Int. J. General Systems’
1978, Vol. 4, pp. 201-209.

© Gordon and Breach Science Publishers Ltd.
Printed in Great Britzin

CODINGS AND TRANSITION FUNCTIONS

INPUT/OUTPUT
. ' IN EFFECTIVE SYSTEMS

BRUNO BUCHBERGER

Universitét Linz, Institut fiir Mathematik, Linz/Auhof, Austria
_ and
BERNHARD ROIDER

Universitit Innsbruck, Technische Fakultdt, Institut fiir Mathematik [, Innsbruck, Austria
(Received December 7, 1976 in final form April 1, 1§77)

We study some aspects of what might be called a general theoty of effective sysiems. First, we define the notion of a universai
effective sysiem and derive some theorems which give the connection of this notion with reluted concepts in recursive
function theory. Then we characterize the ctass of transition functions and the sets of final states of universal effective
systems. Finally, we exactly determine the role of input/output codings in effective systems and characterize the class of
possible input and output codings in universal effective systems. We interpret our results in terms of computer science.

INDEX TERMS Effective systems, transition functions, codings, universality, Godel

oumberings, automata.

It is our purpose in this paper to contribute to what
might be called a general theory of effective systems.
Thisconcept iscouched in terms of recursive function
theory, for which we take Rogers's book as our basic
reference: .

DEFINITION | and g determine a {(deterministic)
effective system (or an (effective) automaton): — f
and g are recursive functions.

We shall sometimes say: (f, g) is an automaton
instead of f and gdetermineanautomaton. Wethink
of f as the transition function of the automaton,

“which assigns the next state f() to every state
(=natural number) . States & for which g{{)=0are
called final or terminal.

The dynamics of an effective system are described
by the function [f; g] which is recursively defined by

_{¢ if g)=0.
Lﬁ‘]m'{[ﬂgﬂ(e) i g@)#o0.

(For[f.g](¢)=¢"read: ¢’ is the final state eventually
reached by successive applications of the transition
function f when starting from state &; [f. g] is called
the global transition function determined by f and

In this paper we consider deterministic effective
systems Only. It is clear, however, how to define a
pon-deterministic effective system. We would have

201

input/output

to replace the transition function with a decidable
transition relation.

We feel that much of computer science may be
developed ina unified and pedagogically satisfactory
manner on the basis of the concept of an effective
system. Let us summarize the reasons why in our
opinion the concept of an effective system is neither
to narrow nor too wide for this purpose.

THE CONCEPT OF AN EFFECTIVE
SYSTEM IS NOT TOO NARROW:

1) The systems most commonly studied in
computer science are effective systems in our sense
(for example, Turing machines and other com-
putability formalisms, abstract automata that oper-

~ationally define the semantics of programming

languages, real computers. all types of automata in
formal language theory, cellular spaces are de-
terministic effective systems; phrase structure gram-
mars, deductive systems of [ormal logic, lambda-
calculi, L-systems are non-deterministic effective
systems).

2) Systems encountered in computer science have
at most a denumerable set of states. Thus. after a
suitable coding we may assume the setof statestobea
subset of the natural numbers. Also. without loss of
generality we may require the set of states to be all
natural numbers, as numbers ¢ notin the range of the

202 B. BUCHBERGER AND B. ROIDER

coding may be defined to be final states by putting
g({)=0.) '

3) In the systems used in computer science, what
happens in a single step must be physically
executabte, at least in principle. Thus, by Church's
thesis, the transition function {in the deterministic
case) will be recursive.

4) Inthesystemsused incomputer science. givena
state £, it must be decidable whether § is final. for an
automaton is useless if the user does not know when
a computation is finished. Thus. by Church’s thesis,
theset of final states will be decidable.In other words,
the set of final statesis {¢|g() =0} for some recursive
function g. In addition, dropping the requirement
that the set of final states be decidable would have an
unreasonable consequence in a very specific sense.
Namely, it can be shown that if f is recursiveand gis
such that {¢[g(¢)=0} is not decidable then (f.glis
not even partial recursive, But by C hurch's thesis the
global transition function of an automaton must be
partial recursive.

