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introduction

In /1/, /2/ we gave an algorithm for the construc-
tion of 50 calied Gribner-bases of polynomial ide~
als, In this pader we present some new theoretical
resuits by which the complexity of this algorithm
ray drastically te reduced in many cases.

As we have pointed out in /2/ and /3/ (se2 also
f4/, /6/ and /7/) many groblems of constructive
poiynomial idezi Theory may be soived easily once
cne has found Gribrer-bases for the given ideais,
Therefore the efficlent construction of Gribner-
bases may be considered to be a central problem In
this area,

Our method for the effective construction of Grdbe
ner-bases is based on the following

Critericn 1 (see 73/):

Let F be 2 finite set of polynomials.

F is a Gribner-basis <=

for all f,g&F: the "S-polynomial of" f and g
"M~-reduczes" to O
(with respect to F},

{For the exact definitions see /3/, Section 1),

The feitowing algorithm for the construction of
Gribner-bases is derived from this criterion in
a natural way:

Irput:

a finite set F of polynomials
Qutput: a finite set G of polynomials
such that: |, the ideal generated by F =

the ideal generated by G,

~

2. G Is a Grétner-basis,

Algorithm A7:
G: = F; B: = @&;
xhile B# Gx G do
{f,g}: = "one of the pairs in" (G<G) - B

h: = "a normalform of the"
"S-polynomial of" ¥ and g
(with respect to G);

1f h % 0 then G: = Cuih};
B: = Bul(%,gn

enc
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For the assessment of the complexity of the algo-
rithm the reader need not xnow the exasct definition
of the two functlons "normalform of” and "S-polvno-
mial of” {(seée /2/ and /3/, Section 1}, [t suffices
to kngw trat +he construction of +he normalform of
the S-pelvnomial is the most complex statement
within each cycte and, in fact, is rather clumsy,
{(More exactly, 2 suitabie algorithm for the con-
struction of a normalform for polynomia! f has time
complexity D(12} where t+ i3 +he order number of the
highest term of f in a lexicographical ordering of
the terms),

Now, the overall complexity of the zfgor:thm is
determined by the number of executions of the while-
statement. 1f the variable G were rot altered du-
ring the execution of the algorithm this aumber

IFL.CIF=1)
2

would equat . {By the way, this is the

case If G Is already a Gritbrer-basis),

In general however, new polynomials may be added
to G, This is the reason why it s glfficult Yo
give a reasonable upper bound for the number of
executions of the while-statement, (Thus, In our
algorithm, while <tanrot be replaced ty for in a
straightforward menner!). Instead of trying to
determine’ such an upper bound let us prove some
theoretical resuits that enabie us to repiace the
original version ¢f the algorithm sketched ahove
by a more scphisticated cne. !n many cases this
new version needs consicerable fewsr executlons
of the while-staterent,

The imprcved atgorithm is based on a new Criterion
2 {see Theorem 1.5) charzcterizing Grébner-haszes,
Criterien 2 Is obtained by carefully anzlyzing the
proot of Urivericn 1, Reughly speaking, the analy-
sis of this proof {eads to the notion of "Suffi-
clent™ subsets B of F x F {see Definiticn 1.4) for
ahich we can prove the following

Theorem:

B is sufficient (with respect to F),

/\

S-polynomial of f and g ls} —
(f,gYen

M-reducible to O
=> F [s a CGrébrer-basis.,
Furthermere, we observe that in many cases one can

construct sufficient sets that have consideradle
fewer elemants than F x F, In extreme cases there



are sufflclent sets having {Fi=1 elements. {(in the
worst case, howsver, ¥ X F is the only sufficient
set with respect to F},

The new version of the atgorithm, then, is obtained
by changing the termination criterion of the while-
statement In the following way:

Algori+hm A2: G: = F; B: = §;

while B is not sufficient with
respect to G do

begin
{f,g): = ,,.

e

end;

in order to work out the idea sketched above we
proceed in three stages:

In Section 1, we define the notion of sufficient
sets with respect to F and prove the above theorem.
We also give an exampie of sufficient sets that may

" demonstrate the usefulness of this notion for re-
ducing the complexity of the algorithm.

In Section 2, we investigate sufficlent sets that
do not contain proper sufficient subsets (= mipimal
sufficient sets), We show that, for a given set F
of polynomials, all minimal sufficient sets have
the samé number of elements, This Is a necessary
prerequisite for Section 3.

In Section 3, we give an aigorithm for constructing
minimat sufficient sets. By the results of Section
2, we hence have a method for constructing suffi-
cient sets with a minimal number of elements. This
method then may be used as a part of Algorithm A2,

1. Sufflcient sets

We assume the reader to be famitiar with the basic
definitions and the elementary properties of the
basic notions as put together in 73/, Section 1

and 2, As we have done In /3/ we consider finite
sequences of polynomials Instead of finite sets,
This is for technlcal reasons only. Furthermore

we apply Convention 1.2, in /3/ on the use of vari-
ables.

The oniy notaticnal change concerns the predicate
Multipie: we write s SM 1t for Multiple (t,s).

f.1. Befinition:

= k1 s ks UP), F 40
{t, D]1 s k<1 5 LRy,

Indexset (F):
Pairset (Fl: =

F 0, Fl s o
Pathset (F): = {4 | 21
where J: = fndexset (F).

