INSTITUT FUR NUMERISCHE MATHEMATIK UND
ELEKTROM I SCHE INFORMAT IONSVERARBE I TUNG
UNIVERSITAT INNSBRUCK

Associating functions and the operator of

conditioned iteration +)

Bruno Buchberger
A —,

Bericht Nr, 71 - 1 Juni 1971
S

+) This is an english version of the russian original, forthceming

as a report of the Joint Institute for Nuclear Rescarch, Dubna.

A -~ 6020 Innsbruck, Innrai: :

SUMMARY

Introducing the notion of "associating functions" (section 1) and
the "operator of conditioned iteration" (definition 2.1) we give
a new representation theorem for the recursive functions. In section

3 the result Is appiied to the semaﬁfics of programming languages.

(04) We define functions ¢ m (m> o), that turn out to be universal.

¢-m(x,x1,...,xm)-_-eva|{< Xs< Xypeon,X > ,m>)_ _ _, where 1
o,4,0
eval(n) = @ Ij(n),
2{n)=1(n_ _ =1+ substin _.atn _ _)),
0,0 2 . Lo
n_ . =2+ subst(n _,n_),
0,0 Z l,n_ _
o,l
n___=3+ subst(n _,n _),
0,0 2 o,
n__= 4 > subst(n _, aln s N)),
c,0 2 1,0 1!1
n__=5n= subst(n _,g{(n _ _,n_ _,n),

0,0 1,0 1,1 1,2
n__=f-5->(n__=n__+|:n,5,n“_,1,n__].
0,0 o,1 0,2 0,3 0,4

else » [n 0.0 _ ,i,n])»
0;4,71, -
0,2
n_.=7+ (n____=0= substin_,n_),
0,0 1,0,0,0 2 1,0
else [n,S,n_ 2,{n ,0/0,87,
0,1
n__=8 =+ (n___ __ =5+subs1"{n_,n____),
0,0 0,4,0,0,0 2 0,4,0

etse -+ [n,0,n ,1, 1 _,?,[n,a/i,ﬁj]},
3

<< 0,0,0>> ,

- 10 =

n__=§-P‘ (n_._zn__ "'Eﬂ,a,n__:Trn__]a
0,0 0,2 0,3 0,4 0,5
else -~ I-n ,0/5/n _ s _ ,S/T,v(n__),Sli,v(n_ﬂ)j),
N o,1 1,n_ _ 0,1 0,2
c,2
else » 0},
subst(d,r) = [d,6/8/d_ _,5o/2,v (d_ 7.
0,2 0,2
We denote n__=n, n _ =(n_) , and define
50 2k 2k 1 3
Definition 2.5: n~n’, if
(Bl(T<k) (n_. = nlLoL . for J = 0,1,2,3
2 ’O‘J 2 JO)J
" =t o for agA,
2 ,0,4,a. 2 ,0,4,a
o =W for a €A,
2 ,0,5,a 2 ,0,5,3
n oy =n’ .. for agA) A (n_, . =n’ 2.
2,1,a 2 ,1,a 2 2

We need the following lemmas:

Lemma 2.8: The relation n~n’ 1Is an equivalence reiatlion.
Lemma 2.9: qrn’ == 2(n)~aln?’).

Lemma 2.10: n~n’ = eval{n) ~evalin’).

Proofs: Ltemma 2.8 is obvious. For proving Lemma 2.9 one has to evaluate

all components of 0 (n) and Q(n?) which are used In Definition 2.5

_..1]...

{(using Lemma 1.8 and 1.9) ahd to compare them. This procedure is cumbersome,
but logically easy. We omit details. Lemma 2.10 is immediate consequence of

Lemma 2.8 and 2.9 and the definitlon of the operator P,

We show now that ¢ has the properties of & universal function. Analysing
m

the structure of L and using Lemma 1.1, 1.2, 1.5, 1.7, and 2.7, we obtatin

the first property necessary for universalify.

{for m» 0).

