= s et 2 pekn

} |
1
Troisiéme Colloque de Lille
Les arbres en algébre et en programmation
16,17,18 février 1978 :
COMPUTER-TREES AND THEIR PROGRAMMING
; B. Buchberger
*) Institut flr Mathematik —
Johannes Kepler Universitit -
A-4045 LINZ

In this paper we would like to contribute to the further
investigation of non~standard computer structures, in
particular, multiprocessor systems. In the last few years
much research has been devoted to the development of
multiprocessor systems. In the book of Enslow /1/ the state
of the art by 1974 is reviewed. Meanwhile many new ideas

- have evolved, that are heavily influenced, especially, by

the rapid progress in microprocessor technology (see the
proceedings of the various conferences on parallel process-
ing and microprocessors, for instance /2/, /3/, /4/, /5/)..
Among the many different contributions the theoretical work
of Albrecht /6/, Glushkov et al. /7/, Schwenkel /8/, and
recent proposals of Gostelow /9/, Hindler /10/ and
Vorgrimmler and Gemmar /11/ seem to be closest to the
approach we want to present in this paper. In favour of

our approach we would like to emphasize its simplicity

and modularity and the easy availability of test hardware.
On the other hand, we are aware of the preliminary charag-
ter of what we can present so far. ’

We first shall introduce a hardware structure called com-
Puter tree (Section 1) and a corresponding (type of) pro-
gramming language (Section 2). We then shall present a num-
bgr_of programming examples designed to explore the possibi-
lities contained in the approach (Section 3).

The style of the presentation will be non-technical in order
to emphasize the underlying concepts. The two essential
points in the paper are the Address Modification Rule in
Section 2 and Remark 1 in Section 3.

-y f P .
SRS I RE T
St EIE R

k' wmn g

1. Computer-Trees

1

We define. a computer-tree to be a hardware structure of the
following type:

N4

/N N Ty TN

‘\‘\\\\\l\\!\!\\\\\!\l

Every node of the tree denotes a (micro-)computer with its
own central processing unit and its own storage. The number
of nodes in the tree is potentially infinite. (Of course,

a practical implementation has to cut off the tree at some
level.)

Every computer of the tree has access to its own storage
and to the storage of its left and right son (The type

of hardware realization of the access, theoretically, is

of no concern. In a practical implementation, direct access
is ideal). Accessing the left and right son, a2 certain type
of address modification has to take place,that will be
explained in Section 2. Furthermore, we suppose that part
of the storage in every node is "private",-i.e. cannct be
ccessed by the father of the node. The private memory will
contain the program.

Every computer of the tree must have the possibility to
exchange synchronizing information with its neighbours.
For this we choose the following mechanism (In Tact,
2 number of other realisations, for instance, an iterrupt
system, would work as well - without affecting the overall
objectives): Every computer of the tree must have three
Bensorbits S, T, and T2’ which it can only sense (not set
nor reset). They may be“set and reset only by its father,
its left son and its right son, respectively.

Thus, every computer C of the tree is a module of the
following type: :

.-..-..-..).-—'.H

ll*—bm

A€
-

{CPU + storage +
address modification

logic
.| |1,
!
T
Adv +¢*
7! 1Y
b 56 7809

1.....1ine enabling C to set and reset T1 (or T2) in the
father of C,

2.....data and address line for enabling the father of C
to access the storage of C,

J.....1ine enabling the father of C to set and reset s,

4(7)..line enabling the left {right) son of C to set and
reset T,(T.,),

5(8)..data and address line enabling C to access the storage
of its left (right) son,

6(9)..1line enabling C to set and reset S in its left (right)
son.

The hardware of C is supposed to mutually lock the access

to the storage of C by its own central processing unit and
by its father. The type of hardware-lock is not essential
for the overall design, because, as we shall see, by the
appropriate use of the sensor bits one can controll the con-
current access to the storage by software means.

It is clear how to connect an arbitrary number of modules of
the above type to form trees: connect lines 4,5,6 (and 7,8,9)
of one module to lines 1,2,3 of some other module.