1.2. Convention:

In additicen to Convention 1.2. in /3/ we also fix
the use of the following variables: .

P.q
u,v,w

«.o variables ranging over Pairset (F)
... variables ranging over Pathset (F)
Again, PirPysu; dencte the first, second, i-th com-
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ponent of palr p and path u, respectively,

1.3, Definition:
Llu): = length (i.e. number of comconents) of the
sequance u

p Is connected by u: <=> o
Py ¥ Uy, Py = Yy, where | = L{u), ~ .
u is gontainaed in R: <=>

R & Palrset(F),

N\ u,,u DERVIU, ,u)ER)
P A f+1e5

summit (u,F):r = Lecm (Hterm (Fu ),0ee Hterm (Fu 1),
1 i

where | = L(u),

1.4, Definltion:
B sufficient with respect to F: <=>
B € Palrset (F),

//\\\V/ (p connected by u, :
p u ucortalned in B,
summit {u,F) s“ summit (p,F)) .

1.5. Theorem:

Let B be a sufficient set with respect to F. Then
the following statements are equivalent:

{G) F is a Grébner-basls

68 /\ SpoltF ,F_ )} 0,
pEB Py P

1.6, Proof;

{(G) => (GB): This is immediate from (G2) in
Theocrem 3.3, in /3/.

(G8) => (6):

Sketch:

(C8B) is a weaker version of (G2) in Theorem 3.3,

of /3/. Nevertheless 1t is possible to establish
the implication (G8) => (G3) refining the proof of
(62) => (G3}, The crucial point of this proof.is
the treatment of Case {ib, Iine (54). What is )
really needad at this point is the valldity of the
following statement:

(%) /:\ /:\ (t MZ HTerm(Fpl), + Mz errm(sz)
Y e 0,

=

=> Spoi(F_,F
po pl' P
(¥ ) is a trivial consequence of (G2). A careful
analysis of the whole proof reveals that instead
of (%) we can do with

4\ /p\ Itz errm(Fpl), t R errm(sz) -

nana
s

= \v/ (p connected by u,
VAN

1gk<t{u}

summit(u,F) L t)].

SpoI(Fuk,Fu )»> 0,

kel



-

The first two auartifiers in (%% may be interchan-
sed. Then it is sasy to ses that () is a conse~
guence of (G8) and the fact that B Is sufficient,

Detaits:

Under the assumption that {G8) is fuifilled we
shall show that all M-reductions of a given poly-
nomial f tead to the same ncrme!form, !.e.

63 N\

_ f,9,9'
Cleariy (G3) is equivalent to .
63y /A /\ (Hterm(f) = tand £ > g

t  f.9.9' .-
and f->2l =>g = g'),

(f>gand f >g" =>g = g'),

A

We prove (G3') by induction on t with respect to
the lexicographical ordering < on the set of all

i.1 tn /3/),

Let f,g,9"' be such that Hterm(f) = x3...xf, ¢ > g
.

terms (see Def,

and f > g'.
A

V

Case 1:
1<igt(F}

(Hterm(F ) = x5, ..x8, Foo# 0

In thls case we have g = O = g',

Case 2: 1 \/

1<i<L(F)
In this case we have g = f = g',

(Hterm(F,) = x%...x3, Fi #0)

1 T> xg ase xﬁ

iet f,g,9' be such that Hterm(f} = t, f > g and
f > qg'. By J we denote the set of all indices i
such that 1 <1 < L{F), F' + 0 and H+erm(Fi) Y te

We distinguish the cases J = @ and J # 8.
Case 1: J = 0.
Fromd =@, f >q and f > g' we easily deduce
A -
Head{g) = Head(f) = Head(g'}, Rest(f) > Rest(a)
and Rest(f) > Rest(g').
Fat o " VN
Because of Hterm{Rest(f)) <% t we may apply the
induction hypothesis which yields Rest(g) =
= Rest{g'), Together with Head{g) = Head(g') this
implies g = g'.
Case 2: J # 40,

(1) By Induction hypothesis there is exactly one
polynemial hy such that Rest(f) > h.. Given i € J

let fi and hi be the uniquely determined polynomi-
1

als with Head(f) & f. and fl+h > hi‘
F,4,10 APV N
(According to Def. 1.5 in /3/ the symbol > s
F, 1,1

used to denote one-step-M-reduction with respect to
the polynomlal Fi.) The uniqueness of fi is ciear,

the uniqueness of hi follews from the Induction
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hypothesis and from
errm(f7~ho) <% Hterm(f),

From Rest(f} o ho wa deduce f > Head(f)*ho,

1

from Head(f) > fi we deduce

F,t,i1
. 1 )
Head (f)+h 2w fish .
) F,t,1 I''o

Therefore we have -

f o> Head(f)«h_ > f,+h_h, .which implies f & h,.
-] o i i
o -
(2} Under the assumption that (G8) is true we now
prove that for every pair (i,J)€(Q = J) we have

hi = k., Of course we may assume 1 < j, i.e.

