ISBN 0-88986-058-0

MINI AND MICROCOMPUTERS
AND THEIR APPLICATIONS

Editor: G. Mastronardi

A PUBLICATION OF
THE INTERNATIONAL SOCIETY FOR MINI AND MICROCOMPUTERS — ISMM

ACTA PRESS
ANAHEIM * CALGARY * ZURICH

Proceedings of the ISMM International Symposium: MINI AND MICROCOMPUTERS
AND THEIR APPLICATIONS, Bari, Italy, June 5-8, 1984.

INTERNATIONAL PROGRAM COMMITTEE

G. Bafas Greece
C. Bonivento Italy

A. Brandolini Italy

B. Buchberger Austria
S. Crespi Reghizzi Italy
M.H. Hamza Canada
S. Levialdi Italy

E. Luque Spain

G. Mastronardi (Chairman) Italy

L. Rozsa Hungary

Copyright © ISMM

ACTA PRESS ACTA PRESS ACTA PRESS
P.O. Box 2481 P.O. Box 3243, Stn. B P.O. Box 354
Anaheim, CA Calgary, Alberta CH-8053 Zurich
92804, U.S.A. Canada, T2M 4L8 Switzerland

ACTA PRESS CODE: 065

THE PRESENT STATE OF THE L-NETWORKS PROJECT

B. Buchberger

Institut fir Mathematik
Johannes-Kepler-Universitat
MO040 Linz (Austria)

ABSTRACT

L-networks are networks of L-modules. An L-module
consists of a processor (with private memory), a shared
memory, a data and instruction path branching into m dif-
ferent paths under the control of the processor, and a
data path collecting n data paths having access to the
shared memory (m, n ... natural numbers). L-networks of
arbitrary interconnection topology can be flexibly formed
from L-modules. Typically, L-networks are used to imple-
ment parallel algorithms of a cellular, asynchronous type.
At MIMI 83, Lugano, we described a hardware implementation
of L-networks that allows the dynamic configuration of L-
networks of arbitrary topology before or even during the
execution of a parallel algorithm. The topology can be
chosen such that it optimally corresponds to the intercon-
nection topology inherent in the given parallel algorithm.
In this paper, the structure of the “L-language" is
described. The L-language is a high-level language that
allows the formulation of L-algorithms, i. e. parallel
algorithms for L-networks. The decisive innovative feature
of the L-language is that, in addition to the L-programs
to be stored in the L-modules, also the interconnection
schemas of L-networks can be expressed in the L-language.
More precisely, the L-language allows the recursive for-
mulation of L-networks whose size and structure depends on
parameters. For example, rectangles with m rows and n
columns, rings with n nodes, trees with n levels etc. (m,
n ... parameters) may be described in the L-language and
can then be configured automatically.

INTRODUCTION

L-networks have been introduced in /Buchberger 78/ as
a hardware concept for the execution of arbitrary parallel
algorithms, in particular, of parallel algorithms of a
cellular, asynchronous type. At MIMI 83, Lugano, we
described a hardware implementation of L-networks that
allows the flexible configuration of L-networks of
arbitrary topology before or even during the execution of
parallel algorithms, see /Buchberger 83/. Further details
of the L-network approach and a comparison of L-networks
with other hardware systems for parallel algorithms may
also be found in the references given in /Buchberger 83/.
A recent overview on multi-microprocessor systems is
/Paker 83/.

In this paper, only a very brief repetition of the
concept of L-module and L-network is given in order to
make the paper self-contained. The main emphasis of this
paper is the description of the "L-language". This is a
high-level language designed for~ fully. exploiting the
potential of the L-network implementation described in
/Buchberger 83/: L-programs, i. e. programs written in the
L-language, do not only contain a description of the
programs stored in the L-modules of the L-network con-
sidered, but describe also the actual topology of the L-
network. The description of the network topology in an
L-program, typically, is recursive. This implies that
topology descriptions of trees, rectangles, rings, pipe-

178

lines etc. may depend on several parameters that describe
the "size" of the respective structures. As far as we
know, this feature of the L-language is new. It is essen-
tial for the description of parallel algorithms that need
networks of variable size for their execution, i. e, net-
works whose size depends on the size of the input. For
example, Todd's algorithm /Todd 78/ needs (log n) pro-
cessors for sorting sequences of length n. This innova-
tive feature of the L-language is fully supported (and not
only "simulated") by the implementation of L-networks
described in /Buchberger 83/. A language of this type
needs also an extended concept of “program correctness",
The main extension is that inductions have to be carried

out also on the parameters that describe the network topo-

Togy. First ideas for a formal proof system for the
correctness of L-algorithms have been developed in
/Buchberger, Aspetsberger 81/. Some examples of L-

algorithms are given in /Aspetsberger 8 /.

