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EFFICIENT algorithms for the inversion of symmetric tridiagonal matrices uie
obtained. The results were published in {1].

Tridiagonal matrices are used not only in the application of finite
difference methods to boundary value problems for second-order differential
equations {21, but also in the solution of problems of nuclear physics (3],

Hence thete is great interest in economical methods for the inversion of high-
order band matrices by computer.

In this paper efficient algorithms for the inversion of symmetric tridiagona!
matrices are obtained. The methods of inversion obtained are compared with
other methods. The theorem proved is useful for the solution in analytic forn :t

the problem of processing physical information about the motion of charged
patticles in bubble chambers {4].

Let A be a non-singular tridiagonal matrix
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We find the matrix inverse to A. For this we use an expansion of A in the form
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where

* Zh. Uychisl, Mat. mat. Fiz., 13, 3, 546-554, 1973,
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0 otherwise

mmetry of the matrix A we obtain a recursive

wlation for the coefficients Ci:
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Wo obtain
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[he inversion of each

We introduce the notation: A™ = A
Q7 =gz fi. Then the coefficients of the inverse matrice

C,=0,C;=- @ 2<ig

)
the matrix inverse to A by using (1%

A= CQTD

of the cofactors in (3) presents no difficulty.
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We consider @D = F = {|fy" R
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In order to determine the elements of the inverse matrix 4*! we muitiply ¢!
and F' in such a way that the elements of the preceding column of A~ will be
functions of the elements of the succeeding column, Since 4 is symmetric, the

recursive formulas are given below only for the elements of the upper triangle of
A

At =Cutili—ag []en i<), j=n—1,n-2... 1

In these formulas the C; are the elements of the continged fraction (2). In the
calculation of the elements of the matrix A*' it is useful to use the following
recommendations:

{a) the filling in of the inverse matrix must be begun from the diagonal

upwards and the same holds for the last column, since it is especially simple
to caleulate;
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-1 ELI - — .
Ai'l n= Cihip " 1= mn—-1,...,2;

() the calculation of preceding columns in terms of the succeeding ones
-+ patural order of numbering of the columas in the matrix is meant) is

Cdamed by 4 operations on each element of a column of the inverse matrix

. vo muitiplications, 8 subtraction and a division)-

The method enables the inverse matrix to be obtained directly in packed
s, which is especially useful for setting up the calculations in algorithmic

LA ges.

often (see, for example, [4]) it is useful to know the explicit form of the
Jlements of the inverse matrix A™', but this involves the use of rather unwieldy
s difficult to work in practice. However, if in {(4) we

xpressions with which it i
s to relations with the last column, it is easy

,mange from successive recursion:
... obtain a formula fot the inverse elements in terms of Ck, which can be used
1 the matrix inverse to the tridiagonal matrix is an intermediate in a chain of
matrix expressions {4]. The form of this relation with the coefficients

enwicldy
', is given below:
n n 1
—1
A,-,-*‘zal._[(,‘h e -ai Me-
b= ;i=~'j+| h=i+1
n—(jr1} it U1}
—1i . . .
(7 E;“"'“*‘“C" lICn—m i<], jsj<n—1;
pe=1 Be=itd n=4g
1 n
A t=g=——"" A “—a”Ck i<isn—1.
" b+ Cuttn’ " ’
h=xi+i

Here and later

qzl( )=0, ﬁcu:i, i g<p.
p=p A=p

Wy represent the upper triangle of the inverse matrix A-! as the sum of two upper

roa-triangular matrices: HAU"H = HBUH + |Rijl, where

Bk %
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[( ﬁ Ck)[f* ﬁ C,;—-(am ﬁ Cp.)_l},
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H

o [l € t<ig<n—1,

n
keify

a, i=j=n,

Therefore, in Equation (6) each element of the matrix
product of two cofactors.

only on j,

B is written as (he
One of the cofactors depends on i, and the other

By means of fairly unwieldy transformations of the third term in Equ
(5) the elements of the matrix R can be represented in a form similar to (