5) Our concept of an effective system is a
specialization of the concept of an autonomous
discrete time system. The additional requirement of
recursivenessimposed on the transition function and
the set of final states seems to be the weakest
assumption that permits one to derive the basic
insights into the systems of computer science; these
cannot beestablished by set theoretical and algebraic
means alone. For instance, what we shall prove
about the role of input and output functions in
effective systems could not bederived in the setting of
general system theory.

THE CONCEPT OF AN EFFECTIVE SYSTEM
ISNOT TOO WIDE:

1) Though the transition functions oftheconcrete
effective systems of computer science normally are
extremely simple functions. whereas recursive func-
tions may be arbitrarily complex. we do not see any
natural way to define in precise terms what is meant
by a simple transition {unction. In fact,no one has so
far proposed a thesis as to what is possible in one
computational step in an automaton. Such a thesis
could play a role similar to that of Church’s thesis,
which essentially characterizes what is possibie by
iteration of computational steps.

2) In any case a useful concept of effective system
should be wide enough to comprise the interpreting
- automata of high level programming languages with

arbitrarily complex basic functions. For this purpose
itis necessary to keep theclass of transition functions
as wide as we did.

3} Aslongastheset of final states is required to be
decidable, computing partial recursive functions isa
noa-trivial task for effective systems with even very
powerful transition functions. in the sense that the
number of computational steps cannot be re-
cursively bounded in general. For otherwise the
haiting problem of every automaton would be
decidable.

4) We emphasize that no single computability
formalism (e.g. Turing’s ot Markov's formalism}can
be a suitable framework for a general theory of the
automata encouniered in computer science. For.
given a computability formalism. by 2 diagonaliza-
tion procedure we can construct a new automaton
that is not enumerated in the formalism. Thus, a wide
enough concept of an effective sysiem must charac-
terize a class of objects that is recursively non-
enumerable, asis the class of pairs{ f, g}satisfying our
definition.

{n recursive function theory, though the conceptof
an effective system has rarely been formulated
explicitly (to the best of our knowledge, Shepherd-
son'® was the only writer in recursive function
theory who made the concept of an effective
automaton explicit), some very important aspects of
a general theory of effective systems have already
been studied yielding famous and fundamental
results. Thus, the undecidability and incompleteness
results of formal logic (see, [or instance, Smullyan®)
settle the aspect of interpreting the “states” of
effective systems as statements of a descriptive
language (as opposed to imperative languages like
programming languages). Further. the aspect of
(time) complexity of effective systems is developed in
Blum’s complexity theory, see Blum?®. {In an eartier
paper’ wehaveshownin whatsense theconceptofan
effective system is impticit in Blum’s theory). Finally,
Shepherdson'® and Cleave'® treat the problem of
representing arbitrary recursively enumerable de-
grees of unsolvability by the halting, word, and
confluence problems of effective systems.

In computer science, several variants of the
concept of an effective system, in different contexts
and terminology, have appeared independently at
various places in the literature®>*. The aspects
considered in these papers include the interpretation
of programming languages by etfective systems,
simulation, programmability, criteria for the uni-
versality of effective systems, and the role of input
and output in effective systems. The latter ‘wo

INPUT/OUTPUT CODINGS 203

aspects are the subject matter of the present paper,
too.

In Section 1 we derive a necessary and suflicient
criterion that characterizes the transition functions
of universal effective systems and. in passing, show
how the notion of a universal effective system
compares with related notions in recursive function
theory. In Section 2 we establish some theorems
which clarily the influence input/output conventions
have on the computational power of effective
systems. Wefeelthat theselatterinvestigations might
be of particular interest for system theory.

. 3d .

