
integers, viz. 1 and 2. This encodes the fact that the
first clause is actually to be taken in two copies with
different variables, viz. k, and h,. So the first line
encodes the following two lines.
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A PROLOG program together with such kind of
connections qualifies as a connection proof if it
satisfies the following two requirements.

(i) In any selection of exactly one literal from each
clause at least two of them are connected or one is
connected in the open-ended way, that is, each path
contains a connection (i.e., the set of connections is
spanning), as we say in technical terms.

(ii) There is a substitution of variables by terms, such
that connected pairs of literals are identical (by
unification) or the connected literal is an identity,
both modulo the laws of arithmetic.

The reader is encouraged to note that each of the
four possible selections in the sense of (i) in our
present example actually enjoys that property. Letus
calculate a substitution so that property (i) holds as
well. The connection ending in the goal clause
apparently yields the partial substitution [fe1,j+2,
x < m). Since (1 +2) div 2=1, (ii) is satisfied for the
remaining two connections if in addition we have [k~
1,k 1]and [l 2, h,« 2]. Since 1*2= 2 the equality
literal finally yields [m « 2]. Combining these two
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Fig. 2

results into one substitution leads to the expected
value 2 for the output variable x.

The conditions (1) and {ii) in this or in similar form
characterize connection proofs not only for PRO-
LOG programs, i.e. Horn clauses, but also for
arbitrary theorems in first-order logic. In contrast 1o
PROLOG, which is based on a refutation procedure,
the connection method is usually introduced as an
affirmation procedure. That is why then the clauses
are presented vertically, so that afier elimination of
the implication sign the previous program usually
has the representation of Fig. 2.

In general, this representation is obtained from the
PROLOG representation by a 90° turn and the
replacement of the implication signs by negation
signs in the topmost row. In this new version the
example is shown with a connection proof for input 3
(rather than 2) which in the same way as before
results in the value 6 for x. Note that here the second
clause is taken into account with two different copies
and the rightmost clause with three copies.

In the last decade sophisticated procedures have
been_developed that eventually detect this kind of
connection proofs for a given theorem in a sequential
way. In principle, they test unifiability for spanning
sets of connections in an involved way. This task
lends itself to a parallel approach. In particular,
different sets of connections may be explored in
parallel which corresponds to the usual OR-parallel-
ism; but also the different connections in each set
may be processed in parallel, which in turn corres-
ponds to the usual AND-parallelism. In other words,
all potential connections may be processed in paral-
lel, a goal which to some extent we eventually want to
achieve.

It has been shown by Eder [7] that the unificational
part of the proof search may smoothly be adapted to
such an extreme parallel approach. Namely, for the
resultant substitution it does not matter at all in which
sequence it is built together from the various partial
substitutions.

It is also clear from the well-explored sequential
approach how the different processors have to be
controlled in principle so that eventually a connec-
tion proof is generated by their combined efforts.
For two reasons this task is by far not trivial, however.
First of all, the whole process in its full generality is
extremely complex; there are many important phe-
nomena of detatl which do not become apparent in
the previous simple example. This in turn requires a
rather flexible machine architecture that at the same
time fully exploits the advantages of parallelism in a
hopefully efficient way.

The L-systems, to be introduced in the third section,
provide the appropriate tools for that purpose. For
their full appreciation let us first turn our attention to
the various approaches of parallelism.

2. Design Objectives for a Parallel
Logical Connection Machine

In the past ten years, a great number of different
parallel machine structures has been proposed. (For
an overview on the literature see [9, 11]. Different
machine structures are the result of different design
objectives. Below we analyze the design objectives of
a machine structure suitable for a parallel realization
of the connection method. A machine concept that
meets all these design objectives is then described in
the next section. We discuss the design objectives by
listing pairs of alternative objectives and by explain-
ing, for each of the pairs, which one of the two
alternatives is the one to be chosen for a parallel
realization of the connection method.

2.1. Distributed (cellular) versus central
control

In our parallelization of the connection method, the
various (instances of) connections should be treated
in parallel. For each processor working on one of the
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connections it should be possible to locally stimulate
new neighbors for acting on derived connections and
to exchange information with these neighbors with-
out interference of a central control. Hence, a
suitable parallel machine concept must support a
highly cellular control mechanism for big numbers of
node processors.

