BUCHBENGER

-

Computer trees: a concept for
parallel processing

- B Buchberger, J Fegerl* and F Lichtenberger report on a
“multimicrocomputer system currently being investigated for special purpose

parallel processing

This paper describes the multimicrocomputer concept
called’computer tree’ which is currently being investigated
at the institute. The first part summarizes the global idea
and characteristic features of the concept and complexity
considerations concerning the main application of
comouter trees: parallel execution of recursive algorithms.
The paper then goes on to describe a simple hardware
implementation of the concept, which has been undertaken
in a first stage of the project, and a proposal for q futtire
hardware implementation that goes beyond the capabilities
of the first in that a flexible connection of processor
madules and, thereby, an adaptation of the hardware
structure to the structure of the algorithm during executfon
time is provided.

BASIC FEATURES

The idea for the concept of computer trees™ derives from
the observation that the execution of recursive procedures
on present day computers {of the Von Neumann type) has
to be effected in an unnatural way: instead of delegating
different procedure calls to different processors the flow of
procedure calls is artificially put into sequence. The parallel-
ism inherent in many recursively formulated algorithms
is thus destroyed. The concept of computer trees aims at
exploiting this parallelism to reduce the computation time
of a wide class of algorithms.

The exploitation of varipus forms of parallelism in
algorithms by multi processor systems for the reduction
of computation time has been investigated extensively
during the last decade. A compilation and assessment of
the literature on thesubject is beyond the scope of this
paper (see, for instance, references 46 and the proceedings
of the various conferences on the subject, for instance
reference 7). In comparison with other approaches, the
concept described here is characterized by the following:

® decentralized control of the (microcomputer) modules
® tree-shape connection between the modules
#® main application: recursive algorithms

Of course, one or the other of these aspects is incorporated
in other proposals® . However, until now these aspects
have been considered separately whereas they are intimately
connected in the present concept, the final aspect being the
starting point and the other being natural consequences.

Instut fiir Mathematik, Johannes Kepler Universitdt, A-4040 Linz,
Austria *Fa. ICA, A-1160 Wein, Austria

244 0141-9331/79/060244—-05 302.00 © 1979 IPC Business Press

In more detail, recursive algorithms are considered of
the following and related types

F(x) = if p{x) then f(x)
else h(F(g, (x)), F(gz {x)),

with two or more (parallel) recursive calls of F in the
procedure body of F. Many algorithms are of this type
(e.g. evaluation of terms, merge-sort, searching in trees;
more general ‘divide and conquer’ algorithms!!; algorithms
for *hard’ problems such as NP- complete problems!? ; or
nondeterministic algorithms that may be transformed into
recursive form). '

Assume that for a certain input value x, for the above
procedure F

Tplx,),

Tp(gy (x,)), gz (x,)),

p(gl (gl (Xo)))x P(gz (gl (Xo)))r —lp(gl (g2 (Xo))): p(g2 (g2 (Xo))):
pgs (1 (2 (xo))), ple2 (21 (2 (X))

Then the following computation has to be carried out, which
divides into a ‘downward’ computation involving the compu-
tation of g; and g; on several arguments and an ‘upward’
computation involving the computation of h:

downward:
plxy)?
x1 = g{xo);
X2 = galxo);
I |
plx1)? plxa)?
xy =g (x1); xp =g (xa);
X1 F g2l); X1 =gl
pix11)? plxz1)? plx12)? plxs)?

v = flxa)s yo = flxar); xpg = g(xag); ya o= fxg)

Xap = Z2{xpa);

v

plx112)?
Vi =l

plx2i2)?
Yaz = fxz);

microprocessors and microsystems

upward:

Yo =hlyi el

I 1

yi =hlygyn); Y2 =h{yizyn);

i 1

Y Y Y =hlvinyan) va

Y2 Yan

On a computer of the Von Neumann type the auxiliary
values Xy, Xg X113, X21, - -, Xa12, ¥212, - - 1 Y2, Y1, Yo Nave to
be computed sequentially. This is because only one central
processing unit is available. If several CPUs were available
the computation of the values x;, and x,3, for instance,
could take place in parallel. Roughly, instead of nine time
units (one time unit corresponding to the execution of the -
operations at one node of the above computation graph)
only four time units would be needed for the above
computation if the parallelism inherent in the above
computation could optimally be exploited.

The concept of computer trees solves the-problem of an
optimal exploitation of the above parallelism in a very
natural way. A computer tree consists of a large pool of
identical {micro-) computers ('modules’) that may be
connected arbitrarily in order to form tree structures.

One module consists of

® processing unit (CPU)
® program memory (PM)
® data memory (DM)

Every module has access to its own data memory and to the
data memory of its sons (not to the data memory of its
father).

