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Abstract

We present a new criterion that may be applied in an algorithm for cun-
structing Gribner-bases of polynomial ideals. The application of the
criterion may drastically reduce the number of reductions of polynomials
in the course of the algorithm. Incidentally, the new criterion allows
to derive a realistic upper bound for the degrees of the polynomiatls in
the Grdbner-bases computed by the algorithm in the case of pclynomials

in two variables.

1. Introduction

We present two results concerning the algorithmic construction of Gréh-

ner-bzses for polynomial igeals:

1. We develop a method for speeding up the algorithm given in /17,

2. We derive 1 realistic ubper bound “or tne cemplexity of the new ver-
sion of the algorithm in the case of polynomials in two variabies,

The usefulness of Gribner-bases /2.3/ stems from the fact thar 2 number

of important problems in the theory of polynomial sdeals may Se solves
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easily as soon as a Gribner-basis for the given ideal is available. Such

problems are: the question whether a given polynomial belongs to a given

jdeal, the construction of a vector space basis for the residue ¢lass

ring modulo a given ideal, the question whether a given set of algebraic

equations is solvable, the question whether a given ideal has dimension

zero, the question whether a given ideal is a principal ideal, the re-

duction of polynomials to canonical forms in the presence of side rela-

tions. For detailed motivation see /1,4,5,6,7/.

Gribner-bases may be characterized in a number of different ways /2/.

Informally,

a finite set F of polynomials is a Gribner-basis (for the ideal genera-
ted by F) iff

a certain reduction process for polynomials, which is defined relative

to the"side relations” in F, always leads to a unique result.
The algorithm described in /1/ solves the following problem:
given a finite set F of polynomials (in n variables)
find a finite set G of poiynomials such that

F and G generate the same ideal and

G is a Grobner-basis.
A rough description of the algorithm would read as follows:

For all pairs of polynomials in F:

form a certain type of "resolvent” of the pair and reduce the resol-

vent relative to F,

If the reduction does not lead to zero,
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add the resulting polynomial to the basis F.

Note that in the case when a new polynomial is added to the basis, simul-
taneously the set of pairs of polynomials to be treated by the algorithm
js expanded. Thus', the termination of the algorithm is a non-trivial
problem. A termination preof is given in./1/. However, sc far, no general
upper bound for the complexity of the algorithm is known (In the author’s
dissertation, which is an early version of /1/, a rough upper bound for

the case of polynomials in two variables is given.)

The algorithm has been implemented several times /1,8,9,6,10/ and, in

fact, experience shows that it produces complex computations.

In this paper our main concern will be to develop a criterion by which
the reduction of some of the resolivents may be avoided under certain
circumstances. In practical examples, this results in a drastic saving of
computatioen time. Incidentally, for the new version of the algorithm we
will be able to derive an a priori upper complexity bound in the case of
polynomials in twe variables. This upper bound will be “realistic" in

the sense that one can give examples where the bound is nearly reached.

2, Definition and Basic Facts

In order to make the paper easy to read we éive the definitions of the
basic notions by examplas. For the formal definitfons the reader is re-

fered to /2/.

Throughout the paper f,g,h will denote polynomials in n variables over
a field K and F,G will denote finite sequences of polynomials, F{ is the
ji-th element of the seguence F and LF is the length of the sequence F,

The terms are ordered “lexicographically” in the following sense
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The "headterm of f" is the greatest term in f with respect to the or-

dering <. For example:

f = -xzz + Sxyz + 1.

neadterm of f,

"f reduces to g with respect to F" (abbreviated f » q)
F

if g is obtained from f by 2 sequence of steps of the following kind:
if a term t in f is a myltiple of the headterm of an Fi' add a suitable
muitiple of Fi to f in order that the coefficient of t disappears. For

example

F1 1= xzyz - Xy, F2 ] xyzz - 2:2.

2 2 2 2

f := x3yz + bxy z2 -~ Ixyz ; %%y + Sxyzz2 - Ixyz e x"y + 10yz° - 3xyz.
F

We underline a polynomial by if 1t is in normalform with respect

to F, §.e. if it cannot be reduced further.

It is clear, /2/, that f » 0 =-mp f ¢ [deal (F)
F

(where Ideal(F) is the ideal generated by F).