2.2. Asynchronous versus synchronous
cooperation of processes

The treatment of different connections in different
processors, typically, will take extremely different
amounts of time, because the subformulas to be
treated may have different size and structure, Thus,
a suitable machine concept must allow an asynchro-
nous cooperation of processors.

2.3. Flexible versus fixed interconnection

topology

In a parallel realization of the connection methed, a
processor will have to communicate with various
neighbors depending on the subformula treated.
The pattern of interconnections necessary for these
communications will vary with the particular input to
the connection method. It even may vary during the
execution of the parallel algorithm. Hence, the
possibility of establishing a flexible interconnection
topology in the parallel machine is desirable. This is
in sharp contrast to the parallelization of numerical
algorithms, where fixed array or vector topologies
are appropriate.

2.4. Tight versus loose coupling

Typically, frequent communications between proc-
essors will be necessary for working in parallel on
various parts of a formula in the connection method.
In addition, large quantities of highly structured data
have to be exchanged in these communications.
Hence, tightly coupled networks of processors are
necessary, i.e. a processor should have the possibility
to access the memories of its neighbors as easily as its
own memory.

2.5. Homogeneous versus heterogeneous
structure
Every processor in the parallel hardware structure

must be able to realize every subalgorithm in the
parallel connection graph procedure depending on

the particular example at hand. Hence, all the
processor modules must be of the same type, i.e. the
whole structure will be homogeneous.

2.6. Flexible versus fixed synchronization

According to the necessity at the particular stage of
the parallel algorithm, various types of synchroniza-
tion between processors should be possible (data
driven, result driven and other stimulations of
processors). This means that the desired synchroni-
zation mechanism must be programmable (flexible)
and not fixed by the hardware or the underlying
operating system.

2.7. Many cheap versus few expenstve
processors

In the parallel treatment of a formula, several
hundred processors may cooperate. Each of the
processors will have to perform a relatively easy task
with relatively little (a few K of) memory necessary
for storing the relevant data. Hence, given a certain
amount of money, for a parallelization of the
connection method a parallel machine concept is
appropriate that uses the money for the integration
of a huge number of cheap processor/memory modaules in
one system, with an emphasis on powerful communi-
cation facilities rather than for the combination of a
few powerful and expensive computers in a multi-
processor system. (A careful assessment of the trade-
off of the two philosophies is one of the most
important practical questions in the parallelization of
computational logic, which has not yet been explored
satisfactorily).

2.8. Universal versus special purpose
processor modules

The algorithmic subprocessors (for example, the
unification of subformulas, the creation of new
instances etc.) that have to be realized in the single
processor nodes of a parallel machine for the
connection method are complicated enough to use
universal microprocessors as the core of the proces-
sor/memory modules. Also, at least in this stage of
research, one wishes to make experiments with very
different variants of the method. This is yet another
reason why the node processors must be universally
programmable. In a later stage of the project, when
more experience on parallel variants of the connec-
tion method has accumulated, maybe, a proposal for
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an appropriate special purpose (universally pro-
grammable) node processor will be made.

2.9. Unversal versus special purpose
parallel machine concept

In this paper, the parallelization of the connection
method is our main objective. However, the whole
field of symbolic computation (computation with
symbolic objects like terms, formulae, programs,
algebraic objects) provides many examples of pro-
blems and algorithms whose parallelization gives rise
to design objectives similar to those discussed above.
Hence, it is reasonable to think about parallel
machine concepts that can be universally used for a
wide class of parallel algorithms in symbolic compu-
tation,

3. L-Networks: A Parallel Machine
Concept for Symbolic Computation

The concept of "L-networks” is a parallel machine
concept that meets all the design objectives discussed
in the last section, i. e. an L-network is a universally
programmable parallel machine consisting of a large
number of universal (cheap) node processors that
can be interconnected flexibly in order to form
cellular tightly coupled homogeneous networks of
arbitrary topology. The processes in the node proces-
sors cooperate asynchronously. All types of synchro-
nization can be programmed flexibly.

