ES - 5787

Bruno Buchberger

AN EXTENTION OF ALGOL 60

1. Altering programe during execution time

To alter programs during execution time is very easy in program-
ming lenguages of the asaemb]ﬁrtype. However, it i1s not possible
in ALGOL-like programming languages, The abeence of such a feature
in these languages is a severe drawback for many practical appli-
cations, for instance the realisation of "learning programs" or
the application of function descriptioqa resulting from symbol
manipulation programs‘to concrete argumenta. The removal of this
defect is the concern of the present note, where we shall define

a sultable extension of ALGOL 60, which in our opinion could serve
a8 a model for analogous extensions of eimilar languages (like
PORTRAN [€} PL/1 "7}, ALGoL €8 's)).

2. Informal description of the extension

The two main ideas of the present proposal for instelling the
desired feature in ALGOL 6o are:

1, We enable procedure identifiers to have a variable meaning
which can be altered during execution of the program by a
special assigment statement:

) proc i= c;‘ where proc is a procedure identifier and c the
identifier of an ALGOL data-entity (for instance an integer-
array). The meaning of this statement should be the following:
take the values(s) of ¢ and consider them as a desription of
a program scording te a certain code, transform this desription
into a machine language program part corresponding to a proce-
dure-declaration and take this déﬁlarution as the declaration
for proc in the further executioﬁ.

2. As an espential feature of 2 suitable code for describing pro—
grame we would propose that the values of ¢ after some easy 7
rediting" form an ALGOL procedure declarstion for the desired
pregram, The tranafofmntion {e a machine language program then.'
esgentially, can be realized by an application of the compiler
alresdy available for the concrete ALGOL-implementation. Thus,
the central effect of the proposed mew variant of the assign-
ment-stateaent would be & call of the compiler during execution
time of the program, s possibility which wae realized also in
Busse t1].

" Tor the theeretical purposes of this mote we shall use the folle-
" wing code for the descriptien ef ALGOL-programs: In assignment-

| statements of the form (1) use only the identifiers of one-dimen-

. sional integer-arreys on the right-hand side, Define once and

~ for all an imjective mapping

mapid: T -3 N
(T... set of ALGOL-numbers, identifiere, -logical veluee,

~delimiters, and -operators,
¥... set of natural numbers),

Then, ae "ALGOL procedure declaration descridbed Ly c" inke the
one deacribed by
M = mapid~ 1 (c[1]) ... mapid~(e[1])

if there exists a "suitable" (cf.(4.54b)) i1 with
lower bound of c £ 14 i< upper bound of c.

rThe only extension of the language now consists in the proposed
interpretetion of assignment-statements of the form (1), which

in ordinary ALGOL 60 would lead to an error-messege during exe-
cution time (see Lauer[2], p.4-25). On the other hand, statements
of the form (1) are not excluded by the syntax of ordinary ALGOL 6o,
such that the proposed extension is syntactically invisible

(see Lauer [2], (2.31) or Naur [4], 4.2.1.).

By this simple extension we are now in a position to compose every
possible ALGOL-procedure (for inetance in the form of a sequence
of integer-numbers) during executimn time of a program_by suitably
menipulating the values of the integer-array (in general the data-
entity) c. After the procedure ies set up it can be transmitted to
execution by simply giving the instructions

P:= ¢; £(actual paremeter 1listd);
where f has to be some identifier whose declarntion is a procedure
declarstion, or by '

f:: c;

ant using the function designutor ?(<actuel parameter list>) in

some exnression.

For practical purposes, of course, the specicl codé defined above
would not be convenient. A practicslly interesting implementation
would probably have io be based on well developed string manipula-
tion fentures, with careful consideration of the amount of work
ziven to the "editing" function (in our proposal the function nap,
of. (4.54b)). Also, such a code weuld have to be standardized to
guarantee compatibility of programs using this new possibility
and written for different implementationme.