NOTATION, ABBREVIATIONS AND

AUXILIARY DEFINITIONS

N set of natural numbers including 0
pr. partial recursive

r.e. recursively enumerable

A complement of the set 4

fix)l f(x)isdefined

f(x)t isnotdefined

dom(f) domain of function f

rg(f) range of function f

feg composition of functions f and g

P, set of all n-ary partial recursive functions
R, set of all n-ary (total) recursive {unctions

If f,g are functions then we often write fg(x) for
f(g(x)). In addition, f*(x): =x, and f¥*'Mx):
= ff®(x). Let f be a function, A € N. We define
Sa)y:={y{(Ixe AN S (x)=y)}. An analogous nota-
tion will be used for n-ary functions. By a pairing
function (an onto pairing function) we mean a 1-1
total recursive function from N? into N with
decidable range (with range N). We use the notation
{X,¥), 2.1, 2.3 to denote the application of some
fixed onto pairing function to x, ye N, and of its first
and second projection to z € N, respectively. Thus we
have

(Z.1:2.0=2,{0, > .1 =X,{X,y) .2 =}.

1. TRANSITION FUNCTIONS
OF UNIVERSAL EFFECTIVE
SYSTEMS

Intuitively, a (deterministic) effective system is called
universal if it can compute every computable
fuaction. To make this concept precise we have to
specify how an effective system can be used to

compute a function. An analysis of computation in
real computers and abstract computability for-
malisms (e.g. Turing machines) shows that comput-.
ing the value h(x) for a given argument x on an
effective system (h being.a partial function) proceeds
in three stages.

Firstly, depending on x, an initial state of the
effective system is determined. Secondly, starting
from the initial state, the automaton repeatedly
applies its transition function until, perhaps, it
arrivesat a [inaistate. Ifand when this happens, then,
thirdly, depending on the final state, the output,
which should be /(x) provided the initial state has
been determined adequately, is read off.

Itisclear that the input and output conventions in
stages one and threeare, in general, simple compared
with the computational power of the automaton.
Moreover, stage two is the only one that may be
responsible for h(x) being undefined, i.e. the input
and output conventions must be total functions.
Again, we may assume the domain and range of h to
be a subset of N. Thus, by Church's thesis, it is
reasonable to require that the input and output
conventions are recursive functions. These very
general assumptions will suffice for our purposes. We
are thus led to the following definitions.

§i.1. DEFINITION Let f and g determine an auto-
maton and let he P,.
his computable on the automaton (£, g): —

(C) there exists an “input coding” yeR, and
an “output coding”™ peR, such that A
=peffgley.

1.2. DEFINITION W, x determine a universal auto-

maton (in short: “(¥,x) is a2 universal

automaton™); — -

(Ul) (¥,k)is an automaton

{U2) all p.r. functions are computabie on (V. x).

It is the main goal of this section to derive
necessary and suffictent conditions for the functions
¥ and x that can occur in universal effective systems
(Theorems 1.5 and 1.6). By way of preparation we
first indicate a few connections between our concept

" of a universal automaton and well-known concepts

of universality in recursive function theory {Theo-
rems 1.3 and 1.4), which have some intuitively
interesting interpretations.

1.3. THEOREM Let (WY, x) be an automaton. Then
the following statements are equivalent:

1) All p.r. functions are computable on (¥, x) (ie.
(. x) is universal).

204 B. BUCHBERGER AND B. ROIDER

2) All unary p.r. functions are computable on
‘P, x).

3) There exists an ‘‘input coding™ yeR, and an
“output coding” pe R, suchthat p: ['P,x]:yisa
semi-effective numbering'of P,.

4) There exists an “input coding™ yeR,; and an
“output coding” pe R, suchthatp: [\, x]cvisa
Gadel numbering for P,.

" These equivalences are straightforward con-
sequences of the definitions. The proofs are left to
the reader. As [or the implication (§)— (4}, recall that
a Godel numbering is itself a binary p.r. function.
(For the definition of semi-¢ffective numbering and
Gadel numbering of P, see Rogers!, Exercise 2-11).

