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An Algorithmic Criterion for the

Problem Statement

We start from the polynomial ring K[zi,...,,] over a commutative field
K (abbreviated K([z;]) and an arbitrary polynomial ideal A = (fi,...,fs)
f; € K[zi] for j =1,...,s). (Notions not explicitly defined here will be used
n precisely the sense defined in Grobner (1949) and van der Waerden (1937).)

. The residue class ring O = K|[z;]/A is well known to be an (in general,
nfinite dimensional) algebra over K. If A is zero dimensional, then O has
nite dimension over K, and conversely. The residue classes of the power
products (abbreviated PP) zi! ---zi» form a basis of the algebra, which is
inearly dependent in the case A # (0). (Since in what follows we will speak
often of the basis of an ideal and of the basis of the corresponding residue
class algebra, we adopt the following convention to avoid ambiguity: we say
simply basis if we mean the basis of the residue class algebra and ideal basis
therwise.)

The goal of the present study is to develop an algorithm which, given an
deal basis (f1,-..,fs), extracts a linearly independent basis for O from the
et of all residue classes of PPs, and, for two arbitrary elements of this basis,
allows a representation of its product to be computed as a linear combination
of basis elements (i.e. produces the complete multiplication table in the finite
_dimensional case). For zero dimensional ideals, Grobner (1964a) suggested
such an algorithm, for which it was still undecided, when it could be termi-
; nated in concrete cases. The justification that the algorithm suggested here
_can be applied to arbitrary polynomial ideals emerged during the investiga-
tion of this last question. By applying the algorithm, an assertion is possible
_about the existence of a zero for the ideal as well as the dimension of the
ideal.

1QOriginal article appeared as ‘Ein algorithmisches Kriterium fiir die Losbarkeit eines
algebraischen Gleichungsystems’, Aeq. Math. 4 (1970), 374-383. Received 27 March 1969,
and in revised form 11 November 1969. Translation by Michael Abramson and Robert

Lumbert.
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2  Description of the Algorithm

2.1 Definitions

For the purposes of our study, we order the PPs by increasing degree and
- within the same degree lexicographically in the sense that zi' - zi» precedes
o gl i > i orig =i (fort=1,... kand 1<k < n) and ipy >4, .
Beginning with z9 - -- 20, we associate the integers 1,2,3, ... to these ordered
PPs as the indices of the corresponding PPs. The PP having the highest
- index among those occuring in a polynomial, will be called the PP of this
polynomial.

Let the basis polynomials of the above polynomial ideal A = (f;,. .. 2 fs)
be
~ fi=ab e b Y bt (=18 )

Let pp; = x{j'l .--79" be the LPP of f; and let the other terms of f; be
collected under the summation sign in (1). Without loss of generality, we
have assumed the coefficient of pp; to be 1. Because of (1) we have '

I ' . . , £ p
wlj,l tur _mij,n+vn o — Z a(J) . $111+v1 .. m;n'f"un (252)

1] eeuln
G=1,...,sand v; =0,1,2,... for t = I,...,n. We use " as the symbol
for congruent modulo A). i

A PP zi---z¥ is called a multiple of the PP zf' ... gk if i, > K, for
t =1,...,n. PPs which are multiples of at least one of the pp; (J=1,...,8),
l.e. occur at least once on the left-hand side of (2), will be called MPPs relative
to the ideal basis (fi,..., f,). Otherwise a PP will be called NPP relative to
the ideal basis (fi,..., f;). When no ambiguity is possible, we will omit the
phrase "relative to the ideal basis (f1,---,fs)”. Polynomials, in which only
NPPs occur and terms containing the same PPs are collected, are called
NPP-polynomials (relative to the ideal basis (f1so- 0 15))

A given polynomial (for which we do not wish to assume that terms con-
taining the same PPs are collected) can now be transformed into a congruent
NPP-polynomial, which is in general not necessarily unique, by successively
replacing all MPPs by the corresponding right-hand sides of (2) and by col-
lecting all like terms in arbitrary stages of this reduction procedure (which
- we call M-reduction). Thus the residue classes of the NPPs already form a
basis for O, although still linearly dependent in general. A

2.2 A Lemma

The following now holds:

Lemma. If an ideal basis (fi,... , fs) has the property that all possible M-
reductions of a polynomial lead to the same result, then the residue classes of
the NPPs relative to the ideal basis form a linear independent basis for O.
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Proof. A linear dependency between residue classes of NPPs would correspond
to an NPP-polynomial g in .4 which would possess a representation

q=> hj-f; with h; € K[z;] forj=1,...,s. (2.3)

Multiplying out the A; - f; (7 =1,...,s) without collecting terms containing
the same PPs produces a polynomlal on the right-hand side of (3) that can
be M-reduced in two different ways with two different results, contradicting
the assumption of the lemma: It can be M-reduced to g # 0 precisely by
collecting like terms. And it can be trivially M-reduced to 0 by subtracting
the polynomials A; - f; and afterwards collecting like terms. (Notice that both
procedures satisfy the definition of M-reduction!) O

2.3 Descriptioh of One Step of the Algorithm

In one step of the algorithm, the following procedure is carried out: Form the
least common multiple (abbreviated LCM) of the LPPs pp; and ppy of two
distinct basis polynomials f; and fi, namely the PP

Ljka L, :
PPk = X T R where Ljr: = max([s, [r:) (t=1,...,n).

For pp; k, both of the following congruences arise from (2):

poig e — > al) et E gt din (2.4)
and ;

ppig ¢ — 3 al) g gintden (2.5)
where

dj,t = Lj,k,t — Ij,t and dk,t = Lj,k,t — Ik,t (t =1,..., n)

We call the polynomial that results from forming the difference of the
right-hand sides of (4) and (5) the S-polynomial corresponding to pp;r. Two
situations can arise through M-reduction of this polynomial relative to the
ideal basis in question:

1. The S-polynomial corresponding to pp; is M-reduced to zero. In this
case, we go immediately to the next step, as indicated in 2.4.

2. The S-polynomial correspondmg to pp;r is M-reduced to a polynomial
(6) which does not vanish:

azft -zl +3 a2l 2l (a€e K, a#0), (2.6)
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where again we have singled out the LPP zh ...zl of this polynomial.
In this case, we add the resulting polynomial in the form

1 : .
ol L el el o)

to the ideal basis. By doing this, we also increase the set of relations ap-
pearing in (2) and thereby the number of possible M-reductions that can
possibly be carried out in the future for any polynomial. In accordance

with 2.4, we go to the next step.

2.4 Combination of Steps

The operations given in 2.3 will be carried out in succession for all pp;,
where j =1,...,s—1and k =j+1,...,s. Notice that during the execution
of the algorithm, the number of generating polynomials changes in general.
For practical computation, it is advisable to process the pp;i with smallest
‘index first, since this can reduce the computation time considerably.

For a specific combination of indices j and k, one of the following spécia,lu

cases can arise:

S1. pp;x = pp; (or pp;x = ppx). In this case, the basis polynomial f; (fi
~ resp.) can be deleted from the basis, after which the operations defined
in 2.3 are carried out for pp; k.

S2. pp;r = pp; - ppk- In this case, we need not carry out the operations
defined in 2.3.

The algorithm is terminated when all pp;x have been processed according to
the instructions of 2.3. We will now prove the following two claims:

Bl. Let (g1,-..,9u) be the current ideal basis when the algorithm termi-
nates. Then (gi,...,gs) has the property required by the hypothesis of
the lemma.

B2. The algorithm terminates for every ideal in finitely many steps.

3 The Proofs

3.1 Proof of Bl

Let s . . :
g = ae 4 Yalliat ey (G=10)

be the new basis polynomials.
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For this special ideal basis, we have: If we were to process every pp;r (pp; x
Sk,

would now be the LCM of 23" -+ - 27>™ and 2% - - - wik’") once more according
to the instructions of the algorithm (j =1,...,u —1land k=7 +1,...,u),
then we could now M-reduce every resulting S-polynomial to zero in at least
~one way, since we have just added the necessary polynomials of the form (7)
to the ideal basis during the previous run of the algorithm.

In the case pp;r = pp; - ppx (pp; is now the abbreviation for :cls"l e xS"”),
the corresponding S-polynomial has the form

ZC(J) g1 L gintSin +Z k1 T gt gkt Sin,

11 znl

The special M-reduction, in which we replace every

11+, ;
w]_l 22 m;n‘*'sk,n

by
DL SO
‘and every
.1)’;1+Sj’1 . xﬁ"+5""
by

(4) itk intk
Zc 'xll 1,,.xnn n

11 .eeln
makes this polynomial zero immediately. Thus in this case, an M-reduction
to zero of the corresponding S-polynomial always exists, even when the oper-
ations defined in 2.3 were not carried out for pp;.