However, in general,




f ¢ ldeal(F) »= f » 0, '
F
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Definition: F is & Grébner-basis : &>

(66) /f\( f e ldeal(F) ==» f;o)

(It turns out, /2/, that we could equivalently define

F is a Grdbner-basis : 4=

(6) N\ (f2q.f

h == g =nh}). )
fag.h F -

>
F
The following theorem is the basis for the algorithm given in /1/ :

Theorem 1 /2/ : F is a Grgbner-basis 4=

(62) ’,’,a\\\\ S-polynomia! of Fi and F,

= 0.

Teieiste N

The “S-polynomial of* two polynomials f and ¢ {abbreviated SP(f,g) } is
formed by the following process: detsrmine the least common multiple t

of the headterms of f and g, then myltiply f and g by appropriate factors
f° and g~, such that both the headterm of f.f and the headterm of g°.g
is t zad hosh headtarme have tha same coefficient. Then form f7.f -

g .g. This is the S-polynomial of f and g. Note that t does not occur

any more in the S-polynomial. The S-polynomial is the type of "resol-
vent" alluded to in the introduction.

2

We give an exampie: f := Sxy - 3x, g := 7y° + 2x,
least common multipie (xy,yz) x xyz.

S-polynomial of £ and g = (7y).f - (5x).g = -21xy - 10x°,



3. Basic Ferm of the Algorithm

Problem: given F, find G such that

Ideal(F) = Ideal(G) and G is a Gribner-basis

while exist ([,J} ¢ B go
h = SP(GI,GJ); h = NF(h,G);

if h # 0 then
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NF is a procedure that reduces a gfven potynomial to a polymomial that
is in normalform with respect to a given sequence of polynomials. (G,h)

denotes the sequence that is obtazined from § by adding h at the end.

The while exist - statement seems to be self-explanatory. Instead of

begin/end we use indentation.

It is easy to see that the algorithm is correct by using the following

inductive assertion at cut point [:):

ldeal (G) = Ideal(F) and ~~ o SP(G;,6 )
6

dei<isly
{i,j148

L
<
.

On termination (B'= @!) we then have

¥
(=]
.

Ideal(G) = Ideal(F) and .~ U SP(6;,65)
G

l.ﬁi‘jiLG




By Theorem 1 this implies that G is a Griébner-basis.

The termination proof of this and all the other algorithms in this paper

is based on the Theorem on p.380 in /1/.

Example 1:

e e v3uy o ual . ey uls e ve g0y2 _ ¥
GI : Fl s xTyz 2", G2 : F2 = oayTr - oayz, 63 : F3 = xty z.

Note that we have a lot of fresdom in choosing (1,J} ¢ 8. Every choice
is correct. However, it will turn out that the sequence of choices nas
an essential influence on the complexity of the algorithm. Anticipating
an argument of Section 4. we proceed by choosing {I,J} such' that the

least common multiple of the headterms of GI and GJ is minimal with re-

spect to <y

We write [,J — h, if the reducticn of the S-polynomial of GI and GJ
leads to the mormalform h. With this notation the trace of a possible

computation could be as follows

2,3 — G, 1= xzyz -3
1,4 —— G5 = uz3 - xz2
2,4 — G := y2® - 70
3,4 — 0

5,6 — 67 = xyz2 - xz?
4,7 —— G8 1= z4 - tzzz
2,7 — 0

5,7 — 0

6,7 — 0

5.8 — Gg t= )(312 - xzz
6,8 —=

1:2 — 0

38— 0



Altogether (g) = 36 reductions are necessary. From 6,7 on all of them
yield zero. In this example, we used very simple coefficients in order
to make the reductions easy for handcomputation, MNevertheless, from this
example, we get a good impression of how a typical computation proceeds
and we get an idea where we could save computation time: we should try
to guess in advance which reductions will yield zero without actually

carrying them out.

In /1/ we already gave two criteria of this kind, in this paper we shall

develop a more powerful one.

4. Improved Form of the Algorithm: First Version

The improvement is based on the following theorem which has been obtained

by & careful aralysis of the proof of Theorem 1.

Thegrem 2 /11/ : F is a Grobner-basis <=

(68) N

lii<j£LF likiLF liul""ukiLF

[ mupe =0 Helupoenauy) < Helind), T/”\; SP(F Fu1+i » 0]

Here we-yse the following notations: s M t ! -
term t is a muttiple of term s (for instance, xyzz M xlyzs), and

He(uypo.ouy) 1= least common multiple of the headterms of F RN
FiY K uy u

{for instance, in Example 1, HG(4,5.5) = xzyz3. HG(d) = xzyz.).




