INSTITUT FUR NUMERISCHE MATHEMATIK UND
ELEKTRON I SCHE |NFORMAT | ONSVERARBE | TUNG
UNIVERS I TAT INNSBRUCK

A basic problem in the theory of

programming languages

Bruno Buchberger

Bericht Nr, 72 - 1 Februar 1972

A- 6020 innshruck, Innrain 52

[943-02-00 A

SUMMARY

We give an exact formulation of a basic problem in the theory of
programming languages, which, on an Intuitive level, would read as
follows: Find conditlons on the Instruction set of a language such
that all partial recursive functions can be expressed in that language.
We derive two theorems which may be regarded as a first step in a

thorough study of this problem.

Notation and abbreviations:

N ... set of all natural numbers lncfudlng 0.
p.r;f. ... partial recursive function(s).

Pn ... set of all n-ary p.r.f.

Rn vo. set of all n-ary recursive (i. e. partial recursive, total) functions.

"Godel numbering" ... Gédel numbering of the unary p.r.f. (Rogers {12]).

If f,g, denote functions, fg(x) often stands for f(g(x)).

If f denotes a function, then f(f)(x) is defined as follows:
f(O)(x) = X,
fT 00 = ¢+ 00 (for + 2 o).

ICl <= ... Cis a finlte set.
IC] =« ... C is infinite and denumerable.
A, vV, =, (x), (Ex) ... conjunction, disjunction, negation,

Implication, unlversal quantification of X,
existentlal quantification of x.

Quantification is always over N,

(¢

... recursive '"pairing" functlions for the n-tuples
of natural numbers.

g oo, O
n’” “nil’ ’ “nn

1. Informal preliminaries

In this section we want to glve a detailed exposition of our intuitive
concept on which the formal study is based. The reader who is not interested
in formal considerations may well skip this section, except Definition

1.1, and immediately continue with section 2.

First, we adopt the polint of view that the theory of programming languages
should be identified or at least be a part of the theory of Gddel numberings
(Rogers []21), since the fundamental requirements for Gddel numberings,

. e. the recursive "translatability" between these numberings and cne of
the historical "standard" numberings, is a property we would nct |ike pro-
gramming languages to dispense from. Also all the consequences of this
fundamental requirement (for Instance, the recursiveness of certain ope-
rations on p.r.f. etc.), when interpreted for programming languages, fit

our Intuition very well.

Hcwever, it turned out that it Is necessary to add some baslic notlons to
the general theory of Gédel numberings for studying some special properties
of "programs". So, by adding the notion of a "complexity measure", Bium (1}
derived a big number of interesting theorems about the complexity of com-
putations. Since there are complexity measures for all Gédel numberings,
the addition of this notlon, on the other hand, does not restrict the class

of numberings considered.

Similarly, we would like to add the notion of a "P-decomposition" of a

Godel numbering to derive theorems on other aspects of prograrming

languages. Again, this will not restrict the applicability of the theory
since there exist P-decompositions for every Gédel numberling (Propcsition

4.3).

We shall, first, give an exact definition what we mean by a "P-decomposition'

of a p.r.f. and, later, make some remarks to explain why we think that
this notion could have some Importance for G3del numberings (programming

languages, computability formallisms, computer concepts etc.).

Let {pi} be some Godel numbering of the unary p.r.f., VY € P, the functicen

that "describes" {pi} (sea Rogers [12], p.332), 1. e.
(1.mn (i,x)C ¥Y(i,x) = OT(X)).
(We sometimes also shall speak simply about the "Gddel numbering ¥ ").

Further, we Introduce the operator of "conditioned iteration" P, which for
all functions f,g e P] yields a functlon [f,g]F)é P1 by the following

recursive definition

X, if g(x) = o

.2y [f,9) 00 =
L [f:Q]Pf(x) otherwlse.

Definifion 1.1: Let ¥ € P,. If y €R,, ¥, «, &€ R, and

(1.3) (i, (¥, = o [0,)7 v,),

then we say that " p, ¥, k, y determine a P—décomposITIon of ¥,

Remarks:

1. Discusslon of the operator P: Given some x & N, [f,g]P(x) Is evaluated

by successive evaluation of x, f(x), f(z)(x), ... until, for some t,

gf(f)(x) = 0., In this case [f,gjp(x) = f(*)(x). If no such t can be

found (this is the case also If some of the f(+)(x), gf(*)(x) which

appear during the evaluation of [?,Q]P(x) are undefined), [f,g]P(x) is

undefined.

If f is the state transition functlon of some automaton A (with countably
many states) and g its "termlnation criterion™ (i.e. "g(x) = o" is
interpreted as "x is a terminal state") Thén [f,gjp is the function
which, for any state x, defines the terminal state which A, eventually,
reaches if I+t §+arTs a computation with x, Also, by a suitable definlfioﬁ
of the notion "state" every type of deterministic automaton can be viewed
as 3 speclal case of this general type, which is fully defined by the

two functions f,q.