(1,])€ Pairset(F). The set B being sufficient with
respect to F there exists an eiement u€Pathset(F)
such’ that .

n
{11} w is contained in B,

(iii) summit (u,F} Sy sumaltCC1, ), Fl,
From (ii) and (G8) we obtain

tvi /\ spoltF, ,F, ) >o.
1€k<l(u) K kel

On the other hand we have
HTerm(Fuk) SM summitiu,F) ﬁq summit( (i, j),F)

(i,j) Is connected by u,

Sy Hterm(f) by ({ii) and therefore

A e

1<ksL(u)
An easy calcuiation shows (see (55} fn /3/,p.26)

(vi) [{(fy *ho)‘(fu
1skst () k

- - Heoef (£)
Heoef (F  )Hcoef (F
uy Hlu
- Hterm(f)
¢ Lem{HYerm{F, ) ,Hterm(F
K k+1

)1,
k+1

the polynomials h_ and f, being defined as in (1).
-k
From (iv} and {vi) we deduce .

(vin) [(f +h)-(F.  +h ) > 0]
1k<lly) Y% ¢ Vet ©

In view of Lemma 2.4 in /3/ we therefore get

succ
(viti) /ﬁ\

(v)

+«h ) =
kel ©

7 -
k+1

)3

« SpollFy ,Fy
K

[(f +h) ¥ (f  +h)].
1gk<Lly) Y% ° Yoy
Combining this with £, +h > h f +h_ > h
° Y © " Ve 7 et

Hterm(f,, 0ho) < Hterm(f) and Hterm(f *ho) <T
k k+1

<T Hterm(f} we.obtain by induction hypothesis
(ix)+ //\\ h  =+h .
1skeliy) Yk ke

Statements (i) and (ix) yield the assertion hi = hj



(3) We corplete the proof by showing that g = hi
for some 1€ J. In the sare manner we could show

g' = h, for some [€J. By what we have proved in
(2) we thus «row g = n, = n. = g'.

In fact, consigering the definitlon of M-reduction
we easily see that there must be a polyncmial 9,

and an dement i€ J such that { o Head(f)*gg >

1

> fT+g°-> g whtre'fi is the unique polynomial with
1 .

Head(f) >
F,t,i

Rest(f) > 9,0 On the other hand we have

fi. From f > Head(f)*go we obtain

Rest(f) D‘Ep, the polynomial ho belng defined as in

(1), Applying the induction hypothesis we get
9, > ho' Let m be a natural number = 0 and let

gl,..i,gm be polynomials such that 9 = Ny and
91 % for 1 €k £m. By Lemma 2.4 In /3/ we get
succ
F19y ¥
Hterm(f) T> errm(fi*gk) for 0 £ k £m and 9, = h
this ylelds
succ . .
fi+go v fi*h0 by Induction hypothesis. Because

fi¢gk for 1 £ k £ m. Together with

+]

[»]

of fztgo b’gﬁand fjfho > h, we must have g = h].

g

1.7, Example
Consider F = (F4,...,Fs) such that

Hierm(F4) = x3y2
Hterm(Fg) = x3yz
Hterm(F3) = xyz2
Hterm(F,) = 23
Hterm(Fg} = x3yz3

The following set B is suffictent with respect to F:

B: = {(1,2),(2,3),(3,4),(2,5)}.

The sufficiency of B can be éeeniby the algorithm
given In Secticn 3. Of course, it i5 aiso possible
(but Fedlous) to check this by the very definition.

Note that {Bt = 4 whereas iPairsef(F)l = 10,

2. Minima! sufficient sets

Our next goal is the investigation of sufficient
sets having as few elements as possibie. It is
ciear that such sets are optimal for controfling
the while-statement In the algorithm AZ,

2.1, Definition:
B minimal sufficient with respect to F: <=>

B Is sufficient w.r,t. F and no proper
subset of B Is sufficient w.r.t. F.

Of course, it 1s not obvious from the definition
that a minimal sufficient set is alssc "optimsi™ in
the sense of having as few elements as possible.
At first sight one could guess that minlmal suffi-
clent sets B, and B, with EBII < IBZI may exist.

Then B, would not be Moptimal". However we can
shioW fga+ all sefts B that are minimal sufficient
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‘(resp. Relz{p,F)} will be denoted

- 2.7, Definition:

with respect +o a fixed F have the

‘same numper of

elemants. Tnis sectiocn is dedicated +o the proof of

this fact.

2.2, Definition:
Lower (p,q,F)r<=> summit(p,F) SM s

ymmit (q,F)

Equiv (p,q,F):<=> summit(p,F) = summit(q,F)

Lowerset(p,F): = {q€Pairset(F}|Loy
Equiset(p,Fl: = [q€ Pairset(F)|Eq

2.3, Remark:

The reiation "Lower(p,q,F)" is a g
Pairset(F), i.a, it is reflexive a

The relation "Equiv(p,q,F)" is an
+ion on Pairset(F).