We now show that every M-reduction relative to the ideal basis (g1, ..., gx)
of a given polynomial leads to the same result. We prove this by induction
and begin with 2% --22. 20 -- 2% has a uniquely determined M-reduced form
relative to-every ideal basis, because it is either an NPP and therefore already
(uniquely) M-reduced, or an MPP and therefore M-reducible to zero.

The induction hypothesis is: For every polynomial whose LPP does not
have a greater index than a fixed PP ppg, the M-reduction relative to (g1, ..., gu)
produces a uniquely determined NPP-polynomial.

What must be shown is: For a polynomial
f_cl Vl...xXn+ +cp Vl . V"_I._Zavl 'Un vl ..x;i",

whose LPP z]*---z/» has an index that is greater by one than ppo, the M-
reduction produces a uniquely determined NPP-polynomial. (Note -that we
must prove the claim for polynomials in which like terms are not yet collected
because we used them in this form in 2.2.)

We distinguish between three cases:

Case A.  z}'---zY» is NPP. Then M-reduction of f means: M-reduction

of
z? v
Zaul un T 1...xn"



540 Buchbergef :

which produces a unique result by the induction hypothesis, and collection
of the terms ¢, - zy"+--z¥" (¢ = 1,...,p) which leads similarly to a unique
result.
Case B. z}'---zY is a multiple of precisely one z g (1<j<u).
At some stage of the M-reduction of f, every term cq-x¥1 ezt (g =1, .. ,D)
must first be replaced by ¢, - Y>(7), where

Z ZC(J) mu-l-dm - w;n+dj,n (dj,t =V, — Sj,t for t = 1,... ,TL),

and then, together with the other terms of the polynomial, be further M-
reduced, leading again to a unique result because of the induction hypothesis.

Case C. m}/‘ -+~ z¥ is a multiple of several wsj’l e mfj’", 8.7 =1TJ1,--,7,
(L-2.2.< u). Durlng the M-reduction of f, every ¢, - zy'---z/n (¢ =

“1,...,p) will be replaced by a polynomial ¢, - ¥-(jr,) where j., € {j1,...,7.}.

Thus a fixed combination of indices (j,,,...,Jr,) characterizes a family of M-
reductions of f, which all use the same “initial substitutions” for the terms |
¢y -z} ---zY» and all produce the same result as we can easily check by

slightly modlfylng the argument in case B. In partlcular every M-reduction

characterized by the p-tuple (j1, 1, - . -, J1) leads to the same NPP-polynomial.
We are done if we can show that among the M-reductions characterized by a
specific combination (jr,, ..., Jr,) and those characterized by (j1, ..., 1), one
of each can be specified which leads to the same result. In any case, a suit-
able M-reduction from the class characterized by (s, . . ., j1) will first replace

¢ oz -o-zmin f (g=1,...,p) by

Vi+i1+d; Va+intd;,,
Zc(h) 1705q,1 e nTej,n (31)

znl n ’

where

’ —_— . . . — . . — .
Vt e ‘/t - LJ11.77‘q1t d]l'lt - L]liﬂf‘q:t S]l,t
L.71 ,]Tqyt - ma'X(SJht7 SJTqv )

(exponents of the LCM pp;, 5,.), t=1,...,n

An appropriate M-reduction from the class characterized by (jry,..-,Jrp)
will first replace ¢, - -zl (g=1,...,p) by '

(Jrq V'+i1 +djrg 1 Vatintdje ,n
Cg " D Ciy tin®1 R (3.2)
where
djrq:t = le)jrqyt —Sj,-q,t (t = 17""“’)‘

The polynomials (8) and (9) are precisely the polynomials whose difference
yielded the S-polynomial corresponding to pp;, ;.. , except both are multiplied

by a:}/’l ...zY». From an M-reduction that reduces this S-polynomial to zero
(and that always exists relative to (gi, . . ., gu) because of the argument at the
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beginning of this section), we can immediately obtain an M-reduction to zero
of the polynomial consisting of the difference of (8) and (9) by multiplying
all PPs resulting from the M-reduction of the S-polynomial by x}fl’ gl
However if the difference of two polynomials to M-reduces to zero, then it
is easily seen that each of the two polynomials can be M-reduced to the
same polynomial in at least one way. Hence, among the M-reductions of f
characterized by (ji,...,J1) and those characterized by (j,,,...,J.,), there is
at least one of each which leads to the same NPP-polynomial. With this, Bl
is proved. O -