2. Reviewlng the entire |lterature on computabllity formalisms (Turing's
formalism, Kleeng's formalism, Markov's formalism etc., including the
‘fiforaTure on special programming languages and computers) one can
easlly check that without any exception all these formalisms were in-

troduced according fo the following scheme:

a. One deflines what a momentary state of a computation In the alleged
formalism F (an "F-state") should be. In Turing's formalism this
is, for Instance, the quadruple [Turing table, tape expression,

internal configuration, scanned square]. Notice that, In this example,

we let the Turing table (the "program'") be a part of the'state'.

This is necessary since, with other formalisms (for instance machine

codes of computers), it s not "objectively" possfble to separate

the "program" from "the rest of the state",

The set XF of all F-states always is ar (intuitively) decidable set,

which can be brought Into an (intuitively) effective 1-1 correspon-
v ‘ dence with N. Hence, without any loss of generality, we simply set

Xz = N (cf. Rogers {127, p.332).

b. Given any F-state x € N one says what is done in the next step
of an "F-computation" to yield the "F-successor state of x", i. e.

one deflnes a functlon

(1.4) ¥- : N — N

F
W Y7
X !
"state" "F-successcr state'.

WF always Is total (or at least can be made to be total without
changing the formalism), and (intuitively) computable. Thus, one

might say that @F € R1 for all the formalisms in the |iterature.

(In the historical cases, most @F were given In natural languages.

Only when defining "unlversal™ elements in the formalism F, the various

WF were glven formally).

c. One deflnes an (intultively) decidable predicate "x is a terminal

state in the formallism F", 1. e., essentially, one defines a functicn

k. € R1 with the interpretation ”KF(x) = o" means '"x is F-terminal'.

F’

d. By the foltowing rule (which is the same for all formallsms) it Is

said how an F-computation, eventually, defines a resulting terminal

) 3
F

untll for a certain t KE @F

(x) for every state x @ N: "Successively apply QF to x
(T)(

state v

x) = o', This Is exactly what could

also be written
* - P
(1.5 ¥100 = [wF,] (X

e. The functions QF’ Kp are characteristic for a given formallism F.
For definlng G5del numberings by means of such a formalism one,
usually, proceeds as follows. One defines an (intultively) computable,
total "Input" function y(1,x) and an (intultively) computable,
total output function p (i. e. using Church's theslis: vy € RZ’

p € R]).

By defining

-

£ KF]P y(i,x)} ,

(1.6) Fli= L] EDHGO = p [

i

n - -P
Fe o= CF | EDGx,.,x) = p[wF,) ¥, o e, x DY

fornzx 2,

oo

g . an

fe = UTE
n=o

. R . g . .
one, finally, is in a position to have a class f F of functions which
can be proposed to be an exact substitute for the informal notlon

"the class of (intuitively) computable functions".

I f QF’ Key Y, P are chosen In a skillful way one will be able to prove
that §~F coincides, for instance, with the class of Turing-computable

functions, and what is more, to show that ¥ , defined by

(1.7) Y(1,x) = Q[EF, KFgP y(i,x),
is a G&del numbering.

Of course, If QF’ Ke together with p, vy are such that (1.7) defines
a Godel numbering (i. e. p, @F’ Kes Y determine a P-decomposition of
a Godel numbering ¥), then for any other Gédel numbering VY¥' € P2

one can finda y'&€R such that p, ?F’ Kes y' determine a P-de-

2

composition of ¥'., To show this we choose 1 € R1 such that

(1.8) (1,x)C ¥ (i, x) = ¥(t(1),x))
(Rogers {jZ}). Hence,

. re P . - - P .
Yr(i,x) = pLWF, KF] y(t(i),x) = QLWF, KFJ y'(i,x),
with y'(i,x) = y(t(i),x).

Let us summarize the analysis of the computability formalisms gliven

above by stating that:

A. Concrete Godel numberings ¥ until now (and, presumably, 1n the
next future) have been (will be) glven by constructing a P-de-
composition of ¥ : The P-operator seems fo be the kind of fre-
cursion which is most "natural" to human brain and "therefore"

appears on the meta level of the definitlions for the notion

A

"computability", which, essentlally, are definitlons of the notion

"recursion™ on some object level.,

B. A computability formallism F (programmiag language, computer concept

efc.) Is characterized by the functions @F, Ke and not by the

F KF since we saw that one and the

same QF’ K. can define all G&del numderings by means of suitable

Godel numbering definable by V¥

"Tnput" and "output" functions.

A. and B. seem fo be sufficlent to make a systematic study of P-decompo-

sitions of G&del numberings worthwhile.