2.4. Definition:

Relq (p,Fl: =

erlq,p,F)}
hivip,q,F1}.

hasi=-ordering on
nd transitive.

equivalence refa-

T, ia0€d = IV s = vtz = vy
) u

u is contained in Lowarset(p,F)-Equivset{p,F)]}

Where J: = index:zet(F)
Relaz(p,F}: =

T I, i2)€ 4 = Jl\u/ [ia = Us,ia = up s

u Is contained in Lowerset(p,F)}}

Where J: = !ndexset(F).

2.5, lemma:

{1} For every p€Pairset(F) the re
and Relz{p,F) are equivaience reta
set(F).,

{2) Relq(p,F) & Rela(p,F) for ever
1.e. Rel {p,F) is finer than.Reial(

Proof: triviai o

2.6. Convention:

The set of all equivaience ciasses

{resp. Partz(p,F)).

Rel, (p,F): =
= {{J4,J2) € Partyip,F) x Party{p,F

ations Rel4ip,f)
fions on I[ndex-

pE€Pairset(F),
b,F).

modulo Rel4(p,F)
y Part (p,F)

vV Y [11€J4,0i2 €da, iy, ix)ERelalp, P},
2

2.8, lemma:

For any p&Pairset(F) the relation
equivalence relation on Party{p,F)

Proof:

The retlexivity and the symmetry o
clear, the transitivity foltows fr
& Relz(p,F). o

2.9, Remark:

Relsi{p,F) is The unique equivalenc

Rela{p,F) is an

f Rela(p,F) are
pm Rel4(p,F) &

5 relation on

Party(p,F} which Is induced by Relgi(p,F).

2.10, Conven+fon:

For any R ©Pairset(F} and every p
put

EPairset(F) we




Joinset(R,p,F}: =
= {t)y,Jz)€Part,(p,F) = Partyip,F)}

V [a1€ 41,02 € iz, 9€ REquivset (p,FIT)
q
2.11, Convention;
Lat (ul,...,um} be an m~tupel of elements of Path-

set(F1. We set 1{D): = L(u'),.ou, ttmz = LEs™
and assume :

iy mz21,

G ke

] ?

Uk =4y
ey V00

By u‘v ve.vu" we denote the unique element of

Pathset(F} which Is determined by

G L e 0™ = (Dol mdeme1,

(v v v

M, being defined in the following way:

M: = gglis js oy,

M = IO 4L+l (k=D =k+2 € J S H(D s o+l {K)-
-k+i} for 2 k< m,

We can say that the path u‘v vo.vu™ is obtained

= u:f whenever j€ Mk’ the sets

by "pasting together" the paths u!,...,um.

2.12.

For any B & Pairset(F) the following statements
are equlvalent: ’

Lemma :

(a) B is sufficient with respect to F.

(b) For every p& Pairset{F) and every (J4,J2) [
€ Rely(p,F) there exists a natural number s 2 1
and 2 finite sequence (JI,...,JSS such that

(i J1,...,JSF_ParT1(p,F),

(i) J1 = J', ."2 =]

5'
(iin (J,7 {_1)eJoinsef(B,p,F) or
s 50 °

r”,Jr)ééolnseHB,p,F)].

2.13, Proof:

(3) => (b);

We assume that B is a sufficient set with respect
to F. To prove (b) we consider arbltrary but fixed
elements pE€Pairset(F) and (J4,J2) € Relalp,F) and
show the existence of an appropriate sequence
Ul""’Js)'

(1) First let us choose elements i41&€J4 and

iz €Ja such that (i4,iz2)€Relalp,F). By the very
detinition of Reiz(p,F) there exists a path

v €Pathset(F) of length 1 = 1 that Is contained
in Lowerset(p,F) and has the property i1 = Uy,

i, = u,

Z |

(2) Qur next goal is to replace the path u by a
path vEPathset(F) of length m 2 1 with iI =V
'2 = v and such that v is obtained in B~lower~
set{p,F) (instead of being confained in Lower-
set(p,F) only). To construct v we distinguish the
cases } = 1 and | > 1,
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EI! tn this case we define v

|22 In this case we make use

ciencyof B:.For every j with 1 £7j <
8 path v/ €Pathset(F) of length m(])

+alned in B and has the properties uJ

- gl
Yiet T Vi

From the last inegquality and from the

= U

of the suffi-

| there exists
that is con=

.v-{,

cied N
and summit(vY,F} Sy sumtf(uj,uJ.*‘),F).

fact that u

is contained in Lowerset{p,F) we dedyce that all

paths v are also contained in Lowerget(p,F).

=1

Thus the path v: = v1 VaeeoV V

B~ Lowerset(p,F). Moreover we have 1
1-1

m{l-1} m’
westm(1=1)=1+42 is the length of v.

and 12 =u =y =V where m:

(3) Now in the last step of the proof

struct an appropriate sequence (J1,.