The concept of L-networks has been introduced in
[5] based on an early forerunner described in [4].
L-networks are built from four "basic components” A,
B, G, D. A is a processor component, B a memory
component, G and D are certain bus switches. From
these components larger building blocks called "L-
modules” can be composed. L-modules can then be
used as the processing nodes in "L-networks” of
arbitrary but fixed topology. A particularly powerful
L-network is the "full L-network”, in which every node
(L-module) is connected with every other node (i. e.
the topology realized is the full graph). Every other
L-network can be flexible embedded into the full L-
network. For n nodes, the full L-network would need
n* interconnection buses and n* components of types
C and D. However we have shown in [5] that, by a
geometrical transformation that leaves the logical
and computational power of the full L-network
untouched, one can realize the full L-network using
only 2.n interconnection buses and n? components of
types C and D. The resulting hardware structure

resembles a crossbar switch. However, it has some
extraordinary features, The most salient of them are
that the full L-network has no central control and
that the whole structure perfectly lends itself to a
VL3I implementation. Full L-networks with several
hundred nodes seem to be realistic with present
VLSI technology.

In this paper we can only give a rough outline of L-
networks, in particular full L-networks. For more
details the reader is referred to [4—6] and the
references given there.

3.1. The Four Basic Components

The four basic components are:

A: amicroprocessor + private memory + some addi-
tional special circuitry.

B: a “shared” memory+some additional special

circuitry.
C: a bus switch with an additional “open/close”
facility. .

D: a bus switch with a “sensor bit”.

The processor component A has a private memory, which
will be used mainly for storing the program and, in
certain occasions, some intermediate data. The
additional special circuitry allows the processor to
execute certain special instructions in addition to the
standard instruction set. These special instructions
are of the following eight types:

!!Open]'”

"close §”

“set local sensor j”

“reset local sensor ;”

"load local sensor j”

“set non-local sensor §”

“reset non-local sensor ;"

"load non-local sensor 5"

The meaning of these special instructions will be
explained later.

The memory component B is an ordinary RAM with

some additional circuitry.
A switch of type C has the structure depicted in Fig. 3.

bus
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Here, i is a hardware address of the switch. On the
bus the following types of information can arrive:
store and load instructions

“open j”

"close j”

"set non-local sensor j”

"reset non-local sensor j”

“Joad non-local sensor j”.

The horizontal bar symbolizes that the bus can be
opened and closed (by the "open/close” instruction).

A switch of type D has the structure given in Fig. 4.
Again, i is hardware address of the switch. On bus,
the following types of information can arrive:
store and load instructions

“set non-local sensor”

“reset non-local sensor”

"load non-local sensor”

On bus, the following types of information can
arrive:

“set local sensor j”

"reset local sensor j”

"load local sensor j”.

S is 2 one bit memory cell that can be accessed both
from bus, and bus,. We call this cell a "sensor bit”.
The operation of switches C and D will be explained
after the concept of an L-module will have been
introduced.

3.2. L-Modules

A microprocessor component of type A, a memory
component of type B, m switches of type C and =
switches of type D can be combined, for example, as
shown in Fig. 5. An arrangement of this type is called
an L-module with m "processor paths” and n "memory
paths”. Functionally, itis equivalent to the concept of
an L-module introduced in [4].

3.3. L-networks

Arbitrarily many L-modules can be combined for
forming "L-networks” of arbitrary (but fixed) regu-
lar or irregular structure by interconnecting buses
leaving switchs of type C with the buses entering
switchs of type D in a different or the same L-module.

)
=

AL
. o
{C _' i
e
4 E k|
3
A i B
Fig. 6

3.4. Components: Details of Function

For explaining the functional characteristics of the
four basic components A, B, G, D, welook ata typical
interconnection between two L-modules in an L-

15 | FGCS

North-Holland



Connection Machine

network (see Fig. 6). Switch C with hardware address
ianalyzes an instruction arriving from A on bus 1 (the
"processor bus”). If the information is a store or load
instruction, (consisting of operation code, address
and data), and the switch is in the position "close”, the
instruction passes switch C (and switch D) essentially
unchanged and causes the corresponding data trans-
fer between processor component A and memory B
involving bus 3 (the "memory bus”). If the switch is in
position “open” the information on bus 1 has no
effect on Ci, Dk or B.

If the information is an "open j” or "close j, switch C
compares its own hardware address  with address ;.
If they are equal, switch C is opened or closed,
respectively. If they are unequal, switch C is not
affected.