. There Is yet another reason why P~decompositions of Gddel numberings

seem To be important. I+ is the fact that Gddel numberings ('"programming
languages") ¥ , usually, are "Implemented" by constructing a P-de-
composition of ¥ by means of some automaton (computer), which can be

gi'ven by two functions ¥, « E,R1 (Remark 1). For every program i and

data x, one defines an Initial state x = y(i,x) (y € R2) from which

the computation starts. After eventual termination a function p €.R1

defines the "result". Thus, Implementing a G&del numbering V¥, usually,

means to realize a P-decomposition

.9) ¢ (0 = oL, v,

The assumption that Y, 0 are recursive seems to be qulte sound.
Requiring only v € PZ and not vy 6‘R2 would not exclude vy to be, for

instance, a Godel numbering itself, in which case the "real computa-

tional work™ would already be done by the Input function y. Simijarly,
dispensing p from belné recursive would admit computations that ter-

" minate, but don't yleld any resuf*fng value. On the other hand, for
the beginning It seems to be dlfficult to lay further reasonable re-
strictions on p, y without being +o+ally arblTFary or excluding

Interesting cases that occur in practice.

I+ 1s the alm of this report to begin a study of P-decompositions of
Gddel numberings under these very general assumptions about the funcTiéQs

p, ¥, x, Yy to have a theoretical framework for existing and non-exisflpg

studies on special P-decomposffions or classes of P-decompositions

defined by assymfng o, ¥, k, Yy To have more restrictive properties.

._,']O -

2. A basic problem

We now are in a position fo give an exact formulation of a basic problem
in the theory of programming languages which, on an intuitive level, would

read as follows:

Problem 2.1: What makes a given computablility formalism (pregramming

language, computer concept etc,) equally"strorg' as Turing's formalism?

Though much work has been done on showing special formallsms to have

+he same expressive power as Turing's (or some other standard) formalism,
very little is known aboul this general problem. In terms of P-decomposi-
tions this problem can be stated in the following way:

Prablem 2.2: Give necessary and sufficient conditions for p, ¥, k& R1

and vy £’R2 to determine a P-decomposition of a Gddel numbering.

Here, to have condifions on @, k would be the most interesting since,
on an Intultive level, this would give an answer to the general question:
What .power must be contained In the Instruction set of a programming
language (which essentially defines the V) in order that the whole for-

malism has the power of the standard formalisms?

From Rice' Theorem (Rice ET?@) I+ is clear that such conditions can't
be decidable, at least [f we represent p, v, «, y themselves in some

Godel numbering. Instead of requiring the decidabillity of alleged (sufficient)

conditions on o, @, k, y we shall somewhat vaguely require that they should

- 11 =

be "easy to check! at least In the sense; that it should be easier fo
check them than to write a "translator" from one of the standard for-

malisms to the numbering determined by p[@,KjP y(i,x).

We hope that the considerations of section 1 are a convincing argument

for showing that our Problem 2.2 Is an adequate precise substitute for

the somewhat vague Problem 2.1.

- 12 -

3, Literature

In this sectlion, we shall briefly discuss four papers which seem to

have some relevance to our Problem 2.2.

a) Markov [9].

Let WT(i,x) be the Gddel numbering defined by Kleene's normal form

thecrem (Dav]s[é] p. 63). Let us, further, define

Definition 3.1: A function U Is of large oscillation if

(3.1) (y,2)(Ex)(x > z A Ulx) = y).
|n{§} Markov, essentially, proves the fact that In a representation

(3.2) WT(i,x) = Ulu T01,x,y)) (T ... primitive recursive
y .
predicate)

the possible "output" functions U are exactly the functions of large
oscillation. It Is claer that this gives the solution to a problem which

is similar to our Problem 2.2. However,

1. Markov's theorem concerns only the 'butput" function U. What seems
to be more interesting, is a condition on the necessary and sufficient

computational power contained in the predicate T.

2. The result on U cannot be carrled over to the "output" function of

a P-decomposition of a Godel numbering (see p. 35).
b. Davis [4,5].

Davis starts form the observation that the unlversality of a Turing

machine depends on the encoding of brbgrams and data and attempts to

give a definition of "unlversal Turing machine" which explicitly specifies the
admissable codes. He, eventually, arrives at the following definition

(Davis,[S]) which we shall put down in our terminilogy:

Definition 3.2: A Turing machine M is called universal if there exlst

and vy € R such that

functions p € R 29

1

- p
(3.3) Yo, = o [, KM} YOI,%).

Here, WT(i,x) is, agaln, the Gédel numbering of Kleene's normal form
theorem (Davis [6], p. 63). @M’ <y are the transition function re-
spectively the ftermination criterion of M after some fixed Gddellzatlon

of the Instantaneous descriptions (Davis [6], p. 6). Davis's main result

is

Theorem 3.1: |7 M is a universal Turing machine then the set
Cy == { x | E@M’ KM]P (x) 1s defined }, 1. e. the set of all
Instantaneous descriptions that start a terminatigqg computation of M,

is a complete set.