Remark In computer science the notion of a
Gaddel numbering is a generally accepted precise
substitute for the intuitive concept of a universal
programming language as far as functional (as
opposed to operational) semantics is concerned
(see, {or instance, Blum?}). Statement (4) is thus a
precise formulation of the assertion that (¥.x) is
capable of interpreting some universal pro-
gramming language. The function y when applied to
pand x describes all preparatory work necessary for
the execution of a given program p on given data x,
including the compilation process. (¥, k), then, may
be conceived as operationally delining the semantics
of the language. Thus, statement (4) connects
functional and operationai semantics.

One might argue that the main computational
" work could be absorbed into the input and output
codings if we admit arbitrary recursive p and y in
statements (3)and {4). This is not so, since, as long as
the input and output codings are required to be
(total!) recursive, the number of computational
steps cannot be recursively bounded in a universal
automaton, whose halting problem is undecidable.

The equivalence of (3) and (4), though easy to
prove, has an interesting intuitive interpretation,
which has escaped attention so far, namely it has
bearings on the relevance (or irrelevance)} for
programming practice of the distinction tradi-
tionally made between fully effective (or Godel)
numberings and semi-effective numberings of P, . So
far, it has been held by most authors that only Godel
numberings of P, are useful models for pro-
gramming systems, since the property of being a
semi-effective numbering of P, in the sense that ail
partiai recursive functions have “programs™ in the
numbering does not guarantee the existence of
compilers from ail the other possibie (semi-effective)

programming systems to the system considered.
Thus Ershov’, eg., argues that the practical
difticulties encountered in constructing compilers
for real programming languages could be of a
“principal character™, which could be due to the fact
that there are semi-effective numberings of P, that
are not Godel numberings (e.g. Friedberg number-
ings®) and, correspondingly. universal automata
that are not “effectively” universal. The equivalence
between (3) and (4) partly explains why semi-
effective non-Gaodel numberings of P, do not occur
in practice: in practice a semi-effective numbering ¥
of P, {i.e. a programming language} is implemented
on an automaton {¥, k), i.e. the programmer uses a
decomposition ¥ =p - [¥, k] - 7. In view of (4), with
adequate input and output conventions this same
automaton is capable of interpreting a fully effective
numbering, i.e. a universal programming language,
as well,

1.4. THEOREM Let W* be a unary p.r. function.
T hen the following statements are equivalent:

1) W* is a universal function. .

2) There exist p,'¥, ke R, and yeR,, such that
po[W,x] <7 is a Godel numbering of P, and \¥*
=p- ["P. x].

Proof That(2)implies{l)isimmediate from the
definitions {for the notion of universal function see
Rogers®, p. 54). For the converse, let us recall that
for any two universal functions ¥} and W% there
exists a recursive bijective function f such that ¥7
=W¥¥:f (see Cleave® and Ershov’). Now let
W*e P, be universal. Take p', ¥, ¥'eR,, 7R,
such that p"= ['¥,x'] = 7' is a Godel numbering and
define ¥*:=p':[¥, x']. ¥* is a universal
function by the first part of the theorem. Hence,
there exists a recursive bijective function f such that
W =g f,

Define y:=f-y

Pr=foproft

K:=xof"!

pr=plof Tt
Then ¥*=po[¥,x] and W*=7=P*s f~ta foy
=¥*.y"isa Godel numbering, as was to be shown.

Remark The equivalence shown in Theorem
1.4. is not clear from the outset since we shall see in
Theorem 2.1 that it is by no means true that alf
partial recursive {unctions h can be represented in

INPUT/OUTPUT CODINGS 205

theformh=r<{f g] (r.f;geRl). By Theorem 1.4a
universal function W* has an easy intuitive in-
terpretation:

There is a universal automaton that will yield
output ¥*(¢) when started in state &; in other words,
W* tells us how the result depends, not on program
or input, but on the initial state of some universal
automaton.

To formulate the main result of this section we
need some terminology. Let (¥, x) be an automaton.
We define:

X,: = (€)%, k1) L)

(set of states that eventually lead to a terminal
state)

X ={Ei¢X, and Gt 1;)(1 #1;
and ¥41(§) = P4E))}
(set of states that eventually run into a cycle)
X,:={¢|fornor, £, do we have
Pg)y= Y}

(set of states that initialize dirergent com-
putation paths if terminal states are neglected)

g~nie=(3ny, L)P(E)=F"(n)) (e I and 4 -

have 2 common successor state). Note that the
complement of X, u X_ is contained in X,.

