Systems with universal subsystems,

realization and application

BRUNO BUCHBERGER* and BERNHARD QUATEMBER**

*Institut fiir Mathematik
**Institut fiir Statistik und Informatik
Johannes Kepler Universitit, Linz, Austria

1. INTRODUCTION

In this paper we study a possible realization
of systems that are composed of, theoretically,
infinitely many and, practically, a large number of
subsystems. Each of these subsystems

» is identical

» essentially operates autonomously, however,

- at certain moments hay communicate with
cther subsystems in its neighboyrhood,

+ is ypiversal (in the sense of algorithm
theory or, more practically, in the sense
of computer science), and

« contributes fc a common qoal.

Thus, these systems share essential features with
well-known other types of systems. On the other
hand, however, they are distinct with respect to at
least one feature from the systems studied so far,
For instance:

Cellular spaces [1] consist of a large number
of subsystems that communicate with subsystems in
the neighbourhood. However, no single subsystem is
universal. Furthermore, the operation of the whole
system is synchronized.

Combinatorial switching circuits [2] may well
be composed of identical components (see [3]) that
operate asynchronously. Again the components are
not universal, ’

Parailel computers {4] consist of a large num-
ber of processors that, normally, are not universal
and do not operate autonomously.

Computer networks (see, for instance, [5]) con-
sist of highly autonomous universal subsystems,
However, only a few computers are combined in cne
system, Also, the communication between the sub-
systems occurs only for organizing the distribution
of independent tasks among the subsystems, not for
contributing to some common goal.

Hierarchical systems in the sense of Mesarovitc
[6] consist of subsystems with a certain degree of
autonomous behaviour contributing to a common goal.
However, no emphasis is on universality and homo-
geneity. The same characteristics hold for struc-
tured software systems [7].

Universality of the subsystems is an essential
enrichment of systems. Of course, a combination of
universal systems cannot produce more than a uni-
versal system, However, the availability of uni-
versal subsystems may drastically influence the
complexity of problem solving in a universal system
{see Section 4).

2. SYSTEMS WITH UNIVERSAL SUBSYSTEMS

The concept of a system with universal sub-

Progress in Cybernetics and
Systems Research, Vol., VII,
Hemisphere Publ. Corp. 1978

systems (SUS) is a slight generalization of the
concept of computer-trees introduced in [8].

The basic component ("module") of a SUS is a
sequential universal automaton (9] with finitely
many additional “in-lines" and "out-lines" (see
Figure 1).

Every in-Tine and every out-line consists of:
a data line; a sensing line + sensor bit; and a
setting line (see Figure 2).

In fact, so far in-lines cannot be distin-
guished from out-1lines. The difference can only
be made after having introduced the identifier
modification described in the later paragraphs.

An out-line of one module may be connected with
an in-line of some other module in the following
way (see Figure 3).

An arbitrary number {even a potentially in-
finite number) of modules may be interconnected in
this way in order to form SUS's of different struc-
tures such as trees and nets like this: (see Fig-
ure 4).

We assume the modules to be programmed in an
ALGOL-1ike language. Then the functional charac-
teristics of the in- and out-lines may be explained
by describing the semantics of two additional
language features:

(1) Sensor Instructions:

if Sy then ...; if S, then ...;
if T, then ...; if T, then ...;
Uy: =true; U;:=false; Ut =gtrue; U,: =false; -...
Vit =true; Vy:=false; Vp:=1trye; V,: =false; ...

These instructions are used for communication
with the sensor bits which are supposed to be
designated 1ike this: (see Figure 5).

Notice that each sensor bit has two designa-
tions depending on whether it is referenced by its
own module for reading or by a neighbouring module
for setting and resetting.