The justification of the treatment of the special case S1 still remains open.
However, we can easily convince ourselves that by removing a generating
polynomial which has the property specified in S1, the family of possible
M-reductions will not be reduced, as long as we add the NPP-polynomial
corresponding to the S-polynomial to the ideal basis, as the algorithm spec-
ifies. The claim that all of the S-polynomials corresponding to pp;r can be
M-reduced to zero relative to the ideal basis (g1, ..., gu), which forms the ba-
sis for the proof of uniqueness of M-reduction, remains correct after removing
a basis polynomial in step S1.

3.2 Proof of B2

During the processing of an LCM pp; x according to the algorithm, the ideal
basis will eventually be enlarged by the addition of a polynomial whose LPP
is an NPP relative to the previous ideal basis. B2 is proved if we can prove

the following theorem:

Theorem. A sequence of PPs xfj’l gl (s = 1,2,3,...), which has the
property that x{"'l Cgpen (k=2,3,...) is not a multiple of any gl g mun
(m < k), has only finitely many elements. (A sequence of PPs with this
property will be called an M-sequence).

Proof. The theorem is easily seen for n = 1. We assume its correctness for
all n < N and consider an M-sequence which begins with z7 .-z, Let
zi' -+ - 3 be another element of the M-sequence, then v; < I; for at least one
i (1 <4 < N). For an arbitrary combination of indices (1, ...,1) (1 <k < N,
1'<14; < ... <1 < n), there are only finitely many k-tuples (v;,,...,v;,)
of positive integers (including zero) which satisfy v;; < I;; for j = 1,... k.
Therefore, the PPs of an M-sequence belong to finitely many types, each of
which is characterized by a fixed combination of exponents (v;,,...,v;,) of k
fixed variables z;,,...,z;,.

In an M-sequence with infinitely many elements, an infinite subsequence
must exist whose elements all belong to the same type. By removing the vari-
ables z;,, ..., z; for which the PPs of this subsequence have fixed exponents
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(v, ..., i), an infinite M-sequence in n — k variables arises from these PP i‘
- contradicting our induction hypothesis. O

Remark. This proof shows that the algorithm is finite in principal, indepe
dent of special properties of the ideal (e.g. the dimension), but says nothing
about its practicality. In this setting, the following fact seems to be interest-
ing: When applied to a system of linear equations, the algorithm becom
the Gaussian elimination procedure, as one can easily verify. It is therefore a
generalization of the Gaussian algorithm in a certain sense.

4 Results about the Existence of a Zero and
the
Dimension

It is well known that a polynomlal ideal A has no zeros if and only ifA= (
i.e. the corresponding residue class ring O consists of only one residue class.
This is the case if and only if during the course of the algorithm, the polync
mial z9,...,z% must be adjoined to the ideal basis. (If, after termination of
the algorithm, 29, ...,z2 is not present in the ideal basis, then there is more
than one NPP and therefore more than one residue cla.ss in O!) Hence, we
have: i
Criterion 4.1. A polynomial ideal has no zeros if and only if, during the
course of the algorithm, the polynomial z?,...,20 must be adjoined to the
ideal basis. o

Moreover, we arrive at the following criterion about the dimension of the

ideal:

Criterion 4.2. A polynomial ideal has dimension greater than zero if and
only if the ideal basis (gy,...,g.) produced by the algorithm has the following
property: There is an i (1 < i < n), such that no PP of the form z? (b > 0)
occurs among the LPPs of the basis polynomials.

Proof. Applying the definition of the dimension of a polynomial ideal ([1, p. 98]),
we easily see that a polynomial ideal has dimension zero if and only if the
residue class algebra is finite dimensional. But the number of basis elements
of the residue class algebra (= the number of NPPs relative to (g1,...,9u))
is infinite if and only if the condition expressed in Criterion 4.2 holds. O
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5 Calculating the Multiplication Table of the
Residue Class Algebra

Let zi'---zin and 2 -.. 2k be quantities which were constructed as ba-
sis elements for O by the algorithm. (By the bar, we denote the the cor-
responding residue class.) Then we obtain a representation of their product

gtk . gintkn a5 a linear combination of the residue classes of the NPPs
through the M-reduction of zit* ... gintkn relative to the ideal basis pro-
‘duced by the algorithm.