1"

G :=F; B := {{i,j} [ 1:i<j:LF};
while exist {I,J} ¢ B do
if Criterion 1
then
h := SP(GI.GJ); h := NF{h,G);
if h # 0 then
G := {G,h); B := B wu {ii,LG} / 11i<LG};
B :28 - ({I,J}};

Criterion 1 is the following expression

- T~

t<kelp liul""ukiLG

(1= upsup =90 Hglugaeowu) sy Hg(1d), Ti::t {uy,uq,} £ 8]

Algorithm GBl can be proved correct by using the following inductive

assertion at cut point (A):

ldeal (G) = Ideal(F),

NN T~

leiejely lekely leuja..aupsty
{i,j}eB

imoug, Uy = §y  MefUyyeeauo) Sy Tpliad)s ,/ﬁ\\ €25 LG y s
( 1t Yk 6'Y1 k! M "a 1<l <k “up iy’ g

°]

Upon termination (B=3!) this assertion implies (G&} for G, i.e., G is a

Grobner-basis.

Note that in B we store those combinations {i,j} of indices, for which

SP(Gi,Gj) is still to be reduced. The additional if - statement in
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Algorithm GB1 allows to skip the reduction process for certain combina-
tions {i,j}. In fact, in general, many combinations {1,31 are of this
kind. For instance, in Example 1, only 11 instead of 36 reductions have
to be carried out when using Algorithm GA1. Computational exparience
shows that the number of raducticns tends to be linear in tha tength of

G in Algorithm GBl whereas it is quadratic in GBO, A thecoretical analysis

of this phenomenon has not yst been achieved.

Algorithm GBl, still, is not satisfactory, because it is difficult to
handle Criterion 1 algorithmically. In essence, it invelves the compu-
tation of the transitive closure of the relations RI 3

fu,v) € RI.J Doy HG(u,v) M HG(I.J), {u,v} £ 8
for all [,d.

We now develop a c¢riterion which is "nearly as powerful® as Criterion 1,

however, it i3 much easiar to handle.

Before we do this we observe that Algorithm GB1 suggests a strategy for
the choice of {I1,d} in B: choose {I,J} ¢ 8 such that HG(I,J) is minimal
among all the HG(i.j). fi.j} ¢ B, with respect to <re If we chose an
{I,J} & B such that He{1.d) 7> Min{K (1,§)/{1,3} « B} it may happen that
Criterion 1 is not yet fulfilled, i.e. we would have to reduce SP(GI.GJ).
whereas it might be fulfilled fn a later stage of the algorithm, when
same of the {i.j} which are in B so far will be ¢ B. Thus we would have

missed a chance to save a reduction.

The deviation from this strategy may even reverse the positive effect of
the apptication of a criterion: In general, if a criterion is applicable
to a pafr {I,J) at a certain stage of the algarithm, this does not mean,

that all reductions of the S-polynomial of GI and GJ would already lead
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to zero, Thus we could possibly obtain a new polynomial in the basis, {f
we did not apply the criterion. [f we apply the criterion, a new polyno-
mial, possibly of higher degree, will necessarily appear at 2 later staga
of the algorithm. This may lead to longer computations than that obtained
without application of the criterion. Thus, for a "good” criterion it
must be shown that al] reductions of SP(GI,GJ) would lead to zero in case
the criterion is applicable te {[,J}. Criterion 1 and our final Criterion
3 are :good" ones in this sense, if applied in connection with the above

strataegy.

5. Improved Form of the Algorithm: Second Yersion

Exactly as Algorithm GB] with the Criterion 1 replaced by the following
Criterion 2

-

li"iLG

(rduea, win g, HA(1.0),

(L} £ 8 v Dg(lu) « Do(Ld},  (u,d} £8 v Dg{u,d) « By(1,d)]

The correctness proof for Algorithm GB2 is more complicated. We use the

following 1nductiye assertion at cut point (:):

Ideal(G) = [deal(F) andg

NN T~

lii<j_<_LG I_C-kcLG lf-“l""”kiLG
(1,3148

(620 uy =50 Hglupsaou ) <y Helindd,

AN (5P(G

1<1<k uptBup,d 0 Wyt e Boa Dgluguuy,y) < DgldL)]
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On termination (B=@!) we then, again, get {G8) for G, i.e. G is a Grdbner-
basfs, The proof that the inductive assertion is invariant is tedious and
will be omitted here.