If the information is “set non-local sensor j, “reset
non-local sensor;” or "load non-local sensor”, switch
C compares its own hardware address i with address
J- If they are equal, then the sensor bit S in switch D,
which is connected with C by bus 2 (the "interconnec-
tion bus”) is set to 1, reset to 0 or the content of S is
loaded to the accumulator of processor A, respective-
ly. If ¢ is unequal to j, no operation is executed.
Switch D with hardware address k not only analyzes
and handles information arriving on bus 2, but it
simultaneously also can handle information arriving
from processor A’ on bus 4: A store or load
instruction, a "close j” or "open j*, a "set non-local
sensor;”, "reset non-local sensor j” or “load non-local
sensor j”, and, finally, a "set local sensor 7, "reset
local sensor ;7 or “load local sensor j”, where j is
unequal to %, on bus 4 does not affect switch D.
However, a "set local sensor j, "reset local sensor ;”,
"load local sensor §”, on bus 4, where f is equal to £,
causes the sensor bit in D to be set to 1, reset to 0 or
the content of the sensor bit to be loaded into the
accumulator of processor A’, respectively.

3.5. The Full L-Network

Taking n L-modules with n switches of type C and
switches of type D one can also interconnect each of
the n L-modules with every other one (thus realizing
the "full graph”): for example, the switches Cl1,....,
Cnof the ith L-module can be connected with switch i
of the first,...., n-th L-module as in Fig. 7 (displayed
for n=3). n components of type A, n components of
type B, n* components of type C, n* components of
type D, n processor buses, n memory buses and n?
interconnection buses would be necessary. By a
geometrical transformation that keeps the logical
and functional behavior of the arrangement comple-
tely untouched, the same arrangement can also be
realized by an arrangement, in which the number of
interconnection buses is zero (see [6]). We will refer
to this realization as the "n X n parallel L-machine”. 1t
resembles a crossbar. However, it has some extraor-
dinary features:

1. Exactly the same components A, B, C, D can be
used for the crossbar as for the L-modules and L-
networks.

2. The crossbar allows the programmer to realize, by
software means, every special L-network structure he
wants.

3. The crossbar needs no additional control compo-
nent in order to open and close the cross points. This
control is exclusively organized by the processor
components A themselves. This has important conse-
quences (see 4. and 5.).

4. The components A, B and C/D have an intercon-
nection environment (in terms of the number of lines
leaving these components), which allows them to be
integrated easily on one chip. The design lends
oneself to VLSI implementation. Full L-networks
with several hundred components A and B should be
realizable in present VLSI technology.

[ | ]
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5. The crossbar is easily extensible. No restructuring
of the system is necessary for extension.

At present, a pilot full L-network with 8 components
A, 8 components B (and, hence, 64 components C/D)
is in operation at the University of Linz (in coopera-
tion with ICA-Vienna). Simulations for a VLSI
implementation are in process.

In Section 5 we will present a rough sketch showing
how the parallel L-machine can be used for realizing
a parallel connection algorithm.

4, Outline of a Parallel Connection
Procedure

With the material from the introductory sections 1-3
in mind, we are now in a position to outline a proof
procedure for first-order logic based on the connec-
tion method that heavily exploits parallelism. Let us
refer to it as the parallel connection procedure, PCP
for short. The description will be on a very high
verbal level, although intuitively it is based on the
language constructs provided by the L-networks.
That is, we claim that PCP can adequately be realized
by an L-network, a project which is further discussed
in the next section.

For the purpose of this outline we make a number of
simplifying assumptions. The more restrictive ones
will of course not be made in a future realization.
First of all we restrict ourselves here to formulas in
clause form (cf. [8], for a discussion of this restric-
tion). It is also assumed that one of the clauses can be
regarded as a goal clause as in PROLOG. The reader
may even think of all clauses to be Horn clauses
although PCP is not really sensitive to the difference.
Also PCP here is designed to stop after detecting a
single proof with the resultant output rather than to
look for all possible outputs in an exhaustive way (as
required e.g. for certain data base applications). Also
the case of failure is not discussed.