(2) Identifier (Address) Modification

Every identifier x is available in k+l issues
X, X'y X"y sa0 s X where k is the number of out-
lines in the modules. A module C in the system,
by mean? ?f identifiers of the types x, x', x",
.. » x(K} has access to its own storage and (via
the data lines) to the storage of its first,
second, ... , k-th neighbour C', C*, ... , C(K),
respectively. Furthermore, if module C addresses
a storage region of its neighbour C(i) by identi-
fier x{1) then module C{i} may address the same

25

26

B. BUCHBERGER AND B. QUATEMBER

¢ . in-lines

universal avtomaton

F

data line
sensing line
setting line

Sensor bit -~

sensor bit ~_

data line
senging line
salling line

Figure 2.

v e out=lines

igure 1. One module

-

one in-line

)

O

o m——

e 4 @ 0

——-]

LY

one out-line

Structure of in- and out-lines

SYSTEMS WITH UNIVERSAL SUBSY STEMS 27

AVAVYAVA

28

B. BUCHBERGER AND B. QUATEMBER

Figure 5.

Designation of sensor bits

SYSTEMS WITH UNIVERSAL SUBSYSTEMS

region by identifier x.

In a SUS 211 medules are started simultaneously
and operate autonomously. However, by means of the
two additional language features described above,
at certain points of the computation neighbouring
modules may communicate. Concurrent access to the
same storage region is supposed to be excluded by
an appropriate use of the sensor instructions.

Further, we add the following language feature:

(3) Computed goto:
goto a;
This jump-instruction uses the numerical value

of variable a as a label. In order to aveid ambi-
guities we admit integer labels exclusively.

3. REALIZATION

It is easy to realize (finite approximations to)
SUS's with present-day hardware components.

The modyles may be realized by an appropriate
combination of the following components: a micro-

29

processor (uP), a data memory {OM}, a program
memery (PM), an interface (IF)-- containing the
sensor bits and realizing the address modification.

The structure of one module is as follows
{without loss of generality we consider only two
in-lines and two out-lines): (see Figure 6).

The address modifications may be realized as
follows: We divide the set A of addresses that
are not needed for addressing PM or for other
special purposes into three disjoint subsets A,,
A, and A, of equal size and define two bijective
mappings:

fi o AL+ Ay
fz:Az-FAg.

(For example: A : = {0,,..,3071},

Ap: = {0,...,1023},
Ay o= {1024,...,2047},
Ay: = (2048,...,3071},
fila): =a - 1024,
fo(a): =a - 2048.)

PM

DM

I

Figure 6.

Structure of one module

30
The IF must realize the following function:

(1)} An address a produced by the wP is analysed in
the IF. Accesses to the DM of its own module
or to the DM's of the first and second neigh-
bour are, then, carried out according to the
following rule:

If a€hp, then location a of the DM of its
own module is accessed,

If acA1, then Tocation fi{a) of the DM of
the first neighbour is accessed.

If achy, then location fa(a) of the DM of
the second neighbour is accessed.

(2) An address a arriving at the IF via an in-Tine
remains unchanged,

The sensor bits may be implemented by using
bits of a fixed storage location outside DM.

A concrete realization of this type has been
carried out in collaboration with ICA-Company
(Vienna) using the KIM-1 microprocessor {see[10]).

4. APPLICATION

Our main motivation for developing the concept
of SUS's is the desire to exploit the parallelism
inherent in the recursive formylation of certain
algorithms in order to speed them up. The adequate
shape of SUS's for this appiication is the (binary%
tree. We have investigated this application in [8
by giving a number of typical examples which show
that all types of recursions may be executed on
SUS's in a natural way.

We first briefly summarize the discussion given
in [8]. Then we pursue some aspects of this appli-
cation in more detail.

Consider the tautology problem which is recur-
sively defined by

taut(t,n) «
n=0 A true{t) v
nzl a

2l A taut(subst{t,n,1}, n-1) A
taut{ subst{t,n,0), n-1}
where we used the following abbreviations:
taut{t,n) ~ the boolean expression t con-

tains no more than n variables
and is a tautology,

true(t) - the boolean expression t does
not contain any variables and
the evaluation of t yields the
truth vatue 1,

subst(t,n,x}) - the result of substituting the
truth vatue x for the n-th
variable in the boolean ex-
pression t.