Since v is containad in Lowerset(p,F
unique finite sequence (k(1},...,k{s
numbers such that

tiv) sz1,

is ¢ontained in

= svlsv
o 1 1

= m{1)+ ...

we sha!ll con~
.,JS).

there is a
} of natural

(v) 1 £ ki) < KD < ... < kis-1}|< kis) = m
where m = L{v), )
(vi) [iv v Y€ Equivset(p,F)
1€r<s kir)' "kir)+1 e
or (vk(r)'z,vk(r))GEqui sat(p,F)]

(vii) /\ Ik {ki1),...,k(8)) =
15k<m

(vk,v YE Lowerset{p,fl-Equiv

k+1

(vkﬂ'vk)e Lowerset{(p,F)-Equiv
For every r with 1 8 r £ 5 let Jr be
class of Vi) module the equivalenc
Relq(p,F). We show that ( JI,...,JSQ
properties (I} « (iil).
ad {i): trivial
ad(ii): From (vii) be decuce

))E Rel (p,F}. With respect

and VM.HEJ1 this implies JI = JI‘
The proof of J, = JS is frivial beca

MV

Vies) €5 89 Ty = vy = Vi
ad (111): Using {vii) again we get

(viii} ) €ERelq
1srds

therefore
(1)

1€r<s
On the other hand we have

{x) {{v
igr<s

Yeerrs 1 Vitrs 1)

eerr+1€ e

kEryVkir)+1 €8 oF

Witrrer Vi €81
since v is contained in B,

set(p,f) or

;ef(p,F)i.

the equivalence
e relation .
has the desired

w

to vy * IléJ

1

Use iZEJZ,

p,F) and




From (ix), (viY and {x) we can derive ({1{).
(0) => (a}:

Let B be a subset of Pairset(F) +hat fulfills con-
dition (b). We snall prove the sufficlency of B with
respect to F,

First of al}
c{p) := |Lowerset(p,F}!

let us define

for every p € Pairset(F),

Then the following sfatements are edui-
valent:

(¥) B ts sufficient with respect to F,

(%) /A\ /A\ [c{p) = kK =>
ket p

\V/ ( p is connected by u,
u U Ts contained in B,
summit(u,F) SM summit{p,F))],

asas

The validity of (#%) will be shown by induction

on k.

Te do this let k20 and p€Pairset{F) be such that
¢(p) = k. Under the induction hypothesis

(R /\ clg) < k =
q

\/ ¢ q is connected by w,

W w Is contained in B,
summit{w,F) SM summit(q,F))]

we show the existence of a path u g

Pathset(F) that connects p, is contained in B

and has the property summit(u,F} s“ summit(p,F).
By J| and J2 we denote the equivalence classes

of Py and Py with respect to Rel4(p,F). Clearly

wa have (JI,JZ)EERelg(p,F). Since B satisfies con-

dition (b) by assumption, there exists a finite
sequence (JI,...,JS) of length s21 that has

the properties (1), {ii) and (1ii), From these
properties we can derive the existence of a path
v€ Pathset(F) such that

(xi) L{v) =725,
(xii) Py =¥y Py = Vo,
(xiii}

Voo 1 Vo, €]
12r<s 2r-1, "2r>"r?

{xiv} /\ “V?_r’ erH)EBr\Equlvse‘Hp,F)

or (v

21 v2r) €BnEquivset(p,F)],

The assertions (i) and (xiTi) yield

{xv) /\ (v, 1y ¥V, JERel (p,F).
1<r<s 2r-1 2r

Consequentiy, for every r with 1€r<s there must be
a path v €Pathset(F) of length m{r)21 such that

{xvi) v = v = v
x 2r-1 = Vi Var mir},
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txvil) v© 15 contained in Lowerset{p,F) -
- Equivset(p,F}.

From (xvil} we easily deduce that for every r
with 1Sr<s and every ] with 1gj<mir) the inequality

ro.r ; r r
c(vJ, vj+]) < ¢{p) (in case of Vj < vJ+l] resp,

civ’
vt J

Applying the induction hypothesis we can conclude
that for 1<rSs and 1Sj<m{r) there aiways exists a

peth u™*d Erathset(F) of length I(r, 122 such that

r . r r i
s vj) < clp) {in case of.vjﬂ <.v,} holds,

. r_ .l LS
Ceviif) Vj v, Vj+l u
(xix) o"#d is contained in B,

(xx) summiftur’J, F} Sy summif((v;, v FY.

r
j+l)’

For every r with 1Sr<s we define the path u' &
Pathset(F) of length 1(r)2m(r) as follows:

mir) > 1 I o es ur’I

Observing (xvi) = (xx) we get

{xxi) /A\ u:

1€r<s

Vo ur,m(r)-T'

r
® Varetr Yigey T Vore

(xxii) /ﬁ\ v’ s contained In B,l
i<r<s

(xx111) /A\

summif(ur, F) SM summlt(p,F),
15rss

To complete the proof we set w' :a (v )

2r* Y2red

‘whenaver 1Sr<s and .

2,3 s=1

= o vy BZvilve Voare VU 57108

v W VU .

With respect fo (x11), (xiv), (i}, (xxii) and
(xxiii) we finally obtain

{xxiv) p Is contained by u,
(xxv)} u is contalned in B,
(xxvi) summit{u,F) SM summit{p,F), o

Next we shall give a2 more convenient formulation of
the foregoing lemma and a useful characterization
of minima! sufficlent sets, In order to do this

let us introduce some new notations and a new con-
cept. o

2,14, Convention:

(1) For every p iet Kp be the canonical map from
Indexset(F) onte Party{p,f),

(2) The set of all equivalence classes moduio
Rela(p,F} will be denoted by Parta(p,F}.