Further we ignore in the discussion all of the more
sophisticated issues of the connection method like
preprocessing, selective backtracking, factorizing,
splitting, avoiding skolemization, identification of
functional patterns for compilation, and the like.
Even with all these restrictions PCP will provide a
reasonably efficient first version which, in contrast to
current PROLOG systems, is even complete since the
parallel approach allows us to disregard any order of
the clauses.

On the machine side we have in mind the topology of
a full L-network, so that there are no restrictions
w.r.t. the interconnections needed. We ignore any

effects that may arise by overflow situations; in other
words we assume that, for instance, the number of
processors is (virtually) unlimited. Under all these
assumptions we are now going to discuss some of the
details of PCP which on the topmost level reads as
follows.

read/prepare the given matrix;

until one of the processors signals success do the tasks

tl, t2 and t3 in parallel:

tl: develop the potential top-down solution trees in
parallel;

t2: for each connection % in parallel compute the
weak most-general unifier; for each alternative
set of neighboring connections in parallel combi-
ne their unifiers and continue this combination
with their neighboring connections;

8: develop heuristic priorities based on global
considerations, and pass this information to tl
and t2;

For illustration recall the example introduced in
section 1. If we ignore in its presentation the details
of the literals, we obtain the abstracted graph
structure of Fig. 8. Here those nodes are connected
that represent pairs of literals of the form (Ps,,...., 5.;
-Pt,,...., t,}, while the equality literal s=1¢ has an open-
ended connection. The connections are numbered in
an arbitrarily fixed way. A comparison with the two
proofs depicted in section 1 shows that on one hand
only a subset of these seven connections is needed for
the proof while on the other hand some of these
connections have in fact to be taken into consider-
ation with more than one instance. For example the
first proof in section 1 is made up by the connections
1, 3, 5, and 7, while the second one in addition
requires the connection 4 and a second instance of
the connections 5 and 7.

In terms of the connection method theorem proving
may thus be described as the task to determine an
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appropriate subset of the initial set of connections,
together with the numbers of their instances needed
for the proof. Both the logical structure and the
unifiability of terms influence this determination as
pointed out in section 1. Let us consider the first of
these two influences.

Without restriction of generality we may assume that
the goal clause consists of a single literal only
(otherwise we add such a singleton connected with an
additional literal in the original goal clause). Then
any proof may be regarded as a tree the nodes of
which are literals (as is well-known and as we will
illustrate later). In order to find such a solution tree,
several potential solution trees have to be taken into
consideration until an adequate one is identified.
This is the main task carried out in t! whereby the
different potential solution trees are explored in
parallel.

If we pursued a pure top-down development, then at
the beginning as many processors would become
active as there are potential solution trees, that is very
few. Therest, that is many, would be idle. In order to
avoid this waste of computational power, pieces of
the branches of the potential solution tree will be
developed in a bottom-up way in parallel until the
top-down development arrives at such a prepro-
cessed piece which will then be incorporated, thus
further expanding the tree. This bottom-up develop-
ment is meant to be carried out in task t2.
Considerations concerning the global structure of
the given matrix may be used for heuristically
guiding the developments in t1 and t3. If, for
instance, it turns out that a certain connection is the
only connection in one of the paths then the unifier
of this connection is crucial for the rest of the proof, a
fact which might discard several of the potential trees
or pieces of branches. Such global guidance is meant
to be provided by the task t3.

"This completes a first superficial description of PCP
(on the second level, so to say). We will detail this
description a little further on the third level in the
rest of this section. This begins with a more precise
characterization of notions which were used in a
more intuitive way until now.

For any connection k and any clause ¢, a connection !
is called a neighboring connection for k (in ¢) if K € &
and L e { for some (neighboring) literals K, L. € c with K
# L. For instance, the connections 3-7 all are
neighboring for 1 while there is no neighboring
connection for 2. Connections which share a literal
are called alternative connections, like 1 and 2. Note
that some pairs of connections are both neighboring
and alternative, like 3 and 4. Then a potential directed

Fig. 10

solution tree is obtained as illustrated for the present
example in the following.

One alternative connection of the goal clause is
selected, say 1, and directed towards the goal clause.
For each neighboring node of the origin of the
current directed arc 1, we select one connection
containing it and direct it towards this node, whereby
difterent instances of the clauses are distinguished.
And so forth with each of the newly selected arcs until
there are no neighbors available. For instance, we
obtain the directed graph of Fig. 9 for our example.
It corresponds to the proof for input 3 shown in
section 1. As we said before, it encodes a tree. This
may be seen from the equivalent representation (with
an obvious correspondence with the previous one) in
Fig. 10.