We now show that universality of automata can
be characterized by the shape of their transition
graphs, viz. what is essential for universality is the
presence in the graph of infinitely many divergent
components that can be effectively obtained.

1.5. THEOREM LetWeR,. Thenp<{W¥,x]o7isa

Godel numbering for some p.xeR,,7e R, iff there is

an f e R, such that f(N)=X, and (Yi, j)(i# j-»not

Fi)~ () (ie. P is the transition function of a

universal automaton iff there is a recursive *“selection

function™ f for the non-cyclic components in the
stategraph).

Proof
Sufficiency

Idea Let x be such that (¥, x) is a universal
automaton. Use the recursion theorem (Rogers!,
§11.2) and the fact that the set X, and the relation
~are r.e. to effectively obtain a new {=f(n)
provided the values f (i) have been determined for 0
sSi<n

-

Details Let W=p:[¥, x]-7 be a Gddel num-
bering of P, and write ¥*=p:[{¥,x]. Assume
f(0),.., fin—1) have been determined (for n=0
assume nothing). Let g(x, y)=0 provided 7(x,
y)eX, or yix, y)~ f(i) for some i <n; otherwise let
g(x, y) be undefined. Since ‘¥ is a Godel numbering,
thereis a B¢ R, such that g(x. y)="¥(B(x), y)forall
x, y. Choose a p such that ¥(B(p}, y)="P(p, y). Let
=y(p, 0). We cannot have ¢ X, because otherwise
g(p, 0)="¥(p. 0) is defined, so { X, or {~ f(i) for
some i, 50 ¥*(3)=¥(p,0) is undefined. We cannot
have ZeX, or &~ f{i) for some i <n either, because
otherwise ¥*{&)=g(p,0) would be defined. Let f(n)
=&, As every step in the construction of f(n)
(especially the choice of 8 and p) is recursive, f will
be a recursive function, and we have seen that it will
have the required properties.

Necessity

Idea We use that part of the transition graph of
¥ that comprises the successor states of all the f (i)
to compute a fixed Gédel numbering '¥,.

Details Let f beaselection function. Since not f (i)
~ f(j)fori#], f isinjective. Define f{Ok = f{0)and
f(n+1):= fim), where ii; = (min m) (f (m)> f(n)).
Then [€ R,,] isinjective and strictly increasing, and
FIN)SfiN)

Using 7 we now construct a pairing function tin
the following way: |

~1tn,0):= f(n);

2(n, t+1):=¥*T(n), where s=(min s'}(¥*f(n)
>t(nt))

{To decide “§ e rg{z}'’ compute
©(0,0),...,7(§,0)

*0,¢h,.... (& 8):

if & does not occur among these values then
Serg(t)) :

Now rg(t) will serve as a “computation region”
for computing the fixed Godel numbering ‘¥,

For this purpose first choose a complexity
measure® for ¥,, i.e. a function @, € P, such that

1) (vp,x)(®o{p, x) | =¥olp.x))
2) the ternary predicate ®,(p, x)=t is decidable.

206 B. BUCHBERGER AND B. ROIDER

Now define
P, x): =t({p,x>,0)
0 ifferg(z)and ‘Do((fl(é))- 1(7(€)-2)
K(Q): = =)
1 otherwise

(here, 7, and 1, are projections belonging to 1)
0 ifx(&)=1

¥ol(r1(8))- 1, (2:(8))-2)

" Then p,keR,,ye R, and it is easily checked that
‘P(lnlpf'= [‘Pv K]c 7
To conclude this section, we characterize the
possible termination criteria x of universal auto-
mata.

1.6. THEOREM Let xeR,. There exist p, ¥eR,,
y€R, suchthat p - [V, k] = y is a Gddel numbering iff
{&[x(£)=0} and {|x (&) 70} are infinite.