6 - Remark on the Construction of Zeros

We suggest here a method for finding the zeros of the polynomial ideal us-
ing the knowledge about the structure of the residue class algebra. First we
consider the zero dimensional case: Let ui, ..., u, be the PPs whose residue
classes form a basis for O. Using the multiplication table, we can successively
find representations for all z* (k = 0,1,...) as linear combinations of the
w; (j = 1,...,m), and for each zf, we can test whether it already depends
linearly on 1,Z7,...,z¢ ' Let k = m; (m; < m+ 1) be the first time this is
the case, then p;(Z7) = 0 holds, where p;(z1) is a polynomial of degree m; in
K{zi].

Next, we form the representations of the residue classes of the PPs which
arise by mn multiplying 1,zy,...,27"" ~! by x4,22,..., until for a fixed residue
class #1122, a linear dependency with previous PP-residue classes is found
which can be written in the form

p2(F1,T3) =0  with  py(zy1,22) € K21, 23]

We continue similarly and obtain a sequence of polynomials pi(z1,..., k) €
A (k=1,...,n), which we can solve successively. Certainly, every zero of the
ideal occurs among the set of zeros of the pi, but the converse is not the case
in general. Precautions must still be taken (by taking additional polynomials
from A) in order to eliminate extraneous zeros. A detailed study addressing
questions in this context is however beyond the scope of the present work.

The d dimensional case (d > 0) can be reduced to the zero dimensional
case by substituting numerical values for d independent variables relative to
A. Thereby we can obtain at least finitely many solutions. For every solutlon
point, under certain assumptions, we can construct the farnlly of solutions in
the neighborhood of these points, e.g. with the help of Lie series (Grobner
(1964b), p. 72ff). However many questions remain to be studled in detall
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7 An Example and a Remark on FProgram-
ming
In order to illustrate the steps of the algorithm, we give a simple example:

(.2 1.2 1.2 2
A= (23— 527 — 325, ©123 — 2r3+ 2123, T} — ).

We consider first the pp; 2, namely z;z2. The corresponding S-polynomial
is '
Si2= %x‘;’ + %mlxg — 222 + 712273

M-reduction of S; 2 produces

xlxg — T1Z9 + 229 + 23:3 — 4xox3.

We adjoin this polynomial to the ideal basis. We must treat the other pp, r,
where j =1,...,s—1and k =2,...,s, in an analogous manner. s is 3 at the
start, but becomes 4 by addition of the new basis polynomial and changes
again several times during the course of the algorithm. For example, pp; 3 is a
PP for which the arguments of the special case S2 apply, so the M-reduction
of 513 can be skipped.

Finally we obtain the new ideal basis

A- = (m% - %m% - %IEQ, Tr1T3 — 2.'1,'3 -+ T1Z2, :I?% — Zg,
' z122 + 72125 + 225 + 622 — 1623,
Tox3 + T2 + 2217 — dx3, x5 — 1225 — 2973 + 6473 — 2471 75).

The LPPs of the six basis polynomials are z2, z;x3, =%, z,2%, 2273, z3.
Therefore, Criterion 4.2 shows that A is zero dimensional. The residue classes
of the PPs 1, 1, x4, z3, T1Z9, 75 form a basis of the residue class algebra.
The representation of the product of the fourth and sixth basis elements, for
example, is formed from the the M-reduction of zZzs. It produces

CU§$3 & —18z1z9 + 4825 — 824 — 21m§.

The remaining elements of the multiplication table can be found similarly.ﬁ .

Of course, the computation time increases very quickly with increased num-
ber of variables and increased degree of the polynomials. The programming of
the algorithm is very easy because of its simple structure. It is advantageous.
to use list processing concepts. Programs exist in Freiburg Code and machine
code of the ZUSE 7 23. :

For other results on questions studied in the present paper, Hermann
(1926) should be consulted.

I would like to use this opportunity to express sincere thanks to my dis-
tinguished teacher, Professor W. Grobner.
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