We note that the condition ([,ulfB v Dstl,u) CDG(I,J), because of

HG(u) 2 HG(I,J), is equivalent to {1,uléB v {{I.,uleB A DG(I,u) #
Bg(I,d)). This is “nearly the same® as [l,u}fB v (l,u}eB. Thus, one

might conjecture that Critarion 2 can simply be replaced by

- NS

leusle
(1403, Hlu) g H(LD].

However, the resﬁlting algorithm is incorrect.

On the other hand, the follewing Criterion 3

N

liUiLE

{14070, Hlu) g ¥ (1,3, (T,u) 68, (4,0} £8]

though correct, in general, is not as efficient as Criterion 2. If, how-
evar, we use the selectiaon strategy for {I,J} ¢ B described in Section 4,
Criterion 3 is as powerfuyl as Criterion 2, because, in this case,

DG(I.u) < DG(I.J) = {T,u} £ B, Also, Criterion 3 is a2 "good" one. This
can be p;oven by adding the assertion

/\((Headterm of f <T't s fog, f>h) =mp g=nh), where
flglh - -

t:s min(T{HG(i.j)/{i.j}:B}. to the inductive assertion at cut point (:)
(extensive use of the proof techniques developed in /2/ has to be made),
Criterion 3 is easy to handle. A sujtable data structure for 8 is as

follows: simultaneously store B as 'a sequence of lists, the 1-th list

containing all the {({,j} with DG(i,j} = 1 (thus, the implementation of
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the above selection strategy for (I,J} is easy), and as a boolean array
¢ ((:,i it true 1+=>{i,j} ¢ B) such that the decisions {I,u} ¢ B, (u,J}{ B
14

can be made easily.

Applying Algorithm 6B3 (which is the.result of replacing Criterion 1 in
Algorithm GBl by Criterion 3) to Example 1 {with the above selection
strategy) yields a computation that actually reduces SP{G[.GJ) only for
the foilowing 11 combinations of indices {I,J} : (2,3},{1,4},(2,4},(5,6),
{4,7%,(2,7},{5,7},(5,8},{6,8},(3,91.(5,9}. These are the same as would

be treated by Algorithm 681. In fact, one can show that using the above
selection strategy for (I,J} ¢ B, Criterion 3 is as powerful as Criterion
1, except for those cases where at a certain stage of the algorithm

;Tj:i [(I',J‘} # {1,d}), HG(I-,J-) = HG(I,J)]_ .

In this case Criterion 1 may judge (I,J} to be "superflous” whereas Cri-

terion 3 possibly does not detect this -fact.

3. Tha Zomploxity 3 Alaqrithn GRZ far n=?

In this section we consider only sequences of polynomials in two vari-
ables. We give an upper bound BF for the degrees of the polynomials that

appear in the basis G constructed from a given F by Algorithm GBZ.

if we knowW BF wa alsa hzve an ypper hound NF for the number of polyno-
mials in the Grébner-basis G:
£t S(BF) , where

S{d) := number of terms of degree < d

. {d+2)(d+1)
2

because the headterm of a polynomial GL sj+l {(j = 0,1,...) constructed
F



8

by Algorithm G82 is distimet from the headterms of ali the Gl""GLF+j'

Thus, an upper bound RF for the number of possible SP(Gi.Gj) that have

to be reduced is

Ne (Ne-1)
RFS—_-_.
2
A reduction of a polynomial f, whosge headterm has the number t in the
texicographical ordering of terms, needs at most t.NF comparisons for
determining the polynomials from the basis that have to be inserted into
f and at most tel) comparisons, myltiplications and additions for the
2
insertions. Since also the degree of all the SP(Gi,Gj) is bounded by BF

(see betow) we need at most

Ne- (Np=1)

S(Bg). (S(Bg)-1}) )

. {S B.). N
{ F) F Y 2

\

steps. Roughly, BF Rmay be bounoed by 4.PF. wnere PF B max{DF(i)lliiiLF}
{where DF(i) iz degree of HF(i)). Summarizing, the number of steps may
be bounded by
. 2.4 .