In addition, every module may transmit and receive
sensor information in order to control locally the interplay
between the modules. More accurately, acomputer tree
may appear as in Figure 1,

The machine language of the modules must be enriched
by two features: an address modification rule and sensor
instructions. These two features are described in an ALGOL
like notation because the basic principle of the approach is
language independent,

Address modification rule

Every variable (address) x is available in several issues x,x’,
x", ... with the following semantic inferpretation: a module
Cin the tree, by means of variables (addresses) of the types
x,x',x", ..., has access to its own data memory, to the
data memory of its first son C’, second son C”, .. .,
respectively. Furthermore, if module C addresses a storage
region of its first son C' by variable x’ then module C' may
address the same region by variable x, and an&logously for C
and its second, third,. ..son C"; C"",

vol 3 no 6 julyfaug 79

Sensor instructions

ifS then...;
ifT, then...;
if Ty then . .. ;

The semantics of these instructions is straightforward.
U = true; U := false;

By these instructions a module C may set and reset the
sensor bit T; of its father, if C s the /th son of its father.
Vi :=true; V, := false;
Vy = true; V, 1= false;
These set and reset the sensor bit § in the first, second, . . .
son, respectively.
The above recursive algorithm, then, may be executed on
a computer tree by loading the following program to the
program memory of all modules in a binary computer tree.
1:Jf 7S then goto 1;
if pix) then y := f{x};
U = true;
stop;
if p(x) then x" =g, {x) ;x" =g (x);
V=V, = rrue;
20 T, AT,) then goto 2;

yi=hiy'y");
U := true;
stop;

In order to initiate the computation, store the input value
X, into the storage region x of the data memory of the top
module and set the sensor bit S of the top module to true,
A computational ‘wave’ is then generated in the tree, which
first operates downward and then upward'in the tree and
thus naturally corresponds to the computation graph
shown above.

7

Figure 1. Computer tree. S, Ty, Ty, . . . are sensor bits that
may be read by the module in which they are situated, and
may be set by the father, first son, second son, . . .
respectively

245

Various examples of programs for computer trees with a
detailed explanation of their operation including examples
of programs that are not derived from recursive algorithms
may be found elsewhere! ™.

COMPLEXITY

It is easy to conclude from the example in the previous
section that a drastic speed-up ofalgorithms may be
achicved on computer trees. For example, if 2 computation
yields a balanced binary computation graph with 2"—] nodes
(k Tevels} we need 2% time units on an ordinary computer of
the Von Neumann type but only & time units on a computer
tree. According to how the number of levels in the
computation graph (%) depends on the problem size na
typical speed up of (2} - 0(n) or O{n. log n) = 0(n) may
be achicved' .

Of course, the gain in speed must be purchased at the
cost of hardware complexity. It is only through the advent
of very cheap microprocessors that such an approach may
be relevant practically,

Here one example only is pursued in more detail: the
rucksack problem, which is defined as follows:

Given n+1 natural numbersa,, ¢, ...,d, and b.
Findaset 1 C (1,2,...,n) such that _Zla,- =5
e

This problem belongs to the class of NP-complete
problems; every known algorithm for solving the problem on
an ordinary computer (see for example reference 12, p 158)
has exponentially dependent computation time in the worst
case. A program for solving the problem on a binary
computer tree with infinitely many modules has been
given®. The algorithm for solving the rucksack problem
essentially is of the type of the recursive function F
considered above, and therefore needs only linear time on a
computer tree,

In order to estimate the average speed-up which could be
achieved by implementing the algorithm on a computer tree,
a simulation program has been written. For every problem
size 1 < 24 about 100 tests with randomly generated input
data have been performed. The results of the simulation
arc shown in Table 1, which also lists the number of
modules needed for an optimal exploitation of parallelism
for every n.

Table 1 shows that in the case of large problem sizes more
modules are needed than can be expected in a practical
realization of a computer tree. Therefore programs for a
computer tree shouid include the possibility of switching to
scquential computation when, all modules are exhausted.

In this casc the speed-up is essentially thé number of
bottom modules of the computer tree.

Table 1. Results of computer tree simulation

Speed-up factor Modules needed

Problem size Average Maximum Average Maximum
10 7 23 26 102
12 15 45 75 250
14 33 141 192 a1
16 103 404 704 3214
18 266 1374 2095 10556
20 819 4942 6830 42535
22 2759 8755 26102 89150
24 8754 40501 87540 388101

246

Interface E,]

Data

CPU

Figure 2. Structure of module with two sons, Lines 1,2,3
enable the CPU to read Ty, Ty, S, fines 4,5,6 enable the CPU
in the module to set and reset S in the right and left hand son
end Ty (or T4} in the father; lines 7,8,9 enable the father and
the right and left sons to set and reset S, T,, T, respectively

HARDWARE IMPLEMENTATION
First version

In a first stage of the project a hardware implementation of
a module which may serve as a node in arbitrarily large
computer trees was undertaken. This module is designed to
have exactly two sons, and its structure is as in Figure 2.