2,15, Deflnition:

Let A be an arbitrary set.



C connectinc with respect to A ;<=>

£& axA,
for every (avaz)e AxA there exlsts a natural

number m21 and a finite sequence
(b‘,...,bh) such that

(1 a, = bl’ 8, = b
(1rn) /\[(b b JJEC or (b b, JECT.
1<keam k' k1 k17 k

C minimal connecting with respect to A :i<m>

C connecting with respect to A and no proper
subset of C is connecting with respect toc A.

_ Now lLemma 2.12. may be re-formulated as follows:
2,16, Lemma:

For any B CPairset(F) the following statements are
equivalent:

(a) B is sufficient with respect to F,

(b} /\ /\

p M&Party(p,F)

(Joinset(B,p,F) (M)
is connecting w.r.t. M),

Proof: obvious o

In a similar manner minimal sufficient sets may
be characterized:

2.17, lLemma:

for any B<Pairset{F) the following statements are

equivaient:
(a} B is minimal sufficient with respect to F,
(b) -B fulfills the following conditions:

am A A

P MEParty(p,F)

(i) /\
p

(Joinset(B,p, )~ (M)
is minirial connecting
w.r.t, M)

IB~Equivset(p,F)1 = lJdoinset(B,p,F)l.

2,18, Proof:

(a) => (b):

Assume that B is minimal sufficient with respect
tTo F. Then B satisfles (i) and (ii} as we shall
prove just now.

ad (1): tet p and MEParta(p,F} be glven.

By Lemma 2.16. Joinset(B,p,F) ~(M<M) is connecting
with respect to M, Let us suppose that this set is
not minimal connecting. Then we can find an ele~
ment q &B such that \'Kp(ql), Kp(qz)) €
Joinset(B,p,FY~ (M) and [Jolnset(B,p,F) ~(MdM)]
- {(Kp(q]), Kp(qz))} is also connecting with re~

spect to M, We contend that B' := 8 « {q} Is suf-
ficient with respect to F. In view of temma 2,16,
the sufficiency of B' is equivalent to

33

N A

regPairset(F) N EPar%;(r,F)
{N<N} is connecting with respest to NJ.

(iit) [Joinset(B',r,F) A

To prove (111) iet rePairset(F) and NEPartalr,F)
be arbitrary.

[Case 1: Equi.v(p,r,F)

In this case we have
(Iv) Party(r,F} = Partg(p,F} for I = 1,2,3 .
(v) Joinset(B',r,F) = Joinset(B',p,F),

Case la: N =M

From (v} we deduce Joinset(B',r,F) ~(MM) =
Joinset(B?,p,Fl~ (MM},

On the other hand Joinset(B',p,F) ~(MdM) 2
{Joinset{B,p,F} ~(MM)] - {(Kp(ql)' Kp(qz))}

and the last of thase sets is connecting with re-
spect to M by assumption.

ICase 1b: N % M

Because of (v) we have Joinset(B',r,F) ~{NxN) =
Joinset(B',p,F)~ (N<N), because of N # M we have
Joinset{(B',p,F) ~{N<N) = Joinset(B,p,F)~(N=N}.
This ylelds the assertion.

Case 2: not Equivip,r,F)

In this case we have Joinset(B',r,F) =
Joinset(B,r,F) and there is nothing to prova.

Assertion {ili) belng shown wa see that B! =

B ~ {q} -is sufficient with respect to F, Because
B is minimal sufficient by assumption we must have
B' = B, But this Is a contradiction to q€B.

ad (i7): For every p&Pairset(F) the map )
q —> (Kp(q1), Kp(qz)) from BaEquivset(p,F) to

Joinset{B8,p,F) is surjective, Let p be such that
the corresponding map is not injective. Then
there exist different elements q, g'€ BN
Equivset(p,F} such that (Kp(q‘), Kp(qz)) =
(Kp(q;), Kp(qé)). We shall prove that B ~ fq'] is
sufficient with respect to F thereby constructing

a contradiction to the minimality of B.

1t is easy to see that all we have to show is the
following statement:

(vi) V (q' is connected by u,
v u Is contained inB - fq'},”
summit{u,F} %1 summit(qg',F)).
However, the proof of {(vi) is rather simple:
= t - 1
Because of va(ql) Kp(qi) and Kp(qz) Kp(qz}
we have (q], qi)&Rel,(p,F) and (qz, qé)eReh(p,F).
By the very definition of Rel,(p,F) there exist




paths v‘, v € Pathset(F) of fength m(1) and m(2}
respectively such that

c, = vT G, = v2 ql = v2
17 m(1)* "2 17 72 m{2)’

(vil D) vl, v2 are contained in Lowarset(p,F) =
Equivset(p,F).

{vii} q; = v1

Since B Is sufflcient the paths v!, v2 may be re-

placed by some paths u‘, uze Pathset(F) having the

following properties:

Vo 1 = 1 = 2 L 2
(Ix) qp = ugy @y = Yy(qyr 9 = Uy 95 = Uy
where 1(1) := Ltu'), 1422 := LD,

1

(x) u and u2 are contained in B~(lowerset(p,F) ~
Equivset{p,F)).