(Though, in this paper, we are not concerned with hardware
realizations we remark that it is very easy to realize
hardware modules of the above type by combining

a standard mieroprocessor,

& standard random access memory, and _

a suitable interface (containing the three sensor

bits and the address modification logic).

Test modules have been realized, see /12/. In view of the
development of microprocessor technology the availabBility
of 215 and more modules in one tree would be realistic).

Summarizing, a computer tree looks like this:

Note, that at the top of the tree three lines of the type
1,2,3 are free. They can be used in the following way (see
also mode of operation, section 2):
Line 2 ... for input and output
Line 3 ... for starting a computation
Line 1 ... for deciding whether a computation has
terminated

2. A programming language for computer-trees:

Since the basic principle of our approsch is language~
independent we suppose the computer tree to be programmed
in an ALGOL~like language with two additional features:

1. Every variable x is available in three issues X,x',x"!
with the following sementical interpretation:

o o e T B B R A e e B e e e e .

A computer module C in the tree, by means of variables
(addresses) of the types x,x' and x'', has access to its
Own storage,to the storage of its left son C' and to the
storage of its right son C'', respectively. Furthermore,
if module C addresses a storage region of his left son
C' by variable x' then module C' may address the same
region by variable x, and analogously for C and its
right son C'', .

2. Sensor instructions:

if S then ...;
if Tsthen ...;
if Tothen ...;
(the semantics of these instructions is straight-
forward)

U:s true; U:= false; .
(by these iInstructions a module C may set and re-
set the sensor bit T, or T. of its father depend-
ing on whether C is %he legt or right son of its
father)

V1;= true; V1:= false;
V2:= true; V,:= false;
(seg and reset the sensor bit S in the left and

right son, respectively).
Mode of operation: The normal mode of operation for a
computer tree consists of the following steps:

1. Load the same program to (the private memory of) all
modules in the tree.

Reset the sensor bits of all modules to false.

Load the data to the top module via line 3.

SimuXlaneously start all modules.

Set the sensor bit S of the top module via line 3 to

true (Computation starts).

. Wait until the top module sends the signal true via line 1.
(Computation terminates).

O TN
L » L] -

It will soon be clear (Section 3) how this mode of operation
combines with an appropriate program structure to yield
useful computations. ‘

For this starting routine some additional hardware would be
necessary. For instance, for 1. we would need additional
external access lines to the private memory. However, we
&1so can aveid this by calling a loading routine that works
itself according to the basic philosophy of computer tree
programmning described below, see Example B in Section 3.

3. Programming Example:

Example 1: , :
onsider the taytology problem which is recursively de-
fined by

tayt (t,n) <
n=0 A true (t) v
nzl A tayt (subst(t,n,1),n-1) A
taut (subst(t,n,0),n-1),

where we used the following abbreviations

teut(t,n) the boolean expression t contains no.
more than n variables and is a tayto-
logy (i.e. it yields the truth value
1 for all possible assignments of the
truth values 1 and 0 to the variables

: of ¢)

true (t) the boolean expression t does not

contain any variable and the evaluation
: of t yields the truth value 1.

subst(t,n,x)... the result of substituting the truth
value x for the n-th variable in the
boolean expression t. '

A suitable program for the computer tree is:

i; if 1S then go to 1;
zz n=0 then ’ .
Segln y:= true(t); U:= true; go to stop
end;

[
v
[
o

hen
begin
. t':= subst(t,n,1); n':= n-1; V1:= true;
t*:= subst(t,n,0); n":z n-1; ‘V2:= true;
2: if = (T AT,) then go to 2; '
y:= y'/\rg'; U:= true; go to stop '
i end;
stop:;

Explanation: After having loaded and started this
program by the starting routine (Section 2) all mo-
dules of the tree wait in the waiting cycle

1: if = S then go to 1; with the exception of the

top module whose sensor bit S has been set to true

by step 5 of the starting routine.