This definition of the tautology problem may
equally well be read as a recursive formulation of
an algorithm for solving the problem. The execu-
tion of this recursive algorithm on an ordinary
computer uses a stack mechanism which artificially
sequentializes the simultaneous procedure calls
taut{subst(t,n,1),n-1) and taut{subst(t,n,0),n-1).
As a consequence, the execution time of this algo-
rithm on a normal computer is 0(2M"). In fact, no
essentially better algorithm is known for this

B. BUCHBERGER AND B. QUATEMBER

problem at present time (see [111).

However, we can solve the problem in O(n) steps
on the binary computer tree {Figure 4) by the fol-
lowing program:

1: if =Sy thep gote 13

if n=0 then
begin y:= true(t); Up:= true; goto 5
eng;

if nzl then

begin
ti= subst(t,n,1); t":= subst(t,n,0);

n'i=n":= n-1;
V13= V2:= true;
2: if{T1AT,) then goto 2;
yi= y'Ay"s
U1:= true; goto 5
end;

HEH

If this program s loaded to all moedules of the
tree and all modules are started simultaneously, a
"computational wave" is generated in the tree which
first propagates downward until level n of the tree
and then contracts again. Propagating downward it
distributes sub-tasks to the modules, contracting
upward it combines partial results in order to
yield the final solution. The total amount of
time for this computation is Q(n).

Of course the gain in time complexity must be
purchased by an equivalent explosion of hardware
complexity. (Note that this is very similar to
what can be observed when passing from serial to
parallel adders or from serial to parallel multi-
pliers, see [3].} .

In practical applications we can realize only
a finite number N of Tevels in the tree, In this
case, at the N-th level we must call a2 sequential
procedure true(t,n) instead of true(t) which solves
the tautology problem for the vltimate value of n
{see [8]). Tﬂe time complexity of the algorithm

then is = 20°N. Hence,
computation time on ordinary computer _ 20 _ N
computation time on computer tree 2n-N :

This means that in any case we have a constant
speed-up of 2N, If, for instance, N = 15 {which
seems to be realistic for present-day hardware)
then a constant speed-up of approximately 30,000
is possible. This corresponds to what has been
achieved by hardware improvement in one computer
generation. Even though we cannot really convert
0(2"y 1into 0(n), we could thus achieve a "one-
generation speed-up" by introducing a new computer
concept instead of developing new computer hard-
ware.

Let us now pursue the above example in more
detail. At the bottom level of the tree we have
to execute the procedure true(t). Such a procedure
is polynomial in the length of t (see [111). How-
ever, we again can define a recursive procedure
for this problem which may easily be translated
into a computer-tree program that exploits the
parallelism contained in the recursive formuia-
tion:

SYSTEMS WITH UNIVERSAL SUBSYSTEMS

true(t):= true, if t=1
false, if t=0

“ttrue{ opdl{t} },if t is a negation,
true(opdl{t) } A true(opd2(t)),

if t is a conjunction,
true{ opdl(t)) v true{ opd2{t)),

if t is a disjunction,

where opdl{t) and opd2(t) denote the first and sec-
ond operand of the boolean expression t, respec-
tively.

A corresponding computer-tree program is:

3t if 7S, wait; *)
if t=1 then
beain y:= Lrye; U;:= true; goto 4
end;
if t=0 then
begin
end;
$i= true;

while t is a negation do
begin t:= opdl{t); s:=-s
end;
if t is a conjunction thep
begin t':s opdl{t); t":= opd2{t);
Vii= Vo= true;
if. (T)ATp) walts
yi= y'ay"s if7s then yi= 7y;

Uy:= true; goto 4
end;
if t is a disjunction then
begin
end;

From this example we see that we can carry out
the evaluation process in a time that is linear in
the number of nested boolean operations in t. Fur-
thermore, we wished to demonstrate how we can avoid
the branching of the computation in the case where
t is a negation. In general this technique may be
applied whenever a recursive procedure is called
only once in a certain part of the procedure body.
This technique permits a saving in the number of
modules needed in a given computation.