The paths u] and uz are constructed in the usual
manner {c¢f, proof of Lemma 2.12.).

From (x) and Equiv(p, q', F) we derive
(x1) u‘, o? are contained In B - {gq').

Now we set u := u1quu2. Because of {Ix), (x),
(x}), g % q' and Equiv(p, g', F) the path u con—-
nects q', Is contained in B - {q'} and has the pro-
perty summit{u,F) SM summit{q',F).

(b) => (a):
Assume that B fulfills (i) and (I1),

From (1) and Lemma 2,16, we obtaln that B is suf-
ticlent with respect to F, tn order to show that B
is minimal sufficient we choose an elemert p€B
and prove that B' := B - {p} is not sufficient.

Observing (ii} and the fact that q —->
(Kp(q1), Kp(qz)) {s a surjective map from B'm

Equivset{p,F} to Joinset(B',p,F) we get

|doinset(B',p,F)| £ IB'~ Equivset(p,F)| <
< |BnEquivset{p,F)| = {Joinset(B,p,F)l.

Therefore Joinset(B!,p,F) is a proper subset of
Joinset{B,p,F},

On the other hand Joinset(B',p,F) (resp,
Joinset(B,p,F)} Is the union of all the sets
Jolnset(BYyp,F) (MM} (resp. Joinset(B,p,Fln
(M<M)} where M€ Parta(p,F).

Combining these results we conclude that there
must be an element Mg € Parta(p,F) such that
doinset(B!,p,F) (M, % My} Is a proper subset of
+he minimal connecting set Joinset(B,p,F)

(Mo = Mg), Conseguently Joinset{(B',p,F) (M x Mo)
is not connecting with respect to Mo and B' is not
sufficient with respect o F. 0

The following graph—thecretical lemma is wall=
known and will be stated here without proof,

2,19, Lemma:

Let A be a finite nonempty set and let C be con-
necting with respect to A, Then the following
statements are equivalent: -

(a) C Is minimal connecting w.r.t. A,
(bY ICI = 1Al - 1. D

Now we are able to prove the main result of this
section,

2.20 Thecrem:

31, 82 minimal sufficient w.r.t, F =
- IBIL * Ith‘
2.21, Proof:
Let P be 2 set of representatives moduto the

equivalence relation "Equiv(p,q,F)" on Palrset(F)
and suppose that B‘ and B2 are minimal sufficient

with respect to F, Then for i = 1,2 we haQe'
(8, =U[BinEquivse+(p,F) | pem
(Udenotes +he disjoint union),

From (i) and Lemma 2.17. we obtain

1y [e.f = ZE: 18, ~Equivset(p,F)] =
i i
pEP

= EP Hoinset(8,,p,F)I.
P

On the other hand the assertion

aim A\ Joinset(8,,p,F) =
pEP

- U[JoinseﬂB‘,p,F)r\(M) | M&Parts(p,F} .
holds.

Using Lemma 2,17, and Lemma 2,19. we thus obtain

(iv) /A\ IJoinse?(Bj,p,F)l =

peEFP
= ;E: lJoInsef(Bi,p,F)r\(MXM)l =
MEPartalp,F)
- D (Ml = 1),
M€Partslp,F)

Combining (i1} and (iv) we get for I = 1,2

(v) lBil = ZE?

~ tiMy - 13,
£ EP M&Party(p,F)

Since the number on the right side of {v) is
independent of BT the theorem is proved, 0

3. An glqorithm for the construction of minimal

sufficient sets

By Theorem 2,20 we know that minimal sufficient
sets are "optima!" for controlling the while -
statement in the algorithm A2, Therefore we focus
our attention to the development of an algorithm
to construct minimal sufficient sets,

Throughout this section let m := [Pairset(F){.



3.1, Theorem:

tal If e {1,...,mM «— Pairzet(®) Is bijective
then algorithm A3 below yields a sufficient set B,

{b) If in addition e has the property

@ N\

[summittal{k),F}
18k, 1Sm <M

<y summit(e(1),F) => k < 13

then algorithm A3 below yields a minimal sufficient
set B,

Algorithm A3Z:
B:=¢;
for k := 1 step 1 untii m do

Hf 1Alk) then B := Bule(k)};

where

AlK) r<=> \V/ {e(k} connected by u,
u u contained in
Lowerset{e(k) ,F)B]

3.2, Proof:

For every k with Ogk<m tet B(k) be the unique set
obtained by the k-th execution of the for-state-
ment In algorithm A3, We must show that Bim) is
sufficient w.r.t. F {resp. minimal sufficient w.r.
t. F) provided ¢ is bijective (resp. e is bijective
and has property (39},

(1) Suppose that e is bijec+fve and let p be ar-
bitrary but fixed, There is exactly gne | such that
1<i<m and p = e(l).