By the proposed method the desired lamguage feature is realized in
a very general way, such that really every possible ALGOL-program
can be composed and executed during execution of some control
program, Compared with other methods (for instance the "compile-
time facilities™ in PL/1) the proposed extension has several ad-
vantages: _

1, Pirstly, for the interpretation of statements having the form
(1) we have not to include a new, long program part into the
compiler, but only to alter the translation of the ":=" in the
apécial case (1) by puiting a call of the "editing" function
and the compiler to the translated program,

2, After a program desribed by ¢ is omce compiled by execution of
f:= ¢, 1t can be called as often as desired by the identifier £
in its compilsd, quickly operating machine-language form,

3, After execution of a procedure thus compiled, control sutoma-

tically returns to the status where new procedures can possibly

be composed,

3, Formal definition of the extenmsion

We now formally desribe the extension using the desription method
developed by the IBM-Laboratory, Viemna, For underrtanding the
following at least a survey knowledge of the method es gliven 1n.
Iucas, Lauer,Stigleitner[3] and the formal definition of ALGOL 60
syntax and semantics given in Lauer 2] is necessery., We use muny
definitione and notational conventions of those reporté without

explicitly stating them.

We already remarked that a syntacticel extension is not necessary.
As to the semantice, we change the ALGOL 6o interpretétion given
in Leuer [21] by changing (4.54) there to '

(4.54) int-sseign-st(t) =
length(s-1p(t))=1 & 1s-pmc—den(den1t) & is-id (rt)

& 1s—m(e-e1emos—da(denrt)) >

upd-dn (nlt pden);

den: combine (pt,a-e,s-e(denlt));
pt: prepass-text(translate (mep(r,)))
T —> right-hend part of (4,54) in Leuer [2] unchanged,
where ltseleﬁ(1)-s-1p(t), rf-s-—;_'p(t), n‘gm@), danmanm(n_!). _
(4.5%a) translate(text) = this should be a function which for

every characier string txfgchar1 ‘e .clmrn (charie T (121,...40),

7 .

—

T..., set of numbers, logical values, identifiers, delimiters and

operstors in the fixed concrete representation of abstract ALGOL 60
programs, txt being s syntactically correct procedure declaration

in the concrete representation) gives the corresponding absiract
object txt' satisfying ie-proc~decl, Note that no procedure iden-
tifier for the procedure under study appears in txt'. We can sup-
pose that the function translate is already defined accprding' to
the practical situations where for the fixed concrete represen-
tation this function, essentially, is given by the compiler, An
example of a formal definition of a similar function is given in
Lucas et al, [3], p.3-26,

(4.54b) mapid~(1a,) ... mapta~?(1q,),

map(id)= if 1,41 & i, & (33)Q(19,5)

undefined else,

idy= elem(—i1 +k+1)es-value(den 1d),
i,= s-ubd «s—da(denid),

Q(1d,)= (16361, & mapid™"(4d,) ... mapid 1(1«13) is a
procedure declaration of the concrete representation)

i= (vj)Q(ia,y),

(4.54c) mapid(Tr) ie an injective mapping yielding an integer
number for every elememttcT.

(4.54d) combine(o,s,p) = PASS: m(0:{8:p)).

This concludes the formal definition of the extension.’

Let us call ALGOL 60 machine the machine whose language function

(state transition function) A is desribed by the definition in

Lauer [2] and ALGOL 60' machine the machine whose language function

is described by the definition in Lauer [2] plus the supplement

glven above,

We know, firstly, that the above extemsion does no harm, as we can

easily prove

Lemma 1: Every abstract program t yielding a sequence of states
54982440 such that for no state §, (k1) s-1n-7(§,)= error
for“t&tn(s—c(sk)), if submitted to the interpretation by the
ALGOL 6o machine, also yields the same sequence if eubmitted to
the interpretation by the ALGOL 6o! machine,

Let us define concrete(obj) to uniquely yield a charrcterising
txt for every abstract obj satisfying is-proc-decl{obj), such
that translate(concrete(obj))=obj (see Lauer [2], chapter 5), The
definitions of syntactical predicates in the concrete representa-
tion should be such that concrete(obj) satisfies the predicate
"procedure declaration™ of the concrete representation whenever
is proc-decl(obj). Purther for any abstract object P we define
Pl= J(P;ia-no&\ ia-—OWN(e—scope-K(P))})y
i.e. P' ip the same object as P with all unique nemes assigned to
OWN-variables deleted. So, in particuler, if P satisfies
is-p-proc-decl, then P' gatisfies is-proc-decl. ie in the follo-
wing we shall speak about several distinct Btat°°l§'5‘t§1'5§""
we shall agree to denote the corresponding immediate components
by: DR=s-dn (§), UN=s-un(%),..., DN*=zp-dn(Z'), URt=s-un({'),...
2§4=s-dn(51), g§4=e-un(sq).... « Purther, denc=c(§)(2§) and
dene=f(E) (DK).