- 14 -

The notion "complete set" is glven by the followling

Definition 3.3: Cc N is a complete set if there Is a function f € R2

such that for all |

(3.4) Uy o= O x | ¥.(i,x) Is defined } = { x | f(1,x) €C }.

I+ Is easy fo see that the converse of Theorem 3.1 Is not tfrue. Davis's
approach is only a partlal step towards a satisfactory solution of our

Problem 2.2 because

1. The functions QM’ Ky admitted are of a very speclal kind:/fhey
must be the transition function, respectively the termination criterion
of Turing machines. We would like to have propositions about general
y , K€R1.
2. The‘confenf of Theorem 3.1 is only a necessary condltion. We would
ITke to have sufficient conditions, too, and best, condltions which

are necessary and sufficlent.

3. There Is no Independent analysis of ¥ and « . The condition only
says something about the comblned function v¥ o Ly, K]P. That 1s,

we get no Information about the machine's necessary 'power'" at one

step (about the power of the "instruction" Iist).

c. Blum [13,

In {17 , Blum infroduced the followling wellknown notlon of "step counting

functions'

Definltion 3.4: Given a Gddel numbering {pi} , let {¢‘} be a

family of p.r.f. satisfying the following two axioms
(S1) pi(x) Is defined <= ¢I(X) is defined

(S2) the function

1, if ¢i(X) = m,

M(i,x,m) :=

0, otherwise,
Is recursive.

Then {¢i} Is called a family of "step counting functions with respect
to {pi}“.

Let us conslider functions o, @, k, Yy which determine a P-decomposition
of VY(i,x) := pl(x)u Then 1t Is easy to show that the functlons

= (1)

(3.5) E‘(m o= (e 7 v, = 0) (i =0,1...)

t

.. LY
satisfy (S1) and (S2) (see Buchberger LSJ), 1. e. {¢i} are step counting

functions for'{pi} . Thus, every theorem about step counting functions

- 16 -

gives some necessary condition about those @, k, y which, together with

some p, determine a P-decomposition of some Gddel numbering Y.

Again, we get no sufficient conditions +). And, c[early,'we get only
assertions corcerning the number of times ¥ Is used in various computations

and no proposlitions about other properties of o, @, K, Y

) Also the converse of the abovebproposifion on the ﬂg} Is true, i. e.

the proposition " {¢‘} is a family of step counting functions for ¥ "

is gguivalenf to the proposition ' {¢i} is a family of functions definable
from «, ¥, vy by (3.5), where «, @, Y together with some p determine

a P-decomposition of ¥ " (see Buchberger [}]). However, we can't see

any way how to get some reasonable sufficlient conditlons for our Problem

2.2 form this equlvalence.

d. Nepomnlaschy E]O].

In our terminology, a résumé of Nepomnlaschy's work [101 would be like
this: One considers special p, ¥, k, v, namély those corresponding to
a formalized presentation of a special variant of operator algorithms
(Ershov Eﬂ). Operator algorithms define a whole class of numberings

of the p.r.f. (and other function cfaéses) depending on which functions
and predicates are taken as primitives (similar to the possibility of
various cholces of "oracles" in A-computabiiity (see Davis [6], p. 20)).

This is reflected by the fact that ¥ depends on a function F(i,n) which

enumerates the set of functions
(3.6) Gi= L F] (EDGIHX) = FCILxNY
and a predicate G(i,n) which enumerates the set of predicates

(3.7) gﬁ = { g | (ENG)(gix) < G(1,x))}

Thus, let us write V¥ F.G to make this dependence explicit.

In r1o], Neopomnlaschy gives some necessary and some sufficient conditions
for F and G In order that

WF’G

G . {@F’G, g}P y(1,%)

(1, =

describes a numbering of the p.r.f.

- 18 -

Nopcmniaschy's work seems to be closest to our problem, However, by the
choice of one compu+abil!+y formalism, the class of @, x considered
is similarly restricted like In the work of Davis. Also, it is not

F,G

explicltly stated that the VY of (3.8) is always a Gddel numbering

when Neomniaschy's conditions are satisfied. However, to show this should

not make any difficulties since the proofs are constructive.

- 19 -

4, First resultls.

a. Some propositions about the operator P.

We first give some propositions about the operator P which plays an

important role In the Problem 2.2.

First, it Is readily seen that the P-operator and the u-operator have,

approximately, the same "power". Namely,
+P
(4.1) [f,gj (x) = plx, u.lg p(x,t) = o)), where

p(x,0) = X,

p(x,T+1) = f p(x,T),
and
(4.2) uT(f(x,+)=o) = g fp, Y]P o (x,0), where
22 - 2
yix) = fl o (x), 0 (X)),
Z1 22
+)
p(x) =0 (o (x), o (x)+1).
2 21 22

) For the purposes of (4.1) and (4.2) the operator of primitive recursion
and the -operator have +o be modlfied so as fo be applicable to p,r.f.,

too.