1
Lemma 2.11: (IJmE‘B(G)m+1

tet ®F = (] fixg,eee,x) = ¢ (x,x co,X) for x €A} , b= U OF
m 1 m m m

1%

It Is clear, that “’Fm ¢ B(B) (using Lemma 2.11). For showing

BIG) ¢ ¢Fﬁ| (m>0) we prove B(G) ¢ ?F, even B(G) € ®F, where

YF - aJ OF and
m m
OF . | fix X) = (X, X, ,00e,X)
m 1’ + o8 ’ m m ' 1’ L BN] ‘ m

(dY(eval(¢<x, <x .,xn‘>,d >) ﬂ«eval(subsf(d,f(xl,...,xm))))

12ee
for x € A},

B(G)E. ®F follows from the assertions

(04.1) G ¢ *F

(0472) °F is ciosed under substitution

(04.3) ®F is closed under application of the operator P,

which we shall show in the sequel.

(04.1) We show g € PF. Let n9 = <«< T>,<x5> ,d>, where d is
arbitrary. We have r1f _=1,q f ot Xy 11? = d (Lemma 1.6) and
0,0 t,0 2

- 12 -

5 (Lemma 1.3). Therefore,

. .
o

d
o,

(2.1) "evall(ndJ = gval{ Q(nd)) = eval(subsf(d,g(x1))). Thus,

(2.2) ¢ 1(<t> ,xi) = gval(<< 1 >,< Xy> , w>)5z o= eval(n") __ =
' re 0,4,0

(Lemma 1.9))
eval (subst(w,g(xl}))_ .. = subst(w ,g(x]))_ __ =
: : 0,4,0 0,4,0

{Lemma 1.8)

g(x1).

From (2.1) and (2.2) it is evident that g & ‘F.

Q_

Analogously, one shows u?, c a, o€ F. One only has to substitute the

n

- y'

elements < 2,7-1>, < 3,y> ,<4> and < 5>Instead of <>
eval(n d) and the corresponding function ¢ m and to evaluate these terms.
(04.2) Let he®F and f,,...,¢ c®F (r 3z, l.e.

ro- n

(2.3) hlyp,eeny) = @ 5y Ly,

. ¥ -
(2.4) fl(xl""’xn) $ n(fi,x1,...,xn) (i 1,...,07,

(2:5) eval(<h™, < Viseresy.> ,d) ~ oval (substld,hly,,..u,y 0D,

(2.6) eval(< fi,< Xise

for g", fT,...,f:E A.

* o
We put nd = «<<6,r,0,h, <fT,...,fI_>>,<xl,...,xn>,d> and evaluate

+) (Lemma 1.9)
= means: this equation can be derived using Lemma 1.9.

ve,X> ,d)~~ eval(subst(d,f.(x,,...,x 1))} (i =1,...
n i n

into the expression

(réo)

_ - 5 . d«
evat(nd) = evalca(n®y = evaic 09,5, 09 2,00 ~
- c,4, n_ _ -
0,2
(Lemma 2.10) " p (2.6) d _ ,
~ evai (<f{, CHypeenyX >, M >) ~~ eval(substin ,f1(x1,...,xn)))fv
{Lemma 2,10) *
- e o X k)
~ evai{ <<6,r,1,h", <fl(x1,...,xn),f ,...,fr>>, CXqpeneyX> ,d >).

The foliowing s+epé don't require new methods. We, therefore, omit details.,
Using several times the definition of the functiong (n), Lemma 2.10, the
relations (2.3),...,(2.6), induction on r, and, finally, Lemma 2.8 we obtain

the desired relations

d
(2,7) evalln)~ eval(subs+(d,h(f1(xl;.;.,xn),.;.,fr(x1,...,xn))), and

- - - X *
(2.8) & (<&,7,5,h, <f

»
1,...,fr>>,x1,.;.,xn) =

= h(fl(xl”"’xn)"‘"fr(xi""’xn))'

(04, 3) Lefhe"l'r1, ie.