Proof Define E_: = {:lx(‘f) =0}.

otherwise.

Sufficiency Of course, (Vr) (3p, x) (p['P, xJy(p,
x)=r), ie. (Vr) (3E) (p()=r and x(}=0), hence
E, is infinite. On the other hand, by the proof of
Theorem 1.5 there is a ¢ such that

(Vo) (x¥WW(E)#0)and (V1,,1;)
(6 F &~ PG £ PU9(E)),

hence £, is infinite.

Necessity Assume E, and E, infinite.

E, and E, are decidable. By routine methods we
construct a recursive surjective pairing function
¢3: N*=E, with projections ¢, 0,3, 033

Further, we construct 4, ¢’ € R, such that ¢ maps
N bijectively onto E, and §'d(r)=r. Let ¥ &P, be
some Godel numbering of P, and @ be a complexity

- measure® in the sense of Blum.

‘We now define

?(P,X): =61(.pv X, 0)
0 ifeeE,
03(03:{£), 032(§). 033() + 1)

(eE,)

Y{): =

5¥(05,(8), 033(6)) otherwise
(&Y =&{E).

il ZeE, and O(0;,(8), 03a@NFaslE)

Of course, ye R, p, ¥ eR,, and W=p o [¥, kJoy
by the construction of 4, ¥, p.

2. INPUT,OUTPUT CODINGS

Our goal in this section is twofold. First, we want to
analyze the influence input, output codings have on
the class of functions computable by effective
systems. We shall see that even if we consider all
possible effective automata (not only some r.e. class
of automata like Turing machines etc.) we cannot
dispense with the additional computational power
contained in input and output conventions. More
specifically, we shall prove (Theorem 2.1) that there
are computable functions which cannot be com-
puted by an automaton without input coding nor by
an automaton without output coding (though, of
course, every computable function can be computed
by an automaton with input and output coding?).
This gives a theoretical explanation why input and
output play an important role in computing
practice. Not only are input and output a matter of
convenience, they are indispensable for com-
putation. This has not always been clearly seen in
the literature (for instance, in Wegner?, p. 130, it is
taken for granted that the power of an output
coding may always be packed into the last step of a
computation).

Secondly, in this section we characterize the
functions that can occur as input/output codings of
universal automata (Theorems 2.2 and 2.3). Our
result on output codings will show that a universal
automaton must have inftnitely many states that are
not actually needed to encode all possible output
vaiues. This may be interpreted as a theoretical
reason for indispensability of an infinite “scratch
memory” in universal automata. Unfortunately, we
cannot offer a similar intuitive interpretation for our
result on input codings.

2.1. THEOREM There is a p.r. function h that is
neither representable in the form h=ro[f, g] nor in
theformh=[{,g]:cwithr, f,g,ceR,.

Proof Let S N be a simple set (see Rogers*, p.
105).

Define

x ifxeS
h(x): ={

undefined otherwise.

INPUT/OUTPUT CODINGS . 207

" Then he P, with dom(h}=rg(h)=S. Assume first
that h=ro[f,g] with r, £, geR,. It is not possible
that for all states & of the automaton (£, g) the
computation starting with ¢ either siops or runs into
acycle, i.e. [£,g1(Z)} or 3y, 1,){t, #2; and f“9(E)
= [3({)).

For, otherwise the set dom([f, g]), which is equal
to S, would be decidable by the following pro-
cedure: given &, to decide whether ¢ edom([f g]),
compute f®(Z)until either a final state is reached or
a cycle is detected. Hence, there will exist a §, such
that R: ={/"(&)jre N} is an infinite r.e. set and all
the f"(¢) are non-terminal. Of course, R is
contained in the complement of dom([£, g]), which
contradicts the assumption that S is simple. Now
assume that A=[f,g]-c with f,g,ceR,. Then §
=rg(h)sE:={¢|gl¢)=0}. This means: EcS. E is
r.e. (even decidable) and infinite; otherwise, every ¢
would have a terminal successor or a successor in a