- 20 -

Further, we have

Proposition 4.1: The P-operator lIs an "effective" operator, 1. e. there

is ane R2 such that

. P
(4.3)A (f:Q)(L¢fI ¢9j = ¢n(f,g)) :

({¢i} belng some Gddel numbering).

Proof: For Inéfance, by a slight modification of the proof appearing in

Strong [147] for a similar operator on the functions of some uniformiy
J

reflexive structure.

From a general theorem about the P-operator on arbitrary functlon sets

(Buchberger [Z]) there follows by specialization

Proposition 4.2: Starting from the functions Co(x), S(x), U?(x1,...,xn) +)

and some palr o, o of associating functions one can obtain all p.r.f.
by finitely many tlimes applying regular substitution and once the P-

Operator.

Here, a palr of assoclating functions Is a pair of functlons satlsfying

the following two axioms

+)

For notatlon see Davis [61, p.4t.

(A1) (Ee) (x) (ale,x) =€),

(A2) (a,b,c,d)(alc(a,b,c),d) = .
ala,d), otherwise

oy An example of recursive associating functions and the Intuitive backgound

for this notlon can be found In Buchberger [2]

An Immediate consequence of Proposition 4.2 is the following

Proposition 4.3: Every p.r.f. f can be decomposed in the following way

- 4P
(4.4) FOXypeeenx) = r(f,ql 9%y yeeesX),

where r,f,k €R

1 and g E',Rn.

- P27 -

b. Some propositlions on the Problem 2.2.

We, now , attempt to give a partial solutlon for Problem 2.2 by proving

our maln theorems4.5 and 4.6, We introduce the foJlowingbnofaTIon

M | T €N}

Theorem 4.5: Let ¥ € R, be such that there Is a B8 & R, with

1

(c1) () (] B - e,

€2y e £k o+ cBl 4 By
[

€3 The set M= [(_J) ¢ s dectdable.
=0

Then one can find «x, p & R and vy €R such that o, @, k,y determine

1 2

a Phdécomposl+lon of a Gbdel numbering ¥ ,

Theorem 4.6: |f p, ¥, «, v determine a P-decomposition of a Godel

numbering then there exist Infinltely many Yor Yir coe such that

Y
(c'n (1 | c | =oc0),

7 Yi
(c'2) (1,k) (i #k » C a C" =g,

Proof of Theorem 4.5: We take some Godel numbering {pt}, Let V¥ EjPz

..23...

be the functlion that describes '{pt} . Take {¢i} to be a family of step

counting functions for {91} , and define

(4.5) y(i,x) = BUZ(I,X),
ifoy &M o dlnly); S(y)) = t(y)
(4.06) k(y) =
1, otherwise,
Y(m(y), s§(y)), 1f k(y) = o,
(4.7) ply) =
otherwise,
1021(2))
" 0pn U, OV B(o,,(2)) =y), IfyeM,
(4.8) aly) = g e 722
t o, otherwise,
_(02](2)) ,
o, (V¥ B(e__(z)) =y), ifyCM
(4.9) t(y) = 21z 22

o, otherwise,

(4.10) w(y)

o,, nly)

21

—~
>
—_—
—
~
[eg]
—~
~
~
]

950 aly).

It is easily shown that vy, %, p, @, T, m, 6 are recursive (fo show fthis

for p apply Corollary 2.5 of Davis [6], p.64). We want to prove

(4.12) (%) ¥, = ol 8,6]" v(,%).

- 24 -

i

Case 1: W(i,k) a €N, From this we know by (S1) (p.15)

(4.13) ¢(i,x) = Te& N, and

(4.14) ¢(1,x) #t for T+ < T.

We show

(4:15) @7 Y1 ,0 £Fo for t<T,

(1.16) ¥) y(1,x) = o.

For this we note that for y € M

(4:17) v = ¥ 8(j) for certain t, j € N, which by

(C1) and (C2) are unlquely determined.

Thus, for y € M

(0,,(z2))
(4.18) y = ¥ 21 Bo,,(z) for a certain unlque z,

(4,19) aly) = j, and

(4.200 1(y)

i
—+

Now, take y := ¥ y(i,x)eM, Using (4.10), (4.11), (4.19),

26 -

Hence, [@, K]P v(i,x) and of¥, ij Y(i,x) undefined.

Proof of Theorem 4.6: Theorem 4.6 will be a consequence of the following

Lemma 4.7: Let o, @, K, ¥ detarmine a P-deccmposition of WG?PZ. Lot

B & R1 be such that

0 Y(B(i),0) # o)

(C''4) (i,f)(c ¥

(C''s) (P | c VP e

) y(p,0) = o) v

(Et)(x ¥
(£ (cYPrO) (BN, 00 oy

Then the property " ¥(p,o) is defined" Is decidable.