(2,9} h(xi) = ¢1(H*,x),

1

. . =
(2.10) eval(<h™, <x,>,d>) ~ eval(sust(d,h(x,))) for h € A,

1

Simitarly to (04.2), using the "branches" n_ _ =7 andn_ _ = 8 of
0,0 0,0

the function @ and induction on'The number of iterations of the function
h, we obtain the deslred reiation

(2.11) eval(.<<?,ﬁ‘,5} g <Xy >,d5) = eval(subsf(d,hptx })), and

1 i

(2.12) ¢ ,(<7,0%,35 ,x,) = hp(x1)

- 14 -

(05) For m,n> 0 we define

m
n(x,xi,...,xm) = <9,m,o0,n,x, < Xpoenos X >>
Obviously S: EZB(G)m+]. The S-m-n-Theorem is shown by evaluating the

expression

evai(<< 9,m,o,n,x, < Xpsees X 2> <Y h0au,y >, T

0,4,0

For this one has to carry out induction on n, using the "branch n _ _ = 9
_ 0,0

aof the functlon £,

Thus, the first assertion of Theorem 2.2 is proven. The second assertion

follows from Lemma 2.11 and the fact that every function f:E:B(G)n can be

represented in the form

f(xi,...,xn) = ¢ n(x,x1,...,xn) (for all n»> o},

which was just established.

3. An_application tothe semantics of programming [anguages

We start from the concept that the semantics of a programming language L
can be given by a partial recursive function ¢ L(p,d) of two arguments,
which for two numbers p,d € N, coding a programm p’L and data d¥ of L,

computes the number r = ¢ L(p,d)eN, coding the result of the application

*

of the program p* to the date d°. it seems that this preclse substitute

of the intuitive notion "semantics of a programming language" has arisen

-

recently (see, for instance, Uspensklj (91, [io], Brum El] and the work

of the IBM Laboratory, Vienna, e.g. (4], [5]).

Using Theorem 2.1 we now can decomnose such an Yinterpreting “unction”

-4

15 =

& (p,d} into three functions YL(p,d), 9,(n) and p ¢ n), such thet

L

P

@L(p,d) = :pL(3 L(YL(p,d))L where

t

Y EL and p_ can be obtained from a,0 , s,cg and the functions of

UN by a finite number of substitutions.

The function YL(P:d) can be conceiveg as a function, which for every pro-
gram p and data d defines an "Initial state" Mo = YL(P:d) of an automaton.
For this a fixed number of operations, namely essentialily "storage opera-
tions" a, o, are necessary, EL(n) can be conceived as the translition
function of the automaton, which does the actua! computational work. The

number of iterations of the function @L depends on the initial state U
The number of operations during cne "step" (i.e. one application of the
function gL(n)J), however, Is.again fixed. Alsoc during computation by the
automaton al| operations, essentially, are "storage operations" o, o.

Finally, by applying pLs the result of the computation is read from the

final state ng (for which { “f) = 0). This is again done by a fixed

0,0
number of operations.

There arises the following problem: give necessary and sufficient conditions

for o, EL and vy , in order that the function

_ P
¢“p,m = pL(¢L(Yup,M))
defines an effective G&del numbering for F:ek (for the notion of effective

G&del numbering see Rogers [7}, Uspenski j [30] p.294 and Strong LB]). Of
course, the most interesting would be conditions for EL. This problem, until
now, Is not solved. A solution would give interesting insight Into the struc-

ture of programming languages and computer concepts.

- 16 -

.N. Govorun, S.S. Lavrov, N.M. Nagornij, Yelena Nogina and G.A. Ososkov
helped me during different stages of the work. V.Dushskij and E.Kurenniemi
spent much time for discussing with me the subject of the present note.

To all of them | want to express my sincere gratitude.

Literature:

[lj E.K. Btum, Towards a theory of semantics and compllers for programming

languages, J. of Computers and System Sciences, VoI..B, Nr. 3, 1969,
L2] M. Davis, Computability and Unsolvability, McGraw Hill, 1958,

[3] H.M. Fr;edmann, Axiomatic recursive function theory,
- Standford University, 1969, unpublished.

(41 P. Laver, Formal defintion of ALGOL 60. TR 25.088, IBM Laboratory, Vienna.

[5] P. Lucas, P, Lauer, H. Stigleitner, Method and notation. for the formai
definition of programming languages, TR 25.087, 1968, IBM Labora-
tory Vienna.

[6} A. |. Malzev, Algoritmy i rekursivnye funktsil, lzd, Nauka, Moskva,1965.