. cycle and, hence, dom([f; g]) and dom((1. g]=¢c)=8§
would be decidable, which contradicts the assump-
tion that § is simple. '

Remark The foregoing theorem and its proof is
a good example demonstrating that to derive basic
properties of the systems encountered in computer
science one needs assumptions on the effectiveness
of the components of automata that are not present
in the concept of an autonomous discrete time
system in general system theory. For instance, it is
easy to represent any partial function A in the form h
=ro[f,g] withtotal r, f,gif wedonotrequirer, /, g
to be recursive. :

22. THEOREM Let peR,. There exist ¥, xeR,,
y€ R, such that p< [P, x] =7 is a Godel numbering
(i.e. p is a “*possible’ output coding for a universal
automaton) iff p is onto and {|(3¢'<{) (p(<")
=p(&))} is infinite.
Proof ‘ :)
Suffliciency That p has to be onto is obvious.
. Define ¥:=po[¥,x]-y

A= {2lag <§)o(§)=p(5N}

B,.= 4,0 {&]EEe A e ()=p(E)).
Assume |4 |=meN. Then |B,|<2m. The set G:
={y(p.x)|¥(p. x)1} is infinite because otherwise
“P(p, x} 1" would be decidable. We choose a e G
that does not belong to B,. There is no ¢'#¢ such

that p{&)=p(&). Let r: =p(¢).
Then '

(VP x)(¥(p, x)#7) (1)

because if r =¥ (p, x) there would be a ¢ such that
r=p¥"%(p, x), ¥ (p,x)=¢&

and

x{§)= xq‘ll)Y(Pt x)=0,

which contradicts p[¥, x](¢) 1. Assertion (1), how-
ever, is not possible for the Godel numbering '¥. _

Necessity We againdefine 4, ={/(3& <&)(p(&)
= p(&))}. A, is decidable. Since A, is Infinite we can
find two functions 4,4’ in R, such that é maps N
bijectively onto 4, and §'5(x)=x. Let f(r): =(min
y) (p{y)=r). Since p is onto, feR,;. Moreover,
rg(f)=A4, Wenow take p’, ¥, ke Ry, 7 € R; such
that ¥: =p'< [V, k'] - ¥’ is a Gédel numbering and
define

?p, x): =8y'(p, x) (ie(p,x)eAd,)
oV'¥(&) fxd(E)£0
¥($):=
fo'¥(E) otherwise

0 if {ed, (e erg(f)
x(§):
1 if §ed, (e ferg(d).

By the construction of y, ¥, k it is clear that P,
xkeR,,7€R;,and po[¥,k]o7="Y.

2.3. THEOREM LetyeR,. Thereexist p,'P,keR,
such that p=[\P, k] -7 is a Godel numbering iff there
existsa Be R, such that 7(B(p), x) is a 1-1 function of
p and x (i.e. y is a *‘possible” input coding for a
universal automaton iff y is 1-1 at least in an
effectively accessible “*cylinder” in N x N).

Proof If po[¥, x]oy is a Gbdel numbering,
then there is a2 BeR, such that (p, x)=p['P,
xJy(B(p), x). The function 7(f(p), x) must be i-1,
otherwise {p, x) would not be a pairing function.

- To sec the converse implication we need two
lemmas.

24. LEMMA Let yeR,, BeR, and y(B(p), x)) be
1-1.
Then there is a §’e R, such that 7{f'(p), x) is 1-1

and the complement of 7(8'(N), N) contains an
infinite decidable subset.

Proof Define f(p): =8(2p) and B"(p):=pB(2p
+1). Then M:=3(8"(N), N) is contained in the
complement of y(§'(N), N). Since M is recursively

208 B. BUCHBERGER AND B. ROIDER

enumerable and infinite, it contains an infinite
decidable subset.

2.5. LEMMA Ler feP, and ESN be an infinite,
decidable set. Then there exist p,'P, xe R, such that
(v¢eE) (f (§)=p[¥, x1({)).