()T el + S E(fa)]

a
k=it Cgemjgr " =ita 7 g
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Ri‘ﬁr- n
0 Yo. II ¢, IigKn—1, j=n—1;
E=ify
™
0- II ¢ 1<ign, j=n.
k=it1

Since in Equations (6} and (7) the cofactors depending on i are the same,
each element of the upper triangular matrix inverse to A can be written as the

product of two elements, one of which depends only on {, and the other only on
j-

We finally obtain Ag-" = V'-Wj, ifigj. After some simplifications of
Equations (6) and (7) we obtain for the components of the column-vector V and
of the row-vector W the expressions

S G
(8) V,::HCM 'lgiSR; Wj_—_Vj(a""E;thm’g)' 1€j€l¢

Re=jt

r

a= 1 1 Ci=0,0p = = _ ai__.,zgkgn..
bn + Cpa, bk-l + Cpyapy
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Ia crder to construct the aumerical procedure the [ollowing recursive

el for \'r'j must be used:

- . 1
“’;‘;Vi+ll(iil’vi+x-—*"—"): i= n—1,..., 1 W.=a.

ST

ence the first part of the following theorem has been proved above.
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HAilsa non-singular tridiagonal matrix, all the elements of which are non-
sy, the elements of the inversc matrix may be represented in the form
PO G
IJVJ’,',, ] =i
120 converse also holds, that is, the matrix inverse to (9)is tridiagonal.
proved by the method of mathema-

The second part of the theorem is easily
£ a matrix representable in the

it being useful for the inversion o
ta (9) to use the formulas of the bordering method [6]. Without giving a
“wrnled proof of the second part of the theorem, we present the general form of
‘i elements of the inverse matrix which is obtained by the method indicated
stove. The validity of the second part of the theorem is easily checked by

Aiiect multiplication of the direct and inverse matrices.

voal induction,

Therefore, let M = M4, M= (M ij-lﬂ [t and

iy I’é:
i) .”II‘»):{ ﬁ: !

ﬂ,—a,», ]~<- i

Then the elements of the inverse matrix M! are of the form
~t
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3<i=j=n-—1;

M,;=0, ti—jl=1;
[e 23 -t
1”...4,‘:—&3#'(5;—;—&') N 2$]=L+1§ﬂ;
§

M ig=— OL,"'( pi— ?‘ ?’)

. 2<i=j+i<n,

that is, as follows from (11}, M~ is triangular. The relations (11) may be g, -
for the inversion of matrices of the form (10). Therefore, the theoiem is Prosr

The representation {9) is convenient in analytic transformations. In what
follows we will call the representation (8) VW1. A comparison of the numery ;!
procedure VW1 with other methods will be given below.

Below we give another proof of the first part of the theorem which enables
us to obtain no less efficient an algorithm for the inversion of tridiagonal
matrices. A minor of the matrix obtained from A by the deletion of the i-th row
and j-th columa, will be of the form

braz :
a-;bg!lg
a1 Y
21 bi—- 118
%1184 %ige
;= 9194
bit19i4.2
0 %+20550%743
aﬂ
a nbn

By a theorem on block mattices {7], the determinant is equal to the product
of the determinants of three blocks in the diagonal, the left upper and right
lower blocks being tridiagonal, and the middle block being upper triangular. We
agree to write
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sen for the elements of the upper triangular inverse matrix Aﬁ“ = ('1)i+j“ij
“ g ], we can write
(# 1)‘+:

— detimy (by, ... bi; Baye ey B X
de"u(b1,...,bn;{lr,_!_'_,a" -t y G-ty U2y s A

Ayte=

, .
X (H ah) Qeta (Brses oo B sy e ooy n).

k=it

cr!alc#O,lz:Z,...,n,lhen

—t

j " i n
llah':"[Iak (Ilahilah) .
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{ we introduce the notation

1) V.= const (— 1) deti(by ..., by @y v vy i) (H ah) -

-1
Wi=(—1)detu_i(Fsrr, ..o, boi @gnen.,@a) ( H )

Remjet

const ==[det, (B, ..., ba; Gay sy .0y @a) ]-‘H an,

k=12
the formula for the elements of the upper triangular matrix assumes the form
-1 . -
A,’j =VW;, i<l

1y this we have demonstrated the validity of the first statement of the theorem
lwigj. The validity of the statement of the theorem for the lower triangle
tollows from the condition of symmetry of the matrix A.