L -MODULES, L-NETWORKS, L-ALGORITHMS (REVIEW)

An L-module is a module of the following structure:

1

s

.

o

A: a microprocessor + private memory + some additional
special circuitry.

B: a "shared" memory + some additional special circuitry.

Cl,...,Cm: bus switches with an additional "open/close"
facility. (The corresponding m bus branches are
called "processor paths".)

D1,...,Dn: bus switches with a "sensor bit" e. (The

corresponding n bus branches are called "“memory
paths".)
In addition to the normal instruction set of a

microprocessor, the component A can execute the following
eight types of instructions:

"open j", "close j"
"set, (reset, load) local sensor j"
"set (reset, read) non-local sensor j".

The meaning of these instructions and the operation
of the L-module is explained in detail in /Buchberger 83/.
Arbitrarily many L-modules can be combined to form
"L-networks" of arbitrary (but fixed) regular (or
irreguTar) structure, for example, to a binary tree:

numbers m and n must be chosen appropriately for
e L-modules used for realizing a particular topology.
or example, m=3, n=2 in the binary tree).

THE PRESENT STATE OF THE L-NETWORK PROJECT

In /Buchberger 83/ the design of a hardware implemen-
tion is described that allows to configure L-networks of
arbitrary topology from L-modules with arbitrary parame-
ters m and n from a pool of components A, B, C, D. Note
at the configuration and reconfiguration of L-networks
s totally dynamic in this implementation. This means that
the bus interconnections between the L-modules have not to
pe established mechanically by plugging cables but can be
chosen under the control of the programmer before or even
during the execution of a particular L-algorithm,

: Meanwhile a pilot implementation based on the MC6502

nsisting of a pool of 8 components A, 8 components B, 6
components C and 64 components D has been successfully
finished. Note that the design is totally independent of
the particular microprocessor chosen. Furthermore, the
design is deliberately structured in such a way that it
lends itself to a future VLSI implementation. With
present-day VLSI technology, implementations incorporating
several thousand components of type A seem to be possible.
A rough impression of the structure of the pilot implemen-
tation using conventional technology 1is given by the
following)picture (the size of the device is approximately
1mx1lm): .

PR EN C IR o

The next steps in the L-network project are:
Implementation of a rudimentary loader.
Implementation of an extended assembler.
Implementation of a confortable monitor.

Implementation of the L-language.
Systematic study of parallel algorithm types.

The rudimentary loader has already been finished. It
has the following tasks:
a. It accepts programs and data for the L-modules in the

system written in hexadecimal code and stores the programs
to the private memory of components A with specified phy-
sical numbers. The programs may contain arbitrary special
instructions of the eight types listed above.
b. It simultaneuosly starts the programs.
c. It allows to read off the memory contents of shared and
private memories after termination.

The extended assembler will be an extension of the
MC6502 assembler with the addition of the special instruc-
tions of the eight types described above in mnemonic pre-
sentation.

The confortable monitor, essentially, will have the
same objectives as the rudimentary loader. However, it
will provide more convenient man-machine communication.

The objective and structure of the L-language will be
described in the present paper. The implementation of the
L-language will be the next main software goal within the

project.

The systematic study of parallel algorithm types
seems to be the most important research goal. Our main
emphasis is on parallelism in symbolic (non-numerical)
computation. It is generally accepted that vector and
array structures are well suited for parallel numerical
computation. However, much more systematic knowledge of
practically useful network structures is necessary for
making parallelism relevant for symbolic computation. As a
result of our investigations so far, we believe that
algorithms of time complexity 0(n2) (or a similar
complexity) are an interesting candidate for practically
useful parallelizations (on L-networks): Such algorithms
have a chance of allowing a parallel L-algorithm of, say,
time complexity O(n) using O(n) L-modules. Thus, the
speed-up can be drastic while the increase in hardware
complexity is still practically manageable. The paralleli-
zation of Dijkstra's single source shortest path algorithm
is an example of such an algorithm. The parallelization of
other algorithms does not seem to be of that much prac-
tical importance. For example, 0(2") algorithms often have
an easy O(n) parallelization using 2" L-modules, see
/Buchberger 78/. It is clear that such parallelizations,
though resulting in a dramatic speed-up, are of no prac-
tical value because of the hardware complexity involved.
On the other hand, there are also examples of 0(n.log n)
algorithms that allow an 0(n) parallelization wusing
0(log n) L-modules (consider, for example, Todd's sorting
algorithm /Todd 78/). Although practically realizable,
such parallelizations do not really result in a drastic
speed-up.