Te = 2.(Lg#16.PE) " .
(We need the factor 2, if we take into account that, before a reduction,
in any case Criterion 2 {or 3) has to be checked),
We now concentrate on determining BF' An idea for getting BF may be gb-
tained from the following graphical representation of the HG(i) and

HG(i.j) of a given G:

ey

T I YR R s i ohd it T " i



el 0

17

S

RN

—

r -, G G ‘/’ . /:/ £
2 QLR

i

3

.xay

~

»® "‘n"o- vae

Yy '?\

In the drawing we represent a term xky] by the peint (k,1) in the car-
tesian plane., We mark the HG(i) (in our case: 1 = 1,2,3,4) by drawing a
circie © and the Hg(1,3), for which
“‘\/‘/-- ' Holu) ¢, Ho{1,]) Du(l,u) < DL {i,j)
liu:LG[”‘“"J' GHY7 S fgttedis Dglls gti+dl.
Dgluad) < Dg(i,4)],
by a square 1. Let MG be the maximal degree of these HG(i,j) and tet
”G be the "width" of G, i.e. the Tength of the thick line in the drawing,
formaliy:
Mg = (min Eg(1))  +  ( min E3(1)) ,

liiiLG lii:LG

where Eé(i) (Eé(i)) is the exponent of x (y) in HG(i).

ko1

{The shadéd region is the region of terms x'y' that are multiples of

some HG(i;.)
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Now, 2 reduction according to Algorithm GB2 can only occur for g "squared”
HG(I.J). The new polynomial, for instance GS’ then, satisfies DG(S) < MG

and the new squared HG(S.I) will satisfy 05(5,1) < MG + ”G'

On the other hand, incidentally, NG is reduced. This suggests that HG*HG

does not increase during tne algorithm and therefore
1111LG

upon termination of the algorithm. Thus,

B. a2 M_ + W_
f r F

is @ suitablie upper bound for the degrees of the polynomials in the

Grébner-Basis computed,

Before we give more details about the above sketch of the derivatian,

Tet us consider the following example: '
9 s .

G1 i= F1 txoxy’ - x10 62 HE F2 L] ylo.

Mg = Mg = D(1,2)

11, HG = HF =9,

Reducing the SP(GI'GZ) we obtain G3 1= xioy.

The new values of HG and ”G are MG = DG(1,3) = 19, HG = 1.
Reducing SP(G,,6;) yields 6, :a x39,

Thus, BF = MF + HF = 20 is nearly reached, From this example, we sae
that BF is a "realistic” bound. The other bounds NF'RF’PF and TF’ how=

ever seem to be too coarse.

For a formal proof of ///N\\ DG(i) < BF (where G is the Grdbaer-basis
leicl
='="G6

obtained from F by Algorithm GB2) one has to show:

(n ///\\\ DG(i) < "G (for arbitrary §)
liiﬁLG
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and
(2) the inductive assertion MG + HG < Mp # We o added at cut point

(:)_in Algorithm GB2, is invariant (it certainly is true at the begianing?),

A detailed proof of both (1) and {2) needs a relatively complicated case
analysis. The intuitions, however, may edsily be obtained from the drawing.
We only point out the major steps in the proof of (2}: The interesting

case is when a new h is added to G.- In this case we show

(3) Degree of h < M.,

{4) H(G,h) +“(G.h) = Mg &

For (3) observe that if Criterfon 2 is fulfilled ther also
- [14u#d, Hglu) gy H(T.d), D(I.u) < Dg(T,d),
lzuste

Bg(usd) < Dg{1.d)]

must hold.

In order to prove (4) we distinguish the cases
a) h is in the *Interior” of & (i.g. AAJB «, heidtarm of &)

b} h is "below® G {i.e. headterm of h <y xAyB}
c) h is in the "Exterior” of G {i.s. neither a) nor b))

here, A i= min EX(i) . 8 i= min EA(1))
6 g
li'if_LG l_f_if_LG ’

)

In case a) one can show tnat: H(G.h) Hg 'x(ﬁ,h) =y

i

M

In case b) one can show that: M(G.h) s ”(G,h) < We

1A

In case ¢) (which is the most interesting one)

< MG + d, H(G.h) +d = HG

TrrR——— s Con e dodmi pas de ke sl dei e RIS CT i L I d B R b Sk ke g PR L
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holds, where

min €5(i)
liiiLG

exponent of y ir headterm of h,

if this difference is » @,

min Eé(i) exponent of x in headtera of h,
1<i<l
- =6 if this difference is > 0.

For generalizing the method given here for the case of n > 3 a suitable

dafinition of the "width" of G would he necessary. An attempt has been

made in f12/. However, the problem seems to be difficult,

Acknowledgement: I gratefully acknowledge my indebtmess te F.Hinkler for

fruitful discussions on selection strategies,
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