Praof Let o, ¥, x', YR, be such that f
= p' o [V, k] o v'. Since E is decidable, a well-known
construction yields J, 6’ R, such that é maps N
onto E and 6'5(x)=x. We define

(@) if §eE
()=
s¥o) if {eE
1 if ek
x():=
&) if ¢eE
p(&): =p'0'({).

The assertion is now clear from the definition of ¥,
X, p. :
Proof of Theorcm 2.3 (continued)

By Lemma 2.4 we choose a §’ € R, and an infinite
decidable set E< N such that y(8'{p), x) is 1-1 and

Eis contained in the complement of +(§'(N), N).
(1)
Take a G&del numbering ‘Y. The function n
defined by

n(z):=v(f(z.) 2.3)

is a 1-1, recursive function. Of course,

WE @) x)=nlp, x). @)
We can find a (partial!) function ' € P, such that
y'niz)=z. 3)

By Lemma 2.5 we know that

(VEeEYY (M (8.1, n'(8).2)=pF, x1EN 4)
for some p, ¥, k€ R,. We have
¥(p,x)="((p.x).1,{PX)-2)

- =P(0r1{p x>). 1, (1P, x}).3)
by (3)
=¥(('y(B' () x))- 1, ("7 (B'(P) X)) 2)
by (2)
=p[¥, x17(F'(p). x)
by (1) and (4),

ie. p«[¥, x] <7 is a Godel numbering because the
Gode! numbering ¥ can be recursively transiated
intoit.

ACKNOWLEDGEMENTS

Professors Albrecht and Helmberg (University of Innsbruck)
made it possible for the two authors in their departments to co-
operate on this paper. To them we express our sincere gratitude.
The Austrian Fonds zur Forderung der wissenschaftlichen
Forschung (Fund for the Promotion of Scientific Research)
supported part of our work under Project No. 2661.

REFERENCES

L. H. Rogers Jr, Theory of Recursive Functions and Effective
Computabiliry. McGraw Hill, New York, 1967.

2. P. Wegner, “Operational semantics of programming lan-
guages™. ACM SIGPLAN Notices, 7, No. 1, 1972, (Proceed-
ings of an ACM Conference on Proving Assertions about
Programs, Las Cruces, New Mexico, January 67, 1972) pp.
128-141.

3. B. Buchberger, “On certain decompositions of Gédel
numberings and the semantics of programming languages™.
In: Lecture Notes in Computer Science, 5, Springer, Berlin,
1974, (Proceedings of the International Symposium on
Theoretical Programming, August 1972, Novosibirsk, edited
by A. Ershov and V. A. Nepomniaschy), pp. 152-171.

4. R. C. Roehrkasse, L. Chiaraviglio, "Automata and digital
computers™. [mernational Journal of General Systems, 1,
No. 3, 1974, pp. 139-196.

5. M. Blum, “A machine-independent theory of the complexity
of recursive functions™. Journal of the ACM, 14, No. 2, 1967,
pp. 322-336.

6 1. P. Cleave, “Creative functions™. Zeitschrift flir mathem-

athische Logik und Grundiagen der Mathematik, 7, No. 3,
1961, pp. 205-212.

7. Yu. L. Ershov, "Theorie der Numerierungen I7, Zeitschrift
fiir mathematische Logik und Grundlagen der Mathematik,
19, 1973, pp. 239-388.

8. R. M. Friedberg, “Three theorems om recursive en-
umeration™. Journal of Symbelic Logic, 23, No. 3, 1958, pp.
309-316.

9. R. Smullyan, Theory of formal systems. Annals of ma.the-
matics studics, No, 47. Princeton, NJ., 1961.

10. J. C. Shepherdson, “Machine configuration and word
problems of given degree of unsolvability”. Zeitschrift fiir
mathematische Logik und Grundlagen der Mathematik, 11,
1965, pp. 149175, .

11. J. P. Cieave, Combinatorial systems L. Cylindrical prob-
lems™. Journal of Computer and System Sciences, 6, No. 3,

1972, pp. 254-266.