[7] H. Rogers, Jr., Godel numberings of partial recursive functions.
J. of Symbolic Logic, Vol. 23, Nr. 3, 1958,

[8] H.R. Strong, Atgebraically generalized recursive function theory,
IBM J. of Research and Developmenf, Nov. 1958,

[9 1 V.A. Uspenskij, Vytshislimye operatsii i ponyatie programmy,
Yspekhi matem. nauk 12, nr, 1, 1957,

L10] V.A. Uspenskij, Lektsii o vytshislimykh funktsiyakh, Gos. izd. fiz-mat.
fit., Moskva, 1960,

(11 1 E.G. Wagner, Uniformiy reflexive structures: on the nature of Gddeliza-
tion and relative computability, Transactions of the Amer. Math.
Scc., Vol. 144, Oct. 1969.

- -

1. Associating functions

We use the folioﬁlng nhotation. N is the set of nen-negative integer numbers.
Let A be an arbitrary set. By FA we denote the set of all partlal functions
with arbitrarily many arguments, the function values and arguments belng

elements of A. Let F be a set of functions, then Fn Is the set of all n-=ary

functions of F, e.q. 2 ='71JF:: For"«---nzl, 151 5n we define

n
(1.1 ui(x‘, ceny xn) . X,

and for nz1, ye€A

n
(1.2) cy(xI, e, xn) =y,
A A n n FA 1"
U (C) is the set of all uy (cy) of . The notions "substitutlon of
partial functions of FA", "minimalization operator u" and "primitive re-
cursion" are used In the ordinary sense (cf. Davis [2]).—F1,4\, {x) and
(Ex) denote negation, conjunction, universal and existential quantification
of x, respectlively.

Definition 1.1: The funcﬂonSaGFg and cng are called

aggociaf!ng functlons (AF) for A, [f

_MH (EcegA)agA)(ala, el=€), and

(AZ) (b,s,a,c€A)(alb, o(s5,a,c)) g{c. if b=a

a (b,s), otherwise

This definition refiects the following intuitive concepf. c = ala,s)
reads: ¢ is the element ("content") corresponding to the element ("address")
a in "storage" s, or "¢ Is the a-th component of s". s' = (s,a,c) reads:

s! is a storage, whose a—th component is ¢, all the other components being

the same as in s, (A2) guarantees this property, whereas (A1) guarantees

the existence of a "void" storage e, whose content is known, namely

"void", for all addresses a.

In the following we consider a fixed domain A with given AFq, 0. We
require the existence of at least two distinct elements in A. We agreé
that the variables 1, J» K, I, my, n, t always range over N. These symbols
and the numerals 0, 1, 2, ... used9és indices denote narmal indexing,
whereas all remalning symbols at index position denote the application

of the function a, e.g. s, abbreviates ofa,s), and for n 22

s - a(an, s '). Obviously,

a,’ ‘e
1 i 21 ’ an--l

Lemma . 1.1: The (n+1)-ary functions S, a {n 21) may be
. - i 'l.r LA] n
obtained from o and the functions of UA by a finite number of substi-

tutions.

We fix §# ¢ and define o = of €E,28,6), v (x) =0 (e, e, x), and

n+1 = v () for n 20, 4+ is easy to check the following lemmas.

Lemma 1.2: The function v may be obtained from o, c;, u1 by a

. <1
finite number of substitutions.

Lemma 1.3: n#e for n 20 and m # n for m< n.

Sketch of the proof for Lemma 1.3: €5 * € but 56= § #e, thus o # € .
TE = o, but SE =¢ o, thus, T#0. T =0, but e =c#0, thus,

1 # ¢ . For arbitrary n: induction on n. From Lemma 1.3 immediately follows

Lemma 1.,4: {f AF exist for a set A, then A is infinite.