THE L-LANGUAGE

An "L-program" written in the "L-language" consists
of the description of the programs residing in the L-
modules of an L-network and the description of the topo-
logy of the L-network. Some extension to ordinary
programming languages are necessary in order to make such
descriptions possible.

The nucleus of the L-language is an ordinary high-
level Tlanguage. Since, in this paper, we are not
interested in syntax we use a "Pidgin-PASCAL" for nota-
tion. Programs written in the nucleus language are meant
to reside in the private memory of a component A and are
executed under the control of the processor in the com-
ponent. A variable v denotes a storage region in all
those shared memories that are "attached" to A via the
"open" switches of type C (note that our use of ‘“open"
and “"close" is just reverse to the normal use of these
words in switching theory.)

The first extension to the nucleus is the possibi-
1ity of declaring private variables. A variable declared
private denotes a storage region in the private memory of
a component A.

The next extension is the addition of the special

179

instructions of the eight types mentioned above in some
convenient notation. (For example, in /Aspetsberger 8/
"Sj:= 1" is used for "set local sensor j" and
"a(i):= b(k)" s used for the sequence

“open k; p:= b; close k; open j; a:= p; close j",

where p is some variable declared private.) The parameter
j in these instructions may be a variable or a constant.
It denotes the name of one of the "processor paths" or
“memory paths".

The names of the paths available in a particular L-
program must also be decTared. L-programs residing in one
L-module, thus have the following typical structure:

net L1: elementar

private p, q;

ceee

some program text using, for example,

close 1; p:= a; open 2; if Sp =1 then;
é;acessor aths 1, 2;
memory QatEs 1, 2.

This L-program describes an "elementary" L-network con-
sisting of a single L-module with two processor paths
named 1 and 2 and two memory paths 1 and 2. The processor
component A of this L-module contains in its private
memory the program [.....]. The L-module together with

its program |....] is given the name L1 for later
reference, in particular, for later use as a building
block in more complicated L-networks. The same infor-

mation may also be expressed in the following graphical
notation of the L-language:

14
Tl
o]
T4
It should, then, be immediate, what is meant by the
following graphical notation of an L-program NW:
4 4 q 4
NW
1 3
L1 L2
1
1
L3 L4
4
1 9 LB
Here, L1,...,l4 are elementary L-programs of identical
structure. They are combined in order to form a more

complicated L-network having four (different) programs
stored in the four private memories of the L-modules
L1,...,l4 and realizing a particular interconnection
schema between the L-modules. Some of the paths provide
interconnections to the "outside" of the L-network. NW
with processor paths r,s,t,u and memory paths a,b,c,d,
again, can be used as a building block in hierarchically
more complicated L-networks. The L-program M in syntac-
tically more conventional "linear" notation reads:

net L1:; net L2:; net L3:; net L4:;

net NW: compound
L2y 3 W)

processor paths
r:=1o0of L3; s:= 2 of L3; t:=1 of l4; u:= 2 of 14

memory paths

a:=1of L1; b:= 2 of L1; c:= 1 of L2; d:= 2 of 14
connections <—_
1 of L1 with 1 of
1 of L2 with 2 of

f L3; 2 of L1 with 1 of 14;
L3; 2 of L2 with 2 of L2,

For simplification of notation, in most cases we wil)
make the following assumption: in every L-network (in par-
ticular, in elementary L-networks) the name x of a path
will always occur both as a name of a processor path and a
name of a memory path. Furthermore, if not otherwise
stated, if the processor path x of the L-network Nl is
connected with the memory path y of the L-network N2 then,
also, the processor path y of N2 is connected with the
memory path x of Nl. Also, the processor path with the
special name “"s" in an L-module is always connected to the
memory path s of the same L-module (i. e. we assume that
every L-module will always have access to its own shared

memory via the path with the special name s). Thus, the
following (part of an) L-program
may be replaced by the much simpler representation

]l P I r lI P I r
Note that we do not have to pay attention any more, where
a path leaves a rectangle in order to distinguish between

processor and memory paths: every path symbolizes a pro-
cessor and a memory path.