Our mein task is 1o show

Lemmn 2: (‘onsider P=(Cu-type:type), (s-par-list:par-list),
< s-ppec~pttapec-pt),(s-body:statement))

‘with is-p-proc-decl(P) and a state § with f(E)angs)c(E)=n,
s-da(den)=(e-1bd: 1>, e-ubd :I,),{s-elem: INTCD) and I,14I41,,
mapid'1 (elpm(-I,l +2)° s~value (denc)). . .ma.pid"1 (ele(I1 +I+1)e8-value
(den)) = concrete(P') for a certain I,

Then the execution of t=({a-1p:{tH), (s-rp:o)), satisfying the
first condi_tion of (8.54), ylelds a state ¥' such that
(+) ®-typeng(DN')=type, a—par-liat-nf(p_l_')-plr-liat,
s-spec-pten,(DN' }=spec~pt, s-bodyen,(DN')sstatement®,
UN'=UN+k, C' =9(C ;T), where tn(g =it} and
t(C)=int-st(t).
k is the number of OWR-varibales in statement, statement®' differs
from statement only in the unique names stndi._ng at the positions
s-neK of ﬁtatenent, where is-OWN(s-scopeK(statement)), These
unique names differ from each other and from all unique names
used for OWF-variables throughout the progrem amnd for other iden-

' ¢ifiers in the present environment. Purther, s(&')=s(3) for all

' composile aeiectora 8 differing from the composite selectors

" mentioned in (+).

' Proof:We first compute by straightforward application of the
‘ definitions given in Lucas et al, [3]and Lauer [2]

- 3= P8, D=pld(§s7o80) 3(to s-c :m(int-assimm-st (1) 1{a-T1:D)>).
‘&, is 1ike §, with the exception that now.

G=Me (T'((s-in :int-assign-st),(a-al:(t)),(p—ri&ﬂ)»).
St11l tn(C 1)=\t\

10

Por the next step the new form of (4.'54)' is used:

52'1)(§1 'T)Hﬁnt—auigf-st(t' &({1 it 8-0),TydD=
==/M(J(S1 iTe 8-) ;{Te B=C :/A(ct s(s-ri:).
Thus, alaog > differs from S only by the s-¢ component which now
is C 2-/\(2 (T t0t)), whers |
ot=({s-1nsupd-dny ,{ s-alinp> ,(r: ({s-in:gombine’,{s-al:{l), s-e,
s-e(den.)>),(s-ri+ (r,e1en(2)e s-21))),{r: ((s-in:prepass-text),
@-al:{translate(map(c)))) s <B-ris({rer,elem(1)os~alerd>)d)>)N).
Now, translate(map(c))=P!, as one can easily check, Note that
is~proc-decl(P') and therefore concrete(P') satiefies the predi-~
cate "procedure-declaration" of the concrete representation,
tn(gt)={‘[2\, where Uzrores ¢ . Purther, '

j3=lp(52,t2)=4> repass—text (E' ,é‘(fagtzﬂs-c),t2,<r-r,elem('! Yog-alor))

=/H(S‘(j 3T508=c) 5<Tyo8~C :}L((gieg-text-‘i (P',un);
{K(un) :un—namo\ i8-OWN(s-scope «K(P!?))3)1

{s-ri :<r-r,'elom(1 Yes-alord D),

Thus,
[of 5=/s\@_ 2i& ({s-in:prép-text—1),{s-al: P,
{s-ri({rer,elem(1)+ s-alsrd)>,
(rq:({o-in :un-np.me) ,s~ris ((r1 1Kq°elem(2 Yeo=p DDV, o0y
<r, : ((e-in:un-neme D e-ri: ((rk,-t(k- elem(2)e 8-212)>))),
KJ such that :l.za!-O!»‘F'!l(la---lscOpe-1(a (P')) for 1.4- j =k,

tn(g 5)3 {r,‘ °t2' ' 9rk.t2\ .