We now can combine the two programs for taut
and true in a single one using the computed gotc in
order to switch control from one program part to
the other. (Note that we cannot simply load the
program for true to the n-th and the subsequent
levels of the tree because the level n depends on
the input data):

1: if71S) wait;
qoto a;

#) abbreviation for: 3: if S7then goto 3;
##) a must be initialized with 2,

*+)

31

if nzl then
beqin
t':= i tUi= ...5 n'i= "= 0=l
a't= a"i= 23 V1:- V2:= true;
if ..., goto™4
end)

3: if t=1 then

if t=0 then ...;

s:= true;
while t is a negation do ...;

if t is a conjunction then
begin t':= opdl{t);: t":= opd2(t};

a':=a":= 3;

¥y:= V2:= true;
if .
end;
if t is a disjunction then ...;

4: ;

0f course, by the techniques given above we
could also implement one of the more sophisticated
methods for solving the tautology problem. These
methods analyse the syntactic structure of t from
the very beginning instead of first generating ail
combinations of truth values {see, for instance,
[12]).

%he above program for true also demonstrates
one of the major practical problems using computer
trees: the computation of the procedure true may
propagate very far in one branch of the tree
whereas it terminates after a few levels in some
other branches. Thus, in & concrete implementa-
tion where we have only & fixed number N of levels
a given computation might be impossible, though
there would still be a lot of modules available in
the system. This problem could be solved if we
had a hardware mechanism that would permit us to
flexibly interconnect the medules during execution
time,

There are two extreme possibilities for real-
izing such a mechanism: a time-shared bus for alil
modules or a complete interconnection between all
modules. The first possibility does not work
because it would be a bottleneck in the system
that would artificially sequentialize the computa-
tional process which should be parallel. The
second possibility is not realistic because of its
complexity. Therefore a compromise has to be
found. Recently, optimistic proposals in this
direction have been made (see [13]).

The above example also is good for showing
another practical problem: If a module calls its
two of fsprings it has to transmit the formal para-
meters which may be considerably long. Although,
theoretically, this may only multiply the time
complexity by a constant factor, in practice, such
a factor can play an important role. We would not
need transmitting formal parameters if we had a
common storage for the whole system which could

32

be accessed (at least for reading purposes) by all
modules simultaneously. In this case we could sim=
ply transmit pointers tc the information instead
of the information itself. The same argument ap-
plies to the program memory. At present such mem-
ories are not available (see, however, again [13]).
In the above example one module combines the
solutions of two subproblems in order to form the
final solution of the problem, In some cases we
actually need only the solution to one of the sub-
problems although we must start trying to solve all
of them. This is typical for non-determinism in
algorithms. Of course, we can also implement this
type of control by an appropriate use of the sensor
instructions. We can show this by considering the
satisfiability problem:

given a boolean expressicn t of n varjables,

decide whether t.is satisfiable (i.e.,
whether there is an assignment of the truth
values 1 and 0 to the variables of t such
that the evaluation of t yields 1)

A suitable program for the computer-tree is:

ﬁﬂsl wait,

if n=0 then .
begin y:= true(t); U;:= true; geto 2
end;
if nzl then
t':= subst(t,n,1); t":= subst{t,n,0);
n':=n"i= n-1;
= Vou= true;

if T, then if y" then
b yi= true; U;y:= true; goto 2
end;

if TyAT, then if —{y'vy") then
b% ik yi= false; U;i= trie; goto 2
end;

goto 3;

end;

2: 3

So far we have only considered examples where
the tree structure seems to be the appropriate type
of SUS. However, it seems to be natural to use
other types of 5US's for other types of algorithms.
For instance, dynamical programming seems to be a
possible field of application for which a connec-
tion schema of the type shown in Figure 4, right-
hand side, might be appropriate (see [11], p. 68).
However, we have not analysed this type of applica-
tion so far. Also we think that such patterns may
well be simulated in array processors {see, for
instance, [14]). On the other hand, as far as we
can see, computer-trees cannot be implemented in
array processors without loss of efficiency.