In erder fo prove the existence of a path u with .
the properties

(i} p is connected by u,

(ii) v is confained In 8(m),
Giii) summit(u,F) SM summit+{p,F}
we distinguish two cases:

ICase 10 ACL) s +ruel

In this case there exists a path u which connects
p and is contained in Lowerset(p,F)AB(!-1),
Clearly u has the propertles (1) -~ (iii),

LCase Z: All) is falsel

In this case we have p€B(m). Setting u 3= p the
path u satisfies (i) - (1ii),

{2} Suppose that e is bijective and has property (¥),

fn view of (1) it is only necessary to show that no
oreper subset of Bim) is sufficient w.r.t. F. This
can be done by an indirect proof as follows:

Let C be a sufficient proper subset of Blm), From

B{m) - C we choose an element p = e{l) where | is

uniquely determined by p. Since C Is sufficient by

iisumpficn there exists a path u of length r such
at

(i) e(l) is connscted by u,

(it) v is contained in L,

Citi) summit(u,F) =y summit{e(!},F),

From (iii) we obtain

(iv) u Is contalned in Lowarset(e(i),F).

But we also have

(v)'u Is contained in B{i-1)

as we shall prove just now,

For every i with 1Si<r there is exactiy one number

k; such that 15k <m and ("i' u'+1) = olk;) or

{u ,u]) = e(ki). We prove assertion (v) by

T+1
showing ki<| for 15i<r,

Suppose there is an index i with kiZI and let j

be such that kj = max(ky, ..., }. Then we also

kr--l

have k 21, From kal, (ifiy and (¥) we got

J
(vi) Equiv{e(l), e(kj), ),

from (ill} and (vi) we obtaln

(vil) /A\ Lower(e(ki), e(kj), [
1£1i<r

Of course we may assume that the pairs (u', uifl)

are mutually distinct. Then the numbers kl with

1€i<r are aiso distinct and we get

(vit) /\(HJ = K, <k

).
15icr J

Last we have

(x) | < k
J

since | £ kJ, e(kJ)GC and e(i)éC.

Now let us define a path vE&Pathset(F) in the
following way:

{u., Ui qrrenalisy Uy Uy U _ghene

45l
Y If e(kj) = (u

senrlpepr Vi I Yt

(uJ+1, uj+2,...,ur_1, Uy Uy, Upyees
...,uJ_1, uJ) if e(kj) = (UJ+1’ uJ).

The path v has the foilowing properties:

{(x) e(k.} is connected by v,

(xi1) v is contained in Lowerset(e(k,), F),

(xi1) v is contalned in B(kj-!).

The proot of (x) is trivial, {x) foilows from (vi)
and (vii), {xii} follows from {(viii} and (ix),

Thus condition A(k.) is fulfilled and we must have
eckj)¢8<m). But In view of CgB(m) this Is a
contradiction to (ii}. Therefore we have k, < |

. i
for iSi<r and assertion (v} Is proved.




A ¥

Noting(i), {iV)} and (v} we sea that A{l} is satis-
fied, Consequently we mus+t have e(l)§ B(m), This,
however, contradicts the assumption e(1}€8(m), O

3.3. Example:

We resume Example 1.7. First we astablish the
quasi - ordering "Lower(p,q,F)":

(1,4)=(1,5)

N

(1,3 (2,4)2(2,5)5(3,5)=(4,5)
(1,2) (2,3 (3,8

Here "(1,j}={k,1)" means "Equiv({Tl,j}, tk,1}, FI",

Next we deflne a bl jective function e from
{1,...,100 to Pairset(F} in the following way:

e(1) = (1,2
el2) = {(2,3)
e(3) = {3,4)
e(8) = (1,3)
el5) = (2,4)
el6) = (2,5)
el(7) = (3,2)
e(8) = {4,5)
ef9) = (1,4)

e{10) = (1,5),
It is easy to see that e satisfies condltion (¥}
in Theorem 3.1. Applying algorithm A3 we suc—
cessively obtain the following values for k and B:

B

{,2n

{€1,2), (2,3
{(1,2), (2,%),
{(1,2), (2,3,
{1,2), (2,3,
(1,27, (2,%), (3,4), (2,5%
{(1,2), (2,3}, (3,4), (2,5)
{(1,2), (2,3, (3,4), {2,5%
{(1,2), (2,3), (3,43, (2,5%
L {(1,2), (2,3), (3,4), (2,5%

(3,43}
(3,43}
(3,4

COUDRLO N WN —

3.4, Remark:

'n a practical implementation of algorithm A3
condition A(k) should be programmed by using
Warshall's algerithm for constructing the transi-
tive closure of the set Lowerset(e(k),F) ~B.

Conclusion

In order to reduce the complexity of the basic algo-
rithm for the construction of Grébner-bases we must
try to derive theoretical results of the following
type:

If EC FxF and E has a certaln property with respect
to F, then

N\

(f,gl€E

Spol{f,q) > 0 => F Is Grébner-basis.
F

In this paper we derived one such result bty de=
fining and Investigating the property "sufficient
with respact to F",

We have not investigated properties that might
invoive the stepwise growing of the set G. This
seems to be a promising direction for future
research: Intultively, the more polyromiais have

.been already added to the basis by the execution

of llne 6 of algorithm A2, the less polynomials
may probably appear by the executlion of line 5 of
the algorithm.

Also the Criteria S.1. and S.2. in /2/ may be con-
sidered to be of the above type,

Another type of simpiification may be found in /S/.
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