Proof: We show that the following algorithm is a decision procedure for

the property " ¥(p,o) is deflned":

- 27 -

START
Wi= Vi= @)
vi= 0
Do W= w ol ¥,)
o 021(1))
Vi= Vu { VY y(B(o,,(v)),0)}
22
{ _(0) \ ves answer: '
K_Z) k¥ y(p,0) =07 J " y(p,o0) defined" |7]
: p
answer:
=(v) ESAD) es -
B v vipo)= ¥ v(p,0) " ¥(p,0) undeflnedi~!
for some vu' < v ? .
ves answer: i
(‘” WA/ gi " ¥(p,o0) undeflned‘t—
'KE}) v o=V 1)
///"
kSTOP J |
\\v/
I+ is clear that after the v-th step of the algorithm

a28_

~(t)

(4.29) We= " {v y(p,0) | ostzv}
(4.30 vi= (77 yei),0 | 05 0,0, s v L
Further, from (C''4)
(4.31) (HCypir,o) undefinea).
Now, assume Y(p,0) to be deflned, i.e.
(ET)C ¥(p,0) = o8 7 v(p,0) A
K é(T) y{p,0} = 0 PN

(1) (1 <T =« 8 yip,0 £0)).

Then the algorithm will stop In any case after the T-th step at the

branching point 2). It can't stop after some t-th step (v < T) at the

- - T
branching point 3), since this would mean W(T) y(p,0) = W(T)y(p,o) for

- !
some t' < 1 and KW(T) v(p,0) # o for all t' <1, i.e. ¥ (p,0) undefined.
Similarly, It can't stop after some t-th step (t < T) at branchlng point
- ¥
4) since thls would mean « W(T) y(p,0) # o for all ' £ 1 and
=(t'") () . ~
y y(p,0) = VY y(B(1),0) for some t'' < v and some T, € N,

hence, ¥ (p,0) = V¥ (B(i),0), T.e. ¥ (p,0) undefined.

On the other hand; assume ¥ (p,o0) to be undefined, i.e.

- 29 -

(4.33) (W 77 y(p,0) # o), and either

(v) =(uv')

(4.34 (Ev, v ¥ y(p,0) = ¥ Y(p,0) A u > u')

or, by (C''5),

()

W 00 = T sy,).

(4.35) (Eu, 1, BV

If (4.33) and (4.34) then at least after the u-th step the algorithm
stops at branching polnt 3). Because of (4.33) i+ can't stop eartier

at 2), i.e. the algorithm gives the right answer. |f (4.33) and (4.35)
then at least after the v-the step (v = max(u, oz(f,l))) the aigori+thm
stops at branching point 4). Because of (4.33) i+ can't stopear!ier at

2), i. e. the algorithm gives the right answedalso in this case. Thus

Lemma 4.7, is proven.

Now, let p, @,K,y determine a P-decomposition of a Gddel numbering and
assume the conclusion of Theorem 4.6 to be false, 1. e. let X:= {y],...,yk}

be a "maximal" set such that

A
-
~

y
(4.36) ©n Jc'l = = for i<

Y Yy
(c'2) C' ncCcl= @ fori

A
-
—

A
=

-

.

s

That means for arbitrary vy

- 30 -

(4.37) { c’ [< o@ or Cy/w Cyi) for some 1 < k.
We define
X1:= {y | ye€XAEDK Q(T) y #o0o fortx2t) ,
X2:= X - X,,
- ,TE Y € X, VT k
P.:=

Y _
{p !(CY(p’O)rﬁ cl#F)n (1) (e gt y(p,0 # o)} , otherwise

{ P, ifPo= B,
B(1) := 1
(up(p =) PI) 5 ofhefwise,
where 5 is such that W(B,o) Is undefined, 1. e.
(e P Y(p,0) # o).
R & R], since B Is constant except for finltely many arguments. We

shal

| show that B satisfies (C''4) and (C''5),

(C''4): Elther P, = &I, then B(1) = p, hence by the definition of

P

() 77 y(8(1),00 £ o), or P, # &, hence 8(1) £ P, and there-

={T)

fore by the definition of Pi (t) (¢ ¥ vy(B(1),0) # o).

- 31 -

(C''5): Assume for some p € N

(4.38) Ic VPO | Lo,

(1)

(4.39) (H) ¥ y(p,0) # 0), and

(4.40) (e YPsO) 4 o YBLD 00

We shall show

y
(4.41) cY®PO) Lt L m torall

A
=

v(p,0) v,
Take, first, yI:E X2’ then C n C

(ET) (x Q(f) y(p,0) = o), which contradicts (4.39). |f, on the other hand,

n

Qf, because otherwise

Y.
y; € X;, then C v(p,0) £ T £ @& would Tmply p € P., hence
C v(p,0) N C v(B(1),0) # &2, which contradicts (4.40) Thus, under the
assumptions (4,38)-(4.40), (4.41) is proven. (4,38) together with (4.41)

is a contradiction to (4.37), hence (C''5).