Therefore the top module leaves the waiting cycle

and inspects the data t (for example:ﬂ(xiAqulvxE))vxz)

and n (for example: 2) loaded by step 3 &6f thé

starting routine. Normally, n will be # Q. Therefore,
the top module loads the storage regions t of its
left and right sons with the boolean expressions
subst(t,n,1) (in the example:-~(x A(1x1V1))V1) and
subst (t,n,0) (in the example:-(x;A(ax;v0))v0),
respectively and sets the variable n &f both sons

to n-1 (in the example: 1). Thenit signalizes to its
sons that they should start tc work by setting their
sensor bit S to true (by the instructions V, := true;
V,:= true, respectively). ' : 1
Tgen it 1s trapped in the waiting cycle 2: i£'ﬂ(T1AT
then go to 2; which can be left only if both sons
will have announced the termination of their work

5)

- by setting the sensor bits T, and T, . If this happens

the top module combines the %esults of both sons
(stored in y' and y'!', respectively) by yrey'ay'' to
yield its own output y and signalizes to its own
father (which is the external world in case of the
top module) that it has finished its work by setting
Uit= true;. '

In the same way the two sons delegate the four sub-
tasks (characterized, in our example , by the data

A{1a(1ivi))vl, 2(0A(10vi))v1, 2(1A(21v0))vO,
+(0,(=0+0})v0)
to four grandsons and sc on.

Finally, at a level that is characterized by the para-
meter n=0, (in our examples, this is the level of the

grandsons) the modules of that level will evaluate

the boolean expressions by the instruction y:=true(t).
and signalize the completion of their tasks to their

respective fathers by the instruction U:= true;.

Their fathers will combine their results by y:=y$\§"
and, again, signalize the completion of the task to their
own fathers, and so on, until the top module is reached,
again.

(In our example, the four modules at level 2 all compute

the result 1, the two modules at level 1, then, combine
these results producing, again, the result 1, and, finally,
the top module combines these two results producing the
answer 1. It signalizes termination by sending true via

line 1 by the instruction U:= true).

Thus, by the execution of the above program on the com-
puter tree, a computational "wave" is generated in the tree,
which, first, distributes downward until the level n is
‘reached and, then, contracts again upward.

Remark 1:

We observe that the time complexity of this_computation on
the computer-tree is 0(n) whereas it is 0(2°) when the

same recursive algorithm is executed on an ordinary computer.

This is so, because the computer tree allows a

"material incarnation" of the procedure bodies when re-
cursive procedure calls occur and, therefore, allows

the parallel execution of logically independent procedure
calls (as, for instance, the calls taut(subst(t,n,1i)}n-1)
and tayt (subst(t,n,0)n-1) in Example 1), whereas in an
ordinary computer, by means of wellknown stack mechanisms
or. by transforming recursions into iterations the execution
of recursive procedure calls has to be sequentialized.

This drastic collapse of fime Complexity would make com-
puter-trees much superior to¢ ordinary Von-Neumann-computers.
Of course, we must pay for this gain in time complexity

by an equally drastic expiosion of hardware complexity.

Therefore, one might argue, that computer-trees are of no
practical value. We do not want to fix a final stand-
point in this controversy.

Rather, before rejecting the idea of computer-trees,we
weculd like to further explore its possibilities by giving
some more examples.

-

Example 2:

A concrete realization of a computer tree can have only a

fixed finite number of levels, say N levels.

How can we solve the tautoclogy problem for arbitrary n on

such a tree and how will the time complexity be influenced
by this restriction ? :

A suitable program would be:

[l

begin y:=true(t,n); U:=true; goto stop
2egin g, =Tue; goto

]H
-
>
[%
[y
ot
o
o
fa

t?:i=subst (t,n,1);

t":=subst. (t,n,o0);
n’:=n";z=n-1; k’;zkﬁ;zk-1;
V1’=v2’=E£EE$

if —I(TIATz) wait;
Y:=y*Ay"; Uiztrue; goto stop
end; ‘

stop: ;

Explanation: .

k is an additional parameter that must be set to N at the
beginning. :

true(t,n), now, is a procedure that decides whether the

is a tautology. We suppose that this pﬁocedure works
iteratively (by checking through the 2 possible truth ,
valuations) or is a recursive procedure sequentially executed
in the respective module (this, again, needs 0(2") steps).