The interface organizes access to the data memory,
realizes the address modification rule and contains the
sensor bits 5, Ty, T,.

From these modules arbitrarily large binary trees may
be composed without any need of an overall contro}
system. The restriction to only two sons, theoretically, is
0 serious limitation, because ane can show ! how an
arbitrary number of sons may be simulated in a binary tree
by software,

The drawback of this implementation is that the inter-
connections between the modules must be vstablished prior
to the execution of the programs. Thus the bottom level
of the tree may be reached in one branch of the computation
although afarge number of modules is still available in
some other branch of the tree. t is the goal of the next
implementation to overcome this limitation.

The implementation of the basic address modification
rule in the present modules is as follows. The set A of
addresses that are not needed for addressing the program
memory or for other special purposes is divided into thrae
disjoint subsets Ag, A; and A, of equal size and two
bijective address mappings are defined:

fl . Al—’Ao, fzt Az _)AO
For example,
A={0,...,3071), Ag:= (0,..., 1023),

A= (1024, ..., 2047), A, := 12048, . . ., 3071)
fila) :=a-1024, f;(a) :=a - 2048

The interface must realize the following function:

& an address g produced by the CPU is analysed in the
interface. Accesses to the data memory of its own
module or of the left and right son are, then, carried out
according to the following rule:

microprocessors and microsystems

LA gt

if aeAq, then location g of the data memory of its
own module is accessed; _
if €A, then location f, (a) of the data memory of the
left son‘is accessed;
if €A, then location f; (a) of the data memory of the
right son is accessed
® an address g arriving at the interface on the connection
line to the father remains unchanged. The father, then,
may access location ¢ in the data memory.

A test module of the type described above has been
implemented by the second author using the KIM-1 micro-
prodessor. In this concrete implementation the different
design objectives have been realized as indicated below.

Components

Microprocessor @ KIM-1
Program memory : Tk RAM

Data memory : 1k RAM
Interface : specially designed component (TTL
logic)

Basic address modification rule

A=Kl UK2UKS3, Ay :=K3, A, =K1, A, :=K2
filg) =0 +2048, f,{q) :=a + 1024

The remaining addresses in the address space of the KIM-1
are used as follows:

KO . program memory

K4 : special purposes

K5—K7 : KIM-monitor
Sensor bits

Bits 5, 6 and 7 of location 1100 are used for realizing the

sensor bits T, Ty and S respectively. By reading these bits
the status of T,,T; and S may be determinad. Correspond-
ingly, by writing into these bits information may be sent to
the sensor bits S in the left and right son and the sensor bit

T, {or T2} of the father respectively.

In this concrete realization, then, the interface has the
logical structure shown in Figure 3.

Second version

In the next stage of the project it is planned to implement
a hardware system that is capable of adaptively composing
arbitrary tree structures during execution time according to
the actual structure of the computation graph of the
algorithm for the respective input. fn this paper only a

Figure 4. Planned second version hardware implementation

vol 3 no 6 julyfaug 79

KIM -1
=
F
8 interface bus

Microprocessor
RAM interface

9

Figure 3. Logical structure of the interface (SRL s storage
reservation fagic which is not described here as it does not
affect the essential features of the design)

rough idea of the new system can be given.

The basic structure of this system will be as in Figure 4
{shown for only four processors and four memory biocks).
Figure 5 gives more detail of the microcomputers, which
contain private memory for programs and special purposes.

An address /m in an instruction of thg processor with
number & is decomposed into two parts as shown in
Figure 6. nn determines a location in the storage mapping
of the kth processor (n=0 means ‘the own data memory of
the kth processor'). The content 11’ of this location is the
actual number of the processor that serves as the nth son of
the kth processor. Incidentally ' is the number of the
memory block serving as data memory for the n'th
pracessor. Then, (7', r) is the address leaving the kth
processor. This address is analysed in the addressing unit
and determines the location to be addressed in the data
memory bank.

The address modification is realized as follows: if the nth
son of the kth processor has the number n*, then 7' must be
stored in location n of the private memory of the kth

Blocks of %iu memory

LT L]

Contral unit

Special

purpose [Mailbox | Acldressing unit |
processor

St (e (e o]
containing

processors [Maitbox_—| Addressing unit

v
Memary buses

247

Microcormputer

CcPU Program

Private
mermory
containing|
storage
mapping

to mailbox to remory
— ——] e

a3

Figure 5. Microcomputer structure. S, Ty, ..., Ty are
sensor bits, and f and | are locations containing respectively
the number.of the father and j, a number indicating that the
processor is the jth son of its father

m

]

n r

Figure 6. Instruction address r.n is the number of the son
and r an address in the memory block of the nth son

processor and in location 0 of that of the n'th processor
(location 0 of every processor should contain®its own number
from the outset).