Different potential solution trees are obtained by
different selections from alternatives. One of them
must represent the desired proof (if there is one at
all). Their identification is the task labeled t1 in PCP.
This task is supported by the work done in task t2
which is now described in further detail.

Each of the initial connections is taken in charge of
one of the processors which knows its neighboring
processors in charge of the neighboring connections.
Such a processor may activate new processors by
need, in case new instances of clauses have to be taken
into consideration. So each of all these processors
contributes to the development of the potential
solution trees as much as it can with regard to its
limited local knowledge and its limited processing
time, whereby it is avoided that the same work be
duplicated.
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First of all, these processors compute the weak
unifier for their connections, that is the most general
unifier (mgu) for the two connected literals with no
variables in common which is achieved by renaming.
After completion of this task one of any two
neighboring processors computes the common unifi-
er for their two previously computed unifiers. For
logical reasons both connections are part of a
potential solution tree, hence these computations
anticipate work eventually to be carried out by the
topdown development in tl.
Each of these two processors then continues to carry
out the same job together with a neighboring
processor which is not a neighbor of the other one.
This way the branches of the potential solution trees
are growing in a bottom-up way whereby different
pieces may grow into each other. This kind of process
is well-known also in other areas of Artificial Intelli-
gence, for instance in vision, where it is known as the
region growing technique.
Eventually, the top-down process t1 will encounter a
connection that has already become part of such a
piece of a computed branch. This piece can be
integrated into the potential directed solution tree
under development as a whole in one step. This
involves the computation of the common unifier
from the two, one of which has been computed so far
by t1, the other by t2; it also involves the propagation
of the direction of the tree.
Of course, there are plenty of details to be taken care
of in this whole process. Some of them are
— the appropriate combination of any two AND-
branches;
— the updating of the common unifier in combined
AND-branches;
— atreatment of alternative trees such that the work
in joint branches is shared.

We cannot now go into any of these details. Nor will
we give a more detailed explanation of t3. Both will
require 2 lot of theoretical and experimental explora-
tion which is currently pursued. Let us, however,
imagine how this might work with our present
example for input 3.

Assume we use 2 processors per connection, k, one
concerned with the solution tree, the other with
unification. Then after, reading and preparing the
given matrix, there are initially 14 active processors,
say 1.1,1.2,2.1,..., 7.2. Each unification processor z.2
computes the weak mgu for connection k.. Note that
e.g. ¢ (as well as j) is taken to be different in the two
literals connected by 4. At the same time z.1 takes
notice of its neighbors. For instance, processor 1.1

selects, say, 3, 5, 7 as its neighbors which in detail
means the following.

3.2, 5.2, 7.2 are signaled to stop after completing
their current unification and to pass their result to
1.2 for further unification. 1.1 then takes over all the
additional neighborhood of 3, 5, 7 (which is empty in
the present case) and 1 is deleted as an alternative
neighbor for them. Finally, for the remaining alter-
natives 1.1 passes the role of goal processor (i.e. the
direction of the tree) to one of the neighboring
processors, say to 4.1, together with the result of 1.2.
In the meantime, 3.1 has proceeded similariy. Say, its
selected neighbors are 4, 5, 7. As soon as 4.1 receives
the role of goal processor, it is programmed by 3.1 to
pass this role to 3.1 for this particular selection
together with the result of 1.2 which, under control
of 3.1, is successfully unified in 3.2. 3.1 thus stops all
other activities.

5. Realization of the Parallel
Connection Method on the Parallel
L-Machine

In this section we show how some typical parts of the
parallel connection method can be realized on the
nxn “parallel L-machine” {where » is assumed to be
quite large). We concentrate on task 1, i .e. the top-
down development of the solution tree. A complete
realization of a parallel connection method on L-
networks will be given elsewhere. For brevity, we
must restrict ourselves to the case where the substitu-
tions computed for subgoals are compatible.