We now introduce two abbreviating nofations using the brackets ['] and

<> i

< X> =0 (E ,O'x)’ <x]’ ey Xn> = [¢) (<x1’ e ey xh1>,-i_l’ xn)-

[s,a,c] = ¢ (s,a3,0),
[},a{l)/.../a(T),c] = {s,a(1)/.../a(T-1},g (Sé(l) (+-1), a(*),c)]
) PNy

for +> 2,
o (+)) (1 ()
ls,a; /...7a; *, Cypenesdy fonda T, cn] =

(1) (+1) (N (Tn_‘) (1) (Tn)

- C[s,a1 fooday y cyenna (Joda U0, e 1], g /ooida 7, cn]

for n» 2 and Tjg-.1 (j = 1,...,n.
We need the following lemmas:

temma i.5: The n-ary functions <x

1+°
from ¢ and the functions of C? and UA by a finite number of substitutions.

ea X > (n 21) may be obtained

Lemma 1.6: for n 21

Xy ifa=o0
<x ..Ox> =
1) }H a ———
n X s 1f a = n-}
k € ctherwise.

0
Lemma 1.7: The (y_t.+n+1)-ary functions
=1
(1} (t,) (1 {+.)

- 1 n
|_s,a1 /.../a1 » Cpeecesdy /.../an , cn] {n 31, *j 21) can be

obtained from o, ¢ and the functions of P by a finite number of substi-

tution: .

(1) (1) (t.) t)
Lemma 1.8: Suppose ——1(aj = a, A .../\aj Joe 3,) for all j,k <n,
| (1) (t,) (1 ()
j # k. Then [s,a1 /oo ey T, Cpaeeena Jud/a e]y,) *
b PR o
S P S B S
(cl) (*|+1) Ry if 2, =b N ../\a] = b
b ’ ,l.t’b
(We define (c‘) (*I+l) ' () = Cp» if TI = +.)
b sesayb '
(1) (1) {(t+.) (TJ)
Lemma 1.9: Suppose —{a. =23, A ...AQ. Ja g) for all
J k J K
Jrokgn, j # k. Then
(1 () S,
{é,al /.../a1 » Cysevesd /.../an cn] (1)) = 5 (1) +)’
: b s oD
b yeeash
(1) (1 (1.} (+.)
if—m(a, =b ... a, 3 =b JIA
J J
(1 (1 (1) (+)
/A— (b =aJ. ees b =aJ) for ali jgn,

-

Proofs: Lemmas 1.5 und 1.7 are obvious. Lemma 1.6 can easily be
proven by induction on n, where Lemma 1.3 plays an important role. Lemmas

1.8 and 1.9 are proven by induction on t, and n., For starting the inductions,

1
(A1) and {(A2) are used.

(1) (T1) (1 (+n)
[s,a] /.../a1 1Cyrenesd /;../an ,cn] is a convenient notation for

a complex "storage operation". For lInstance, [s,a/b,u,c/d/e,vj alters the

content of storage s in the following way: the b-th component of the a-*h

component of storage s will be u, and the e~th component of the d-th compo-
nent of the c-th component of storage s witl be v. All the other components

of s remain unchanged.

We give an example for AF. We put A = N, furthermore Py = 2,
Py e n-th prime number, exp{a,z) ... the exponent of P, in the prime
number decomposition of z (ago,.z z‘,,l'), and 1(z) = u_r(exp(u,z) = o for uxt).

Let us define
e [{s+1)-1 exp(i.se1)
a(a,s) = expla,s+1), o(s,a,c) = Py T"T pj P, -
_ j=o
Jj#a

1.

It is easy to show thatgy, ¢ satisfy (A1) and (A2).

2. A representation theorem for the recursive functions.

Definittlton 2.1: Letqg, gbe AF for A. The "operator of conditioned

A

iteration P" associates with every function ¢€F1

a function ¢P, which is

defined by the following equation

n, ifn =0

N}
-
Q1

¢ ()

L]

¢P(¢(nl), otherwise .

rek

We define s{x) = x+1 (x&€N) and F ... set of all partial recursive

funcffbns. The central aim of the present note is the proof of the follow-

ing representation theorem for Frek.

Theorem 2.1: Leta, o be AF for il Every partial recursive function

may be obtained from a, c,c;,s and the functionsof UN by a finite number

of substitutions and o n e appliication of the operator P.

In fact we shal! prove the more general Thecrem 2,2, from which Theorem
2.1 sasily foilows. For the formulation of Theorem 2.2 we need the foltowing

definitions.