RECURSIVE DEFINITIONS OF L-NETWORKS

Typically, L-networks of highly regular structures
are used for the parallelizations of algorithms and, in
addition, the "size" of these regular structures depends
on the value of the inputs for the algorithm. For example,
for graphs with n nodes, n/(log n) L-modules are needed
for the parallel shortest path algorithm in /Aspetsberger
84/. In order to define such variable size L-programs the
names of L-programs must allow ‘“parameters". As an
example, consider the definition of an L-network with tree
structure (compare the section on L-networks above and the
parallel shortest path algorithm in /Aspetsberger &/). In
semigraphical notation the definition is:

net T(n): compound

case n=1:
I f

case n)l:
| f
[T(n)
r
f f
T(n-1 T(n-1

Here, P is assumed to be some (elementary) L-network with
paths 1,r,f. In linear notation the same definition is:

net T(n): compound

case n=1: |[P]
paths f:= f of P;

180

case ml: | P; 2 cog1es of T(n-1) |
Eaths f := gf_P,
connections
Tof P w1th f of copy 1 11_ T(n-1);
r of P with f of copy 2 of T(n-1).
We next give the definition of an L-program PL
("pipeline") with n L-modules in the L-language

(s emigraphical notation; the reader should now be able to
translate it into the linear notation by himself). We pre-
sent the definition "top-down" starting with the "main
program .

et PL(n): compound

case n¥2:

PL(n
B r _1[MpPL{n-2) | r ll 3 I

____MPL(k):

compound

case k=1:

1 1

case k»1:

MPL (k)

_1___{ MPL(k 1)

B, Pl

I

and £ are assumed to be (elementary) L-programs.

Finally, we present the definition of an L-program
R(m,n) (“"rectangle” with m rows and n columns). This defi-
nition needs a new language feature: a variable number of
paths uj and di must be handled. We use the following ele-
mentary L-programs:

e
m@}

R(m,n) is then defined as follows:
R(m,n)
IU(n) _J
dj
(i=1,¢0.,N)
uj
I_M(m-z,n) J
dj
(i=1,e..,0)
uj
[|

A linear notation for the path connections used

in this

definition is:

connections

Tfor 1: to n do
d of " U(n) with uj of - M(m-2,n)
d1 of M(m-Z,n) w1th uj of D(n)

The definition of the rows U(n) and D(n) is similar to the
definition of the pipeline. However, an increasing number

of paths uj
rows,

must be handled.
is similarly defined.

M(k,n), as a sequence of
We demonstrate the language

constructs by the definition of the middle part MMS(k) in
one row of M(m-2,n):

net MMS(k):

case k=1:
uz
MMS (k)
u‘
1 1[MmM] r r
d
d2
case k»1:
uj Uk+1
[MMS (k) (1 =2,004,K)
u
1 1|w5k1)l INM rir
d
(1 =2,..0,k)
dj dg+1

CONCLUSIONS

We extended the concept of L-networks by the defini-

tion of the L-language, which is a high-level programming

languages for programming L-networks.

The implementation

of a compiler for the L-language is the next major goal in

the L-network project.

a

A pilot hardware implementation of
system for realizing arbitrary L-networks has just been

finished. Together with the L-language implementation this

implementation will
menting with the design and

provide a flexible tool for experi-
implementation of paraliel

algorithms of arbitrary inherent interconnection topology

of processing elements.
the design

The accumulation of know-how in

of practically useful parallel algorithms

should eventually lead to the design of an L-network hard-
ware system with very large numbers of processing elements

for

parallel symbolic computation of a cellular and

asynchronous type.

REFERENCES

Aspetsberger, K., 84:
Algorithms for L-Networks. These proceedings.
Buchberger, B., 78: Computer-Trees and Their Pro-
gramming. Proc. 4th Coll. "“Trees in Algebra and Pro-
gramming", Univ. Lille, Feb. 16-18, 1978, pp. 1-18,

Buchberger, B., 83: Components for Restructurable
Multi-Microprocessor Systems. Proc. MIMI 83, Lugano,
Acta Press, Zirich, 67-71,
Buchberger, B., Aspetsberger,
Correctness of Programs for
Internal Technical Report,
Linz, Institut fiir Mathematik.
Paker, Y., 83: Multi-Microprocessor Systems.
Press, London, New York, 1983.

Some Examples of Parallel

K., 82: Proving the
Networks of L-Modules.
CAMP-81-3.0, \Universitat

Academic

- Todd, S., 78: Algorithm and Hardware for a Merge Sort
Using Multiple Processors. IBM J. Res. Develop., 22/5,
Sept. 1978.

ACKNOWLEDGEMENT: This work is supported by the Austrian

Research Fund (Project Nr. 3896).

181