The time complexity of the above.program on the computer

tree, then, is o(2n N)+N.

computation time on ordinarz computer ~ 20 - 2N
computation time op computer tree 2n-N

This means, that in any case we have a constant speed-up of 2N.
If, for instance, N ¥ 15 (which seems to be realistic for
present day hardware) then a constant speed up of
1000 ~ 100.000 is possible. This correspends to what has been
achieved by hardware improvement in one computer generation.
Thus, we can Say that though we cannot really convert 0(2%)
time complexity into O(n) we could perform a "one~generation-
ipeed-up" by a new computer concept instead of new computer
ardware

+)

if

-8 wait ; abbreviates &: if =S then goto & ;

10

Example 3:
Consider the merge-sort algorithm, see [13] :
a, if length(a)=1,
sort(a) := J-

.

merge{sort(left(a)), sort(right(a})),
if length(a) >1

where we used the following abbreviations

sort(a) the result of sorting the data sequence a
length(a)... the number of items in the sequence a

left(a)..... the left half of the sequence a
right(a).... the right half of the sequence a ot
-merge(x,y).. the result of merging the sorted sequences

. X and y

A suitable program for this algorithm on the computer
tree is:
if =8 wait;
if length(a)z1 then

begin y:=a; U:=true; goto stop

_ end;

if _length(a) 21 then begin

a’:=left(a); V,:=true;

e
e

a":=right(a); V,:=true;
ir ﬂ(TiA T2) wait;
y:=merge(¥’,¥"); U:=true; goto stop
end;

stop: ;

The time complexity of this algorithm on the computer tree
is 0(n) (where n:=length(a)) whereas it is 0(n.log n)
on an ordinary computer.

-

Example 4:

A new point of criticism against computer trees arises in
Example 3: every module needs a lot of storage (more
accurately the top module needs most, the modules at level 1
half of it, the modules at level 2 a quarter of it, and so on).
However, we can avoid this by a more tricky program, which
works according to the following idea: in every module
provide just one storage "box" (for containing only one iteml
If this box is void (this is the case if the father has
fetched the item from the box) compare the items contained
in the boxes of the two sons and fetch the left or the right
item depending on which one is greater. :
We use this example to show how a computer tree can be
connected with ordinary computers to yield useful algorithms.

11

. For this we suppose that the modules of the lowest level
and the top module in the tree can be accessed by an
ordinary computer in the following way:

control

computer

We change the mode of operation:

1. The control computer loads the input vector a into the
boxes of the modules at the lowest level,one item in
each box. Furthermore, it loads a special item "}"
into the boxes of all the other modules (4 is defined
to be greater than all the regular items).

. Load the program P, into all mocdules of the tree with the
exception of the bgttom modules.

Load the program P, into the bottom modules.

Reset the sensor b%ts of all modules to false.

Simultaneously start all modules.

. Execute control program P1 in the centrol computer.

« s w

OWUN =\ n

Program P1:

n:=1; _
1: if b’= 4 then goto stop;
if b*# J then

begin y[n}:=b’; n:=n+1 end;
Vyi=true; if ST, wait; V,:=false; if T, wait;

Program P2:

1: if =5 wait;
if b’,b"=1 then .

begin b:=z ¢ ;
U:=true; if S wait; U:=false;
goto 1 '

12

if b’ 2b™ then
begin b:=zb’;

Us=true; if S wait; U::zfalse;
. , V1:=true; if -1T1 wait; Vi:=false;
: if T, wait;
goto 1

end;
if b"2b* then
- begin b:=b";
U:=true; if S wait; U:=false;
Vpi=true; if T, wait; V,:=false;
if T, wait;

goto 1
end;
Program P3:
1: if =8 wait;
b:=4; _
U:=true; if S wait; U:=false;
goto 1;

We hope that the above explanation of the basic idea is
sufficient to understand the programs P ,P2,P . The

variable b denotes the box. y will cont&in thé resulting
sorted vector. 1 is a special item which _ is generated at
the modules at the bottom to signalize the absence of
regular items. 4 is defined to be less than all the regular
items.

Note that the algorithm provides linear sorting with only
one storage box needed in every module.