The determinants in (12) are casily expressed recursively, namely:
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dety =1, det, (b)) =h,

deti (b, ooy b @y o ny @) == bideti (b oo, Bioy) @y, @)
(13)~ afdelia(by ooy by @, Ly 0}, =23, .,

det, (b,) = b,

del, (bn-—H-h B I B S

=bo i deb (Baorgn ooy D03 Guciagy oo e, @0) —
— de{!-—z(bn—us, ey b.: Qomigigon s {Zn), [ == 2, 3’ T )

Formulas (13) are easily obtained if the determinant of the symmetric tridiapos.::
matrix is expanded twice in succession: the first time by the elemeats of the
first (last) row, and the second time, in one of the terms obtained, by the
clements of the first (last) column.

From (12), (13) it is easy to oblain the following algerithm (VW2) for
calculating the quantities V,, W;, where ¢, = ¢,4, = 1:
b Wiy +a,W;
W= 0, Wo=(—1)" W= — 2,

&;—y

j=n+1,...,2,

bi V + {2 V,'
Vom0, Vim — /Wy Vipam — ottt om0

ai+z

1l

i=0,...,n—2.

The possibility of representing the elements of a matrix inverse to a
tridiagonal mattix in the form Aij" = V,-Wj has a number of practical advantages.
Firstly, the storage of the inverse matrix in the memory of the computer requires
21 locations instead of n?, since we store only V, W. This enables us to solve
the linear system

(14) AX=B

by the direct method (that is, X = A™'B, where A is tridiagonal). The absence of
the representation {9) led many authors to avoid the direct method of solving the
linear systems (14) and to develop special methods [5]. Secondly, the calculu-
tion of only one component x; < X (the solution of system (14)) does not requite
the calculation of all the elements of the inverse matrix, but only that of the
other components of the solution vector. This advantage is obtained in (4] by
fairly complicated method.

The method of storing the matrix A in the computer memory in the form of
two vectors is also convenient in the case where it is necessary to retrieve it
elements from the memory many times in succession (for exauple, to solve (14
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h many right sides). In principle it is then necessary to perform two reading
-wpations via index registers and one multiplication V,-W,-- But if the whole
averse matrix A~! is stored in the computer memory, it is usually necessary to
coleulate £ %0+ in order to determine the position of the element Aij" in the
(ompulcl MEMOry. Therefore, one multiplication and several index operations
4o also required. This implies that economy of the memory does not slow the
«peed of computation, and this is a great advantage over the pivotal condensa-

1un method (8], where B in (14) is a matrix,

In conclusion we mention that the inversion of a tridiagonal matrix by the
Vi1 method requires 9n + n(n + 1)/ 2 operations, and by the VIW2 method only
sa 4 n{it + 1}/ 2 operations, which is considerably less than the time spent in
using, for example, the Jordan, bordering and square-root methods [9].

The advantzges of the proposed methods of inverting tridiagonal matrices
indicated above are essentially valid for the QR-expansions {10] of the matrix 4,
«ince more than 1T multiplicative operations are necessary to obtain only the
unitary (orthogonal) matrix @.

To obtain the upper non-triangular three-layer matrix R at least as great a
nusiber of multiplicative operations is required. Therefore, it is obvious that not
only is there an advantage in the volume of the memory required for the storage
of A7 in the forn VI instead of @R, but also in the expenditure of computer
time on obtaining the upper triangle of A™'. Also the solution of (14) taking into
account the QR-expansion of the matrix A leads either to the solution of two
simple systems of linear equations

RX=Y, QY =8,
of to the solution of the system
RX =Q"B,

which once more requires more than the 10n + n?/2 operations necessary for the
<olution by the proposed VIW method.

The author is obliged to N. N, Govorun, E. P. Zhidkov and I. N. Silin for
useful discussions.

Translaled by J. Bery
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