For further proces-aing we take the inastructions at the nodes
T -1:;.=,,...,z']|(-'&'2 in one special order omitting the straightforward

1I

proof, that order does not influence the final result,

\§4=\{}(§3,r1'-t,,)=1'> -nam SJ(§5,r1-t?-s-c),r.]-‘té,<r1,'K selem(?)og-al>)
../u(/u(f(fyr =t2vn-—c) (Kqﬂelem(E)ca—al“(r °‘tz-r,.l) a-—cmth),
Co-n s PH4TY),
-/\(J(_' 34T, -t2);x1°elem(2)°s-ale‘l‘ 'nUH) ng‘sﬂkﬂ,
tn(_ y)={T2ToreeesTysT). Proceeding in this vay we finally obtain
g s, k‘/‘(é’(- 33T1°Tas e e 0T oTp) i<k s elem(2) s -aleT,: %5,...,
&Kyrelen(2) s-al-T, Dy k1>,

U!3+k=.U'N'+k, n(C 5+k)={r2\ ’

In the next step the newly generated k unique names are attached

to all OWN-variables occurring within the s-body component of P!

thus yielding an object P'', which is like P except for the unique

names attaéhed to the k OWN-variables,

54+k=w(§3¥k’r2)2,“(&1(j5+k Ty g~c)ixelem(1)e B-a.l-ro(t‘a-r-r)- g=C:
/q(&(ﬂ-n X, :ny!>, corpSB-noK, gy +k_,12J))) .

-~
Py,

We omit the easy calculations of the next two steps which yield
S ="’6+k.}A(J‘(f5+k,tv 8-¢) (a-—dn*}u(_! {nftﬁ(l" ' ;(s-e: s-’e(denf)>)>)>),
¢ =4(C ;0), UK '=UN5 , =UB+k, DN'%L;(nf/A(P“-@-e s-e(den,)>))).
~ Thus, s-typeonf(_)=type, e-par—listunf(_l!' =par-list,

. s~gpec-pton f@')=spec-pt,s~bodyon r@')=statement?’,

where statement' has the property described in Lemme 2, because
the use of the instruction un-name steadilyvbroduces new unique

names, This completes our proof.

I2

Lemma 2, informally speaking, hae the following significance:
g:l.i-von any procedure-denotation de_nr for an _‘:Ldentiﬁ.or f, denr
‘consisting of a procedure-declaration and an enviromment compo-
-noht. we can generate this procedure-demotation by first decla-
ring f as procedurs fdentifier of any procedure (thus defining the
environmt) and thm executing f:i=¢ at any place where ?# 15 de~
clared, composing in o[1],..., e[I] & demoription of the procodure
declaration. The execution ef f:-o thu generates a procedm-
_denotatien for f, which differs from dont only in the choicq of
unique names for the OWE-variables, which is reslized so that no
‘ clpﬂj.ot with other ﬁ.riablaa may arise. It is also shown, thet
_the executiem of fi=c has no other effects, How the description
‘of the procedure-declaration in ol1]y ...,y c[T]has to be composed
~ip given by the function conorets, whoss effect has to be known

to the programmer,

I want to thank G.A.Ososkov, V.P.Shirikov, and A.A. Khoshenko,
with whom I had several discussions on the subject of this paper,

Iiterature:

[1#.6,Busee, Eine mogliohe Erweiterung der Programmiersprache
ALGOL, Elektronische Rechenanlagen, 8, Heft 2, 196,

| 2] P.lauer, Formal definition of ALGOL 60, Technical Report
TR 25.088 TBN Leboratory Viemna, 1968,

L3] P. Iuces, P.leuer, H.Stigleitner, Method and notation for the
formal deﬂnition of programming languages, Technioil
Report TR 25,087, IBW laboratory Viemns, 1968, |

4] P.Faur, Reviped report on the algorithmic language ALGOL 60,

[

[ﬁ] A.van Wijngaarden, Report on the algorithmic language ALGOL 68,
Mathematiséh Centrum Amsterdam, AS MR 101, 1969,

[6]l v.P.5hirikov, Yazik PORTRAN, JINR, LVTA 1969,

{71 IBM System/350 Operating System, PL/1 Language Specifications,
'19665 Form Nr, 79879-1.

Received by Publishing Department
on Maroh 19, 1971,

14