We assume that, at the beginning, the following
program is stored in the program memories in
component A of all the L-modules in the parallel L-
machine and that the given matrix (formula) toge-
ther with information about the possible connections
is stored in the memories B of ali the L-modules.
Here, we use brackets [] for denoting parts of the
program realizing a dialogue with other L-modules
(using the sensor instructions and the open/close
instructions). We first give a rough description using
self-explanatory high-level constructs (Fig. 11}. Later
we will show how some of these constructs may be
realized by the special hardware instructions availa-
ble.

Remark: Of course, in a more sophisticated version.of
the program, a son would only be initiated if more
than one subgoal has to be treated.
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entrance: )

[wait until some other L-module (a "father”) needs a

"son” for treating a subgoal; v

receive the following information from the "father”:
physical number of the father, _
substitution for the variables in the goal clause;

wait until the father initiates computation:]

Jfor all connections leaving the goal clause do
determine the most general unifier U (after making
variable sets disjoint); )
if set of subgoals is empty

ihen goto exit
else
evaluate the arguments of the subgoals;
for ail subgoals do
[search for a free "son™; :
trangemit the following information to the son:
own physical number, '
substitution for the variables in the subgoal:]

fwait until for one of the connections all sons are ready
and all substitutions computed by the sons are
transmitted . _

or until the father requires termination of
computation;)

compose these substitutions with the corresponding
substitution U; C ;

[for all the other connections terminate the work of the
sons;]

exit: :
[inform the father about termination;
send the resulting substitution to the father;}

gﬂfﬂ entrance.

Fig. 11

We now show for some parts of the program how the

dialogues involved may be realized by the instruc-

tions of the L-machine. For abbreviation, we use the
following notation:

§.... the "local” sensor bit in switch D, (which can be
accessed by the local sensor instructions),

T.... the "non-local” sensor bit in the switch of type D
in the neighboring L-module that is connected
with switch C, of the own L-module,

Instead of the internal instructions "set local sensor j”

etc. we allow "high-level” notations as, for example,

"S:=1". First, we consider in more detail the

procedure of waiting until all sons are ready. This

part of the program can be programmed as follows:

wait until there exists a connection j such that for all
sons m: T, =0;

for all these m do

T:=1,

if T.=1 wait,

Correspondingly, the part where the father is in-
formed about termination must have the following
form:

Sp=0;

if §,=0 wait;

send the resulting substitution to the father;

(In more detail:
close C, and load the substitution to the private
memory;
open C, and close C;
store the substitution from the private memory
into the shared memory of the father;
open C,.)

§:=0;

Here, p is the own number of the L-module
considered, and f is the number of the father.
Furthermore, the sensor bit that can be accessed
using the name T, by the father and using the name §,
by the son is set to zero for signalizing that the son has
terminated work. Similarly, the instruction "there
exists a connection j such that ...” could be realized by
the sensor instructions. In Fig. 12 we show how the
dialogue at the entrance of the program can be
realized.

entrance:
forallj # pde
i85 = i then

foralll 4 pdoT:=1;

ap:=l; fi=j;

Joralll # pdo

if §,=1 then begin 5.:=0; i 5,=0 wait; §;=0 end;

golo start; ‘
golo entrance;
start:
if 5,=0 wait;

Fig. 12
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Here, S;= 1 signalizes that L-module j wants the given
L-module p as a son. T;; =1 signalizes to all L-modules
that p is occupied. In memory location a/* the
information that j is the father of p is stored. For
initialization we assume that all entries in a are zero.
“foralll # pdoif ...” allows all L-modules ! to inspect
a,”.

Correspondingly, the program part "search for a
free son” can be realized as in Fig. 13.

foralf subgoals de -
_whils no free son found do
forallk & fipdo .
S0 then Te=1; . -
T Ty 1 wail: .
Fab=1 then b=k
: =1 R
: {a son is found};
* transmit the sitbstitution to the son
elses:=0; .0 o0 ‘
Te=) o
T =V wait;
f 5= 1 then golo B;

ﬂ:Ti:=‘l;

Fig. 13

$,=0 signalizes that L-module k is free. T:=1
informs L-module % that p wants k as a son. 7,=0
informs p that p may inspect a,® for seeing whether p
is accepted by k as the only father. T,: =1 initializes
the computation in the son b. In this synchronization
part some subtle theoretical timing problems arise,
which can not be treated in this introductory paper.
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