_ Examgle 5:

In this example, we want to show how a computer tree can
be "abused" as a random access storage that may be
arbitrarily extended without hardware changes by simply
adding modules to the bottom of the tree. Simple load
the following program to all modules except the bottom
"modules.

13

1: if - S wait;
ITf k=1 then
. begin y:= storage [address];
U:= true; if S wait; U:= false;
go to 1
end;

if odd(k) then

begin k':= k/2; address':z address; +
’ : V1:= true; if-—;T1 wait; V1:= false;
: e A — —
' Sif T, wailt;
yi= §'; :
U:= true; if S wait; U:= false;
go to 1
end;
if even(k) then .
begin k'':= k/2; address'::z address;)
V,:i= true; if T, wait; V,:= false; .
-'2tT ==y 22 tp Malb; V,is lalse .
ir T, wait; '
R ALE AR
U:= true; if S wait; U:=false; .
go to 1
end;

Explanation: "k" is the number of the storage block (i.e.
number of the module) in the tree and "address" is the address
of the cell within the k-th storage block. We use the
following enumeration of modules -

- .
3 2
O o B
7 Ls |3 u

The programs in the modules may be started by a control
computer located at the top of the tree similar to Example 4,
for instance, by the following intructions:

k' := kj; address' :z address; _
Vy i= true; if - T, wait; V, i= false; if T, wait;
y :=y';

Error messages may be generated at the bottom modules by
the following program:

1: if = S wait;

+, . s s .
) integer division !

begin y:= storage [address];
. Ut true; if S wait; U := false;
go to 1;
end;
if kY1 then y:= "error";
' Ui= true; if S wait; U:= false;
go to 1;

Example 6:
We show how multiple recursions may be executed on computer
trees. Consider, for instance, the following definition:

£{x) ={ c, if x=0
h(x,g(x~-1)), if x0

g(i) =4 d, if x=0
k(x,f(x-1)), if x>0.

We extend our language by modifying the semantics of the

go tc statement:
go to a;

should be interpreted by using the content of variable a as
the label for the jump. Of course, this language feature
is easily realized in machine languages. To be consistent
~in our high level example language we admit only integer
.lahels from now on.

Then we may model the above doutle recursion by the following
program (loaded to all modules in the tree) which again
provides "material incarnations" of all procedure calls:

if = S wait;

1: i{ x=0 then

if x#0 then e~
begin x':= x-1; a':= 23 V1:= true;
ig-wTi wait;

¥:= hix,y'); U:

n
ct
g
“
®

rg.
ot
o]
|

end;
2: i_ x=0 then

b}

if x# O then

x-1; a' = 1; V_ := true;

xl

if = T, wait;) 1

yiz k(x,y'); U:= true; goto 3;
end;

3: 5

Explanation: After initializaticn the program considers the
label stored in a. Depending on whether it is 1 or 2 it
executes the procedure body for the function f or g,
respectively. .

Example 7:
By using the goto-mechanism of Example 6 we can treat re-
cursive procedures with more than two parallel procedure
calls within one procedure body. Hence, the computer tree
is a "universal" means for parallel execution of recursive
procedures (though some modules are wasted by reducing a
multiple branching to a binary one). Corsider the following
example:

£(x) =-[g(x), it p(x)

k(fhi(x), fh, (x), fh3(X)). if —p(x).

This can be transformed to the double recursion ;
(x) £(x) ={ g(x), if p(x) | 4
k!(fhi(X), r!(x)), if "Ip(x)- o {

£ (x)= T(fhy(x), fhy(x)),]
where k!(y,z):= k{y,z,,2,) and z,,z., denote the first and
second projection of Z rélative to fhe pairing function ¥ .
Now,(x) may be programmed by means of the goto-mechanism
of Example 6. -

Example 8: -

e now describe a program starting routine that operates
as a typical tree program itselfl: .
if = 5 wait;

load (p);
p':zp'':=p;))
Vyi=V,:s true; g£~ﬁ(T1AT2) wait;
V1:= V2:= false; if TIAT
Uiz true; if S wait; U:= false;

goto begin;

5 vait;

e T M L P ke a e A

10

Explanation: "load" is a routine transferring the storage
region p to the private_memory of the module, "begin" ig
the fixed initial address or Programs in the private memory,

'y

In the bottom modules, a slightly different loading routine
is necessary,

Conclusion:
=2lcilusion

¢omputer tree and g corresponding type of Programming
language. We Presented a number of Programming eéxamples
that may demonstrate the following aspects: .