Definition 2.2:Let HcF'. Then BH) (B'(H)) is the set
of all functions, which may be obtalned from the functions of H by a finite

number of substitutions and applications (one application) of the operafor'

P.

Definition 2.3: (Strong [8], p.468): The set of functions F cFA
satisfies the axioms of "basic recursive function theory" (BRFT), if

o er, Per,

b, ifx=a
(02) (Evy£F,)(a,b,c,x)(¥(a,b,c,x) =
4
¢, otherwise

{03) F is closed under substitution

(04) (existence of universal functions for all m>o0):

(Eo €F (F = {f] FOxg,0ae,x) =8 06, ,000,x) for x €A }),

{05) (S-m~n-"Theorem" for all m,n>0):

m
(ESn EFEHJ)(X’X]""'Xm’ yl,...,yn)

m . '
(Sn(x,x1,...,xm> is defined and

m
Qn{Sn(x,x],...,xm), Yyreees¥y) = @

m+n(X.X1n---pxm: Y]:H'ayn)'

We now can formuiate

Thaeaorem 2,2: Let g be an arbitrary function of F?

a,o AF for A, and G={$a,ﬁuuAucf'mm
1. B(G) satisfies the axioms of BRFT

2, B(G) = B (6),
Of course, from Theorem 2.2 follows (for instance with g = u:):

Coroiliary 2.3 Let G ={a IG}LJUA(J C?. Then

1. B(G) satisfies the axioms of BRFT

2. B(3) = 81D,

For getting Theorem 2,1 from Theorem 2.2 we use the known Theorem 2.4.

Theorem 2.4 (see, for ins?ance; Friedmann f3]. p.2.1, or Wagner|ﬁl],

p.2): Let F’c: FN, F* satisfying the axioms of BRFT, and s € F¥ Then

Froke £ ¥

For arbitrary AF a ,¢ fdr N F - Bl({ $,o ,o}k»UNL) CT} satisfies the

B
axioms of BRFT (Theorem 2.2 with g = s and A = N). Obviously, s € F Vi Thus,
g'”
appiying Theorem 2.4, Frekc F 1° As the functions c; themselves may bsobtained
B _
1 . . i _ 1
froT s and o by substitutions only (cy(x) = s5(s(...s(c (x))...)), Thecrem

- y times
2.1 Is proven, provided that Theorem 2.2 is true.

The operator P can be reduced to substitution, primitive recursion and

application of the operator y :

¢ (n) =% (n,u6 (n ,1)_ _ = 5)), where
: 0,6

o¥ 0,00 =0, 6% (n ,t+1) = 4 € & n 1))

Thus, using Definitlon 1.1 of [2],p.41, we know also:

Corol lary 2.5: Let a, o be AF for N, whore a, chrek. Then

PSR - -~

81({a » T ’S,C;} v UN) < Frek-
Together with Theorem 2.1 this leads to

Coroltlary 2.6:1let a,oc be AF for N, where ¢ ,0 & Frek. Then

8'({a ,0 ,s,c} v Ny = ETeK,

Finally, there remains the proof of Theorem 2.2, which consumes the rest
of section 2. At first, we have to check the axioms (01),,...,(05) (Defini~

tion 2.3) for B(G).

(01) UA ¢ B{(G) because the definiticn of G, Further,

1, n

cMix ee,X.) = ¢ lud{x,,e0.,x }) € B(G) for arbitrary n € N and
Y f y 1 n’.

1" !I

y €A,

(02) It is easy to prove (Lemma 1.8) that
¥ (a,b,c,x} =afl ala, of e,x,T)),[F P e,c,T,b])

satisfles axiom (02).

tn the following we write (a=x -+ b, else ~» ¢) instead of

¥a,b,c,x) and (a, = xX,+ b,, «.., @ =X 4+ b, else » ¢)
1 1 1 n n n
instead of (aI =X, = bl' else - (a2 Xy > bZ' else + (...(an = X
b, eise = €)...))), One easily checks
Lemma 2.7: The (3n+1)-ary functions (a1 =Xy b1,. L e bn’

else *+ ¢) can be obtained from the functions of G by a finite number of

substitutions.

(03) is satisfied by definition.