However, (C''S) true would make " ¥(p,o) defined" a decidable property
(by Lemma 4.7), which contradicts Rice's theorem for general Gddel
numberings (Rogers [13]). Thus, we have to reject (4.37), il.e. the con-

cluslon of Theorem 4.6 Is true.

- 37 -

Remarks on the Theorems 4.5 and 4.6:

1.

The conditions (C1) - (C3) are really "easy to check" (cf. p.11) for
all the computability formalisms encountered In the |lterature. For
instance, for the Turing formallism, consider the Ystates™ Y which

consist of the following components

The program P

the square number o

.42)

the internal configuration S

the tape Inscription b ("blank'),

where P consists of the quadruples qoquO, gleq1,...,qleqi. It

is clear that the effect of the computatlons started with fthe states
y] is the same for all i: remain in the internal cenfiguration qo

and move steadily to the right.

| f we encode the states of the Turing formalism in seme effective
Way, the Inltial states yy can be given by some B QR]. (C1) is frue
since the square number steadlily encreases and the computation never

stops. (C2) 1s satisfied because two computations starting from Y

“and yj (I # j) always differ by their Turing tables P pj. As for

(C3), 1t Is readily seen that the states which occur in the compu-

tation starting from a Y consist of the following components

N

the program P
a square number a € N
(4.43)
the internal configuraticn a5

the tape inscription blank™.

It is (intuitlively) decidable whether some given state has the form (1.43),

hence, after some effective encoding this property will be decidable.

Similar "programs" can be written for all the other formalisms to show
that the preposition of Theorem 4.5 is fu| filled, and therefore there
is good reason to believe that Theorem 4.5 is a useful tool for easy

equivalence proofs of further computability formalisms.

Though, from the examples, there is much evidence to suspect that suitable
Y in Theorem 4.6 can always be effectively enumerated and that (C3) is
also a necessary condition, we were not able to prove this under the

very general assumptions:on- P-decompositions.

There are many equivalent forms of the condition (C1) A (C2) A (C3) which
morefapparently show that the intuitive meaning of this condition is: y
must have the power of steadily altering one "component" of the "state!

vhile not changing some other, I.e. there must be the possibility to

execute a computation with some Information. while storing some other

informaticn,

_34..

Maybe, 1t represents some Interesting insight into the essence of
computation that this Very general principle unter the very general
assumptions for P~decompositions Is sufficieat and (at least In [ts non-
effective version) necessary for a P-decomposition to determine a Gédel'

numbering.

]

We add some more propositions on p, ¥, k, vy which are of minor interest.

At first, generallzing Davis ES] one can easily show

Proposition 4.8: If p, ?,K,y determine a P-decompositlion of a Godel

numbering then

cC:= {vy | [@,KJP (y) 1Is deflined }
is a complete set (see Definlition 3.3),

Proof: Let WT(I,x) be the Godel numbering of Kleene's normal form theorem
(Davis [6], p.63), and T € R, such that (1,%) (¥ (i,x) = ¥(t(1),x)).

Then

U, = { x| ¥o(1,%) Is defined } =
= { x |¥(t(i),x) Is defined } =
- {x o [8,6]7 ye(i), % is defined } =

= { x| y(r(i),x) €C}.

Thus, taking f(1,x) := «y(t(1),x), the proposition Is proven,

- 35 -

Continuing the Investigations presented in Markov YQJ one might suspect

that:

Ifp, ¥, k, Y determine a P-decomposition of a Gddel numbering then o

must be of large oscillation, 1. e.
(4.44) (y,z)(Ex) (p(x) =y~ x > 2),

That this Is not the case is shown by the following argument. Let some

p, ¥, x, vy determine a P-decompesition of a Gddel numbering ¥ . We define

TWy), Tf k(y) £ o

uZ(K(z) = omn plz) = ply)), otherwise,
(4.45) j/K (y), if «xly) #o
k' (y):= 1 T, If x(y) =o~Ay# uzw(m = oAapl(z)= ply))
}
k.o . Ootherwise,
ply), 1+ «'(y) = o
o' (y) Jf
L.o, otherwlise.,

It is easy to show that o', ¥', k',y determine a P-decomposition of

the same G&del numbering Y . However, for r > o p'(y) = r holds for

exactly one y, which contradlicts (4.44),

.,.36_

On the other hand, one can show

Proposition 4.9: |f T € R1 Is of large oscillation then one can flind

@, Kk, vy determine a P-decomposition of a Godel

¥, k, y such that Toys

numbering.