CONCLUSION

We introduced the theoretical concept of systems
with universal subsystems, in particular computer-

B. BUCHBERGER AND B.QUATEMBER

trees. Our main concern was the speed-up of algo-
rithms by writing appropriate programs for computer-
trees, In typical examples the gain in time com-
plexity is exponential. This has to be purchased
by an equivalent increase of hardware complexity.

Two major hardware problems were mentioned
which have to be solved before we can gain a prac-
tical advantage from SUS's.

Recently, a number of similar proposals have
been made in the literature (see [13-18]. In
favour of our approach we would like to emphasize
its simplicity and modularity and the easy avail-
ability of test hardware.

Acknowledgement: We thank Mrs. I. Chang for her
heTp in preparing the English text.
REFERENCES

1., cooD, E. F., Cellular Spaces, Academic Press,
1968.

2, HARRISON, M. A., Introduction to Switching and
Automata Theory, McGraw Hill, 1965.

3. LANGHELD, E., "Zellenlogik und algorithmischer
Schaltungsentwurf I und II," Elektronik,
Heft 1 (Jinner 1978), pp. 34-42, Heft 2,
(Feber 1978), pp. 59-66.

4, ENSLOW, P, H., Mu1tiprocesiors and Parallel
Processing, John Wiley, 1974,

5. ASHENHURST, R. L. and R. H, VONDEROHE, "A Hier-
archical Network," Datamation, 1975.

6. MESAROVIC, D. MACKO and Y. TAKAHARA, Theory of
Hierarchical, Multilevel Systems, Academic
Press, 1970.

7. MWIRTH, N., Systematisches Programmieren,
Teubner, 1975.

8. BUCHBERGER, B., "Computer-Trees and their Pro-
gramming," Proc, Troisiéme Colloque de Lile
"Les arbres en algébre et en programmation,"
16-18 February, 1978.

9. BUCHBERGER, B. and B. ROIDER, "Input/Output
Codings and Transition Functions in Effective
Systems," Interpational Journal of General
Systems, Vol. 4, 1978, in press.

10. BUCHBERGER, B. and J. FEGERL, “A Universal
Module for the Hardware-Implementation of
Recursion," Bericht Nr. 106, Institut fiir
Mathematik, University of Linz, 1978.

11. AHO, A., J. E. HOPCROFT and J. D. ULLMAN, The

i i m r Algorithms,

0
Addison-Wesley, 1974,

12. SMULLYAN, R. M., First-Drder Logic, Springer, 1968.

13. SULLIVAN, H., T. R. BASHKOM and D. KLAPPHOLZ, "A
Large Scale, Homogenecus, Fully Distributed
Parallel Machine, I and II," Conf, Proc,, 4th
Annual Symposium on Computer Architecture,
ACM SIGARCH 5 (1977), 3, pp. 105-117.

14. HANDLER, W., “Aspects of Parallelism in Computer
Architecture," in M, Feilmeier (ed.), Parallel

= ics, North-Hoand, 1977,

15, GLUSHKOV, V. M., M. B. IGNATYEV, V. A. MYASNIKOV,
V. A., TORGASHEY, "Recursive Machines and Com-
puting Technology," Prog, IFIP Congress, 1974,

16, SCHWENKEL, F., "Zur Theorie unendlicher Parallel-
prozessoren,’ Computer Science, 26, 1975.

17. GOSTELOW, A. and K., “A Computer Capable of Exchang-
ing Processors for Time," IFIP Congress, 1977.

18. VORGRIMMLER, K. and P. GEMMAR, "Structural Program-
ming of a Multiprocessor System," in M, Feilmeier
{ed,) -- see reference 14 above,