1. The computer tree theoretically allows for an execution
of all types of Tecursive procedures via g "material inecar-
nation" or pProcedure calls. Thig leads to a drastic collapse

3. In any case, since computer trees with 215 modules
Seem to be pPossible, a constant Speed-up by a factor
Z 1000 is possible for "hapgn (i.e. €Xponential) pProblems,
(see Example 2). ’

4, Furthermore, realizations of computer trees with only
little Storage per module seem to be of Practical valuye
for special applications., Computer trees of this type
have the Structure of a large Storage with a Processing
element at eévery storage "box" (Example 4).

5. Computer trees may also be abuysed as extendible random
&ccess storages With unlimiteq extension capability
(Example 5).

6. Computer trees should
hardware unit i
with a ¢onventiona? computer and not as an exclusive
alternative to conventional computers (Example y).

17

Reference s:

i/L/-P.H. Enslow (ed.) Multiprocessors and Parallel
\ : Processing, J. Wiley, New York 1974.

R/ T. Feng (ed.) Parallel Processing, Proc. of the

' ‘ Sagamore Computer Conference,
August 20-23, 1974, Lecture Notes
in Computer Science, Vol. 2k,

' ‘ Springer 1975.
/1}~J. Wilmink,) Microprocessing and Microprogramming,
b M. sami, Proc. of the EUROMICRO Symposium,

R. Zaks (ed.) iOct. 12-14, 1976, Venice, North-
{

iHolland » 1977.

/4. M. Feilmeier (ed.), Parallel Computers - Parallel
R : ‘Mathematies, Proc. of the IMACS(AICA)-
l ' GI Symposium, March 14-16, 1977, Munich,
: Munich, North-Holland 1977.

A/ J.D. Nicoud, ‘Microcomputer Architectures,
J. Wilmink, Proc. of the EUROMICRO Symposium

R. Zaks {(ed.) Oct. 3-6, 1977, Amsterdam, KNorth-
. Holland, 1977 (Preprints).

ki) R. Albrecht Zur Struktur von Informationssystemen,
' iniJ. Dbrr, G. Hotz (ed.),
Automatentheorie und formale Sprachen,
; Proc. of a Symposium, Oberwolfach,
; Oct. 1969, Bibliographisches Institut,
! Mannheim, 1970, pp. 493-505,

k7 v.M. Glushkov, Recursive Machines and Computing
" 7" M.B. Ignatyev, Technology, Proc. of the IFIP Congress
| V.A. Myasnikov, 1974, North-Holland, 1974, pp. 65-7c.
V.A. Torgashev | L .
|

'Y T
/7 F. Schwenkel Zur Theorie unendlicher Parallel- .
' pEEZessoren, in: Proc. of the
4% GI-Jahrestagung Berlin, Oct. 9-12,
1974, Lecture Notes in Computer
Science, Vol. 26, Springer, 1975,
PpP.355-366.

79/ A. and K. Gostelow. A Computer Capable of Exchanging
: Processors for Time, in: Proc. of the
IFIP Congress 1977, North-Holland,
1978, pp.B49-453,

{10/ W. Hindler Aspects of Parallelism in Computer
y . Architecture, in /4/ : pp.1-8.

o /11/ X.Vorgrimmler,
P.Gemmar

12/ B.Buchberger,
J.Fegerl

13/ A.V.Aho,
J.E.Hoperoft,
J.D.Ullman

18

Structural Programming of a
Multiprocessor System, in: /U4/:
Pp. 191-195,

Ein universeller Modul zur Hard-
ware~Implementierung van Rekursi-
onen, Laboratcry Note, Univ.Linz,

1977.

The Design and Analysis of Com-
putﬁr Algorithms, Addison-VWesley,
1974,