Proof: If p is of large osclllation then one can find o5 € R1,

T, € R2 such that Ty Tpps Ty @re pairing functions (following Markov

[9]). Take some p', ¥', ', y' which determine a P-decomposition of

Goédel numbering then ¥, k, y defined by

oy (i,x) = rz(p' yUCi,x), vy (i),
(4.46) ’

] . oyt]
Y(y): Tz(p y Tzz(y), ¥y Tzz(y))),

. . -
{o, if o« Tzz(y) o

Lj, otherwise ,

1]

k(y):

are the desired functions.

The following proposition shows that we can't get through without any o

Proposition 4.10: If o, ?, Kk, v determine a P-decomposition of a Gddel

numbering ¥, then p can't be one-one.

Proof: Assume p to be one-one, and take 1,x such that W(i,x) is undeflned,

fe. () (e 37

y(i,x) # o). Let p y(i,x) = r. Since y:= «y(i,x) is

- 37 -

the only y such that p(y) = r, but «(y) # o there can't be any i',6x!'

such that y(i',x'") = r, This Is, of course, impossible.

Maybe, 1t Is Interesting fo note that It is not necessary for ¥y te

"allow cycles", i.e. that

(+.)

Sty
(G.47) (By, by, 1) (F A1) A Py = 2.

This is clear by inspection of the speclal function

(4.48) Y(y):= a,(0..(y), o

5(0s, (y)+1),

3240 933
which is such that there are p,c ,y such that p, @, , y determine
a P-decomposition of a Gddel numbering (see Buchberger [3], p.4).

Nevertheless, for this ¥ condition (4.47) is not fulfilled. This fact

s not supported by the experience with programming languages where

"idle loops" are quite an ordinary phenomenon.

- 38 -

5. Conclusions.

We hope that we could give an ldea how a detalled study of P-decompositions
of G&del numberings could add to our Insight in the essence of computa-
bility formalisms., A further investigation <hould have the following

stages:

a. A thorough solution to Problem 2.2, which should, especially, Include
a theorem of the following kind: ¥, k fulfill some criterion K if
there exist p, vy such that p, @, Kk, vy determine a P-decomposition
of some G&del numbering.

b. Definition and-study of a notion of "program" Independentiy of v,

p , only based on the structure of ¥ and k. |s the property
"programming language which alters its programs during'execufion”

an intrinsic property of the corresponding ¥? (It 1s not an Intrinsic
property of a Gddel numbering: The ALGOL definition given in Lauer
{8] works wITh‘a ¥ that alters programs during execution though

this would not be necessary for ALGOL).

c. How does ¥ (and, maybe y) determine a structure of the programs
and data, i. e. how does semantlics define syntax?

d. Can we give theorems about the "recognlzing power'" of some P-decompo-
sition p [@, K}P vy(i,x) (where p Is a mapping p : N> {0,1}),
which would give a general framework for the results on the recognizing

power of special classes of automata (finite automata, pushdown auto-

mata etc.).

....39_.

References

¥y
—_
-

(2]

~—
u »

!

P
—_—
—_—

Jp—

M,

A,

Blum, A machine-independent theory of The(pomplexl+y of recursive

functions, JACM 14/2, 1967.

. Buchberger, Associating functions and the operator of conditloned

iteration (Russlan), Comm. of the Joint Institute for
Nuclear Research, Dubna, 1971, (engllish translatlon:

Bericht Nr. 71-1, Institut f. num. Math., Univ, Innsbruck).

. Buchberger, A comment on Blum's signal functlions , Bericht Nr.

71=3, Institut f. num. Math., Unlv. Innsbruck, 1971.

. Davis, A note on universal Turing machines, in: Automata Studies

(shannon, McCarthy ed.), Princton University Press, 1956,

. Davis, The definition of universai Turing machine, Proc. of the

AMS, 8, pp.1125-1126, 1957.

. Davis, Computability and unsolvability, McGraw Hill, 1958.

. P. Ershov, Operator Algorithms I, Problemy Kibernetiki 3, 1960.

Lauer, Formal defintion of ALGOL 60, Technical Report TR. 25088,
IBM-Laboratory Vienna, 1968,

A. Markov, On the representation of recursive functions (Russian),
Doklady Akademii Nauk SSSR, n.s., vol.57, p.1891-1892, 19417,

A. Nepomniaschy, Conditions for the algorithmic completeness of
the systems of operations, in: Proc. of the IFIP Congres=

71, Ljubljana, 1971.

- G, Rlce, Classes of recursively enumerable sets and thelr declsion

problems, Trans. of the AMS, vol. 74, pp.358-366, 1953.

- 4 0 -

ﬁZ‘ H. Rogers Jr., Godel numbeiings of partial recursive functions,

The Journal of Symbolic Logic 23/3, 1958.

[13] H. Rogers Jr., Theory of recursive functions and effective

computabiiity, McGraw Hitl, 1967.

D&] H. R, Strong, Algebraically generalized recursive function theory,

IBM J. Res. and Dev., 12/6, 1968.