The appropriate updating of the private memories in the
processors is realized during execution time by the control
unit. Whenever the kth processor realizes during the execu-
tion of an instruction that involves its nth son that location,
n of its storage mapping is riot yet defined, it interrupts the
execution of this instruction temporarily and puts a
corresponding request into its mailbox.

The control unit constantly checks the mailboxes of all
processors and eventually answers a request using the
storage containing the numbers of free processors.

Sensor instructions, too, are executed by putting a
corresponding request into the mailbox (for executing U :=
true, and U := fa/se the information stored in fand i is
necessary).

Of course, the control unit is the bottle neck of the
system. In the worst case, if all processors need its assistance
at the same moment, the execution of a sensor instruction
or of an instruction that is interrupted because of updating
operations may need the time pt, where p is the numiber of
processors in the system and ¢ is the time the control unit
needs for handling one request.

In normal applications the worst case is very unlikely to
occur, because the instructions involving the control unit
are scarce. (Note that normal accesses to the data memory
do not slow each other down). In.any case, the main effort
will be tosmake ¢ as small as possible (by developing a
special purpose processor as the core of the control unit and
by analysing the parallelism inherent in the operaticn of the
control unit).

248

Note also that at a given instant 2 memory block can be
accessed by two processors only. This is because in the tree
structures generated by this system the number of a
memory block may appear in the storage mapping of two
processors only. In normal applications, an appropriate use
of the sensor instructions guarantees that, in fact, only one
processor can-access a memory block at a given instant.

CONCLUSIONS

A concept for a multimicroprocessor system was proposed.
by which the time complexity of a wide class of algorithms
may be converted into hardware compiexi ty. This may be
an advantage taking into account the present and future
development of the costs of hardware components, in
particular, of microprocessors. Two versions of possible
hardware implementations of the concept were described.
The first version is totally modular but uses fixed
connections between the modules, Test modules for this
version have already been implemented using the KIM-1
microprocessQr. The second version aims at an adaptive
generation of the connections between the modules at
execution time. This has to be purchased by giving up the
extremely modular hardware structure of the first version.

REFERENCES

1 Buchberger, B ‘Computer trees and their programming’
Proc. Troisieme Colloque de Lille 'Les arbres en algebre
et en programmation’, February 1978 pp 1—18

2 Buchberger, B and Fegerl,] ‘A universal module for
the hardware implementation of recursion’ Univ, Linz
Inst, Math, Bericht nr 106 (1978)

3 Lichtenberger, F ‘Speeding up algorithms on graphs by
using computer trees’ in Nagl, M and Schneider, H-] (eds}
Graphs, data structures, algorithms Carl Hanser Verlag,,
Miinchen—Wein (1979)

4 Buchberger, B ‘Implementation of an adaptive multi-
microcomputer system with tree structure’ German
research proposal (February 1979)

5 Enslow, P H (ed) Muitiprocessors and paralle! processing
Wiley, New York (1974) .

6 Toong, H D ‘Multimicroprocessor systems’ in
Schwirzel, H (ed) Forschungs-Symposium 'Systeme mit
Mikroprozessoren’, Munchen, fune 1978, Siemens AG,
Miinchen (1978) pp 920

7 Syre,) C{ed) Proc. First European Conference on
Farallel Distributed Processing, Toulouse, France, (1 979)_

8 Sullivan, H, Bashkow, T R and Klappholz, D ‘A large
scale homaogenous fully distributed parallel machine, | and
II" Proc, 4th Annual Symposium on Computer
Architecture

9 Hiandler, W ‘Aspects of parallelism in computer
architecture’ in Feilmeier, M (ed) Paralle/ Computers —

parallel mathematics, Proc, IMACS (AICA) Symposium,
Munich, March 71977 North-Holland (1977) pp 1-8

10 Glushkow, V M, Ignatyev, M B, Myasnikov, V A and
Torgashev, V A ‘Recursive machines and computing
technology’ Proc. [FIP Congress, 1974 North-Holland
(1974) pp 6570

11 Aheo, AV, Hopcroft, | E and Ullman,] D The design
and analysis of computer algorithms Addison-Wesley
(1974)

12 Noltemeier, H (ed) Graphen, Algorithmen, Datenstrukuren
Hanset Verlag, Miinchen—Wein {1976)

microprocessors and microsystems

